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PREFACE

When I was a boy of 14 my father was so ignorant I could hardly

I was astonished at how much the old man had learned in 7 years.

MARK TwAIN

There are several reasons for the acceleration of interest in graph theory. It
has become fashionable to mention that there are applications of graph
theory to some areas of physics, chemistry, communication science, computer
technology, electrical and civil engineering, architecture, operational research,
genetics, psychology, sociology, economics, anthropology, and linguistics.
The theory is also intimately related to many branches of mathematics,
including group theory, matrix theory, numerical analysis, probability,
topology, and combinatorics. The fact is that graph theory serves as a
mathematical model for any system involving a binary relation. Partly
because of their diagrammatic representation, graphs have an intuitive and
aesthetic appeal. Although there are many results in this field of an ele-
mentary nature, there is also an abundance of problems with enough
combinatorial subtlety to challenge the most sophisticated mathematician.

Earlier versions of this book have been used since 1956 when regular
courses on graph theory and combinatorial theory began in the Department
of Mathematics at the University of Michigan. It has been found pedagogi-
cally advantageous not to include proofs of all theorems. This device has
permitted the inclusion of more theorems than would otherwise have been
possible. The book can thus be used as a text in the tradition of the “Moore
Method,” with the student gaining mathematical power by being encouraged
to prove all theorems stated without proof. Note, however, that some of the
missing proofs are both difficult and long. The reader who masters the
content of this book will be qualified to continue with the study of special
topics and to apply graph theory to other fields.

An effort has been made to present the various topics in the theory of
graphs in a logical order, to indicate the historical background, and to
clarify the exposition by including figures to illustrate concepts and results.
In addition, there are three appendices which provide diagrams of graphs,



vi PREFACE

directed graphs, and trees. The emphasis throughout is on theorems rather
than algorithms or applications, which however are occasionally mentioned.

There are vast differences in the level of exercises. Those exercises which
are neither easy nor straightforward are so indicated by a bold-faced number.
Exercises which are really formidable are both bold faced and starred. The
reader is encouraged to consider every exercise in order to become familiar
with the material which it contains. Many of the “easier” exercises may be
quite difficult if the reader has not first studied the material in the chapter.

The reader 1s warned not to get bogged down in Chapter 2 and its many
exercises, which alone can be used as a miniature course in graph theory for
college freshmen or high-school seniors. The instructor can select material
from this book for a one-semester course on graph theory, while the entire
book can serve for a one-year course. Some of the later chapters are suitable
astopics foradvanced seminars. Since the elusive attribute known as “mathe-
matical maturity” is really the only prerequisite for this book, it can be used
as a text at the undergraduate or graduate level. An acquaintance with
elementary group theory and matrix theory would be helpful in the last four
chapters.

I owe a substantial debt to many individuals for their invaluable as-
sistance and advice in the preparation of this book. Lowell Beineke and
Gary Chartrand have been the most helpful in this respect over a period of
many years! For the past year, my present doctoral students, Dennis Geller,
Bennet Manvel, and Paul Stockmeyer, have been especially enthusiastic in
supplying comments, suggestions, and insights. Considerable assistance was
also thoughtfully contributed by Stephen Hedetniemi, Edgar Palmer, and
Michael Plummer. Most recently, Branko Griinbaum and Dominic Welsh
kindly gave the complete book a careful reading. I am personally responsible
for all the errors and most of the off-color remarks.

Over the past two decades research support for published papers in the
theory of graphs was received by the author from the Air Force Office of
Scientific Research, the National Institutes of Health, the National Science
Foundation, the Office of Naval Research, and the Rockefeller Foundation.
During this time I have enjoyed the hospitality not only of the University
of Michigan, but also of the various other scholarly organizations which I
have had the opportunity to visit. These include the Institute for Advanced
Study, Princeton University, the Tavistock Institute of Human Relations in
London, University College London, and the London School of Economics.
Reliable, rapid typing was supplied by Alice Miller and Anne Jenne of the
Research Center for Group Dynamics. Finally, the author is especially
grateful to the Addison-Wesley Publishing Company for its patience in
waiting a full decade for this manuscript from the date the contract was
signed, and for its cooperation in all aspects of the production of this book.

¥ rw

July 1968 F. H.
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CHAPTER 1

DISCOVERY!

Eureka!l
ARCHIMEDES

It is no coincidence that graph theory has been independently discovered
many times, since it may quite properly be regarded as an area of applied
mathematics.* Indeed, the earliest recorded mention of the subject occurs in
the works of Euler, and although the original problem he was considering
might be regarded as a somewhat frivolous puzzle, it did arise from the
physical world. Subsequent rediscoveries of graph theory by Kirchhoff
and Cayley also had their roots in the physical world. Kirchhoff’s investiga-
tions of electric networks led to his development of the basic concepts and
theorems concerning trees in graphs, while Cayley considered trees arising
from the enumeration of organic chemical isomers. Another puzzle approach
to graphs was proposed by Hamilton. After this, the celebrated Four Color
Conjecture came into prominence and has been notorious ever since. In
the present century, there have already been a great many rediscoveries of
graph theory which we can only mention most briefly in this chronological
account.

THE KONIGSBERG BRIDGE PROBLEM

Euler (1707-1782) became the father of graph theory as well as topology
when in 1736 he settled a famous unsolved problem of his day called the
Konigsberg Bridge Problem. There were two islands linked to each other
and to the banks of the Pregel River by seven bridges as shown in Fig. 1.1.
The problem was to begin at any of the four land areas, walk across each
bridge exactly once and return to the starting point. One can easily try to

* The basic combinatorial nature of graph theory and a clue to its wide applicability are
indicated in the words of Sylvester, “The theory of ramification is one of pure colligation, for
it takes no account of magnitude or position; geometrical lines are used, but have no more
real bearing on the matter than those employed in genealogical tables have in explaining the
laws of procreation.”



[\

Fig. 1.1. A park in Konigsberg, 1736.

solve this problem empirically, but all attempts must be unsuccessful, for
the tremendous contribution of Euler in this case was negative, see [ES].

In proving that the problem is unsolvable, Euler replaced each land area
by a point and each bridge by a line joining the corresponding points,
thereby producing a “graph.” This graph* is shown in Fig. 1.2, where the
points are labeled to correspond to the four land areas of Fig. 1.1. Showing
that the problem 1s unsolvable 1s equivalent to showing that the graph of
Fig. 1.2 cannot be traversed in a certain way.

Rather than treating this specific situation, Euler generalized the problem
and developed a criterion for a given graph to be so traversable ; namely, that
it is connected and every point is incident with an even number of lines.
While the graph in Fig. 1.2 is connected, not every point is incident with an
even number of lines.

C

I~
)

Fig. 1.2, The graph of the KOnigsberg Bridge Problem.

ELECTRIC NETWORKS

Kirchhoff [K7] developed the theory of trees in 1847 in order to solve the
system of simultaneous linear equations which give the current in each
branch and around each circuit of an electric network. Although a physicist,
he thought like a mathematician when he abstracted an electric network

* Actually, this is a “multigraph’ as we shall see in Chapter 2,
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with its resistances, condensers, inductances, etc., and replaced it by its
corresponding combinatorial structure consisting only of points and lines
without any indication of the type of electrical element represented by in-
dividual lines. Thus, in effect, Kirchhoff replaced each e¢lectrical network
by its underlying graph and showed that it is not necessary to consider
every cycle in the graph of an electric network separately in order to solve
the system of equations. Instead, he pointed out by a simple but powerful
construction, which has since become standard procedure, that the inde-
pendent cycles of a graph determined by any of its “spanning trees” will
suffice. A contrived electrical network N, its underlying graph G, and a
spanning tree T are shown in Fig. 1.3.

el

=
0000

pr—

9

L1 |

Fig. 1.3. A network N, its underlying graph G, and a spanning tree T.

CHEMICAL ISOMERS

In 1857, Cayley [C2] discovered the important class of graphs called trees
in the very natural setting of organic chemistry. He was engaged in enumer-
ating the isomers of the saturated hydrocarbons C,H,,,,, with a given
number n of carbon atoms, as shown in Fig. 1.4.

Of course, Cayley restated the problem abstractly: find the number
of trees with p points in which every point has degree 1 or 4. He did not
immediately succeed in solving this and so he altered the problem until he
was able to enumerate : rooted trees (in which one point is distinguished from
the others), trees, trees with points of degree at most 4, and finally the chemical
problem of trees in which every point has degree 1 or 4, see [C3]. Jordan
later (1869) independently discovered trees as a purely mathematical dis-
cipline, and Sylvester (1882) wrote that Jordan did so “without having any
suspicion of its bearing on modern chemical doctrine,” see [K 10, p. 48].
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Fig. 1.4, The smallest saturated hydrocarbons.

AROUND THE WORLD

A game invented by Sir William Hamilton* in 1859 uses a regular solid
dodecahedron whose 20 vertices are labeled with the names of famous
cities. The player is challenged to travel “around the world” by finding a
closed circuit along the edges which passes through each vertex exactly
once. Hamilton sold his idea to a maker of games for 25 guineas; this was

a shreYvd move since the game was not a ﬁnanc\ial SUCCESS.
}

3

19

11 12 13

Fig. 1.5.
“Around the world.”

18 17

In graphical terms, the object of the game is to find a spanning cycle in
the graph of the dodecahedron, shown in Fig. 1.5. The points of the graph
are marked 1,2, - - -, 20 (rather than Amsterdam, Ann Arbor, Berlin, Budapest,
Dublin, Edinburgh, Jerusalem, London, Melbourne, Moscow, Novosibirsk,
New York, Paris, Peking, Prague, Rio di Janeiro, Rome, San Francisco,
Tokyo, and Warsaw), so that the existence of a spanning cycle is evident.

* See Ball and Coxeter[BC1, p. 262] for a more complete description.
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THE FOUR COLOR CONJECTURE

The most famous unsolved problem in graph theory and perhaps in all of
mathematics is the celebrated Four Color Conjecture. This remarkable
problem can be explained in five minutes by any mathematician to the so-
called man in the street. At the end of the explanation, both will understand
the problem, but neither will be able to solve it.

The following quotation from the definitive historical article by May
[M5] states the Four Color Conjecture and describes its role:

[ The conjecture states that] any map on a plane or the surface of a sphere can be
colored with only four colors so that no two adjacent countries have the same
color. Each country must consist of a single connected region, and adjacent
countries are those having a boundary line (not merely a single point) m common.
The conjecture has acted as a catalyst in the branch of mathematics known as
combinatorial topology and is closely related to the currently fashionable field of
graph theory. More than half a century of work by many (some say all} mathe-
maticians has yielded proofs for special cases ... The consensus is that the con-
jecture is correct but unlikely to be proved in general. It seems destined to retain
for some time the distinction of being both the simplest and most fascinating
unsolved problem of mathematics.

The Four Color Conjecture has an interesting history, but its origin
remains somewhat vague. There have been reports that Mobius was familiar
with this problem in 1840, but it is only definite that the problem was com-
municated to De Morgan by Guthrie about 1850. The first of many erroneous
“proofs” of the conjecture was given in 1879 by Kempe [K6]. An error was
found in 1890 by Heawood [ H38] who showed, however, that the conjecture
becomes true when “four” is replaced by “five.” A counterexample, if ever
found, will necessarily be extremely large and complicated, for the con-
jecture was proved most recently by Ore and Stemple [OS1] for all maps
with fewer than 40 countries.

The Four Color Conjecture is a problem in graph theory because every
map yields a graph in which the countries (including the exterior region) are
the points, and two points are joined by a line whenever the corresponding
countries are adjacent. Such a graph obviously can be drawn in the plane
without intersecting lines. Thus, if it is possible to color the points of every
planar graph with four or fewer colors so that adjacent points have different
colors, then the Four Color Conjecture will have been proved.

GRAPH THEORY IN THE 20th CENTURY

The psychologist Lewin [L2] proposed in 1936 that the “life space” of an
individual be represented by a planar map.* In such a map, the regions
would represent the various activities of a person, such as his work environ-

* Lewin used only planar maps because he always drew his figures in the plane.
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Fig. 1.6. A map and its corresponding graph.

ment, his home, and his hobbies. It was pointed out that Lewin was actually
dealing with graphs, as indicated by Fig. 1.6. This viewpoint led the psy-
chologists at the Research Center for Group Dynamics to another psycho-
logical interpretation of a graph, in which people are represented by points
and interpersonal relations by lines. Such relations include love, hate,
communication, and power. In fact, it was precisely this approach which led
the author to a personal discovery of graph theory, aided and abetted by
psychologists L. Festinger and D. Cartwright.

The world of theoretical physics discovered graph theory for its own
purposes more than once. Inthe study of statistical mechanics by Uhlenbeck
[U1], the points stand for molecules and two adjacent points indicate
nearest neighbor interaction of some physical kind, for example, magnetic
attraction or repulsion. In a similar interpretation by Lee and Yang [LY1],
the points stand for small cubes in euclidean space, where each cube may or
may not be occupied by a molecule. Then two points are adjacent whenever
both spaces are occupied. Another aspect of physics employs graph theory
rather as a pictorial device. Feynmann [F3] proposed the diagram in
which the points represent physical particles and the lines represent paths of
the particles after collisions.

The study of Markov chains in probability theory (see, for example,
Feller [F2, p. 340]) involves directed graphs in the sense that events are
represented by points, and a directed line from one point to another indicates
a positive probability of direct succession of these two events. This is made
explicit in the book [ HNCI, p. 371] in which a Markov chain is defined as a
network with the sum of the values of the directed lines from each point
equal to 1. A similar representation of a directed graph arises in that part
of numerical analysis involving matrix inversion and the calculation of
eigenvalues. Examples are given by Varga [ V2, p. 48]. A square matrix is
given, preferably “sparse,” and a directed graph is associated with it in the
following way. The points denote the index of the rows and columns of the
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given matrix, and there is a directed line from point i to point j whenever
the i, j entry of the matrix in nonzero. The similarity between this approach
and that for Markov chains is immediate.

The rapidly growing fields of linear programming and operational
research have also made use of a graph theoretic approach by the study of
flows in networks. The books by Ford and Fulkerson [FF2], Vajda [V1]
and Berge and Ghouila-Houri [ BG2] involve graph theory in this way. The
points of a graph indicate physical locations where certain goods may be
stored or shipped, and a directed line from one place to another, together
with a positive number assigned to this line, stands for a channel for the
transmission of goods and a capacity giving the maximum possible quantity
which can be shipped at one time.

Within pure mathematics, graph theory is studied in the pioneering
book on topology by Veblen [V3, pp. 1-35]. A simplicial complex (or
briefly a complex) is defined to consist of a collection V of “points” together
with a prescribed collection S of nonempty subsets of V, called “simplexes,”
satisfying the following two conditions.

1. Every point is a simplex.
2. Every nonempty subset of a simplex is also a simplex.

The dimension of a simplex is one less than the number of points in it ; that
of a complex is the maximum dimension of any simplex in it. In these terms,
a graph may be defined as a complex of dimension 1 or 0. We call a 1-
dimensional simplex a line, and note that a complex is 0-dimensional if and
only if it consists of a collection of points, but no lines or other higher
dimensional simplexes. Aside from these “totally disconnected” graphs,
every graph is a 1-dimensional complex. It is for this reason that the subtitle
of the first book ever written on graph theory [K10] is “Kombinatorische
Topologie der Streckenkomplexe.”

It is precisely because of the traditional use of the words point and line
as undefined terms in axiom systems for geometric structures that we have
chosen to use this terminology. Whenever we are speaking of “geometric”
simplicial complexes as subsets of a euclidean space, as opposed to the
abstract complexes defined above, we shall then use the words vertex and
edge. Terminological questions will now be pursued in Chapter 2, together
with some of the basic concepts and elementary theorems of graph theory.



CHAPTER 2

GRAPHS

What’s in a name? That which we call a rose
By any other name would smell as sweet.

WILL1AM SHAKESPEARE, Romeo and Juliet

Most graph theorists use personalized terminology in their books, papers,
and lectures. In order to avoid quibbling at conferences on graph-theory,
it has been found convenient to adopt the procedure that each man state in
agvance the graph theoretic language he would use. Even the very word
“graph” has not been sacrosanct. Some authors actually define a “graph”
as a graph,* but others intend such alternatives as multigraph, pseudograph,
directed graph, or network. We believe that uniformity in graphical
terminology will never be attained, and is not necessarily desirable.

Alas, it 1s necessary to present a formidable number of definitions in
order to make available the basic concepts and terminology of graph theory.
In addition, we give short introductions to the study of complete subgraphs,
extremal graph theory (which investigates graphs with forbidden subgraphs),
intersection graphs (in which the points stand for sets and nonempty inter-
sections determine adjacency), and some useful operations on graphs.

VARIETIES OF GRAPHS

Before defining a graph, we show in Fig. 2.1 all 11 graphs with four points.
Later we shall see that

1) every graph with four points is isomorphic with one of these,

11) the 5 graphs to the left of the dashed curve in the figure are disconnected,
111) the 6 graphs to its right are connected,

iv) the last graph is complete,

v) the first graph is totally disconnected,
vi) the first graph with four lines is a cycle,
vii) the first graph with three lines is a path.

* Thjs is most frequently done by the canonical initial sentence, “In this paper we only consider
finite undirected graphs without loops or multiple edges.”
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Fig. 2.1. The graphs with four points.

Rather than continue with an intuitive development of additional
concepts, we proceed with the tedious but essential sequence of definition
upon definition. A graph G consists of a finite nonempty set V of p points*
together with a prescribed set X of g unordered pairs of distinct points ‘)f
V. Each pair x = {u, v} of points in X is a line* of G, and x is said to join u
and v. We write x = uv and say that u and v are adjacent points (sometimes
denoted u adj v); point ¥ and line x are incident with each other, as are v
and x. If two distinct lines x and y are incident with a common point, then
they are adjacent lines. A graph with p points and g lines is called a (p, q)
graph. The (1, 0) graph 1s trivial.

v y -
Fig. 2.2. A graph to illustrate adjacency.

It is customary to represent a graph by means of a diagram and to refer
to it as the graph. Thus, in the graph G of Fig. 2.2, the points u and v are
adjacent but u and w are not; lines x and y are adjacent but x and z are not.
Although the lines x and z intersect in the diagram, their intersection is not
a point of the graph. | '

* The following is a list of synonyms which have been used in the literature, not always with the
indicated pairs:

point, vertex, node, junction, O-simplex, element,

line, edge, arc, branch, I-simplex, element.



10 GRAPHS

There are several variations of graphs which deserve mention. Note that
the definition of graph permits no loop, that is, no line joining a point to
itself. In a multigraph, no loops are allowed but more than one line can join
two points; these are called multiple lines. If both loops and multiple lines
are permitted, we have a pseudograph. Figure 2.3 shows a multigraph and
a pseudograph with the same “underlying graph,” a triangle. We now see
why the graph (Fig. 1.2) of the Konigsberg bridge problem is actually a

multigraph.
ﬂ/m Q

Fig. 2.3. A multigraph and a pseudograph.

A directed graph or digraph D consists of a finite nonempty set V of
points together with a prescribed collection X of ordered pairs of distinct
points. The elements of X are directed lines or arcs. By definition, a digraph
has no loops or multiple arcs. An oriented graph is a digraph having no
symmetric pair of directed lines. In Fig. 2.4 all digraphs with three points and
three arcs are shown; the last two are oriented graphs. Digraphs constitute
the subject of Chapter 16, but we will encounter them from time to time in
the interim.

Fig. 2.4. The digraphs with three points and three arcs.

A graph G is labeled when the p points are distinguished from one another
by names* such as v,, v, *, v,. For example, the two graphs G, and G, of
Fig. 2.5 are labeled but G5 is not.

Two graphs G and H are isomorphic (written G = H or sometimes
G = H) if there exists a one-to-one correspondence between their point
sets which preserves adjacency. For example, G, and G, of Fig. 2.5 are
isomorphic under the correspondence v; < u;, and incidentally G, is iso-

* This notation for points was chosen since v is the first letter of vertex. Another author calls
them vertices and writes p,, p;, - - -, p,.

-
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Fig. 2.5. Labeled and unlabeled graphs.

morphic with each of them. It goes without saying that isomorphism is an
equivalence relation on graphs. |

An invariant of a graph G is a number associated with G which has the
same value for any graph isomorphic to G. Thus the numbers p and g are
certainly invariants. A complete set of invariants determines a graph up to
isomorphism. For example, the numbers p and g constitute such a set for
all graphs with less than four points. No decent complete set of invariants
for a graph is known.

A subgraph of G is a graph having all of its points and lines in G. If G,
is a subgraph of G, then G is a supergraph of G,. A spanning subgraph is a
subgraph containing all the points of G. For any set S of points of G, the
induced subgraph {S) is the maximal subgraph of G with point set S. Thus
two points of S are adjacent in (S if and only if they are adjacent in G. In
Fig. 2.6, G, i1s a spanning subgraph of G but G, is not; G, is an induced
subgraph but G, is not.

& &

G Gl: [ G2:

| N D

L
)

Fig. 2.6. A graph and two subgraphs,

The removal of a point v, from a graph G results in that subgraph G — v,
of G consisting of all points of G except v; and all lines not incident with
v;. Thus G — v; is the maximal subgraph of G not containing v;. On the
other hand, the removal of a line x; from G yields the spanning subgraph
G — x; containing all lines of G except x;. Thus G — x; is the maximal
subgraph of G not containing x;. The removal of a set of points or lines from
G is defined by the removal of single elements in succession. On the other
hand, if v; and v; are not adjacent in G, the addition of line vv; results in the
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U Uy Us 251 Do Us

G: ‘ G—v;: [ /

U4 D3 U4

1 [ g;; o0 D2 25
G—ugus: G+

Uy 1;3 Dy Da

Fig. 2.7. A graph plus or minus a specific point or line.

smallest supergraph of G containing the line v;v;. These concepts are illus-
trated in Fig. 2.7,

There are certain graphs for which the result of deleting a point or line,
or adding a line, is independent of the particular point or line selected. If
this is so for a graph G, we denote the result accordingly by G — v, G — x,
or G + x;see Fig. 2.8.

It was suggested by Ulam [U2, p. 29] in the following conjecture that
the collection of subgraphs G — v; of G gives quite a bit of information
about G itself.

OAVEDEw

Fig. 2.8. A graph plus or minus a point or line.

Ulam’s Conjecture.* Let G have p points v; and H have p points u;, with
p = 3. If for each i, the subgraphs G; =G — v; and H; = H — u; are
isomorphic, then the graphs G and H are isomorphic.

Thara 1¢ an altarnativa naint Af view tA thic ~aniantiiea FLFAG] T Vhenen vur
LAlviv 1o all aliviudatiye PUllL Ul VivWw LU LU VULV LULLY LJ.J.L?J. LAldvy

each of the p unlabeled graphs G — v;ona 3 x 5card. The conjecture then
states that any graph from which these subgraphs can be obtained by de-
leting one point at a time is isomorphic to G. Thus Ulam’s conjecture

* The reader is urged not to try to settle this conjecture since it appears to be rather difficult.

-—
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asserts that any two graphs with the same deck of cards are isomorphic.
But we prefer to try to prove that from any legitimate* deck of cards, only
one graph can be reconstructed.

WALKS AND CONNECTEDNESS

SR T

grapn can cujuy is that of
asic structure of connected

PR PP IV LR P - s
One of the most elementary properties that an

being connected. In this section we develop the
and disconnected graphs.

A walk of a graph G is an alternating sequence of points and lines
Uos X15 Ugs ** *» Uy 15 X Upy DegInning and ending with points, in which each
line is incident with the two points immediately preceding and following it.
This walk joins v, and v,, and may also be denoted v, v, v, - - - v, (the lines
being evident by context); it is sometimes called a vy—v, walk. It'is closed
if v, = v, and is open otherwise. It is a trail if all the lines are distinct, and
a path if all the points (and thus necessarily all the lines) are distinct. If
the walk is closed, then it is a cycle provided its n points are distinct and
n =3

In the labeled graph G of Fig. 2.9, v,v,v5v,v,4 is a walk which is not a
trail and v,v,vsv40,v5 is a trail which is not a path; v,v,v5v, 1s a path and
U,U405D, 18 & cycle.

o <

[+ Us

e

Dy Da Us

Fig. 2.9. A graph to illustrate walks.

We denote by C, the graph consisting of a cycle with n points and by
P, a path with n points; C; is often called a triangle.

A graph is connected if every pair of points are joined by a path. A maxi-
mal connected subgraph of G is called a connected component or simply
a component of G. Thus, a disconnected graph has at least two components.
The graph of Fig. 2.10 has 10 components.

The length of a walk o Uy ° " v, 18 n, the number of occurrences of lines
in it. The yu thofa glapu u, denoted g\u;, is the 1cugtn of a shortiest L,yut:
(if any) in G; the circumference ¢(G) the length of any longest cycle. Note
that these terms are undefined if G has no cycles.

* This is a deck which can actually be obtained from some graph; another apparently difficult
problem is to determine when a given deck is legitimate.
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Fig. 2.10. A graph with 10 components.

The distance d(u, v) between two points u and v in G is the length of a
shortest path joining them if any; otherwise d(u, v) = c0. In a connected
graph, distance is a metric ; that is, for all points u, v, and w,

1. d(u, v) = 0, withd(u, v) = Oifand only if u = v.
2. d(u, v) = d(v, u).
!

Afas Y L A ~
» AU, U T oaw, W =

A shortest u—v path is often called a geodesic. The diameter d(G) of a
connected graph G is the length of any longest geodesic. The graph G of
Fig. 2.9 has girth g = 3, circumference ¢ = 4, and diameter d = 2.

The square G* of a graph G has V(G?) = V(G) with u, v adjacent in G*
whenever d(u, v) < 2in G. The powers G>, G*%, - - - of G are defined similarly.
For example C? = K5, while P = K, — x. -

DEGREES 4

The degree* of a point v; in graph G, denoted d; or deg v;, is the number of
lines incident with v;. Since every line is incident with two points, it contrib-
utes 2 to the sum of the degrees of the points. We thus have a result, due to
Euler [ E6], which was the first theorem of graph theory!

Theorem 2.1 The sum of the degrees of the points of a graph G 1s twice
the number of lines,

Y degv; = 2q. (2.1)
Corollary 2.1(a) In any graph, the number of points of odd degree is even.

In a (p, q) graph, 0 < degv < p — 1 for every point v. The minimum
degree among the points of G is denoted min deg G or &(G) while A(G) =
max deg G is the largest such number. If 4(G) = A(G) = r, then all points
have the same degree and G is called regular of degree r. We then speak
of the degree of G and write deg G = r.

A regular graph of degree 0 has no lines at all. If G is regular of degree
1, then every component contains exactly one line; if it is regular of degree 2,

* Sometimes caiied vaiency.
t The reader is reminded (see the Preface) that not all theorems are proved in the text.
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Fig. 2.11. The cubic graphs with six points.

every component is a cycle, and conversely of course. The first interesting
regular graphs are those of degree 3; such graphs are called cubic. The
two cubic graphs with six points are shown in Fig. 2.11. The second of
these is isomorphic with each of the three graphs of Fig, 2.5.

Corollary 2.1(b) Every cubic graph has an even number of points.

It is convenient to have names for points of small degree. The point v
is isolated if deg v = 0 1t is an endpoint if deg v = 1.

THE PROBLEM OF RAMSEY

A puzzle which has become quite well known may be stated in the following
form:

Prove that at any party with six people, there are three mutual acquain-
tapces or three mutual nonacquaintances.

TS A

Fig. 2.12. A graph and its complement.

This situation may be represented by a graph G with six points standing
for people, in which adjacency indicates acquaintance. Then the problem is
to demonstrate that G has three mutually adjacent points or three mutually
manadinrant Aanac Tha armsmlonsamt £ ~F o ccemomb 7 alom oo T no i4e
ll.Ulla-UJal.«UlJ.l. VIV, 11l LU"IPE&"EC"H. J :._Jl a 51 d.pll U dlbU lidd ¥ \U) dd 1ILd
point set, but two points are adjacent in G if and only if they are not adjacent
in G. InFig.2.12, G has no triangles, while G consists of exactly two triangles.*
A self-complementary graph is isomorphic with its complement. (See Fig.2.13.)

* When drawn as G m Fig. 2.12, the union of two triangles has been called the David graph.
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AN

Fig. 2.13. The smallest nontrivial self-complementary graphs.

The complete graph K, has every pair of its p points* adjacent. Thus
K, has (5} lines and 1s regular of degree p — 1. As we have seen, K; is
called a triangle. The graphs K, are totally disconnected, and are regular
of degree 0.

In these terms, the puzzle may be reformulated.

Theorem 2.2 For any graph G with six points, G or G contains a triangle.

Proof. Let v be a point of a graph G with six points. Since v is adjacent
either in G or in G to the other five points of G, we can assume without
loss of generality that there are three points u,, u,, u; adjacent to v in G.
If any two of these points are adjacent, then they are two points of a triangle
whose third point is v. If no two of them are adjacent in G, then u,, u,, and
u, are the points of a triangle in G.

The result of Theorem 2.2 suggests the general question: What is the
smallest integer r(m, n) such that every graph with r(m, n) points contains
K, or K,?

The values r(m, n) are called Ramsey numbers.t Of course r(im, n) =
r(n, m). The determination of the Ramsey numbers is an unsolved problem,
although a simple bound due to Erdos and Szekeres [ES1] is known.

r(m,n)s(m+n_2)

o (2.2)

This problem arose from a theorem of Ramsey. An infinite graphi has
an infinite point set and no loops or multiple lines. Ramsey [R2] proved
(in the language of set theory) that every infinite graph contains X, mutually
adjacent points or ¥, mutually nonadjacent points.

All known Ramsey numbers are given in Table 2.1, in accordance with
the review article by Graver and Yakel [GY1].

* Since V is not empty, p > 1. Some authors admit the “empty graph” (which we would
deno@e K, if it existed) and are then faced with handling its properties and specifying that
certain theorems hold only for nonempty graphs, but we coansider such a concept pointless.

T After Frank Ramsey, late brother of the present Archbishop of Canterbury. For a proof
that r(m, n) exists for all positive integers m and n, see for example Hall [H7, p. 57].

1 Note that by definition, an infinite graph is not a graph. A review article on infinite graphs
was written by Nash-Williams [N3].
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Table 2.1
RAMSEY NUMBERS

" 2 3 4 5 6 7
2 2 3 4 5 6 7
3 3 6 9 14 18 23
4 4 9 18

EXTREMAL GRAPHS

The following famous theorem of Turan [T3] is the forerunner of the field
of extremal graph theory, see [E3]. As usual, let [r] be the greatest integer
not exceeding the real number r, and {r} = —[ —r], the smallest integer
not less than r.

Theorem 2.3 The maximum number of lines among all p point graphs with no
triangles is [p?/4].

Proof. The statement is obvious for small values of p. An inductive proof
may be given separately for odd p and for even p; we present only the latter.
Suppose the statement is true for all even p < 2n. We then prove it for
p = 2n + 2. Thus,let G beagraphwithp = 2n + 2 points and no triangles.
Since G is not totally disconnected, there are adjacent points u and v. The
subgraph G' = G — {u, v} has 2n points and no triangles, so that by the
inductive hypotheses G’ has at most [4n*/4] = n® lines.. How many more
linescan G have? There can be no point w such that ¥ and v are both adjacent
to w, for then u, v, and w would be points of a triangle in G. Thus if u is
adjacent to k points of G', v can be adjacent to at most 2n — k points. Then
G has at most

n+k+C2n—k+1=n*+2n+1=p*4 = [p*/4] lines.
To complete the proof, we must show that for all even p, there exists a
(p, p?/4)»graph with no triangles. Such a graph is formed as follows: Take

two sets ¥V, and V, of p/2 points each and join each point of V; with each
point of V,. For p = 6, this is the graph G, of Fig. 2.5.

A bigraph (or bipartite graph*) G is a graph whose point set V' can be
partitioned into two subsets ¥; and V, such that every line of G joins V; with
V,. For example, the graph of Fig. 2.14(a) can be redrawn in the form of
Fig. 2.14(b) to display the fact that it is a bigraph.

If G contains every line joining V; and V,, then G is a complete bigraph. If
¥, and V¥, have m and n points, we write G = K, , = K(m, n). A starfisa

* Also called bicolorable graph, pair graph, even graph, and other things.
t When n = 3, Hoffman [H43] calls K, , a “claw”; Erdos and Rényi [ER1], a “cherry.”



18 GRAPHS
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(a) (b}
Fig. 2.14. A bigraph.

complete bigraph K, ,. Clearly K, , has mn lines. Thus, if p is even,
K(p/2, p/2) has p?/4 lines, while if p is odd, K([p/2], {p/2}) has [p/2]{p/2} =
[p?/4] lines. That all such graphs have no triangles follows from a theorem
of Kénig [K10, p. 170].

Theorem 2.4 A graph is bipartite if and only if all its cycles are even.

Proof. If G is a bigraph, then its point set V' can be partitioned into two sets
¥, and V, so that every line of G joins a point of ¥; with a point of V,. Thus
every cycle v v, - - v,0; in G necessarily has its oddly subscripted points
in ¥}, say, and the others in V,, so that its length n is even.

For the converse, we assume, withouf loss of generality, that G is
connected (for otherwise we can consider the components of G separately).
Take any point v, € V, and let ¥, consist of v, and all points at even distance
from v,, while ¥, = ¥V — ¥,. Since all the cycles of G are even, every line
of G joins a point of V; with a point of V,. For suppose there is a line uv
joining two points of ¥;. Then the union of geodesics from v, to v and from
v, to u together with the line uv contains an odd cycle, a contradiction.

Theorem 2.3 is the first instance of a problem in “extremal graph theory”:
for a given graph H, find ex (p, H), the maximum number of lines that a
graph with p points can have without containing the forbidden subgraph H.
Thus Theorem 2.3 states that ex (p, K3) = [p?/4]. Some other results [E3]
in extremal graph theory are:

x(pC)=1+p(+1)2 2.3)
ex (p, K, — x) = [p*/4], (2.4)
ex (p, K, 3 + x) = [p*/4] (2.5)

Turan [T3] generalized his Theorem 2.3 by determining the values of
ex (p, K,) for alln < p,

_ 2 .2 |
ex (5, K,) = 2(2':({ 5 ") 4 (;) (2.6)
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where p = rmod(n — 1)and 0 < r < n — 1. A new proof of this result
was given by Motzkin and Straus [ MS1].

It is also known that every (2n, n? + 1) graph contains n triangles, every
(p, 3p — 5) graph contains two disjoint cycles for p = 6, and every
(3n, 3n? + 1) graph contains n? cycles of length 4.

INTERSECTION GRAPHS

Let S be a set and F = {S;, -+, S,} a family of distinct nonempty subsets
of S whose union is S. The intersection graph of F is denoted Q(F) and defined
by V((F)) = F, with §; and S; adjacent wheneveri # jand §;n §; # 4.
Then a graph G is an intersection graph on S if there exists a family F of
subsets of S for which G =~ (F). An early result [M4] on intersection
graphs is now stated.

Theorem 2.5 Every graph is an intersection graph.

Proof. For each point v, of G, let S, be the union of {,} with the set of lines
incident with v, Then it is immediate that G is isomorphic with (F) where
F = {S;.

In view of this theorem, we can meaningfully define another invariant.
The intersection number w(G) of a given graph G is the minimum number of

elements in a set S such that G is an intersection graph on S.
Corollary 2.5(a) If G is connected and p > 3, then o(G) < ¢.

Proof. In this case, the points can be omitted from the sets S; used in the
proof of the theorem, so that S = X(G).

Corollary 2.5(b) If G has p, isolated’points, then w(G) < g + po-

The next result tells when the upper bound in Corollary 2.5(a) is attained.

Theorem 2.6 Let G be a connected graph with p > 3 points. Then w(G) = g
if and only if G has no triangles.

Proof. We first prove the sufficiency. In view of Corollary 2.5(a), it is only
necessary to show that w(G) > g for any connected G with at least 4 points
having no triangles, By definition of the intersection number, G is isomorphic
with an intersection graph Q(F) on a set S with |S| = w(G). For each point
v; of G, let §; be the corresponding set. Because G has no triangles, no
element of S can belong to more than two of the sets S;, and S; N §; # &
if and only if v;; is a line of G. Thus we can form a 1-1 correspondence
between the lines of G and those elements of S which belong to exactly two
sets S;. Therefore w(G) = |S| = ¢ so that w(G) = 4.

To prove the necessity, let w(G) = g and assume that G has a triangle,
Then let G, be a maximal triangle-free spanning subgraph of G. By the
preceding paragraph, o(G,) = q, = |X(G,)|. 'Suppose that G, = Q(F),
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where F is a family of subsets of some set S with cardinality ¢,. Let x be a line
of G notin G, and consider G, = G, + x. Since G, is maximal triangle-free,
G, must have some triangle, say u,u,u;, where x = u,u;. Denote by
81, S3, S5 the subsets of S corresponding to u,, u,, u;. Now if u, is adjacent
to only u; and u; in G, replace S, by a singleton chosen from S, ~ §,, and
add that element to S;. Otherwise, replace S; by the union of S5 and any
element in §; N S,. In either case this gives a family F’ of distinct subsets
of S such that G, = Q(F’). Thus o(G,) = ¢q, while |[X(G,)| = g, + 1. If
G, = G, there is nothing to prove. But if G, # G, then let
| X(G) — 1X(G)l = go

It follows that G is an intersection graph on a set with g, + g, elements.
However, g, + qo = g — 1. Thus w(G) < g, completing the proof.

The intersection number of a graph had previously been studied by
Erd6s, Goodman, and Posa [EGP1]. They obtained the best possible upper
bound for the intersection number of a graph with a given number of
points.

Theorem 2.7 For any graph G with p > 4 points, w(G) < [p?/4].
Their proof is essentially the same as that of Theorem 2.3.

There is an intersection graph associated with every graph which depends
on its complete subgraphs. A cligue of a graph is a maximal complete
subgraph. The clique graph of a given graph G is the intersection graph of
the family of cliques of G. For example, the graph G of Fig. 2.15 obviously
has K, as its clique graph. However, it is not true that every graph is the
clique graph of some graph, for Hamelink [H9] has shown that the same
graph G is a counterexample! F. Roberts and J. Spencer have just char-
acterized clique graphs:

Theorem 2.8 A graph G is a clique graph if and only if it contains a family
F of complete subgraphs, whose union is G, such that whenever every pair
of such complete graphs in some subfamily F’ have a nonempty inter-
section, the intersection of all the members of F’ is not empty.

G: K

/NN

Fig. 2.15. A graph and its clique graph.

Excursion

A special class of intersection graphs was discovered in the field of genetics
by Benzer [B9] when he suggested that a string of genes representing a
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pacterial chromosome be regarded as a closed interval on the real line.
Hajés [H2] independently proposed that a graph can be associated with
every finite family F of intervals S;, which in terms of intersection graphs, is
precisely (F). By an interval graph is meant one which is isomorphic to
some graph Q(F), where F is a family of intervals. Interval graphs have been
characterized by Boland and Lekkerkerker [BL2] and by Gilmore and
Hoffman [GH2].

GI: Gg: L 4 GlUG:: L J G1+Gg:

®

Fig. 2.16. The union and join of two graphs.

OPERATIONS ON GRAPHS

It is rather convenient to be able to express the structure of a given graph
in terms of smaller and simpler graphs. It is also of value to have notational
abbreviations for graphs which occur frequently. We have already introduced
the complete graph K, and its complement K, the cycle C,, the path P,
and the complete bigraph K, ,..

Throughout this section, graphs G, and G, have disjoint point sets V;
and V, and line sets X, and X, respectively. Their union* G = G, U G, has,
as expected, V=V, UV, and X = X, u X,. Their join defined by
Zykov [Z1] is denoted G, + G, and consists of G, U G, and all lines
joining V; with V,. In particular, K,,, = K, + K,. These operations are
illustrated in Fig, 2.16 with G, = K, = P, and G, = K, , = P;.

For any connected graph G, we write aG for the graph with n components
each isomorphic with G. Then every graph can be written as in [HP14] in
the form |Jn,G; with G, different from G, for i # j. For example, the
disconnected graph of Fig. 2.10is 4K, u 3K, U2K; UK 1,2-

There are several operations on G, and G, which result in a graph G
whose set of points is the cartesian product ¥, x V,. These include the
product (or cartesian product, see Sabidussi [S5]), and the composition
[H21] (or lexicographic product, see Sabidussi [S6]). Other operationst of
this form are developed in Harary and Wilcox [HW1].

* Of course the union of two graphs which are not disjoint is also defined this way.

T These include the tensor product (Weichsel [W6], McAndrew [M7], Harary and Trauth
[HTI], Brualdi[B17]), and other kinds of product defined in Berge[BI?2, p. 23], Ore[05, p. 35],
and Teh and Yap[TY]I].
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u (uy, ug) (11, 03) (1, w2)

s
]
[ NS
-]

? w
G Gy, o -. G1XGy:

b (U[, uz) (Ula 02) (vls W2)

Fig. 2.17. The product of two graphs.

(uz, 1) (uz, U1}
(u‘ll u2) (ula 02) (uls W2)
Gl[62]: GQ[Glll
(02, ul) (029 vl)
01, u2) @1, 02) (1, wa)
(wa, ) (wa, 01)

Fig. 2.18. Two compositions of graphs.

To define the product G, x G,, consider any two points u = (uy, u,)
and v = (v, v,)in V = V; x V,. Then u and v are adjacent in G, x G,
whenever [u; = v, and u, adj v,] or [u, = v, and u, adj v,]. The product
of G; = P, and G, = P, is shown in Fig. 2.17.

The composition G = G,[G,] also has V = V; x V, as its point set,
and u = (uy, u,) is adjacent with v = (v, v,) whenever [u; adjv,] or
[u, = v, and u, adj v,]. For the graphs G, and G, of Fig. 2.17, both com-
positions G,[G,] and G,[G,], which are obviously not isomorphic, are
shown in Fig. 2.18.

If G, and G, are (p,, q,) and (p,, q,) graphs respectively, then for each of
the above operations, one can calculate the number of points and lines in the
resulting graph, as shown in the following table.

Table 2.2
BINARY OPERATIONS ON GRAPHS

Operation Number of points Number of lines
Union Gl U G2 P + 20 d1 + q,
Join G, + G, P+ Py 91 + 4y + P1P2
Product G, x G, 1P P19: + Prgy

Composition G,[G,] P P19; + P3d:
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101 111

0l 11

001 011

Q2: Q3:

000 010

100 110
Fig. 2.19. Two cubes.

The complete n-partite graph K(p,, p,, - * *, p,) is defined as the iterated

join K, + K,, ¥+ -+ + K, It obviously has X p; points and Z,_; p,p;
lines.

Anespecially important class of graphs known as cubes are most naturally
expressed in terms of products. The n-cube Q, is defined recursively by
Q, =K, and Q, =K, x Q,_,. Thus Q, has 2" points which may be
labeled a,a, - - - a, where each a; is either 0 or 1. Two points of Q, are
adjacent if their binary representations differ at exactly one place. Figure
2.19 shows both the 2-cube and the 3-cube, appropriately labeled.

If G and H are graphs with the property that the identification of any
point of G with an arbitrary point of H results in a unique graph (up to
isomorphism), then we write G * H for this graph. For example, in Fig. 2.16
G, = K, -K,,whilein Fig. 27 G — v; = K;* K,.

EXERCISES*

2.1 Draw all graphs with five points. (Then compare with the diagrams given in
Appendix 1)

2.2 Reconstruct the graph G from its subgraphs G; = G — v,, where G, = K, — x,
G,=P3UK,;,G; =K,,,G,=0G6Gs=K,; + x

2.3 A closed walk of odd length contains a cycle.*

2.4 Prove or disprove:

a) The union of any two distinct walks joining two points contains a cycle.
b) The union of any two distinct paths joining two points contains a cycle.

2.5. A graph G is connected if and only if for any partition of V into two subsets V; and
V,, there is a line of G joining a point of V; with a point of V,,.

2.6 Ifd(u, v) = min G, what is d(u, ») in the ath power G"?

* Whenever a bald statement is made, it is to be proved. An exercise with number in bold face
is more difficult, and one which is also starred is most difficult.
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2.7 A graph H is a square root of G if H* = G. A graph G with p points has a square
root if and only if it contains p complete subgraphs G, such that
1. v e Gi*
2. v;€G;ifand only if v; €G,, .
3. each line of G is in some G;. (Mukhopadhyay [M18])

2.8 A finite metric space (S, d) is isomorphic to the distance space of some graph if
and only if

1. The distance between any two points of S is an integer,
2. If d(u, v) = 2, then there is a third point w such that d{u, w) + d(w, v) = d(u, v).
(Kay and Chartrand [KC1])

2.9 In a connected graph any two longest paths have a point in common.

2.10 It is not true that in every connected graph all longest paths have a point in
common. Verify that Fig. 2.20 demonstrates this. (Walther [W4])

1

/ \
Fig, 2.20. A counterexample for Exercise 2.10,

2.11 Every graph with diameter d and girth 2d + 1 is regular. (Singleton [S13])

212 Let G be a (p, g) graph all of whose points have degree k or k + 1. If G has
P, > 0 points of degree k and p,, , points of degree k + 1, then p, = (k + 1)p — 24.

2.13 Construct a cubic graph with 2» points (n > 3) having no triangles.
2.14 If G has p points and 6(G) > (p — 1)/2, then G is connected.
2.15 If G is not connected then G is.
2.16 Every self-complementary graph has 4n or 4n + 1 points.
2.17 Draw the four self-complementary graphs with eight points.
2.18 Every nontrivial self-complementary graph has diameter 2 or 3.
(Ringel [R11], Sachs [S8])

2.19 The Ramsey numbers satisfy the recurrence relation,

Hmn) <rim— Ln +Hmn—1). (Erdaés [E4])

2.20 Find the maximum number of lines i:”aph with p points and no even cycles.
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2.21 Find the extremal graphs which do not contain K. (Turan [T3])
222 Every (p, p + 4) graph contains two line-disjoint cycles. (Erdos [E3])

223 The only (p, [p*/4]) graph with no triangles is K([ p/2], {p/2}).

224 Proveordisprove: The only graph on p points with maximum intersection number
is K([p/2]. {p/2}).

2.25 The smallest graph having every line in at least two triangles but some line in no
K, has 8 points and 19 lines. Construct it. (J. Cameron and A. R. Meetham)
2.26 Determine w(K ), o(C, + K,), o(C, + C,), and o(C,).

2.27 Prove or disprove:

a) The number of cliques of G does not exceed w(G).

b) The number of cliques of G is not less than w(G).
2.28 Prove that the maximum number of cliques in a graph with p points where
p—4=3r+ss=010r2is22753"s (Moon and Moser [MM1])
2.29 A cycle of length 4 cannot be an induced subgraph of an interval graph.

2.30 Let s(n) denote the maximum number of points in the n-cube which induce a
cycle. Verify the following table:

n|2345

s(n) | 4 6 8 14 (Danzer and Klee [DK1])

2.31 Prove or disprove: If G, and G, are regular, then so is
a) G, + G,. b) G, x G,. c) G,[G,].
232 Prove or disprove: If G, and G, are bipartite, then so is
a) G, + G,. b) G, % G,. ¢) G,[G,]
233 Prove or disprove :
a) G, + G, =G, +G,. 1) G, x G, =0, xG,. ¢ G,[G,] = G,[G,].
234 a) Calculate the number of cycles in the graphs (a) C, + K, (b) K,, (¢} K,,,..
(Harary and Manvel [HM1])

b) What is the maximum number of line-disjoint cycles in each of these three

graphs? (Chartrand, Geller, and Hedetniemi [ CGH2])

2.35 The conjunction G, A G, has ¥V, x V, asits point set and u = (u,, u,) is adjacent

to v = (v,, v,) whenever u, adj v, and u, adjv,. Then G, x G, = G, A G, if and

only if G, = G, = Capy s (Miller [M11])

2.36 The conjunction G, A G, of two connected graphs is connected if and only if
G, or G, has an odd cycle. :

*2.37 There exists a regular graph of degree r with r* + 1 points and diameter 2 only
for r = 2, 3, 7, and possibly 57. (Hoffman and Singleton [HS1])
*2.38 A graph G with p = 2n has the property that for every set S of n points, the
induced subgraphs {S) and (V — S are isomorphic if and only if G is one of the

following: K ,,, K, x K,, 2K,, 2C,, and their complements.
(Kelly and Merriell [KM1])



CHAPTER 3

BLOCKS

Not merely a chip of the old block,

but the old block itself.
EpDMUND BURKE

Some connected graphs can be disconnected by the removal of a single
point, called a cutpoint. The distribution of such points is of considerable
assistance in the recognition of the structure of a connected graph. Lines
with the analogous cohesive property are known as bridges. The fragments
of a graph held together by its cutpoints are its blocks. After characterizing
these three concepts, we study two new graphs associated with a given
graph: its block graph and its cutpoint graph.

CUTPOINTS, BRIDGES, AND BLOCKS

A cutpoint of a graph is one whose removal increases the number of com-
ponents, and a bridge is such a line. Thus if v is a cutpoint of a connected
graph G, then G — v is disconnected. A nonseparable graph is connected,
nontrivial, and has no cutpoints. A block of a graph is a maximal nonsepar-
able subgraph. If G is nonseparable, then G itself is often called a block.

w

<X
DO By

Fig. 3.1. A graph and its blocks.
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In Fig. 3.1, v is a cutpoint while w is not; x is a bridge but y is not; and
the four blocks of G are displayed. Each line of a graph lies in exactly one
of its blocks, as does each point which is not isolated or a cutpoint. Further-
more, the lines of any cycle of G also lie entirely in a single block. Thus in
particular, the blocks of a graph partition its lines and its cycles regarded
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equivalent conditions for each of these concepts.

Theorem 3.1 Let v be a point of a connected graph G. The following state-
ments are equivalent :
(1) vis a cutpoint of G.

(2) There exist points u and w distinct from v such that v is on every u—w
path.

(3) There exists a partition of the set of points ¥ — {v} into subsets U and
W such that for any points u € U and w € W, the point v is on every
u-w path.

Proof. (I)implies(3) Sincevisacutpointof G,G — visdisconnected and has
at least two components. Form a partition of ¥ — {v} by letting U consist
of the points of one of these components and W the points of the others.
Then any two points u € U and w € W lie in different components of G — v.
Therefore every u~w path in G contains v.

(3) implies (2) This is immediate since (2) is a special case of (3).
(2) implies (1) If vis on every path in G joining u and w, then there cannot be

a path joining these points in G — v. Thus G — v is disconnected, so vis a
cutpoint of G.

Theorem 3.2 Let x be aline of a connected graph G. The following statements
are equivalent :

(1) xis a bridge of G.

(2) x is not on any cycle of G.

(3) There exist points u and v of G such that the line x is on every path
joining u and v.

(4) There exists a partition of V into subsets U and W such that for any
points u € U and w € W, the line x is on every path joining u and w.

Theorem 3.3 Let G be a connected graph with at least three points. The
following statements are equivalent:

(1) Gis a block.
(2) Every two points of G lie on a common cycle.
(3) Every point and line of G lie on a common cycle.
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(4) Every two lines of G lie on a common cycle.
(5) Given two points and one line of G, there is a path joining the points

which contains the line.

(6) For every three distinct points of G, there is a path joining any two of
them which contains the third.

(7} For every three distinct points of G, there is a path joining any two of
them which does not contain the third.

Proof.(1)implies (2) Let u and v be distinct points of G, and let U be the set of
points different from u which lie on a cycle containing u. Since G has at
least three points and no cutpoints, it has no bridges ; therefore, every point
adjacent to u is in U, so U is not empty.

P] 4 i

Py

(a) (b)
Fig. 3.2. Paths in blocks.

Suppose v is not in U. Let w be a point in U for which the distance
d(w, v) is minimum. Let P, be a shortest w—v path, and let P, and P, be the
two u—w paths of a cycle containing u and w (see Fig. 3.2a). Since wisnot a
cutpoint, there is a u—v path P’ not containing w (see Fig. 3.2b). Let w’ be the
point nearest u in P’ which is also in P,, and let ¥’ be the last point of the
u—w' subpath of P’ in either P, or P,. Without loss of generality, we assume
wisin P,.

Let @, be the u—w' path consis e
u'—w’ subpath of P’. Let Q , be the u-w’ path consisting of P, followed by the
w—w’ subpath of P . Then Q, and Q2 are disjoint u—w’ paths. Together
they form a cycle, so w' is in U. Since w' is on a shortest w—v path,
d(w', v) < d(w, v). This contradicts our choice of w, proving that u and v do
lie on a cycle.

f D and +tha
1184 LA

(2) implies (3) Letubeapointand vwa line of G. Let Z be a cycle containing
uand v. A cycle Z’' containing u and vw can be formed as follows. If wis on
Z, then Z’ consists of vw together with the »—w path of Z containing u. If w
isnot on Z, there is a w—u path P not containing v, since otherwise v would be a
cutpoint by Theorem 3.1. Let u’ be the first point of Pin Z. Then Z’ consists
of vw followed by the w—u’ subpath of P and the u'-v path in Z containing u.

(3) implies (4) This proof is analogous to the preceding one, and the details
are omitted.
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(4) implies (3) Any two points of G are incident with one line each, which lie on
a cycle by (4). Hence any two points of G lie on a cycle, and we have (2), so
also(3). Letuand v bedistinct points and x a line of G. By statement (3), there
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yis on Z,, there is clearly a path joining u and v containing x. Thus, we need
only consider the case where v is not on Z, and u is not on Z,. Begin with
u and proceed along Z, until reaching the first point w of Z,, then take the
path on Z, joining w and v which contains x. This walk constitutes a path
joining u and v that contains x.

(5) implies (6) Letu, v, and w be distinct points of G, and let x be any line in-
cident with w. By (5), there is a path joining u and v which contains x, and
hence must contain w.

(6) implies (7) Let u, v, and w be distinct points of G. By statement (6), there
is a u—w path P containing v. The u—v subpath of P does not contain w.

(7) implies (1) By statement (7), for any two points u and v, no point lies on
every u—v path. Hence, G must be a block.

Theorem 3.4 Every nontrivial connected graph has at least two points
which are not cutpoints.

Proof. Let u and v be points at maximum distance in G, and assume v is a
cutpoint. Then there is a point w in a different component of G — v than u.
Hence v is in every path joining u and w, so d(u, w) > d(u, v), which is im-
possible. Therefore v and similarly u are not cutpoints of G.

BLOCK GRAPHS AND CUTPOINT GRAPHS

There are several intersection graphs derived from a graph G which reflect
its structure. If we take the blocks of G as the family F of sets, then the
intersection graph Q(F) is the block graph of G, denoted by B(G). The blocks
of G correspond to the points of B(G) and two of these points are adjacent
whenever the corresponding blocks contain a common cutpoint of G. On

B(G):

L

C(G): ———

Fig. 3.3. A graph, its block graph, and its cutpoint graph.
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the other hand, to obtain a graph whose points correspond to the cutpoints
of G, we can take the sets S; to be the union of all blocks which contain the
cutpoint v;. The resulting intersection graph €(F) is called the cutpoint
graph, C(G). Thus two points of C(G) are adjacent if the cutpoints of G to
which they correspond lie on a common block. Note that C(G) is defined
only for graphs G which have at least one cutpoint. Figure 3.3 illustrates
these concepts, which were introduced in [H28].

Theorem 3.5 A graph H is the block graph of some graph if and only if every
block of H is complete.

Proof. Let H = B(G), and assume there is a block H; of H which is not
complete. Then there are two points in H; which are nonadjacent and lie on
a common cycle Z of length at least 4. But the union of the blocks of G
corresponding to the points of H; which lie on Z is then connected and has no
cutpoint, so it is itself contained in a block, contradicting the maximality
property of a block of a graph.

On the other hand, let H be a given graph in which every block is com-
plete. Form B(H), and then form a new graph G by adding to each point H;
of B(H) a number of endlines equal to the number of points of the block H;
which are not cutpoints of H. Then it is easy to see that B(G) is isomorphic
to H.

Clearly the same criterion also characterizes cutpoint graphs.

EXERCISES

3.1 What is the maximum number of cutpoints in a graph with p points?
3.2 A cubic graph has a cutpoint if and only if it has a bridge.
3.3 The smallest number of points in a cubic graph with a bridge is 10.
3.4 Ifvisa cutpoint of G, then v is not a cutpoint of the complement G.
(Harary [H15])

3.5 A point v of G is a cutpoint if and only if there are points ¥ and w adjacent to
v such that v is on every u—w path.
3.6 Prove or disprove: A connected graph G with p > 3 is a block if and only if

given any two points and one line, there is a path joining the points which does not
contain the line.

3.7 A connected graph with at least two lines is a block if and only if any two adjacent
lines lie on a cycle.

3.8 Let G be a connected graph with at least three points. The following statements
are equivalent :

1. G has no bridges.
2. Every two points of G lie on a common closed trail.

3. Every point and line of G lie on'a common closed trail.
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4. Every two lines of G lie on a common closed trail.

For every pair of points and every line of G, there is a trail joining the points

which contains the line.

6. For every pair of points and every line of G, there is a path joining the points
which does not contain the line.

7. For every three points there is a trail joining any two which contains the third.

3.9 If G is a block with § > 3, then there is a point v such that G — v is also a block.
(A. Kaugars)

b

3.10 The square of every nontrivial connected graph is a block.

3.11 If G is a connected graph with at least one cutpoint, then B(B(G)) is isomorphic
to C(G).

3.12 Let b(v) be the number of blocks to which point v belongs in a connected graph
G. Then the number of blocks of G is given by

bG) — 1 =Y [blv) — 1]. (Harary [H22])

3.13 Let ¢(B) be the number of cutpoints of a connected graph G which are points of
the biock B. Then the number of cutpoints of G is given by
dG) — 1 =3 [c(B) — 1]. (Gallai [G3])
3.14 A block G is line-critical if every subgraph G — x is not a block. A diagonal of G
is a line joining two points of a cycie not containing it. Let G be a line-critical biock
withp > 4.
a) G has no diagonals.
b) G contains no triangles.
c)p=g<2p -4
d) The removal of all points of degree 2 results in a disconnected graph, provided
G is not a cycle. (Plummer [P4])



CHAPTER 4

TREES

Poems are made by fools like me,
But only God can make a tree.

Joyce KILMER

There is one simple and important kind of graph which has been given the
same name by all authors, namely a tree. Trees are important not only for
sake of their applications to many different fields, but also to graph theory
itself. One reason for the latter is that the very simplicity of trees make it
possible to investigate conjectures for graphs in general by first studying
the situation for trees. An example is provided by Ulam’s conjecture
mentioned in Chapter 2. .

Several ways of defining a tree are developed. Using geometric termin-
ology, we study centrality of trees. This is followed by a discussion of a tree
which is naturally associated with every connected graph: its block-cutpoint
tree. Finally, we see how each spanning tree of a graph G gives rise to a
collection of independent cycles of G, and mention the dual (complementary)
construction of a collection of independent cocycles from each spanning
cotree.

CHARACTERIZATION OF TREES

A graph is acyclic if it has no cycles. A treeis a connected acyclic graph. Any
graph without cycles is a forest, thus the components of a forest are trees.
There are 23 different trees* with eight points, as shown in Fig. 4.1. There
are numerous ways of defining trees, as we shall now see.

Theorem 4.1 The following statements are equivalent for a graph G:

—

1
L)

2)

A
7
o

_—

very two points of G are joined by a unique path,

* It is interesting to ask people to draw the trees with eight points. Some trees will frequently
be missed and others duplicated.

32
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Fig. 4.1. The 23 trees with eight points,

(3) Gisconnected andp = g + 1.
(4) Gisacyclicandp = g + 1.

(5) G is acyclic and if any two nonadjacent points of G are joined by a line x,
then G + x has exactly one cycle.

(6) G is connected, is not K, for p > 3, and if any two nonadjacent points
of G are joined by a line x, then G + x has exactly one cycle.

(7) Gisnot Ky u K, or K3 U K,, p = g + 1, and if any two nonadjacent
points of G are joined by a line x, then G + x has exactly one cycle.

Proof. (I)implies(2) Since Gisconnected, every two points of G are joined by
a path. Let P, and P, be two distinct paths joining # and v in G, and let w
be the first point on P, (as we traverse P, from u to v) such that w is on both
P, and P, but its successor on P, is not on P,. If we let w’ be the next point
on P, which is also on P,, then the segments of P, and P, which are between
w and w’ together form a cycle in G. Thus if G is acyclic, there is at most one
path joining any two points.

(2) implies (3) Clearly G is connected. We prove p = ¢ + 1 by induction. It
is obvious for connected graphs of one or two points. Assume it is true
for graphs with fewer than p points. If G has p points, the removal of any
line of G disconnects G, because of the uniqueness of paths and in fact this
new gi'apu Wul uave EAaCuy two COTﬂpUHCIllb Dy lﬂ(: lIlULlLllUIl IlYpOUlb‘blb
each component has one more point than line. Thus the total number of
lines in G must be p — 1.

(3) implies (4) Assume that G has a cycle of length n. Then there are n points
and n lines on the cycle and for each of the p — n points not on the cycle,
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there is an incident line on a geodesic to a point of the cycle. Each such line
is different, so g > p, which is a contradiction.

(4) implies (5) Since G is acyclic, each component of G is a tree. If there are k
components, then, since each one has one more pointthanline, p = g + k, so
k =1 and G is connected. Thus G is a tree and there is exactly one path
connecting any two points of G. If we add a line uv to G, that line, together
with the unique path in G joining u and v, forms a cycle. The cycle is unique
because the path is unique.

(5) implies (6) Since every K, for p > 3 contains a cycle, G cannot be one of
them. Graph G must be connected, for otherwise a line x could be added
joining two points in different components of G, and G + x would be
acyclic.

(6) implies (7) We prove that every two points of G are joined by a unique
path and thus, because (2) implies (3), p = g + 1. Certainly every two points
— of Garejoined by some path. If two points of G are joined by two paths, then
by the proof that (1) implies (2), G has a cycle. This cycle cannot have four or
more points because, if it did, then we could produce more than one cycle
in G + x by taking x joining two nonadjacent points on the cycle (if there
are no nonadjacent points on the cycle, then G itself has more than one
cycle). So the cycle is K,, which must be a proper subgraph of G since by
hypothesis G 1s not complete with p > 3. Since G is connected, we may
assume there 1s another point in G which is joined to a point of this K.
Then it is clear that if any line can be added to G, then one may be added so as
to form at least two cycles in G + x. If no more lines may be added, so that
the second condition on G is trivially satisfied, then G is K, with p > 3,

contrary to hypothesis.

(7) implies (I) If G has a cycle, that cycle must be a triangle which is a com-
ponent of G, by an argument in the preceding paragraph. This component
has three points and three lines. All other components of G must be trees
and, in order to make p = g + 1, there can be only one other component. If
this tree contains a path of length 2, it will be possible to add a line x to G and
obtain two cycles in G + x. Thus this tree must be either K, or K,. So
G must be K3 U K, or K; u K,, which are the graphs which have been
excluded. Thus G i1s acyclic. But if G 1s acyclic and p = g + 1, then G is
connected since (4) implies (5) implies (6). So G is a tree, and the theorem is
proved.

Because a nontrivial tree has £ d; = 2g = 2(p ~ 1), there are at least
two points with degree less than 2.

Corollary 4.1(a) .Every nontrivial tree has at least two endpoints.

This result also follows from Theorem 3.4.
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The eccentricity e(v) of a point v 1n a connected graph G is max d(u, v) for all
uin G. The radius r(G) is the minimum eccentricity of the points. Note that
the maximum eccentricity is the diameter. A point v is a central point if
e(v) = r(G), and the center of G is the set of all central points.

In the tree of Fig. 4.2, the eccentricity of each point is shown. This tree
has diameter 7, radius 4, and the center consists of the two points u and v,
each with minimum eccentricity 4. The fact that u and v are adjacent
illustrates a result discovered by Jordan* and independently by Sylvester ; see
Konig [K10, p. 64].

Theorem 4.2 Every tree has a center consisting of either one point or two
adjacent points.

Proof. The result is obvious for the trees K; and K,. We show that any
other tree T has the same central points as the tree 7" obtained by removing
all endpoints of T. Clearly, the maximum of the distances from a given point
u of T to any other point v of T will occur only when v is an endpoint.

Thus, the eccentricity of each point in T" will be exactly one less than the
eccentricity of the same point in T. Hence the points of T which possess
minimum eccentricity in T are the same points having minimum eccentricity
in 7", that is, T and T’ have the same center. If the process of removing
endpoints is repeated, we obtain successive trees having the same center
as T. Since 7T is finite, we eventually obtain a tree which is either K, or K.
In either case all points of this ultimate tree constitute the center of T which
thus consists of just a single point or of two adjacent points.

A branch at a point u of a tree T is a maximal subtree containing u as an
endpoint. Thus the number of branches at u is deg u. The weight at a point
u of T'is the maximum number of lines in any branch at u. The weights at the

* Of Jordan Curve Theorem fame,
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Fig. 4.3. The weights at the points of a tree.
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nonendpoints of the tree in Fig. 4.3 are indicated. Of course the weight at
each endpoint is 14, the number of lines.

A point v is a centroid point of a tree T if v has minimum weight, and the
centroid of T consists of all such points. Jordan [J2] also proved a theorem
on the centroid of a tree analogous to his result for centers.

Theorem 4.3 Every tree has a centroid consisting of either one point or two
adjacent points.

The smallest trees with one and two central and centroid points are
shown in Fig. 4.4.

1 Center 2

b.#{ —

Fig. 4.4. Trees with all combinations of one or two central and centroid points.

Centroid

BLOCK-CUTPOINT TREES

It has often been observed that a connected graph with many cutpoints
bears a resemblance to a tree. This idea can be made more definite by as-
sociating with every connected graph a tree which displays the resemblance.

For a connected graph G with blocks {B;} and cutpoints {¢;}, the
block-cutpoint graph of G, denoted by bc(G), is defined as the graph having
point set {B;} U {c;}, with two points adjacent if one corresponds to a block
B; and the other to a cutpoint c; and ¢;isin B;. Thus bc(G)is a bigraph. This
concept was introduced in Harary and Prins [HP22] and also in Gallai
[G3]. (See Fig. 4.5.)
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Fig. 4.5. A graph and its block-cutpoint graph.

Theorem 4.4 A graph G is the block-cutpoint graph of some graph H if
and only if it is a tree in which the distance between any two endpoints is
even.

In view of this theorem, we will speak of the block-cutpoint tree of a graph.

INDEPENDENT CYCLES AND COCYCLES

We describe two vector spaces associated with a graph G: its “cycle space”
and “cocycle space.” For convenience, these two vector spaces will be taken
over the two element field F, = {0, 1}, in which 1 + 1 = 0 (even though
the theory can be modified to hold for an arbitrary field). In particular, the
¢; which occur repeatedly in the following definitions are always either O or 1.

..... A1 14 ey i s e

Ac iieiie + £ o o L with .
AS uSudl, 1€t U O a grapin witn points v, , U

g liemno - s s s X
p and lIines x,, s Xgr

A 0-chain of G is a formal linear combination X ¢;v; of points and a /-chain
1s a sum X g;x; of lines. The boundary operator 0 sends 1-chains to O-chains
according to the rules:

a) 0 1is linear.

b) if x = uv, then dx = u + v.

On the other hand, the coboundary operator é sends O-chains to 1-chains by
the rules:

a) ¢ is linear.

b) v = X ¢;x;, where ¢; = 1 whenever x; is incident with v.



38 TREES
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Fig. 4.6. A graph to illustrate the boundary and coboundary operators.

In Fig. 4.6, the 1-chain 6, = x; + x, + x4 + Xg has boundary
0oy = (v; + vy) + (v + v3) + (v, + vg) + (Us + V)
:U3+v4+05+v6,

and the O-chain o6y = vy + v4 + vs + vg has as its coboundary

00y = (x5 + X3 + Xg + Xxq) + (x4 + Xg)
+ (x5 + x¢ + Xg + Xg) + (x7 + Xg)
:x2+X3+X4+x5.
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a set of line-disjoint cycles. The collection of all cycle vectors forms a vector
space over F, called the cycle space of G. A cycle basis of G is defined as a
basis for the cycle space of G which consists entirely of cycles. We say a
cycle-vector Z depends on the cycles Z,, Z,, - - -, Z, if it can be written
as X¥_ | £;,Z;. Thus a cycle basis of G is a maximal collection of independent
cycles of G, or a minimal collection of cycles on which all cycles depend.

A cutset of a connected graph is a collection of lines whose removal
results in a disconnected graph. A cocycle is a minimal cutset. A coboundary
of G 1is the coboundary of some 0-chain in G. The coboundary of a collection
U of points is just the set of all lines joining a point in U to a point not in
U. Thusevery coboundary is a cutset. Since we definea cocycle asa minimal
cutset of G and any minimal cutset is a coboundary, we see that a cocycle
1s just a minimal nonzero coboundary. The collection of all coboundaries
of G 1s called the cocycle space of G, and a basis for this space which consists
entirely of cocycles is called a cocycle basis for G.

We proceed to construct for the cycle space of G a basis which corre-
sponds to a spanning tree T. In a connected graph G, a chord of a spanning
tree T is a line of G which is not in T. Clearly the subgraph of G consisting
of T and any chord of T has exactly one cycle. Moreover, the set Z(T)

* Most topologists and some graph theorists call this a “cycle.” They then use “circuits” or
“elementary cycles” or “polygons” for our cycles.
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Fig. 4.7. Graph, tree, and cotree.
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Fig. 4.8. A cocycle basis for G of Fig. 4.7.

of cycles obtained in this way (one from each chord) is independent, since
each contains a line not in any of the others. Also, every cycle Z depends
on the set Z(T), for Z is the symmetric difference of the cycles determined by
the chords of T which lie in Z. Thus if we define m(G), the cycle rank, to be
the number of cycles in a basis for the cycle space of G, we have the following
result.

Theorem 4.5 The cycle rank of a connected graph G is equal to the number
of chords of any spanning tree in G.

CoroHary 4.5(a) If G is a connected (p, g) graph, then m(G) = q — p + 1.
Corollary 4.5(b) If G is a (p, g) graph with k components, then
mG)=q—p+ k.

Similar results are true for the cocycle space. The cotree T* of a spanning
tree T in a connected graph G is the spanning subgraph of G containing
exactly those lines of G which are not in T. A cotree of G is the cotree of
some spanning tree T. In Fig. 4.7, a spanning tree T and its cotree T*
are displayed for the same graph G as in Fig. 4.6. The lines of G which are
not in T* are called its twigs. The subgraph of G consisting of T* and any -
one of its twigs contains exactly one cocycle. The collection of cocycles
obtained by adding twigs to T*, one at a time, is seen to be a basis for the
cocycle space of G. This is illustrated in Fig. 4.8 for the graph G and cotree
T* of Fig. 4.7, with the cocycles indicated by heavy lines. The cocycle rank
m*(G) 1s the number of cocycles in a basis for the cocycle space of G. ‘
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Theorem 4.6 The cocycle rank of a connected graph G is the number of
twigs in any spanning tree of 7.

As in the case of cycles, we have two immediate corollaries.
Corollary 4.6(a) If G is a connected (p, g) graph, then m*(G) = p — 1.
Corollary 4.6(b) If Gisa(p, g) graph with kcomponents, then m*(G) = p — k.

Excursion
The 1-dimensional case of an important general resuit about simplicial
complexes can be derived from Theorem 4.5. The Euler-Poincaré equation

Oy — oy F oy — =0 — By 4+ By~ -,

where the g, are the Betti numbers and the «, are the numbers of simplexes
of each dimension, holds for every simplicial complex. By definition, g, is
the rank of the vector space of n-dimensional cycles. Recall from Chapter 1
that every graph is a simplicial complex, with its points 0-simplexes and its
lines 1-simplexes. Foragraph, 8, = k, the number of connected components,
and f, = m(G), the number of independent cycles of G. Since no graph
contains an n-simplex with n > 1, a, =, =0, for all n > 1. Thus
% — o; = Bo — B1sop — q =k — m(G) and we see that Corollary 4.5(b)
is the Euler-Poincaré equation for graphs.

MATROIDS

This subject was first introduced by Whitney [W15]. A discussion of the
basic properties of matroids, as well as several equivalent axiomatic formula-
tions, may be found in Whitney’s original paper.

A matroid consists of a finite set M of elements together with a family
% = {C,, Cy, "} of nonempty subsets of M, called circuits, satisfying the
axioms:

1. no proper subset of a circuit is a circuit;
2. ifxeC, n C,, then C; U C, — {x} contains a circuit.

With every graph G, one can associate a matroid by taking its set X of
lines as the set M, and its cycles as the circuits. It is easily seen that the two
axioms are satisfied. It is slightly less obvious that G yields another matroid
by taking the cocycles of G as the circuits. These are called respectively the
cycle matroid and the cocycle matroid of G.

Another, equivalent, definition of matroid is as follows. A matroid
consists of a finite set M of elements together with a family of subsets of M
called independent sets such that:
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2. every subset of an independent set is independent ;

3. for every subset 4 of M, all maximal independent sets contained in A
have the same number of elements.

A graph G yields a matroid in this sense by taking the lines of G as set
M and the acyclic subgraphs of G as the independent sets.

The duality (cycles vs. cocycles, trees vs. cotrees) which appears in the
preceding section is closely related to duality in matroids. Minty [M12]
constructed a self-dual axiom system for “graphoids” which displays matroid
duality explicitly.

A graphoid consists of a set M of elements together with two collections
% and & of nonempty subsets of M, called circuits and cocircuits respectively,
such that:

1. foranyCe®and De 4, |C nD| # 1;

2. no circuit properly contains another circuit and no cocircuit properly
contains another cocircuit;

3. for any painting of M which colors exactly one element green and the
rest either red or blue, there exists either

a) a circuit C containing the green element and no red elements, or
b) a cocircuit D containing the green element and no blue elements.

While the cycles of every graph form a matroid, not every matroid can
o arise from a graph, as we shall see in Chapter 14. Two comprehensive
eferences on matroid theory are Minty [M12] and Tutte [T19].

- W
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Excursion
Ulam’s conjecture is still as unsolved as ever for arbitrary graphs. But

Kelly [K5] proved its validity for trees. As we have seen, the point of view
toward this conjecture proposed in [H29] is that if G has p > 3 and one is
presented with the p unlabeled subgraphs G; = G — v, then the graph G
itself can be reconstructed uniquely from the G;. Kelly’s result for trees
was extended in [HP6] where it is shown that every nontrivial tree 7 can be
reconstructed from only those subgraphs T; = T — v; which are themselves
trees, that is, such that v, is an endpoint. This has been improved, in turn, by
Bondy, who showed [B15] that a tree T can be reconstructed from its
subgraphs T — v, with the v, the peripheral points, those whose eccentricity
equals the diameter of 7. Manvel [ M2] then showed that almost* every tree
T can be reconstructed using only those subtrees T — p; which are non-
isomorphic. Another class of graphs has been reconstructed by Manvel
[M3], namely unicyclic graphs, which are connected and have just one cycle.

* With just two pairs of exceptional trees.
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EXERCISES

4.1

Draw all trees with nine points. Then compare your diagrams with those in

Appendix II.

4.2
43
1)
2
()
4
44
(1)
2)
(3)
(4)

4.5
4.6
4.7
4.8

Every tree is a bigraph. Which trees are complete bigraphs?
The following four statements are equivalent.

G is a forest.

Every line of G is a bridge.

Every block of G is K ,.

Every nonempty intersection of two connected subgraphs of G is connected.

The following four statements are equivalent.
G is unicyclic.
G is connected and p = q.

For some line x of G, the graph G — x is a tree.
G is connected and the set of lines of G which are not bridges form a cycle.

(Anderson and Harary [AH1])
For any connected graph G, (G) < d(G) < 21{(G).
Construct a tree with disjoint center and centroid, each having two points.
The center of any connected graph lies in a block. (Harary and Norman [ HN2])
Given the block-cutpoint tree be(G) of a connected graph G, determine the block-

graph B(G) and the cutpoint-graph C(G).

4.9

Determine the cycle ranks of (a) K, (b) K, ,, (c) a connected cubic graph with

p points.

4.10
4.11
412
4,13

The intersection of a cycle and a cocycle contains an even number of lines,

A graph is bipartite if and only if every cycle in some cycle basis is even.

Every connected graph has a spanning tree.

Show how the block-cutpoint graph of any graph can be defined as an intersection

graph.

4.14
4.15
4.16

4.17
*4.18

4.19

A cotree of a connected graph is a maximal subgraph containing no cocycles.
A tree has diameter 2 if and only if it is a star.
Prove or disprove:

a) If G has diameter 2, then it has a spanning star.
b) If G has a spanning star, then it has diameter 2.

Determine all connected graphs G for which G = bc(G).

The maximum number of lines in a graph with p points and radius r is

(” ) if =1
2 H
[p(p — 2)/2] if r=2
Hp?> —drp+5p+4*—6r) if r>3. (Vizing [V5])
G is a block if and only if every two lines lie on a common cocycle.
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CONNECTIVITY

We must all hang together,
or assuredly we shall all hang separately.
B. FRANKLIN

The connectivity of graphs is a particularly intuitive area of graph theory
and extends the concepts of cutpoint, bridge, and block. Two invariants
called connectivity and line-connectivity are useful in deciding which of two
graphs is “more connected.”

There is a rich body of theorems concerning connectivity. Many of
these are variations of a classical result of Menger, which involves the number
of disjoint paths joining a given pair of points in a graph. We will see that
several such variations have been discovered in areas of mathematics other

I POt P P
tiiall glapli tlivoly.

CONNECTIVITY AND LINE-CONNECTIVITY

The connectivity k = k(G) of a graph G is the minimum number of points
whose removal results in a disconnected or trivial graph. Thus the con-
nectivity of a disconnected graph is 0, while the connectivity of a connected
graph with a cutpoint is 1. The complete graph K, cannot be disconnected
by removing any number of points, but the trivial graph results after re-
moving p — 1 points; therefore, ©(K,) = p — 1. Sometimes « is called the
point-connectivity. ‘

Analogously, the line-connectivity A = A(G) of a graph G is the minimum
number of lines whose removal results in a disconnected or trivial graph.
Thus A(K;) = 0 and the line-connectivity of a disconnected graph is 0, while
that of a connected graph with a bridge is 1. Connectivity, line-connectivity,
and minimum degree are related by an inequality due to Whitney [W11].

Theorem 5.1 For any graph G,
k(G) < UG) < G).

J
43
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Proof. We first verify the second inequality. If G has no lines, then 4 = 0.
Otherwise, a disconnected graph results when all the lines incident with a
point of minimum degree are removed. In either case, A < 6.

To obtain the first inequality, various cases are considered, If G is
disconnected or trivial, thenx = A = 0. If Gisconnected and has a bridge x,
then A = 1. In this case, k = 1 since either G has a cutpoint incident with x
or G is K,. Finally, suppose G has 4 > 2 lines whose removal disconnects
it. Clearly, the removal of A — 1 of these lines produces a graph with a
bridge x = uv. Foreachofthese A — 1lines, select an incident point different
- from u or v. The removal of these points also removes the A — 1 lines and
quite possibly more. If the resulting graph is disconnected, then x < 4; if
not, x is a bridge, and hence the removal of u or v will result in either a
disconnected or a trivial graph, so k < A in every case. (See Fig. 5.1.)

/RN
Nl £/

Fig. 5.1. A graph for whichx = 2,4 = 3,and é = 4.

Chartrand and Harary [CH4] constructed a family of graphs with
prescribed connectivities which also have a given minimum degree. This
result shows that the restrictions on «, A, and é imposed by Theorem 5.1
cannot be improved.

Theorem 5.2 For all integers a, b, ¢ such that 0 < a < b < ¢, there exists a
graph G with x(G) = a, (G) = b, and 4(G) = c.

Chartrand [C8] pointed out that if é is large enough, then the second
inequality of Theorem 5.1 becomes an equality.

Theorem 5.3 If G has p points and 6(G) > [p/2], then A(G) = &(G).

For example, if G is regular of degree r > p/2, then A(G) =r. In
particular, (K,) = p — 1.

The analogue of Theorem 5.3 for connectivity does not hold. The
problem of determining the largest connectivity possible for a graph with a
given number of points and lines was proposed by Berge [B11] and a solution
was given in [H26].

Theorem 5.4 Among all graphs with p points and ¢ lines, the maximum
connectivity is 0 when ¢ < p — 1 and is [2q/p], wheng > p — L
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Outline of proof. Since the sum of the degrees of any (p, q) graph G is 2q, the
mean degree is 2q/p. Therefore 8(G) < [2g/p], so k(G) < [2gq/p] by Theorem
5.1. To show that this value can actually be attained, an appropriate family
of graphs can be constructed. The same construction also gives those
(p, q) graphs with maximum line-connectivity.

Corollary 5.4(a) The maximum line-connectivity of a (p, g) graph equals the
maximum connectivity.

Only very recently the question of separating a graph by removing a
mixed set of points and lines has been studied. A connectivity pair of a graph
G is an ordered pair (a, b) of nonnegative integers such that there is some set
of a points and b lines whose removal disconnects the graph and there
is no set of a — 1 points and b lines or of a points and b — 1 lines with this
property. Thus in particular the two ordered pairs (x, 0) and (0, A) are
connectivity pairs for G, so that the concept of connectivity pair generalizes
both the point-connectivity and the line-connectivity of a graph. It is readily
seen that for each value of a, 0 < a < k, there is a unique connectivity pair
(a, b,); thus G has exactly k + 1 connectivity pairs.

The connectivity pairs of a graph G determine a function f from the
set {0, 1, -, x} into the nonnegative integers such that f(x) = 0 (cf.
Theorem 5.1). This 1s called the connectivity function of G. It is strictly
decreasing, since if (a, b) is a connectivity pair with b > 0 there is obviously
a set of @ + 1 points and b — 1 lines whose removal disconnects the graph
or leaves only one point. The following theorem, proved by construction in
Beineke and Harary [ BH6], shows that these are the only conditions which
a connectivity function must satisfy.

Theorem 5.5 Every decreasing function f from {0, 1,---, x} into the non-
negative integers such that f(x) = 0 is the connectivity function of some
graph.

A graph G is n-connected if k(G) > n and n-line-connected if (G) >
We note that a nontrivial graph is 1-connected if and only if it is connected,
and that it is 2-connected if and only if it is a block having more than one
line. So K, is the only block not 2-connected. From Theorem 3.3, it
therefore follows that G is 2-connected if and only if every two points of G
lie on a cycle. Dirac [D8] extended this observation to n-connected
graphs.

Theorem 5.6 If G is n-connected, n > 2, then every set of n points of G lie
on a cycle.

By taking G to be the cycle C, itself, it is seen that the converse is not
true forn > 2.

A characterization of 3-connected graphs also exists, although its
formulation is not as easily given. In order to present this result, we need
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W6=K1+C5:

Fig. 5.2. A wheel.

the “wheel” invented by the eminent graph theorist W. T. Tutte. Forn > 4,
the wheel W, 1s defined to be the graph K, + C,_,. (See Fig. 5.2))
Tutte’s theorem [T13] characterizing 3-connected graphs can now be

stated.

Theorem 5.7 A graph G is 3-connected if and only if G is a wheel or can be
obtained from a wheel by a sequence of operations of the following two

types:
1. The addition of a new line.

2. The replacement of a point v having degree at least 4 by two adjacent
points v, v” such that each point formerly joined to v is joined to exactly
one of v’ and v” so that in the resulting graph, deg v > 3 and deg v" > 3.

The graph G of Fig. 5.3 1s 3-connected since it can be obtained from the
wheel Wj as indicated.

An n-component of a graph G is a maximal n-connected subgraph. In
particular, the 1-components of G are the nontrivial components of G while
the 2-components are the blocks of G with at least 3 points. It is readily
seen that two different 1-components have no points in common, and two

W4 . v 74 U =

v’ 3

() (b}

© (d)

Fig. 5.3. Demonstration that a graph is 3-connected.
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Fig. 5.4. A graph with two 3-components which meet in two points.

distinct 2-components meet in at most one point. These facts have been
generalized by Harary and Kodama [HK1]. (See Fig. 5.4.)

Theorem 5.8 Two distinct n-components of a graph G have at most n — 1
points in common.

GRAPHICAL VARIATIONS OF MENGER’S THEOREM
In 1927 Menger [M9] showed that the connectivity of a graph is related to

ot G- IS Y P ~Ean Frup ey Y

the number of disjoint paths joining distinct points in the graph. Many
of the variations and extensions of Menger’s result which have since appeared
have been graphical, and we discuss some of these here. By emphasizing the
form these theorems take, it is possible to classify them in an illuminating
way. '

Let v and v be two distinct points of a connected graph G. Two paths
joining u and v are called disjoint (sometimes called point-disjoint) if they
have no points other than 4 and v {(and hence no lines) in common ; they are
line-disjoint if they have no lines in common. A set S of points, lines, or points
and lines separates u and v if u and v are in different components of G — S.
Clearly, no set of points separates two adjacent points. Menger’s Theorem
was originally presented in the “point form™ given in Theorem 5.9.

Theorem 5.9 The minimum number of points separating two nonadjacent
points s and ¢t is the maximum number of disjoint st paths.

Proof. We follow the elegant proof of Dirac [D11]. It is clear that if k
points separate s and ¢, then there can be no more than k disjoint paths
joining s and ¢.

It remains to show that if it takes k points to separate s and ¢ in G, there
are k disjoint s—t paths in G. This is certainly true if k = 1. Assume it is not
true for some k > 1. Let h be the smallest such k, and let F be a graph with
the minimum number of points for which the theorem fails for h. We
remove lines from F until we obtain a graph G such that k points are required
toseparate sandtin G but for any line x of G, onlyh — 1 points are requiredto
separate sand tin G — x. We first investigate the properties of this graph G,
and then complete the proof of the theorem,
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By the definition of G, for any line x of G there exists a set S(x) of h — 1
points which separates s and t in G — x. Now G — §(x) contains at least
one s—t path, since it takes h points to separate s and ¢ in G. Each such s—¢
path must contain the line x = uv since it is not a path in G — x. So
ws o an A TN o At s tlam N s s Y qeimarates o gl g e £
u, U g L)[_KJ and 1L d F 5, ¢ Uil LJ[_X} U 1uj sbpdldlid 5 dliu § 11 4.

If there is a point w adjacent to both s and ¢ in G, then G — w requires
h — 1 points to separate s and t and so it has h — 1 disjoint s—t paths.

Replacing w, we have h disjoint s—¢ paths in G. So we have shown:
(I) No point is adjacent to both s and ¢t in G.

Let W be any collection of h points separating s and ¢ in G. An s—W
path is a path joining s with some w; € W and containing no other point of
W. Call the collections of all s--W paths and W—t paths P, and P, respectively.
Then each s—t path begins with a member of P, and ends with a member of
P,, because every such path contains a point of W. Moreover, the paths in
P, and P, have the points of W and no others in common, since it is clear
that each w, is in at least one path in each collection and, if some other point
were in both an s—W and a W—t path, then there would be an s—t path con-
taining no point of W. Finally, either P, — W = {s} or P, — W = {t},
since, if not, then both P, plus the lines {w,t, w,t, - - -} and P, plus the lines
{swy, sw,, * - -} are graphs with fewer points than G in which s and ¢ are
nonadjacent and h-connected, and therefore in each there are h disjoint
s—t paths. Combining the s—W and W-t portions of these paths, we can
construct s disjoint s—¢ paths in G, and thus have a contradiction. Therefore
we have proved:

(IT) Any collection W of h points separating s and ¢ is adjacent either to
sortot.

Now we can complete the proof of the theorem. Let P = {s, uy, up, - **, t}
be a shortest s—¢ path in G and let u,u, = x. Note that by (I), u, # t. Form
S(x) = {vy, vs * -, v,_;} as above, separating s and ¢t in G — x. By (I),
ut ¢ G, so by (II), with W = S(x) u {u,}, sv;€ G, for all i. Thus by (I),
vit ¢ G, for all i. However, if we pick W = S(x) U {u,} instead, we have by
(IT) that su, € G, contradicting our choice of P as a shortest s—t path, and
completing the proof of the theorem.

In Fig. 5.5 we display a graph with two nonadjacent points s and ¢
which can be separated by removing three points but no fewer. In accordance
with the theorem, the maximum number of disjoint s~t paths is 3.

Chronologically the second variation of Menger’s Theorem was pub-
lished by Whitney in a paper [W11] in which he included a criterion for a
graph to be n-connected.

Theorem 5.10 A graph is n-connected if and only if every pair of points are
joined by at least n point-disjoint paths.
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Fig. 5.5. A graph illustrating Menger s Theorem,

An indication of the relationship between Theorems 5.9 and 5.10is easily
supplied by introducing the concept of local connectivity. The local con-
nectivity of two nonadjacent points u and v of a graph is denoted by x(u, v)
and is defined as the smallest number of points whose removal separates
u and v. In these terms, Menger’s Theorem asserts that for any two specific
nonadjacent points u and v, x(y, v) = po(u, v), the maximum number of
point-disjoint paths joining u and v. Obviously both theorems hold for
complete graphs. If we are dealing with a graph G which is not complete,
then the observation which links Theorems 5.9 and 5.10 is that x(G) =

rar al v Afmnnadiarant maieat
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Strangely enough, the theorem analogous to Theorem 5.9 in which the
pair of points are separated by a set of lines was not discovered until much
later. There are several nearly simultaneous discoveries of this result which
appeared in papers by Ford and Fulkerson [FF1] (as a special case of their
“max-flow, min-cut” theorem) and Elias, Feinstein, and Shannon [EFS1],
and also in unpublished work of A. Kotzig.

Theorem 5.11 For any two points of a graph, the maximum number of line-
disjoint paths joining them equals the minimum number of lines which
separate them.

Referring again to Fig. 5.5, we see that u and v can be separated by
the removal of five lines but no fewer, and that the maximum number of
line-disjoint u—v paths is five. '

Even with only these three theorems available, we can see the beginnings
of a scheme for classifying them. The difference between Theorems 5.9 and
5.10 may be expressed by saying that Theorem 5.9 involves two specific
points of a graph while Theorem 5.10 gives a bound in terms of two general
points. This distinction, as well as the obvious one between Theorems 5.9
and 5.11, is indicated in Table 5.1.

Thus we see that with no additional effort we can get another variation of
Menger’s Theorem by stating the line form of the Whitney result.
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Table 5.1
Theorem Objects separated Maximum number Minimum number
5.9 specific 4, v disjoint paths points separating u, v
5.10 generalfi, v disjoint paths points separating u, v
5.11 specif] U, v line-disjoint paths lines separating u, v

n-line-connected if and only if every pair of points
lige-disjoint paths.

Theorem 5.12 A- grap
are joined"by at least f
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involving sets of poifits ril?er than individual points.

Thegrem 5,12 For afiv t Aiciaint nonem nty getg Of

A ILGUL CARE oSy Ay A i .lJ A4 “JOJUIL]L L]ULIUIIIP

1
maximum number ¢f ddsjoint paths joining ¥; and V¥, is equal to the minimum
number of points which separate ¥, and V,.

Of course it must be specified that no point of ¥, is adjacent with a
point of V, for the same reason as in Theorem 5.9. Two paths joining V;
and V, are understood to be disjoint if they have no points in common other
than their endpoints. A proof of the equivalence of Theorems 5.9 and 5.13
is extremely straightforward and only involves shrinking the sets of points
V, and ¥, to individual points.

Another variation is given in the next theorem, considered by Dirac
[D10]. Because the proof involves typical methods in the demonstration of
equivalence of these variations, we include it in full.
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paths joining these two sets of points.

each, there exist n umjuuu

Theorem 5.14 A graph with at least 2n pomts 1s n-connected if and only if
ts

Note that in this theorem these n disjoint paths do not have any points
at all in common, not even their endpoints!

Proof. To show the sufficiency of the condition, we form the graph G’ from
G by adding two new points w, and w, with w; adjacent to exactly the points
of V,i = 1, 2. (See Fig. 5.6.)

Since G is n-connected, so is G’, and hence by Theorem 5.9 there are n
disjoint paths joining w, and w,. The restrictions of these paths to G are
clearly the » disjoint V-V, paths we need.

To prove the other “half,” let S be a set of at least n — 1 points which
separates G into G, and G,, with points sets ¥ and V’, respectively. Then,
since |Vi| > 1, |V5 = 1, and |VY| + |V5 + |S| |V| = 2n, there is a
partition of § into two disjoint subsets S, and S, such that |V} U S,| > n
and |V, U S,| = n. Picking any n-subsets V; of ¥V, U S;,and V, of V', U S,,
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Fig. 5.6. Construction of G

we have two disjoint sets of n points each. Every path joining V, and V,
must contain a point of S, and since we know there are n disjoint V|-V,
paths, we see that |S| > n, and G is n-connected.

We have defined connectivity pairs for a graph. Similarly, one can define
connectivity pairs for two specific points u and ». It is then natural to ask for
a mixed form of Menger's Theorem involving connectivity pairs. The
following theorem of Beineke and Harary [BH6] is one such result; a proof
can be readily supplied by imitating that of Theorem 5.9.

Theorem 5.15 The ordered pair (a, b) is a connectivity pair for points 4 and v
in a graph G if and only if there exist a point-disjoint u—v paths and also b
line-disjoint u—v paths which are line-disjoint from the preceding a paths,
and further these are the maximum possible numbers of such paths.

In general, all of the theorems we have mentioned have corresponding
digraph forms, and in fact Dirac points out that his proof of Menger’s
Theorem works equally well for directed graphs. At this point, then, we
could add eleven more theorems to Table 5.1, namely Theorems 5.12 through
5.15, and the directed forms of Theorems 5.9 through 5.15. This would be a
somewhat futile effort, however, since it should be clear that the table would

still be far from Cgmplete To count the total number of variations which

have been suggested up to this point, we note that we may consider either a
graph G or a digraph D, in which we may separate

11) general points u, v,
ili) two sets of points ¥V}, V, (as in Theorem 5.13).

This separation may be accomplished by removing

i) points,
1i) lines, or
ili) points and lines (as in Theorem 5.15).
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By taking all possible combinations of these alternatives, we could
construct 2-3-3 = 18 theorems. The fact that all of these theorems are
true may be verified by the reader, although it would be a tedious exercise.

Finally, Fulkerson [F13] proved the following theorem, which deals
with disjoint cutsets instead of disjoint paths.

Theorem 5.16 In any graph, the maximum number of line-disjoint cutsets
of lines separating two points ¥ and v is equal to the minimum number of

lines in a path joining # and v; that is, to d(u, v).

Although this theorem is of Mengerian type, it is much easier to prove
than Menger's Theorem. By taking all the possible variations of this theorem,
as we have with the theorems involving paths, we could increase the number
engerian theorems again.

FURTHER VARIATIONS® NGER’S THEOREM

In this section we include several additionalvariations of Menger’s Theorem,
all discovered independently and only later seen to be related to each other
and to a graph theoretic formulation.

A network N may be regarded as a graph or directed graph together with
a function which assigns a positive real number to each line. For precise |
definitions of “maximum flow” and “minimum cut capacity,” see the book
[FF2] by Ford and Fulkerson.

Fig. 5.7. A network with integral capacities.

Theorem 5.17 In any network N in which there is a path from u to v, the
maximum flow from u to v is equal to the minimum cut capacity.

It is straightforward but not entirely obvious to verify that in Fig. 5.7
the maximum flow in the network from u to v is 7, and that the minimum
cut capacity is also 7.

In the case where all the capacities are positive integers, as in this net-
work, there is an immediate equivalence between the maximum flow theorem
and that variation of Menger’s Theorem in which the setting is a directed
multigraph D and there are two specific points u and ». The transformation
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in N R in D N

u u

Fig. 5.8. The transformation from network to multigraph.

which makes this equivalence apparent is displayed in Fig. 5.8 in which
the directed line from u to v, in Fig. 5.7 which has capacity 3 is transformed
into three directed lines without any capacity indicated.

Let us define a line of a matrix as either a row or a column. In a bina
matrix M, a collection of lines is said to cover all the unit entries of M
if every 1 is in one of these lines. Two 1’s of M are called independent if they
are neither in the same row nor in the same column. Konig [K9] obtained
‘the next variation of Menger's Theorem in these terms; compare Theorem

10.2.

Theorem 5.18 In any binary matrix, the maximum number of independent
unit elements equals the minimum number of lines which cover all the units.

— — — ——

001000 001000
1101 0 1 100000
M=]00120 01 M=1{0000 01
011010 010000
001 00 1] 0 0000 O]

We illustrate Theorem 5.18 with the binary matrix M above. All the
unit entries of M are covered by rows 2 and 4 and columns 3 and 6, but there
is no collection of three lines of M which covers all its 1's. In the matrix M’
there are shown four independent unit entries of M and there is no set of five
independent 1’s in M.

When this matrix M is regarded as an incidence matrix of sets versus
elements, Theorem 5.18 becomes very closely related to the celebrated
theorem of P. Hall [H8], which provides a criterion for a collection of finite
sets S, S,, -, S,, to possess a system of distinct representatives. This
meansa set {e,, e,, - * -, e,,} of distinct elements such that ¢, is in S,, for each i.
We present here the proof of Hall’s Theorem which is due to Rado [R1].

Theorem 5.19 There exists a system of distinct representatives for a family
of distinct sets Sy, S,, - - -, S,, if and only if the union of any k of these sets

ALAVAAL WL aly 411%

contains at least k elements, for all k from 1 to m.

Proof. The necessity is immediate. For the sufficiency we first prove that if
the collection {S,} satisfies the stated conditions and |S,,| > 2, then thereisan
element e in S,, such that the collection of sets $;, S5, --*, S,,—1, S,, — {e}
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also satisfies the conditions. Suppose this is not the case. Then there are

elements e and fin S,, and subsets J and K of {1,2,---, m — 1} such that

l Uo v (S, — {e})l <|J|+1 and i/USi\u(Sm— {f})i < |K] + 1.
ieJ ieK

m

But then
|J| + |K| =

(SRt

(U Si) V(S — {e}) +
|(JUK l7nK

>|J U K| +1+|JnK|>|J|+|K|,

which is a contradiction.

The sufficiency now follows by induction on the maximum of the
numbers |S;|. If each set is a singleton, there is nothing to prove. The in-’
duction step is made by application (repeated if necessary) of the above
result to the sets of largest order.

Fig. 5.9. A bipartite graph illustrating Hall’s Theorem.

In Fig. 5.9 we show a bipartite graph G in which the points refer either to
sets S; or to elements g;. Two points of B are adjacent if and only if one is a
set point, the other is an element point, and the element is a member of the
set. The link between Theorem 5.19 and Menger’s Theorem is accomplished
by introducing two new points into a graph of the form of Fig. 59. Call
these points u and v and join u to every set point S, and v with every element
point a;to obtain a new graph. Theorem 5.19 can then be proved by applying
either the maximum flow theorem or the appropriate line form of Menger’s
Theorem to this graph.

Although the following theorem due to Dilworth [D4] is expressed in
terms of lattice theory,* it has been established (sce Mirsky and Perfect
[MP1]) that the result is equivalent to Hall’s Theorem. Two elements of a
lattice (see Birkhoff [ B13]) are incomparable if neither dominates the other.

* More generally the result holds for partially ordered sets.
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By a chain in a lattice is meant a downward path from an upper element to a
lower element in the “Hasse diagram™ of the lattice.

Theorem 5.20 In any finite lattice, the maximum number of incomparable
elements equals the minimum number of chains which include all the
elements.

For example, in the lattice of the 3-cube, there are at most three incom-

parable clements; it is easy to cover all the elements with three chains but
impossible to do so with only two chains.

We have seen in this section several theorems of Mengerian type
occurring in settings which are not graph theoretic. A more extensive
treatment of such results appears in the review article [ H33]. For an elegant
summary of the vast literature on theorems involving systems of distinct
representatives, see Mirsky and Perfect [MP1].

EXERCISES

LS _LF

5.1 The connectivity of

a) the octahedron X, + C, is 4.
b) the square of a polygon C,, n > 5, is 4.
5.2 Every n-connected graph has at least pn/2 lines.
5.3 Construct a graph withx = 3,4 = 4,6 = 5.
5.4 Theorem 5.3 does not hold if A(G) is replaced by x{G).
5.5 There exists no 3-connected graph with seven lines.
5.6 The connectivity and line-connectivity are equal in every cubic graph.
5.7 Determine which connectivity pairs can occur in 4-regular graphs.

5.8 If G is regular of degree r and x = 1, then 4 < [r/2].

5.10 Let G be a complete n-partite graph other than C,. Then every minimum line
cutset is the coboundary of some point. (M. D. Plummer)

5.11 Find the connectivity function for s and ¢ in the graph of Fig. 5.5.

5.12 Find a graph with points s and ¢ for which the connectivity function is (0, 5), (1, 3),
(2, 2), (3,0).

5.13 Use Tutte’s Theorem 5.7 to show that the graph of the cube is 3-connected.

5.14 Every block of a connected graph G is a wheel if and only if ¢ = 2p — 2 and
k(u, v) = 1 or 3 for any two nonadjacent points u, v. (Bollobas [B14])

5.15 Every cubic triply-connected graph can be obtained from K, by the following
construction. Replace two distinct lines u,v, and u,v, (4, = u, is permitted) by the
subgraph with two new points w,, w, and the new lines u,wy, w,v,, u,w,, wyt,, and
WiW,.



56 CONNECTIVITY

5.16 Given two disjoint paths P, and P, joining two points u and v of a 3-connected
graph G, is it always possible to find a third path joining u and v which is disjoint from
both P, and P,?

5.17 State the result analogous to Theorem 5.9 for the maximum number of disjoint
paths joining two adjacent points of a graph.

*5.18 If f,(p) is the smallest number such that for g > f,(p) every (p, q) graph has two
points joined by r disjoint paths, then

fLp)=p  fip)=[Bp-1)2], and f(p)=2p— L
(Bollobas [B14])
5.19 If G hasdiameterdand k > 1,thenp > x(d + 1) — 2. (Watkins [W5])

5.20 Let { be the maximum number such that every set of { points in G is contained in
some cycle. In a triply connected graph G, k = { if and only if G has a set § of
points such that k(G — §) > « + L (Watkins [W5])

5.21 1If G is connected, then
kK(G) = 1 + min k(G — v)
veV

5.22 In any graph, the maximum number of disjoint cutsets of points separating two
points 4 and v equals d(u, v) — 1.
5.23 In a k-minimal graph G, k(G — x) < «(G) for every line x.

a) G is k-minimal if and only if k(u, v) = x(G) for every pair of adjacent points , v.

b) If G is k-minimal then é = «. (Halin [H5]))
5.24 Prove the equivalence of Theorems 5.18 and 5.19. (See for example M. Hall
[H7, p. 49]).

5.25 If G is n-connected, n > 2, and 8(G) > (3n — 1)/2, then there exists a point v in G
such that G — v is n-connected. (Chartrand, Kaugars, and Lick [CKL1])



CHAPTER 6

PARTITIONS

Gallia est omnia divisa in partes tres.

JuLius CAESAR, de Bello Gallico

The degrees d,, - - -, d,, of the points of a graph form a sequence of non-
negative integers, whose sumis of course 2g. In number theory it is customary
to define a partition of a positive integer n as a list or unordered sequence
of positive integers whose sumis n. Under this definition, 4 has five partitions:

4, 3+1, 2+2, 2+1+1, 1+1+1+1L1

The order of the summands in a partition is not important. The degrees
of a graph with no isolated points determine such a partition of 2g, but
because of the importance of having a general definition holding for all
graphs, it is convenient to use an extended definition, changing positive

to nonnegative.
A

¢ P
24141 1414141

Fig. 6.1. The graphical partitions of 4.

A partition of a nonnegative integer n is a finite list of nonnegative
integers with sum n. In this sense, the partitions of 4 also allow an arbitrary
finite number of zero summands. The partition of a graph is the partition of
2q as the sum of the degrees of the points, 2qg = X d,, asin Theorem 2.1. Only
two of the five partitions of 4 into positive summands belong to a graph, see
Fig. 6.1,

A partition X d, of n into p parts is graphical if there is a graph G whose
points have degrees d;. If such a partition is graphical, then certainly every

57
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d; < p— 1, and n is even. These two conditions are not sufficient for a
partition to be graphical, as shown by the partition 10 = 3 + 3 + 3 + 1.
Two related questions arise. First, how can one tell whether a given partition
is graphical? Second, how can one construct a graph for a given graphical
partition? An existential answer to the first was given by Erd6s and Gallai
[EG1]. Another answer found independently by Havel [H36] and Hakimi
[H4] is constructive in nature, and so answers the second question as well.
We first give this result.

Theorem 6.1 A partition Il = (d,, d,,*- -, d,) of an even number into p
parts with p — 1 > d, > d, > -+ > d, is graphical if and only if the
modified partition

Il =(d, — L,dy — 1, +,dg+1 — Ldg 13", dp)

Proof. IfIT'is graphical, then so is I, since from a graph with partition IT’
one can construct a graph with partition I1 by adding a new point adjacent
to points of degreesd, — 1,d; — 1, -, dy +; — 1.

Now let G be a graph with partition IT. If a point of degree d, is adjacent
to points of degrees d; for i = 2 to d, + 1, then the removal of this point
results in a graph with partition IT'.

Therefore we will show that from G one can get a graph with such a
point. Suppose that G has no such point. We assume that in G, point v; has
degree d;, with v, being a point of degree d, for which the sum of the degrees
of the adjacent points is maximum. Then there are points v; and v; with
d; > d; such that v,v; is a line but v,v; is not. Therefore some point v, is
adjacent to v; but not to v;. Removal of the lines v,v; and v,v; and addition

of v,v; and v, results in another graph with partition I1 in which the sum

of the degrees of the points adjacent to v, is greater than before. Repeating
this process results in a graph in which v; has the desired property.

The theorem gives an effective algorithm for constructing a graph with a
given partition, if one exists. If none exists, the algorithm cannot be applied
at some step.

Corollary 6.1 (Algorithm) A given partition II = (dy, dy, * - -, d,) with
p—1lz2d =2d,>-- >d,

is graphical if and only if the following procedure results in a partition with
every summand zero.

1. Determine the modified partition IT’ as in the statement of Theorem 6.1.
2. Reorder the terms of I’ so that they are nonincreasing, and call the
resulting partition IT,.
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Ug Us

Uy U7

Fig. 6.2. An example of the algorithm for graphical partitions,

3. Determine the modified partition IT” of I1, as in step 1, and the re-
ordered partition IT,.

4, Continue the process as long as nonnegative summands can be obtained.

If a partition obtained at an intermediate stage is known to be graphical,
stop, since I1itselfisthen established as graphical. Toillustrate this algorithm,
we test the partition

Mm=(5533222)
I =( 42,2112
I, =( 42221,1)
m=( 1,1,1,0 1)

Clearly IT” is graphical, so I1 is also graphical. The graph so constructed is
shown in Fig. 6.2.

The theorem of Erdés and Gallai [EG1] is existential in nature, but its
proof uses the same construction.

Theorem 6.2 Let IT = (d, d,,---,d,) be a partition of 2¢q into p parts,
dy 2d, >--- > d, Then II is graphical if and only if for each integer 7,
l<r<p-1, ‘

r P
Yd, <rr— 1)+ > min{r,d;}. (6.1)
i=1 i=r+1

Proof. The necessity of these conditions (6.1) is straightforward. Given
that II is a partition of 2q belonging to a graph G, the sum of the r largest
degrees can be considered in two parts, the first being the contribution to this
sum of lines joining the corresponding » points with each other, and the
second obtained from lines joining one of these r points with one of the
remaining p — rpoints. These two parts are respectively at most #(r — 1)and
P,y min {r, d;}.
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The proof of the sufficiency is by induction on p. Clearly the result holds
for sequences of one or two parts. Assume that it holds for sequences of p
parts, and let dy, d,, - - -, d,,, be a sequence satisfying the hypotheses of the
theorem.

Let m and n be the smallest and largest integers such that

p-1="""=dg g1 =" =d,
Form a new sequence of p terms by letting
diy, — 1 for i=1tom — landn — (d; — m) ton.
‘= {dHl otherwise.

If the hypotheses of the theorem hold for the new sequence e;,- -, e,
then by the induction hypothesis, there will be a graph with the numbers e;
as degrees. A graph having the given degree sequence d; will be formed by
adding a new pomnt of degree d, adjacent to points of degrees corresponding
to those terms ¢; which were obtained by subtracting 1 from terms d,,, as
above.

Clearly p > e, > e, > - -- = e,. Suppose that condition (6.1) does not

hold and let h be the least value of » for which it does not. Then
h 14
Ze > hh — 1) + Z min {h, ¢;}. (6.2)

But the following inequalities do hold:

hild < hh+ 1) + pil min {h + 1, d;}, (6.3)
i=1 i=h+2
Z e, < (h— 1)h — 2) + me (h—1,el, (6.4)
i=h
2 p
hz e, <(h— 2)h — 3) + Z min {h — 2, ¢;}. (6.5)
i=1 i=h—1

Let s denote the number of values of i <

Then (6.3)—(6.5) when combined with (6.2) yield

h for which e¢; = d;,, —

14
di+s<2h+ Y (min{h + 1,d;,,} — min {h, e}), (6.6)

i=h+1
4
e,>2h—1)—min{h — 1, ¢} + Y (min{h e} — min {h — 1, &}),

i=h+1
(6.7)
e, + e, >4h—6 —min{h ~2,¢,_,} —min{h — 2, ¢}

+ Y (min {h e} — min{h — 2,¢)). (63)

i=h+1
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Note that e, = h since otherwise inequality (6.7) gives a contradiction.
Let a, b, and ¢ denote the number of values of i > h for whiche; > h,e; = h,
and e; < h, respectively. Furthermore, let o', b, and ¢’ denote the numbers
of these for whiche; = d;,, — 1. Then

di=s+ad +b + ¢. (6.9)

The inequalities (6.6)—(6.8) now become

di+s<2h+a+¥b + ¢, (6.10)
e,>h+a+b (6.11)
14
e-1 +€ =2h—1+ ) (min{h e} — min {h — 2,¢}). (6.12)
i=h+1

There are now several cases to consider.
CASE 1. ¢’ = 0. Sinced, > e, we have from (6.11),
h+a+b<d,.
But a combination of (6.9) and (6.10) gives
2d <2h+a+d + 2V,
which is a contradiction.

CASE2. ¢’ > 0 and d,,, > h. This means that d;,, = e; + 1 whenever
d;y, > h. Therefore sinced,., > h, s = hand a = a’. But the inequalities
(6.10) and (6.9) imply that

di+h<2h+d+b+c=d;, +h
a contradiction.

CASE3. ¢’ >1andd,,,; = h Under these circumstances, ¢, = h and a =
b =0, sod, =s + ¢. Furthermore, since ¢, = d,,, ¢, = h — 1 for at
least ¢’ values of i > h. Hence inequality (6.12) implies

ep-1=>2h—1+c >h
sothate,_, = d, — 1. Therefore s = h — 1, and
dy=h—1+c <e,_, <d,
a contradiction.

CASE4. ¢'=1andd,,, =h Again,e,=h a=b=0andd, =5+ .
Since s < h — 1,d, = h. But this implies s = Oand d, = 1, so all d; = 1.
Thus (6.1) is obviously satisfied, which is a contradiction.

Since e, > h and d, , > e,, we see that d,_. ,; cannot be less than h.
Thus all possible cases have been considered and the proof is complete.
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Tl: T2'.

Fig. 6.3. Two trees with the same partition.

Sometimes, it can be determined quite rapidly whether a given partition
is graphical and, if it is, the nature of the graphs having this partition may
also be discernible. For example, it is easy to give a criterion for a partition
to belong to a tree. This result answers a question posed by Ore [OS5, p. 62];
it has been found independently many times.

Theorem 6.3 A partition 2q = X% d; belongs to a tree if and only if each d; is
positiveand g = p — 1.

As an illustration, consider the partition 16 =5 +3 + 2+ 1 + 1 +
1+1+ 1+ 1. Hered; >0 for each i and ¢ = 8 while p = 9. Thus
Theorem 6.3 assures us that this is the partition of a tree. Two trees to which
this partition belongs are shown in Fig. 6.3.

EXERCISES

6.1 Which of the following partitions are graphical?

a)4+3+3+3+2+2+2+1
b)8+7+6+5+4+3+2+2+1.
¢)5+5+5+34+3+3+3+3.
d5S5+4+3+2+1+1+14+14+14+14+1+1

6.2 Draw all the graphs having the partition5 + 5 + 3 + 3 + 2 + 2.

6.3 The partition 16 =54+ 3 +2+1+1+1+1+ 1+ 1 belongs to each of

the trees in Fig. 6.3. Are there any other trees with this partition?

6.4 Construct all regular graphs with six points.
6.5 Construct all 5 connected cubic graphs with 8 points; all 20 with 10 points.
(Balaban [B2])

6.6 There is no graphical partition in which the parts are distinct. Whenever p > 2,
there are exactly two graphs with p points in which just two parts of the partition are
equal, and these graphs are complementary. (Behzad and Chartrand [BC3])

6.7 A graphical partition is simple if there is exactly one graph with this partition.
Every graphical partition with four parts is simple, and the smallest number of parts
jin o aranhinal martitian whinh jo et olmmnla 30 Bura
11l a slal}lllbal l}al CILILM] Vilieldl 1D .IIUL Dlllll_’lc 13 11¥ .

6.8 A partition(d;, d, - * -, d,) belongs to a pseudograph (note that a loop contributes
2 to the degree of its point) if and only if X 4, is even. (Hakimi [H4])
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6.9 If a partition of an even integer 2g has the form I1 = (d, d,," -, d,) with
d, = d, =2 -+ > d,, then I1 belongs to some multigraph if and only if ¢ > d;.

(Hakimi [H41)

*6.10 A partition IT which belongs to some multigraph (see preceding exercise) belongs
to exactly one if and only if at least one of the following conditions holds:

p<3

d=d,+ - +4d,
di+2=d,+- " +d,andd, =d3 + -+ d

p=4anddq>d4=1

r

N N N

Ldy=-=d, =1 (Senior {S11]; Hakimi [H4}J)

6.11 Prove or disprove: A tree partition belongs to more than one tree if and only if
at least one part is greater than 2, three parts are greater than 1, and if only three, then
they are not equal.

612 Let I1 =(dy, d,y,'*+,d,) with dy >d, >+ >d, and p > 3 be a graphical
partition. Then

a) I1 belongs to some connected graph if and only ifd, > Oand Z d; > 2(p — 1).
b) IT belongs to some block if and only ifd, > land £ d; = 2(p — 1 + d,).

6.13 A graphical partition IT as in the preceding exercise belongs to some n-line-
connected graph with n > 2 if and only if every d;, > n. (Edmonds [E1}])

6.14 For any nontrivial graph G and for any partition p = p, + p,, there exists a
partition V = V; U V, such that |V} = p, and AKV})) + AKV,D) < AG).

(Lovasz [L4))



CHAPTER 7

TRAVERSABILITY

A lie will get you a long way,
but it won’t take you horne.

ANONYMOUS

One feature of graph theory that has helped to popularize the subject lies in
its applications to the area of puzzles and games. Often a puzzle can be
converted into a graphical problem: to determine the existence or non-
existence of an “eulerian trail” or a “hamiltonian cycle” within a graph. As
mentioned in Chapter 1, the concept of an eulerian graph was formulated
when Euler studied the problem of the Konigsberg bridges. Two char-
acterizations of eulerian graphs are presented. Hamiltonian graphs are
studied next and some necessary conditions and some sufficient conditions for
graphs to be hamiltonian are given. However, it still remains a challenging
unsolved problem to discover an clegant, useful characterization of
hamiltonian graphs, rather than only a disguised paraphrase of the definition.

EULERIAN GRAPHS

As we have seen in Chapter 1, Euler’s negative solution of the Konigsberg
Bridge Problem constituted the first publicized discovery of graph theory.
The perambulatory problem of crossing bridges can be abstracted to a
graphical one: given a graph G, is it possible to find a walk that traverses
each line exactly once, goes through all points, and ends at the starting point?
A graph for which this is possible is called eulerian. Thus, an eulerian graph
has an eulerian trail, a closed trail containing all points and lines. Clearly,
an eulerian graph must be connected.

Theorem 7.1 The following statements are equivalent for a connected
graph* G:

(1) G is eulerian.

(2) Every point of G has even degree.

(3) The set of lines of G can be partitioned into cycles.

* The theorem clearly holds for multigraphs as well,

64
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Proof. (I) implies (2) Let T be an culerian trail in G. Each occurrence of a
given point in T contributes 2 to the degree of that point, and since each line
of G appears exactly once in T, every point must have even degree.

(2) implies (3) Since G is connected and nontrivial, every point has degree at
least 2, so G contains acycle Z. The removal of the lines of Z results in a span-
ning subgraph G, in which every point still has even degree. If G, has no
lines, then (3) already holds; otherwise, a repetition of the argument applied
to G, results in a graph G, in which again all points are even, etc. When a
totally disconnected graph G, is obtained, we have a partition of the lines of
G into n cycles.

(3) implies (I) Let Z, be one of the cycles of this partition. If G consists only
of this cycle, then G is obviously eulerian. Otherwise, there is another cycle
Z, with a point v in common with Z,. The walk beginning at v and con-
sisting of the cycles Z, and Z, in succession is a closed trail containing the
lines of these two cycles. By continuing this process, we can construct a
closed trail containing all lines of G ; hence G is eulerian.

- p— S

Fig. 7.1. An eulerian graph.

For example, the connected graph of Fig. 7.1 in which every point has
even degree has an eulerian trail, and the set of lines can be partitioned into
cycles.

By Theorem 7.1 it follows that if a connected graph G has no points of
odd degree, then G has a closed trail containing all the points and lines of G.
There is an analogous result for connected graphs with some odd points.

Corollary 7.1(a) Let G be—a connected graph with exactly 2n odd points,
n > 1. Then the set of lines of G can be partitioned into n open trails.

Corollary 7.1(b) Let G beaconnected graph with exactly two odd points. Then
G has an open trail containing all the points and lines of G (which begins at
on¢ of the odd points and ends at the other).

HAMILTONIAN GRAPHS

Sir William Hamilton suggested the class of graphs which bears his name
when he asked for the construction of a cycle containing every vertex of a
dodecahedron. If a graph G has a spanning cycle Z, then G is called a
hamiltonian graph and Z a hamiltonian cycle. No elegant characterization
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// Fig. 7.2. A nonhamiltonian block.

of hamiltonian graphs exists, although several necessary or sufficient con-

ditions are W,

A thetakg‘ioﬁh is a block with two nonadjacent points of degree 3 and all
other points of degree 2. Thus a theta graph consists of two points of degree
3 and three disjoint paths joining them, each of length at least 2.

Theorem 7.2 Every hamiltonian graph is 2-connected. Every nonhamiltonian
2-connected graph has a theta subgraph.

Itis casy to find a theta subgraph in the nonhamiltonian block of Fig. 7.2.

The next theorem, due to Pdésa [P7], gives a sufficient condition for a
graph to be hamiltonian. It generalizes earlier results by Ore and Dirac
which appear as its corollaries.

Theorem 7.3 Let G have p > 3 points. If for every n, 1 < n < (p — 1)/2,
the number of points of degree not exceeding n is less than n  and if, for odd p,
the number of points of degree (p — 1)/2 does not exceed (p — 1)/2, then
G is hamiltonian.

Proof. Assume the theorem does not hold and let G be a maximal non-
hamiltonian graph with p points satisfying the hypothesis of the theorem.
It is easy to see that the addition of any line to a graph satisfying the con-
ditions of the theorem results in a graph which also satisfies these conditions.

Thus mnr\p fhp qurhhnn of anv hnn to G rpcn]fc in a hamiltanian oranh anv
DALL AW AR ALAR /AL 1 4L J AASLAARALLNARAELLL blut"l’ AL I.J

two nonadjacent points must be joined by a spanning path.

We first show that every point of degree at least (p — 1)/2 is adjacent
to every point of degree greater than (p — 1)/2. Assume (without loss of
generality) that deg v, > (p — 1)/2 and deg v, > p/2, but v, and v, are not
adjacent. Then there is a spanning path vy Uy """ v, connecting v, and v,
Let the points ad]acent to v, be y; , v;, where n = degv, and 2 =
iy <i, <--- <, Clearly v, cannot be adjacent to any point of G of the
form v;,_,, for otherwise there would be a hamiltonian cycle

l]’

Ulvz"'vi._lv Up—1 """ U510y

in G. Now since n > (p — 1)/2, we have p/2 < degv, <p—1 —n < p/2
which is 1mposs1b1e, so v; and v, must be adjacent.
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Gi: v
A
AE— A\
Gy Uy vs

Fig. 7.3. Illustrations for the theorem of Posa.

It follows that if deg v > p/2 for all points v, then G is hamiltonian.
(This is stated below as Corollary 7.3(b).) For the above argument implies
that every pair of points of G are adjacent, so G is complete. But this is a
contradiction since K, is hamiltonian for all p > 3.

Therefore thereisa point v in G withdeg v < p/2. Letm be the maximum
degree among all such points and choose v, so that deg v; = m. By hypoth-
esis the number of points of degree not exceeding m is at most m < p/2.
Thus there must be more than m points having degree greater than m and
hence at least p/2. Therefore there is some point, say v, of degree at least p/2
not adjacent to v;. Since v, and v, are not adjacent, there is a spanning path
vy vy - v, As above, we write v;, - -, v; as the points of G adjacent to
v; and note that v, cannot be adjacent to any of the m points v;_, for
1 £ j < m. Butsince v, and v, are not adjacent and v, has degree at least
p/2, m must be less than (p — 1)/2, by the first part of the proof. Thus, by
hypothesis, the number of points of degree at most m is less than m, and so
at least one of the m points v, _,, say v, must have degree at least p/2.
We have thus exhibited two nonadjacent points v, and ¢’, each having
degree at least p/2, a contradiction which completes the proof.

These sufficient conditions are not necessary. The cubic graph G, in
Fig. 7.3 is hamiltonian, yet it clearly does not satisfy the conditions of the
theorem. However, the theorem is best possible in that no weaker form of it
will suffice. For example, choose p > 3 and 1 < n < (p — 1)/2, and form
a graph G, with one cutpoint and two blocks, one of which is K, , , and the
other K,_,. This graph is not hamiltonian, but it violates the theorem only
in that it has exactly n points of degree n. The construction is illustrated in
Fig. 7.3forp = 8andn = 3. If we choose p = 2n + 1, n > 1, and form the
graph G = K, ., then G is not hamiltonian but violates the theorem only
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Fig, 7.4. The Tutte graph.

by having (p — 1)/2 + 1 points of degree (p — 1)/2. The graph G; = K, ,
of Fig. 7.3 illustrates this construction for p = 5.

By specializing Po6sa’s Theorem, we obtain simpler but less powerful
sufficient conditions due to Ore [ O3] and Dirac [ D6] respectively.

Corollary 7.3(a) If p > 3 and for every pair  and v of nonadjacent points,
deg u + deg v > p, then G is hamiltonian.

Corollary 7.3(b) If for all points v of G, deg v > p/2, where p > 3, then G is
hamiltonian.

Actually, the cubic hamiltonian graph G, of Fig. 7.3 has four spanning
cycles. The smallest cubic hamiltonian graph, K, has three spanning cycles.
These observations serve to illustrate a theorem of C. A. B. Smith which
appears in a paper by Tutte [ T6].

Theorem 7.4 Every cubic hamiltonian graph has at least three spanning
cycles.

Tait [T1] conjectured that every 3-connected planar graph* contains
a spanning cycle. Tutte [ T6] settled this in the negative by showing that the
3-connected planar graph with 46 points of Fig. 7.4 is not hamiltonian,

The smallest known nonhamiltonian triply connected planar graph,
having 38 points, was constructed independently by J. Lederberg, J. Bosak,
and D. Barnette ; see Griinbaum [G10, p. 359].

The apparent lack of any relationship between eulerian and hamiltonian
graphs is illustrated in Fig. 7.5 where each graph is a block with eight points.

* See Chapter 11 for a discussion of planarity. Tait’s conjecture, if true, would have settled
the Four Color Conjecture.
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Fig. 7.5. Eulerian and/or hamiltonian graphs.

However, in the next chapter we shall relate eulerian and hamiltonian
graphs by way of the “line graph.”

Incidentally, M. D. Plummer conjectures that the square of every
2-connected graph is hamiltonian.

EXERCISES

7.1 Find an eulerian trail in the graph G of Fig. 7.1 and a partition of the lines of G
into cycles,

7.2 Ifeveryblock of a connected graph G is eulerian, then G is eulerian, and conversely.

7.3 In Corollary 7.1(a), the partition cannot be done with fewer than »n trails. State
and prove the converse of Corollary 7.1(b).

7.4 A graph is arbitrarily traversable from a point v, if the following procedure always
results in an eulerian trail : Start at point v, by traversing any incident line ; on arriving
at a point u depart by traversing any incident line not yet used, and continue until no
new lines remain,

a) An eulerian graph is arbitrarily traversable from v, if and only if every cycle
contains vg. (Ore [O2])

St

b) If G is arbitrarily traversable from v, then v, has maximum degree.

(Bibler [B1])
¢) If G is arbitrarily traversable from v,, then either v, is the only cutpoint or
G has no cutpoints. (Harary [H17])

7.5 Prove or disprove: If a graph G contains an induced theta subgraph, then G is
not hamiltonian.
7.6 a) For any nontrivial connected graph G, every pair of points of G* are joined by
a spanning path. Hence every line of G* is in a hamiltonian cycle.
(Karaganis [K2])
b) If every pair of points of G are joined by a spanning path and p > 4, then G
is 3-connected.
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7.7 Give an example of a nonhamiltonian graph with 10 points such that for every
pair of nonadjacent points u and v, degu + degov > p — 1.

7.8 How many spanning cycles are there in the complete bigraphs K, 5 and K, 3?

7.9 A graph G is called randomly traceable [randomly hamiltonian] if a spanning
path [hamiltonian cycle] always results upon starting at any point of G and then
successively proceeding to any adjacent point not yet chosen until no new points are
available.

a) A graph G with p > 3 points is randomly traceable if and only if it is randomly

hamiltonian,
b) A graph G with p > 3 points is randomly traceable if and only if it is one of the
graphs C,, K, or K, , with p = 2n. (Chartrand and Kronk [CK1])

7.10 Theorem 7.3 can be regarded as giving sufficient conditions for a graph to be
2-connected. This can be generalized to the n-connected case.

Let G be nontrivial and let 1 < n < p. The following conditions are sufficient
for G to be n-connected

1. For every k such that n — 1 < k < (p + n — 3)/2, the number of points of
degree not exceeding k does not exceed k + 1 — n.

2. The number of points of degree not exceeding (p + n — 3)/2 does not exceed
p— n (Chartrand, Kapoor, and Kronk [CKK1])

7.11 Posa’s theorem can also be generalized in another way.
Let G have p > 3 and let 0 < k < p — 2. If for every integer i with k + 1 <
i < (p + k)/2, the number of points not exceedingi is less than i — k, then every path of
length k is contained in a hamiltonian cycle. (Kronk [K13])

7.12 Recall that two labeled graphs are isomorphic if there is a label-preserving

isomorphism between them. By an e-graph is meant one in which every point has even

degree.
a) The number of labeled graphs with p points is 2°®~ /2,
b) The number of labeled e-graphs with p points equals the number of labeled
graphs with p — 1 points. (R. W. Robinson)
7.13 If Gisa(p, q) graph with p > 3 and ¢ > (p* — 3p + 6)/2, then G is hamiltonian.
(Ore [O04])

7.14 If for any two nonadjacent points u and v of G, degu + deg v > p + 1, then there
is a spanning path joining every pair of distinct points. (Ore [O6))

7.15 If G is a graph with p > 3 points such that the removal of any set of at most n
points results in a hamiltonian graph, then G is (n + 2)-connected.

(Chartrand, Kapoor, Kronk [CKK1])

7.16 Consider the nonhamiltonian graphs G such that every subgraph G — v is
hamiltonian. There is exactly one such graph with 10 points and none smaller.

(Gaudin, Herz, and Rossi [GHR1))

7.17 Do there exist nonhamiltonian graphs with arbitrarily high connectivity?



CHAPTER 8

LINE GRAPHS

A straight line is the shortest distance between two points.

EucLip

The concept of the line graph of a given graph is so natural that it has been
independently discovered by many authors. Ofcourse, each gave it adifferent
name* : Ore [ O5] calls it the “interchange graph,” Sabidussi [S7] “derivative”
and Beineke [B8] “derived graph,” Seshu and Reed [SR1] “edge-to-vertex
dual,” Kasteleyn [K4] “covering graph,” and Menon [M10] “adjoint.”
Various characterizations of line graphs are developed. We also introduce
the total graph, first studied by Behzad [B4], which has surprisingly been
discovered only once thus far, and hence has no other names. Relationships
between line graphs and total graphs are studied, with particular emphasis
on eulerian and hamiltonian graphs.

SOME PROPERTIES OF LINE GRAPHS
Consider the set X of lines of a graph G as a family of 2-point subsets of
V(G). The line graph of G, denoted L(G), is the intersection graph ((X). Thus
the points of L(G) are the lines of G, with two points of L(G) adjacent whenever
the corresponding lines of G are. If x = uv is a line of G, then the degree of
x in L(G) is clearly deg u + deg v — 2. Two examples of graphs and their
line graphs are given in Fig. 8.1. Note that in this figure G, = L(G,), so that
L(G,;) = L(L(G,)). We write I}(G) = L(G), I}(G) = L(L(G)), and in general
the iterated line graph is I}(G) = L(I~ Y(G)).

As an immediate consequence of the definition of L(G), we note that
every cutpoint of L(G) is a bridge of G which is not an endline, and conversely.

When defining any class of graphs, it is desirable to know the number of
points and lines in each; this is easy to determine for line graphs.

* Hoffman [ H46] uses “line graph” even though he chooses “edge.” Whitney [W11] was the
first to discover these graphs but didn’t give them a name.

71
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_ X1 - Xy
Xo X3
L(Gy): Xz X3
G] :
X4 v
X4
Gg: L(Gg):

Fig. 8.i. Graphs and their iine graphs.

Theorem 8.1 If G is a (p, g) graph whose points have degrees d;, then L(G)
has g points and ¢, lines, where

q. = —q +3).d.

Proof. By the definition of line graph, L(G) has g points. The d; lines
incident with a point v; contribute (%) to g, so

d:
0=2(%)=4Ta@ - n=1Ta 154 =15 -

The next result can be proved in many different ways, depending on
one’s whimsy.

Theorem 8.2 A connected graph is isomorphic to its line graph if and only
if it is a cycle.

Thus for a (not necessarily connected) graph, G = L(G) if and only if
G 1s regular of degree 2.

If G, and G, are isomorphic, then obviously L(G,) and L(G,) are.
Whitney [W11] found that the converse almost always holds by displaying
the only two different graphs with the same line graph. The proof given here
is due to Jung [J3].

o P e ¥ e e
Theorem 8.3 Let G and G’ be connecte

|
L&
Then G and G’ are isomorphic unless one is K and the other 1s K, 5.

Proof. First note that among the connected graphs with up to four points,
the only two different ones with isomorphic line graphs are K, and K ;.
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Note further that if ¢ is an isomorphism of G onto G’, then there is a derived
isomorphism ¢; of L(G) onto L(G’). The theorem will be demonstrated
when the following stronger result is proved.

If G and G’ have more than four points, then any isomorphism ¢, of
L(G) onto L(G’) is derived from exactly one isomorphism of G to G'.

We first show that ¢, is derived from at most one isomorphism. Assume
there are two such, ¢ and . We will prove that for any point v of G, ¢(v) =
Y(v). There must exist two lines x = uv and y = uw or vw. If y = vw, then
the points ¢(v) and Y(v) are on both lines ¢,(x) and ¢,(y), so that since only
one point is on both these lines, ¢(v) = Y(v). By the same argument, when
y = uw, ¢(u) = Y(u) so that since the line ¢,(x) contains the two points
¢(v) and p(u) = Y(u), we again have ¢(v) = yY(v). Therefore ¢, is derived
from at most one isomorphism of G to G'.

We now show the existence of an isomorphism ¢ from which ¢, is
derived. The first step is to show that the lines x; = uv,, x, = uv,, and
x5 = uvy of a K, 5 subgraph of G must go to the lines of a K, , subgraph of
G'under ¢,. Let y be another line adjacent with at least one of the x;, which is
adjacent with only one or all three. Such a line y must exist for any graph
with p > 5 and the theorem is trivial for p < 5. If the three lines ¢,(x;)
form a triangle instead of K, 3 then ¢;(y) must be adjacent with precisely
two of the three. Therefore, every K, ; must gotoa K ;.

Let S(v) denote the set of lines at v. We now show that to each v in G,
there is exactly one v" in G’ such that S(v) goes to S(v') under ¢,. Ifdegv > 2,
let y, and y, be lines at v and let +" be the common point of ¢ ,(y;) and ¢ ,(y,).
Then for each line x at v, v" is incident with ¢,(x) and for each line x’ at v’,
v is incident with ¢ !(x)). If degv = 1, let x = uv be the line at v. Then
deg u > 2 and hence S(u) goes to S(u) and ¢ ,(x) = u'v'. Since for every line
x" at v/, the lines ¢7 '(x’) and x must have a common point, u is on ¢ }(x')
and ' is on x'. That is, x' = ¢,(x) and degv’ = 1. The mapping ¢ is
therefore one-to-one from V to V' since S(u) = S(v) only when u = v. Now
given v’ in V", there is an incident line x'. Denote ¢7 '(x’) by ur. Then
either ¢(u) = v’ or ¢(v) = v’ so ¢ is onto.

Finally, we note that for each line x = uv in G, ¢,(x) = d(u)p(v) and for
each line x' = w'v' in G, ¢7'(x") = ¢~ ()P~ '(v), so that ¢ is an iso-
morphism from which ¢, is derived. This completes the proof.

CHARACTERIZATIONS OF LINE GRAPHS

A graph G is a line graph if it is isomorphic to the line graph L(H) of some
graph H. For example, K, — x is a line graph; see Fig. 8.1. On the other
hand, we now verify that the star K, 5 is not a line graph. Assume K, 5 =
L(H). Then H has four lines since K, ; has four points, and H must be
connected. All the connected graphs with four lines are shown in Fig. 8.2.
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Fig. 8.2. The connected graphs with four lines,

Since L(C,) = C, by Theorem 8.3 and (K, ; + x) = K, — x (see Fig.8.1),
it follows that H is one of the three trees. But the line graphs of these trees
are the path P,, the graph K; - K,, and K,, showing that K, ; is not a line
graph. We will see that the star K, ; plays an important role in characterizing
line graphs. The first characterization of line graphs, statement (2) of
the next theorem and due to Krausz [K12], was rather close to the defini-
tion. The situation was improved by van Rooij and Wilf [RW1] who were
able to describe in (3) a structural criterion for a graph to be a line graph.
Finally, Beineke [B8] and N. Robertson (unpublished) displayed exactly
those subgraphs which cannot occur in line graphs. Recall that an induced
subgraph is one which is maximal on its point set. A triangle T of a graph G
1s called odd if there is a point of G adjacent to an odd number of its points,
and is even otherwise.

Theorem 8.4 The following statements are equivalent :
(1) G isa line graph.

(2) The lines of G can be partitioned into complete subgraphs in such a
way that no point lies in more than two of the subgraphs.

(3) G does not have K, 3 as an induced subgraph, and if two odd triangles
have a common line then the subgraph induced by their points is K.

(4) None of the nine graphs of Fig. 8.3 is an induced subgraph of G.

Proof. (I)implies(2) Let G be the line graph of H. Without loss of generality
we assume that H has no isolated points. Then the lines in the star at each
point of H induce a complete subgraph of G, and every line of G lies in exactly
one such subgraph. Since each line of H belongs to the stars of exactly
two points of H, no point of G is in more than two of these complete
subgraphs.

(2) implies (I) Given a decomposition of the lines of a graph G into complete
subgraphs S, S,, -+ -, S, satisfying (2), we indicate the construction of a
graph H whose line graph is G. The points of H correspond to the set S of
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Fig. 8.3. The nine forbidden subgraphs for line graphs.

G

subgraphs of the decomposition together with the set U of points of G
belonging to only one of the subgraphs §;. Thus S u U is the set of points of
H and two of these points are adjacent whenever they have a nonempty
intersection ; that is, H is the intersection graph XS u U).

(2) implies (4) 1t can be readily verified that none of the nine graphs of Fig. 8.3
can have its set of lines partitioned into complete subgraphs satisfying the

given condition. Since every induced subgraph of a line graph must itself
be a line graph, the result follows.

(4) implies (3) We show that if G does not satisfy (3), then it has one of the nine
forbidden graphs as an induced subgraph. Assume that G has odd triangles
abc and abd with ¢ and d not adjacent. There are two cases, depending on
whether or not there is a point » adjacent to an odd number of points of
both odd triangles.
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CASE 1. There is a point v adjacent to an odd number of points of triangle
abc and of triangle abd. Now there are two possibilities : either v is adjacent to
exactly one point of each of these triangles or it is adjacent to more than one
point of one of them. In the latter situation, » must be adjacent to all four
points of the two triangles, giving G, as an induced subgraph of G. In the
former, either v is adjacent only either to a or b, giving G, or to both ¢ and d,
giving G,.

CASE 2. There is no point adjacent to an odd number of points of both
triangles. In this case, let u and v be adjacent to an odd number of points in
triangles abc and abd, respectively. There are three subcases to consider :

Case 2.1. Each of u, v is adjacent to exactly one point of the corre-
sponding triangle.
Case 2.2. One of u, v is adjacent to all three points of “its” triangle, the
other to only one.

Case 2.3. Each of u, vis adjacent to all three points of the corresponding
triangle.

Before these alternatives are considered, we note two facts. If u or v
1s adjacent to a or b, then it is also adjacent to ¢ or to d, since otherwise G 1s

an induced subgraph. Also, neither u nor v can be adjacent to both ¢ and

d since then G, or G, 1s induced.

CASE 2.1. If uc, vd € G then, depending on whether or not line uv is in G, we
have G, or G, as an induced subgraph. If ub, vd € G then it follows from
the preceding remarks that ud € G while vc ¢ G; if uv ¢ G then points
{a,d, u,v} induce G,, while if uv e G, then {a, b,c,d, u, v} induce Gg. If
ub, va € G then necessarily ud, vc € G, so that if uv ¢ G, G4 is induced, while if
uv € Gthen G, appears. Finallyifub, vb € G, then again ud, vc € G from which
it follows that either G4 or G, is an induced subgraph of G, depending on
whether or not uv e G.

CASE 2.2. Let ua, ub, uc € G. Clearly if ud € G then G, is induced; thus
ud ¢ G. Now v can be adjacent to d or b. If vd € G, then depending on
whether or not uv € G, we find G, or G5 induced. If vh € G then either G,
or G, 1s induced, depending on whether or not v is adjacent to both ¢ and u.

CASE 2.3. If ud, vc, or uv € G, then G, is induced. The only other possibility
gives Gg.

3. implies 1. Suppose that G is a graph satisfying the conditions of the
statement. We may clearly take G to be connected. Now, exactly one of the
following statements must be true:

1. G contains two even triangles with a common line.

2. Whenever two triangles in G have a line in common, one of them is odd.
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H;y: Hj: Hy:

Fig. 8.4. Three line graphs.

It can be shown that if G satisfies the first statement, then it is one of the
graphs H, = I{K, 3 + x), H, = L(H,), or H; = L(K,) displayed in
Fig. 8.4. So suppose that G satisfies the second statement. We indicate the
method of constructing a graph H such that G = L(H).

Let F, be the family of all cliques of G which are not even triangles,
where each such clique is considered as a set of points. Let F, be the family
of points (taken as singletons) of G lying in some clique K in F; but not
adjacent to any point of G — K. Finally, let F; be the family of lines (each
taken as a set of two ‘pOH‘ub) of G contained in a unique and even Lriangle it
is not difficult to verify that G is isomorphic to the line graph of the inter-

section graph H = (F, v F, u F,). This completes the proof.
This last construction is illustrated in Fig. 8.5, in w given g

G has families F, ={{12 4} {456}} Fz_{{l }{3} and

Fy={{517}16, }} leading to he intersection graph H; thus G = L(H).

{1}
1 2 ?
3
{2}*——«Q
G: 4 H: 3
(4,5, 6
5 6
(5,7 (6,7}
v .

Fig. 8.5. A line graph and its graph.
SPECIAL LINE GRAPHS

In this section, characterizations are presented for line graphs of trees,
complete graphs, and complete bigraphs.

The next result, due to G. T. Chartrand, specifies when a graph is the
line graph of a tree.
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By

Fig. 8.6. The line-graph G of a tree 7.

Theorem 8.5 A graph is the line graph of a tree if and only if it is a connected
block graph in which each cutpoint is on exactly two blocks.

Proof. Suppose G = L(T), T some tree. Then G is also B(T) since the lines
and blocks of a tree coincide. Each cutpoint x of G corresponds to a bridge
uv of T, and is on exactly those two blocks of G which correspond to the
stars at u and v. This proves the necessity of the condition.

To see the sufficiency, let G be a block graph in which each cutpoint is
on exactly two blocks. Since each block of a block graph is complete, there
exists a graph H such that L(H) = G by Theorem 8.2. If G = K;, we can
take H = K, ;. If G is any other block graph, then we show that H must be
a tree. Assume that H is not a tree so that it contains a cycle. If H is itself
a cycle, then by Theorem 8.3, L(H) = H, but the only cycle which is a block
graph is K,, a case not under consideration. Hence H must properly contain
a cycle, thereby implying that H has a cycle Z and a line x adjacent to two
lines of Z, but not adjacent to some line y of Z. The points x and y of L(H)
lie on a cycle of L(H), and they are not adjacent. This contradicts the
condition of Theorem 3.5 that L(H) is a block graph. Hence H is a tree, and
the theorem is proved.

In Fig. 8.6, a block graph G is shown in which each cutpoint lies on just
two blocks. The tree T of which G is the line graph is constructed by first
forming the block graph B(G) and then adding new points for the non-
cutpoints of G and the lines joining each block with its noncutpoints.

The line graphs of complete graphs and complete bigraphs are almost
always characterized by rather immediate observations involving adjacencies
of lines in K, and K,,,. The case of complete graphs was independently
settled by Chang [C7] and Hoffman [H43], [H44].
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Theorem 8.6 Unless p = 8, a graph G is the line graph of K, if and only if

1. G has(§) points,

2. G is regular of degree 2(p — 2),

3. Every two nonadjacent points are mutually adjacent to exactly four
points,

4. Every two adjacent points are mutually adjacent to exactly p — 2
points.

It is evident that I(K ) has these four properties. It is not at all obvious
that when p = 8, there are exactly three exceptional graphs satisfying the
conditions.

For complete bigraphs, the corresponding result was found by Moon
[M13], and Hoffman [H46].

Theorem 8.7 Unless m = n = 4, a graph G is the line graph of K,, , if and
only if
1. G has mn points,
2. Gisregular of degreem + n — 2,
3. Every two nonadjacent points are mutually adjacent to exactly two
points,

4. Among the adjacent pairs of points, exactly n(%) pairs are mutually
adjacent to exactly m — 2 points, and the other m(3) pairs to n — 2
points.

There is only one exceptional graph satisfying these conditions. It has
16 points, is not I(K, ,), and was found by Shrikhande [S12] when he
proved Theorem 8.7 for the case m = n.

LINE GRAPHS AND TRAVERSABILITY

We now investigate the relationship of eulerian and hamiltonian graphs
with line graphs.

If x = uvis a line of G, and w is not a point of G, then x is subdivided
when 1t is replaced by the lines uw and wo. If every line of G is subdivided, the

G: S(Gy: ¢ ®

Fig. 8.7. A graph and its subdivision graph.
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G: L(G):
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Fig. 8.8. A counterexample.

G L(G) L:(G)

Fig. 8.9. Another counterexample.

resulting graph is the subdivision graph S(G); see Fig. 8.7. If we denote by
S,(G) the graph obtained from G by inserting n new points of degree 2 into
every line of G, so that S(G) = S,(G), we can then define a new graph
L,(G) = L(S,_,(G)). Note that, in general, L(G) % I)(G), the nth iterated
line graph of G.

Theorem 8.8 If G is eulerian, then L(G) is both eulerian and hamiltonian. If
G is hamiltonian, then L(G) is hamiltonian.

It is easy to supply counter-examples to the converses of these statements.
For example in Fig. 8.8, L(G) is eulerian and hamiltonian while G is not
eulerian; in Fig. 8.9, L(G) is hamiltonian while G is not.

A refinement of the second statement in Theorem 8.8 is provided by the
following result of Harary and Nash-Williams [ HN1] which follows readily
from the preceding theorem and the fact that L,(G) = L(S(G)).

Theorem 8.9 A sufficient condition for L,(G) to be hamiltonian is that G
be hamiltonian and a necessary condition is that L(G) be hamiltonian.

The graphs of Figs. 8.10 and 8.9 show that the first of these conditions
is not necessary and the second is not sufficient for L,(G) to be hamiltonian.
We note also (see Fig. 8.11) that L(G) = L,(G)and L,(G) may be hamiltonian
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Fig. 8.10. Still another counterexample.

G L(G) Ly(G) Li(G)

Fig. 8.11. A sequence of graphs L (G).
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provides the link between these two properties.
Theorem 8.10 A graph G is eulerian if and only if L4(G) is hamiltonian.

For almost every connected graph G, however, nearly all of the graphs
IX{G) are hamiltonian, as shown by Chartrand [C9].

Theorem 8.11 If G is a nontrivial connected graph with p points which is not
a path, then IX(G) is hamiltonian for alln > p — 3.

An example is given in Fig. 8.12 in which a 6-point graph G, as well as
L(G), I2(G), and the hamiltonian graph I’(G) are shown.

* 1

G L(G) L(G) LHG)

Fig. 8.12. A sequence of iterated line graphs.
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Fig. 8.13. Formation of a total graph.
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TOTAL GRAP;ZIS

The points aﬁh lines of a graph are called its elements. Two elements of a
graph are neighbors if they are either incident or adjacent. The rotal graph
T(G) has point set V(G) u X(G), and two points of T(G) are adjacent whenever
they are neighbors in G. Figure 8.13 depicts the formation of the total
graph T(K;). Itis easy to see that T(G) always contains both G and L(G) as
induced subgraphs.

An alternative characterization of total graphs was given by Behzad
[B4].

Theorem 8.12 The total graph T(G) is isomorphic to the square of the sub-
division graph S(G).

Corollary 8.12(a) If v is a point of G, then the degree of point v in T(G) is
2degv. If x = uv is a line of G, then the degree of point x in T(G) is
deg u + degv.

Corollary 8.12(b) If G is a (p, q) graph whose points have degrees d;, then the
total graph T(G) has pr = p + q points and g, = 2q + & Z d? lines.
The Ramsey function r(m, n) was defined in Chapter 2, where it was noted

that its general determination remains an unsolved problem. Behzad and
Radiavi [BR11 defined and solved an analogue of the Ramsev nroblem
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suggested by 11ne graphs. The line Ramsey number r,(m, n) is the smallest
positive integer p such that every connected graph with p points contains
either n mutually disjoint lines or m mutually adjacent lines, that 1s, the star
K- Thus r(m, n) is the smallest integer p such that for any graph G
with p points, L(G) contains K,, or L(G) contains K.

Theorem 8.13 For n > 1, we always have r,(2, n) = 3. For all other m and n,
rimmn) =m—1)n— 1) + 2.

Note that it is not always true that r,(m, n) = r,(n, m). Furthermore,
in contrast with Ramsey numbers, r,(m, n) is defined only for connected
graphs.
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EXERCISES
8.1 Under what conditions can the lines of a line graph be partitioned into complete
subgraphs so that each point lies in exactly two of these subgraphs?

8.2 Determine the number of triangles in L(G) in terms of the number n of triangles of
G and the partition of G.

8.3 Determine a criterion for a connected graph to have a regular line graph.

8.4 A graph G can be reconstructed from the collection of g spanning subgraphs
G — x; if and only if its line graph L(G) satisfies Ulam’s Conjecture (p. 12).

(Hemminger [H411])

8.5 If G is n-line-connected, then

1. L(G) is n-connected,
2. L(G)is 2n — 2)-line-connected, and
3. I¥G)is (2n — 2)-connected. (Chartrand and Stewart [CS1])

8.6 a) Construct a connected graph G with p > 4 such that L(G) is not eulerian but
IZ(G) is.

b) There is no connected graph G with p > 5 such that I?(G) is not eulerian and
L2(G) is.

8.7 The smallest block whose line graph is not hamiltonian is the theta graph with

8 points in which the distance between the points of degree 3 is 3. (J. W. Moon)

8.8 L(G) is hamiltonian if and only if there is a closed trail in G which includes at
least one point incident with each line of G.

8.9 The graph L,(G) is hamiltonian if and only if G has a closed spanning trail.
(Harary and Nash-Williams [HN1])

8.10 The following statements are equivalent

(1) L(G) is eulerian.

(2) The degrees of all the points of G are of the same parity.

(3) T(G) is eulerian.
8.11 T(K,)is isomorphic to I{K,,,). (Behzad, Chartrand, and Nordhaus [BCN1])
8.12 Define a family F of subsets of elements of G such that T(G) = C(F).

8.13 a) If G is hamiltonian, so is T(G). If G is eulerian, then T(G) is both eulerian and
hamiltonian.
b) The total graph T(G) of every nontrivial connected graph G contains a spanning
eulerian subgraph.
c) If a nontrivial graph G contains a spanning eulerian subgraph, then T(G) is
hamiltonian.
d) If G is nontrivial and connected, then T?(G) is hamiltonian.

(Behzad and Chartrand [BC2])

8.14 For any multigraph M, define the line graph L(M) by V(L(M)) = X(M) and
x adj y in L(M) whenever x and y are distinct lines meeting at either one or two points.
Then a graph G is the line graph of some multigraph if and only if it has no induced
subgraph of the form G,, Gg, or G, of Fig. 8.3. (D. P. Geller)



CHAPTER 9

FACTORIZATION

The whole is equal to the sum of its parts.

EucLID, Elements

The whole is greater than the sum of its parts.

Max WERTHEIMER, Productive Thinking

A problem which occurs in varying contexts is to determine whether a given
graph can be decomposed into line-disjoint spanning subgraphs possessing
a prescribed property. Most frequently, this property is that of regularity
of specified degree. In particular, a criterion for the existence in a graph of a
spanning regular subgraph of degree 1 was found by Tutte. Some observa-
tions are presented concerning the decomposition of complete graphs into
spanning subgraphs regular of degree 1 and 2.

The partitioning of the lines of a given graph into spanning forests is
also studied and gives rise to an invariant known as “arboricity.” A formula
for the arboricity of a graph in terms of its subgraphs was derived by Nash-
Williams, and explicit constructions for the minimum number of spanning
forests in complete graphs and bigraphs have been devised.

1-FACTORIZATION

A factor of a graph G is a spanning subgraph of G which is not totally dis-
connected. We say that G is the sum* of factors G; if it is their line-disjoint
union, and such a union is called a factorization of G. An n-factor is regular of
degree n. If G is the sum of n-factors, their union is calied an n-factorization
and G itself is n-factorable. Unless otherwise stated, the results presented in
this chapter appear in or are readily inferred from theorems in Konig
[K10, pp. 155-195], where the topic is treated extensively.

When G has a 1-factor, say G, it is clear that p is even and the lines of G,
are independent. In particular, K,,,,; cannot have a 1-factor, but K,,
certainly can.

* Some call this product ; others direct sum.

84
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[25] [253
K G,. / Go:
Dg 2K /
vs Vs ——e

Ga:
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Fig. 9.1. A 1-factorization of K.

Theorem 9.1 The complete graph K ,, is 1-factorable.

Proof. We need only display a partition of the set X of lines of K,, into
(2n — 1) 1-factors. For this purpose we denote the points of G by

Uy, Uy, """, Uy, and define, for i = 1,2, ---,2n — 1, the sets of lines
X; = {vwy,} U {v;_p1;:j = 1,2, n — 1}, where each of the subscripts
i — jand i + jis expressed as one of the numbers 1, 2, - - -, (2n — 1) modulo

(2n — 1). The collection {X;} is easily seen to give an appropriate partition
of X, and the sum of the subgraphs G, induced by X, is a 1-factorization of
K,
For example, consider the graph K, shown in Fig. 9.1. The 1-factoriza-
tion presented in the proof of the theorem produces the five 1-factors G;.
Although the complete bigraphs K, , have no 1-factor if m # n, the

graphs K, , are 1-factorable, as seen by the next statement.
Theorem 9.2 Every regular bigraph is 1-factorable.

It is not an easy problem to determine whether a given graph is 1-
factorable, or, indeed, to establish whether there exists any 1-factor. Beineke
and Plummer [BP2] have shown, however, that many graphs cannot have
exactly one 1-factor.

Theorem 9.3 If a 2-connected graph has a 1-factor, then it has at least two
different 1-factors.

nave one common line.

The most significant result on factorization is due to Tutte [T7] and
characterizes graphs possessing a 1-factor. In general, this test for a 1-factor
is quite inconvenient to apply. The proof given here is based on Gallai [G1].
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Gy ~————» Gy — o

Fig. 9.2. Two l-factors of a block.

A set of mutually nonadjacent lines is called independent. By an odd
component of G we mean one with an odd number of points.

Theorem 9.4 A graph G has a 1-factor if and only if p is even and there is no
set S of points such that the number of odd components of G — S exceeds
|S].

Proof. The easier half of this theorem is its necessity. Let S be any set of
points of G and let H be a component of G — S. In any 1-factor of G, each
point of H must be paired with either another point of H or a point of S.
But if H has an odd number of points, then at least one point of H is matched
with a point of S. Let k, be the number of odd components of G — S. If
G has a 1-factor then |S| > k,, since in a 1-factor each point of S can be
matched with at most one point of G — S and therefore can take care of
at most one odd component.

In order to prove the sufficiency, assume that G does not have a 1-factor,
and let S be a maximum set of independent lines. Let T denote the set of
lines not in S, and let u, be a point incident only with lines in T. A path is
called alternating if the lines alternately lie in S and T. For each point
v # ug, call v a O-point if there are no uy,—v alternating paths; if there is such

a path, call v an S-point if all these paths terminate in a line of S at v, a T-
nom‘r if each terminates in a line of T at v, and an S"T'-.nmnt if some terminate
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in each type of line. The following statements are 1mmed1ate consequences.

Every point adjacent to uq, is a T- or an ST-point.

No §- or 0-point is adjacent to any T- or ST-point.

No T-point is joined by a line of S to any T- or 0-point.

Therefore, each S-point is joined by aline of S to a T-point. Furthermore,
each T-point v is incident with a line of S since otherwise the lines in an
alternating us—v path could be switched between S and T to obtain a larger
independent set.
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Let H be the graph obtained by deleting the T-points. One component
of H contains u,, and any other points in it are ST-points. The other com-
ponents either consist of an isolated S-point, only ST-points, or only
0-points.

We now show that any component H, of H containing ST-points has an
odd number of them. Obviously H, either contains u, or has a point u,
joined in G to a T-point by a line of S such that some alternating u,—u,
path contains this line and no other points of H,. If H, contains u,, we take
u, = uy. The following argument will be used to show that within H, every
point v other than u, is incident with some line of S. This is accomplished by
showing that there is an alternating u,—v path in H, which terminates in a
line of S.

The first step in doing this is showing that if there is an alternating
u,~v path P,, then there is one which terminates in a line of S. Let P, be
an alternating u,—v path ending in a line of T, and let u'v" be the last line of
P,, if any, which does not lie in H,. Then «’ must be a T-point and «'v’ a line
in S. Now go along P, from u, until a point w’ of P, is reached. Continuing
along P, in one of the two directions must give an alternating path. If
going to v’ results in an alternating path, then the original u,—u, path P,
followed by this new path and the line v'v’ would be a u,—u, path terminating
in a line of S and «’ could not be a T-point. Hence there must be a u,~v
path terminating in a line of S.

Now we show that there is necessarily a u,—v alternating path by as-
suming there is not. Then there is a point w adjacent to v for which there is a
u,~w alternating path. If line wv is in S, then the u,—w alternating path
terminates in a line of T, while if we is in T, the preceding argument shows
there 1s a u,—w path terminating in a line of S. In either case, there is a
u,—v alternating path.

This shows that the component H, has an odd number of points, and
that if H, does not contain u,, exactly one of its points is joined to a T-point
by a line of S. Hence, with the exception of the component of H containing
u, and those consisting entirely of 0-points, each is paired with exactly one
T-point by a line in S. Since each of these and the component containing
Uy is odd, the theorem is proved.

The graph of Fig. 9.3 has an even number of points but contains no 1-
factor, for if the set S = {v,, v,} is removed from G, four isolated points
(and therefore four odd components) remain.

2] 2}

Fig. 9.3. A graph with no |-factor.
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Building up on his criterion for the existence of a 1-factor in a given
graph, Tutte [ T10] was able to characterize those graphs having a spanning
subgraph with prescribed degree sequence, and later, [T11], proved this
result as a straightforward consequence of Theorem 9.4. Consider a labeling
of G and a function f from ¥ into the nonnegative integers. Let S and
T be disjoint subsets of V, let H be a component of G — (S U T), and let
g(H, T) be the number of lines of G joining a point of H with one in T. Then
we may write ky(S, T) as the number of components H of G — (S w T)
such that g(H, T) + Z,.4 f(u) is odd.

Theorem 9.5 Let G be a given graph and let f be a function from V into the
nonnegativeintegers. Then G has aspanningsubgraph whosedegree sequence
1s prescribed by f'if and only if there exist disjoint sets § and T of points such
that

Zf(”) < koS, T) + Z[f(l’) ~ dg_5(v)].

ueS veT

2-FACTORIZATION

If a graph is 2-factorable, then each factor must be a union of disjoint cycles.
If a 2-factor is connected, it is a spanning cycle. We saw that a complete
graph is 1-factorable if and only if it has an even number of points. Since
a 2-factorable graph must have all points even, the complete graphs K,
are not 2-factorable. The odd complete graphs are 2-factorable, and in
fact a stronger statement can be made.

[ 541

2] vy

2} D3

Us 221

Zz'.

Fig. 9.4. A 2-factorization of K.
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Theorem 9.6 The graph K,, . , is the sum of n spanning cycles.

Proof. In order to construct »n line-disjoint spanning cycles in K, ,, first
label its points v,, Uy, - *, U3, ;. Then construct n paths P; on the points
Uy, Vg, ©" ", Ugy, as follows: Py = v;0;_ (0, 0;_," " 0;_,;V;1,. Thus the jth
point of P; is v, where k =i+ (—1)*'[j/2] and all subscripts are
taken as the integers 1, 2, - - -, 2n (mod 2n). The spanning cycle Z; is then

constructed by joining v,,, , to the endpoints of P;.

This construction is illustrated in Fig. 9.4 for the graph K,. The lines
of the paths P, are solid and the two added lines are dashed.

There is a decomposition of K ,, which embellishes the result of Theorem
9.1.

Theorem 9.7 The complete graph K,, is the sum of a 1-factor and n — 1
spanning cycles.

Of course, every regular graph of degree 1 is itself a 1-factor and every
regular graph of degree 2 is a 2-factor. If every component of a regular
graph G of degree 2 is an even cycle, then G is also 1-factorable since it can
be expressed as the sum of two 1-factors. Ifacubic graph contains a 1-factor,
it must also have a 2-factor, but there are many cubic graphs which do not
have 1-factors.

The graph of Fig. 9.5 has three bridges. Petersen [P3] proved that any
cubic graph without a 1-factor must have a bridge.

v N

Fig. 9.5. A cubic graph with no 1-factor. Fig. 9.6. The Petersen graph.

Theorem 9.8 Every bridgeless cubic graph is the sum of a 1-factor and a
2-factor,

Petersen showed that this result could not be strengthened by exhibiting
a bridgeless cubic graph which is not the sum of three 1-factors. This well-
known graph, shown in Fig. 9.6, is called the Petersen graph. By Theorem 9.8,
it is the sum of a 1-factor and a 2-factor. The pentagon and pentagram
together constitute a 2-factor while the five lines joining the pentagon with
the pentagram form a 1-factor.



90 FACTORIZATION

A criterion for the decomposability of a graph into 2-factors was also
obtained by Petersen [P3].

Theorem 9.9 A connected graph is 2-factorable if and only if it i1s regular of
even degree.

ARBORICITY

In the only type of factorization considered thus far, each factor has been
an n-factor. Several other kinds of factorizations have been investigated
and we discuss one now and others in Chapter 11. Any graph G can be
only one of the g lines of G. A natural problem is to determine the minimum
number of line-disjoint spanning forests into which G can be decomposed.
This number is called the arboricity of G and is denoted by Y(G). Forexample,
Y(K,) = 2 and Y(K,) = 3; minimal decompositions of these graphs into
spanning forests are shown in Fig. 9.7.

L T -— N

K4:

Ks: :

Fig. 9.7. Minimal decompositions into spanning forests.

A formula discovered by Nash-Williams [N2] gives the arboricity of
any graph.

Theorem 9.10 Let G be a nontrivial (p, g) graph and let g, be the maximum
number of lines in any subgraph of G having »n points. Then

f g, 1

T(G) = max,,ln — II.

The fact that Y(G) > max, {g,/(n — 1)} can be shown as follows.
Since G has p points, the maximum number of lines in any spanning forest
isp — 1. Hence, the minimum possible number of spanning forests required
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to fill G, which by definition is Y(G), is at least g/(p — 1). But the arboricity
of Gisaninteger,so Y(G) > {q/(p — 1)}. The desired inequality now follows
from the fact that for any subgraph H of G, Y(G) > Y(H).

Among all subgraphs H with n < p points, max Y(H) will occur in those
induced subgraphs containing the greatest number of lines. Thus if H is a
subgraph of G, Y(H) can be greater than {g/(p — 1)}. The (10, 15) graph in
Fig. 9.8 illustrates this observation. Takingn = 5and g, = 10(for H = K),

we have
T(H)z{ I }=3>2={_9—-}.
n—1 p—1

For K,, the maximum value of g, clearly occurs for n = p so that
Y(K,) = {p/2}. Similarly, for the complete bigraph K, {g.,/(n — 1)}
assumes its maximum value whenn = p = r + .

[\

@

Fig. 9.8. A graph G with a dense subgraph H.

Corollary 9.10(a) The arboricities of the complete graphs and bigraphs are

Y(Kp) = {g} and T(Kr,s) = {ﬁ—l:T—i} .

Although Nash-Williams’ formula gives the minimum number of
spanning forests into which an arbitrary graph can be factored, his proof
does not display a specific decomposition. Beineke [ B5] accomplished this
for complete graphs and bigraphs, the former of which we present here. For
P = 2n, K, can actually be decomposed into n spanning paths. Labeling the
points vy, vy, * - -, v,,, we consider the same n paths

P = 0; 001 Uiy Vima Viin " Uiy Vigs

as in proof of Theorem 9.6. For p = 2n + 1, the arboricity of K, is n + 1
by Corollary 9.10(a). A decomposition is obtained by taking the paths just
described, adding an extra point labeled v,,, ,, to each, and then constructing
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[

T
N A=
4N

Fig. 9.9. A minimal decomposition of K into spanning forests.

Us Us

®

a star by joining v,,,; to the other 2n points. The construction for p = 9
is shown in Fig. 9.9. It iseasily secen to consist of the star at one of the points
of K, together with spanning subforests corresponding to the four spanning
paths of K, indicated above.

EXERCISES

9.1 The graph K, has a unique 1-factorization. Find the number of 1-factorizations
of K3 3 and of K.

9.2 Display a 1-factorization for K.

9.3 The number of 1-factors in K ,, is (2n)!/(2"n}).

9.4 Kg,_, hasa 3-factorization.

95 Forn > 1, K,,,, is 4-factorable.

9.6 Use Tutte’s Theorem 9.4 to show that the graph of Fig. 9.5 has no 1-factor.

9.7 Ifan n-connected graph G with p even is regular of degree n, then G has a 1-factor.

(Tutte [T7])

98 Let G be a graph with a l-factor F. A line of G is in more than one
1-factor if and only if it lies on a cycle whose lines are alternately in F.

(Beineke and Plummer [BP2])
9.9 Express K, as the sum of four spanning cycles.
9.10 Is the Petersen graph hamiltonian?
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*0.11 Corresponding to any two integers d > 3 and g > 3, there exists a graph G with
the following properties:

1.

b

G is regular of degree d.

G has girth g.

G is hamiltonian.

The cycles of length g are line-disjoint and constitute a 2-factor of G.

G is the sum of this 2-factor and (d — 2) 1-factors. (Sachs [S9])

9.12 Display a minimal decomposition of K, , into spanning forests.

9.13 Find the smallest conneeted (p, g) graph G such that

max, {qr/(r - 1)} > {q/(p - 1)}5

where g, is the maximum number of lines in any induced subgraph of G with r points.



CHAPTER 10

COVERINGS

Through any point not on a given line, there passes
a unique line having no points in common with the given line.

EucLIiD

Through any point not on a given line, there passes

no line having no points in common with the given line.

RIEMANN

Through any point not on a given line, there pass

more than one line having no points in common with the given line.

BOLYA!

Itis natural to say that a line x = uv of G covers the points uand v. Similarly,
we may consider each point as covering all lines incident with it. From this
viewpoint, one defines two invariants of G: the minimum number of points
(lines) which cover all the lines (points). Two related invariants are the
maximum number of nonadjacent points and lines. These four numbers
associated with any graph satisfy several relations and also suggest the study
of special points and lines which are critical for covering purposes. These
concepts lead naturally to two special subgraphs of G called the line-core
and point-core. Criteria for the existence of such subgraphs are established
in terms of covering properties of the graph.

COVERINGS AND INDEPENDENCE

A point and a line are said to cover each other if they are incident. A set of
points which covers all the lines of a graph G is called a point cover for G,
while a set of lines which covers all the points is a line cover. The smallest
number of points in any point cover for G is called its point covering number
and is denoted by o4(G) or o, Similarly, a,(G) or a, is the smallest number of
lines in any line cover of G and is called its line covering number. For example,
ao(K,) = p — 1 and a,(K,) = [(p + 1)/2]. A point cover (line cover) is
called minimum if it contains o, (respectively «,) clements. Observe that a

94
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Fig. 10.1. The graph X, - K.

point cover may be minimal without being minimum; such a set of points
is given by the 6 noncutpoints in Fig. 10.1. The same holds for line covers;
the 6 lines incident with the cutpoint serve.

A set of points in G is independent if no two of them are adjacent. The
largest number of points in such a set is called the point independence number
of G and is denoted by B4(G) or f,. Analogously, an independent set of lines
of G has no two of its lines adjacent and the maximum cardinality of such a
st 18 the line independence number B,(G) or B,. For the complete graph,
Bo(K,) = land B,(K,) = [p/2]. Obviously 8,(G) = p/2 if and only if G has
a 1-factor. The numbers just defined are f4(G) = 2 and §,(G) = 3 for the
graph G of Fig. 10.1.

For this graph as well as for K,y + o = o, + ; = p. Gallai [G2]
proved that this identity always holds.

Theorem 10.1 For any nontrivial connected graph G,

oo + Bo=p =a, + B;.

Proof. Let M,be any maximum independent set of points, so that |My| = S,
Since no line joins two points of M,, the remaining set of p — f§, points
constitutes a point cover for G so that o, < p — f,. On the other hand,
if N, is a minimum point cover for G, then no line can join any two of the
remaining p — o, points of G, so the set ¥ — N, is independent. Hence,
Bo = p — a,, proving the first equation.

To obtain the second equality, we begin with an independent set M of
B, lines. A line cover Y is then produced by taking the union of M, and a
set of lines, one incident line for each point of G not covered by any line
in M,. Since |M,| + |Y| = p and |Y| > «a, it follows that a; + f, < p.
In order to show the inequality in the other direction, let us consider a
minimum line cover N, of G. Clearly, N, cannot contain a line both of whose
endpoints are incident with lines also in N,. This implies that N, is the sum
of stars of G (considered as sets of lines). If one line is selected from each of
these stars, we obtain an independent set W of lines. Now, |[N,| + |W| =p
and |W| < a,; thus, a; + B, = p, completing the proof of the theorem.
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Hedetniemi [H39] noticed that the proof of the first equation in
Theorem 10.1,

a0+ﬁ0:ps

applies in a more general setting. A property P of a graph G is hereditary
if every subgraph of G also has this property. Examples of hereditary
properties include a graph being totally disconnected, acyclic, and bipartite.
A set S of points of G is called a P-set if the induced subgraph (S> has property
P; it is called a P-set if every subgraph of G without property P contains a
point of S. Let B,(P) be the maximum cardinality of a P-set of G and let
a4(P) be the minimum number of points of a P-set. Then the proof of the
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Corollary 10.1(a) If P is an hereditary property of G, then a4(P) + Bo(P) = p.

A collection of independent lines of a graph G is sometimes called a
matching of G since it establishes a pairing of the points incident to them. For
this reason, a set of f, independent lines in G is called a maximum matching of G.
If G is bipartite, then more can be said. The next theorem due to Konig [K9]
isintimately related to his Theorem 5.18 on systems of distinct representatives
stated in matrix form, in fact it is the same result.

Theorem 10.2 If G is bipartite, then the number of lines in a maximum
matching equals the point covering number, that is, ; = «,.

The problem of finding a maximum matching, the so-called matching
problem, is closely related to that of finding a minimum point cover.

Let M < X(G) be a matching of G. In an alternating M-walk, exactly
one of any two consecutive lines is in M. An augmenting M-walk is an
alternating M-walk whose endpoints are not incident with any line of M.
Such a walk must be a path because M is a matching. If G has no augmenting
M-walk, then matching M is unaugmentable. Clearly every maximum
matching is unaugmentable; the converse is due to Berge [B10] and the
proof given below appears in Norman and Rabin [NR1].

Theorem 10.3 Every unaugmentable matching is maximum.

Proof. Let M be unaugmentable and choose 2 maximum matching M’ for
which |M — M’|, the number of lines which are in M but not in M/, is
minimum. If this number is zero then M = M’'. Otherwise, construct a
walk W of maximum length whose lines alternate in M — M"and M'. Since
M’ isunaugmentable, walk W cannot begin and end with lines of M — M’and
has equally many lines in M — M’ and in M’. Now we form a maximum
matching N from M’ by replacing those lines of W which are in M’ by the lines
of Win M — M'. Then |M — N| < |M — M/, contradicting the choice of
M’ and completing the proof.
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Norman and Rabin [NR1] developed an algorithm, based on the next
theorem, for finding all minimum line covers in a given graph. Let Y be a
line cover of G. An alternating Y-walk is a Y-reducing walk if its endlines
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the walk. Obviously every minimum line cover has no reducing walk.

Theorem 10.4 If Y is a line cover of G such that there is no Y-reducing walk,
then Y is a minimum line cover.

The cover invariants o, and o, of G refer to the number of points needed
to cover all the lines and vice versa. We may also regard each point as
covering itself and two points as covering each other if they are adjacent, and
similarly for lines. Then other invariants suggest themselves.

Let a4, be the minimum number of points needed to cover V, and let
0o be the minimum number* of independent points which cover V. Then
both these numbers are defined for any graph. Let «,, and o, have similar
meanings for the covering of lines by lines. The relationships among these
invariants were determined by Gupta [G11].

Theorem 10.5 For any graph G,

!
0(00 S 0(00 a.nd OC“ - 0(11.

CRITICAL POINTS AND LINES

Obviously, if H is a subgraph of G, then a4(H) < a4(G). In particular, this
inequality holds when H = G — vor H = G — Xx for any point v or line x.
If ay(G — v) < a4(G), then v is called a criticalt point ; if (G — x) < o4(G),
then x is a critical line of G. Clearly, if v and x are critical, it follows that
oo(G — v) = ao(G — x) = ay — 1. Critical points are easily characterized.

Theorem 10.6 A point v is critical in a graph G if and only if some minimum
point cover contains v.

Proof. If M is a minimum point cover for G which contains v, then M — {v}
covers G — v; hence, oo(G — v) < |M — {v}| = M| — 1 = a,(G) — 1 so
that v is critical in G.

Let v be a critical point of G and consider a minimum point cover M’
for G — v. The set M" L {v} is a point cover for G, and since it contains one
more element than M’, it is minimum.

If the removal of a line x = uv from G decreases the point covering
number, then the removal of u or v must also result in a graph with smaller
point covering number. Thus, if a line is critical both its endpoints are

* Berge [B12] calls ¢, the “external stability number” and f, the “internal stability number.”

t In this chapter, “critical” refers to covering ; in Chapter 12, the same word will involve coloring.
The meanings should be clear by context.
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Fig. 10.2. Line-critical graphs.

critical. If a graph has critical points, it need not have critical lines; for
example, every point of C, is critical but no line is.

A graph in which every point is critical is called point-critical while one
having all lines critical is line-critical. Thus a graph G is point-critical if and
only if each point of G lies in some minimum point cover for G. From our
previous remarks, every line-critical graph is point-critical. Among the
line-critical graphs are the complete graphs, the cycles of odd length, and the
graphs of Fig. 10.2.

A constructive criterion for line-critical graphs is not known at present ;
however, the first two corollaries to the following theorem of Beineke,
Harary, and Plummer [ BHP1] place some rather stringent conditions on
such graphs.

Theorem 10.7 Any two adjacent critical lines of a graph lie on an odd cycle.

Corollary 10.7(a) Every line-critical graph is a block in which any two adjacent
lines lie on an odd cycle.

Theorem 10.7 was derived by generalizing the next result due to Dulmage
and Mendelsohn [ DM1].

Corollary 10.7(b) Any two critical lines of a bipartite graph are independent.

LINE-CORE AND POINT-CORE

The line-core* C,(G) of a graph G is the subgraph of-G induced by the union
of all independent sets Y of lines (if any) such that | Y| = a4(G). This concept
was introduced by Dulmage and Mendelsohn [DM1], who made it an
integral part of their theory of decomposition for bipartite graphs. It is not
always the case that a graph has a line-core, though by Theorem 10.2, every
bipartite graph which is not totally disconnected has one. As an example of
a graph with no line-core, consider an odd cycle C,. Here we find that
#o(C,) = (p + 1)/2 but that §,(C,) = (p — 1)/2, so C,, has no line-core.

* Called “core” in[DM1] and [HP19].
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U3 Us

Uy Uz Us
G: Cy(G):

U4 Uy

Fig. 10.3. A graph and its line-core.

Harary and Plummer [ HP19] developed a criterion for a graph to have a
line-core. A minimum point cover M for a graph G with point set V is said to
be external if for each subset M’ of M, |M'| < |U(M"), where U(M’) is the
set of all points of V — M which are adjacent to a point of M.

Theorem 10.8 The following are equivalent for any graph G:

(1) G has a line-core.
(2) G has an external minimum point cover.
(3) Every minimum point cover for G is external.

As an example, consider the graph G of Fig. 10.3. This graph has two
minimum point covers: M, = {v,, vs, v6} and M, = {v,, vs, v;}. Let us
concentrate on M,. If M} = M, then UM)) = {v,, vs, vy, v,}. For
M7 = {vs, vg}, UMYT) = {v3, vy, v7}. We observe that [M}| < |[U(M}) and
|M7| < |U(M7)|, a fact which is true for every subset of M,; hence, by
definition, M, is external. Obviously, M, is also external.

On the other hand, there are graphs which are equal to their line-core.
This family of graphs is characterized in the next theorem, given in [HP19].
Following the terminology of Dulmage and Mendelsohn [DM1], we
consider a bigraph G whose point set V is the disjoint union S U 7. We say
that G is semi-irreducible if G has exactly one minimum point cover M and
either M_n Sor M n T is empty. Next, G is irreducible if it has exactly two
minimum point covers M; and M,andeither M, N S = gandM, N T = ¢
or MinT = ¢ and M, n S = ¢. Finally, G is reducible if it is neither

{225 22adiaa FolavrueL vns aa a

irreducible nor semi-irreducible.

o Do Uy Uz
U3
Uy U5
G, Gs: i3 Uy
Ug
Uy Us Uy

Fig. 10.4. A semi-irreducible and an irreducible graph.
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Theorem 10.9 A graph G and its line-core C,(G) are equal if and only if G is
bipartite and not reducible.

Consider the bigraphs G, and G, of Fig. 104. In G, let S; = {va, v¢}
and Ty, = {v,, vy, vy, Vs, U7}. The bigraph G, has the unique minimum point
cover M, = {v,, vg}, and since M, N T}, = ¢, G, is semi-irreducible and
hence equals its line-core. In'G,, set S, = {uy, Uy, us} and T, = {u,, us, ug}.
There are two minimum point covers, namely, M, = {u,, u,, us} and
N, = {u,, us, usy. However, M, n T, = ¢ and N, n S, = ¢; therefore,
G, 1s irreducible and also equals its line-core.

EXERCISES

10.1 Prove or disprove: Every point cover of a graph G contains a minimum point
cover.

10.2 Prove or disprove: Every independent set of lines is contained in a maximum
independent set of lines.

10.3 For any graph G, a,(G) > £1(G) and a4(G) > Bo(G).

10.4 Find a necessary and sufficient condition that o,(G) = 8,(G).

10.5 If G has a closed trail containing a point cover, then L(G) is hamiltonian.

10.6 For any graph G, a(G) > 8(G).

10.7 If Gisabigraphtheng < ay8,, with equality holding only for complete bigraphs.

10.8 If G is a complete n-partite graph, then

Y. = =x = 1
“’ WU - v = Iw = Fa

b) G is hamiltonian if and only if p < 2a,,.

c¢) If G 18 not hamiltonian, then its circumference ¢ = 20, and G has a unique

minimum point cover. (M.D. Plummer)
d) B, = min {6, [p/2]}. (Chartrand, Geller, Hedetniemi [CGH2))

10.9 a) Let B, be the maximum number of points in a set § < V(G) such that {(§) is
disconnected. Thenx = p — 8,.
Ty ThAL iy 2 ocmal~ao~siolsr 1 - f2] o & PRS PR
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10.10 Calculate:

a) a3(Kp),  b) ago(Kpp) € %11(Kpp)-
10.11 The “chess-queen graph” has the 64 squares of a chess board as its points, two
of which are adjacent whenever one can be reached from the other by a single move ofa
queen; the chess-knight, chess-bishop, and chess-rook graphs are defined similarly.
What is the number o, for each of these four graphs?

(Solutions are displayed in Berge [B12, pp. 4142])
10.12 Some relationships among o, &4, and o, are as follows:

a) 0o < U
b) For some graphs, aq < 0.
c) For some graphs, gy < 0.

d) For some graphs, a5, < ®go-
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10.13 Prove ordisprove: A line x iscritical in a graph G if and only if there is a minimum
line cover containing x.

10.14 Prove or disprove: Every 2-connected line-critical graph is hamiltonian.

10.15 The converse of Corollary 10.6(a) does not hold. Construct a block which is not
linecritical in which any two adjacent lines lie on an odd cycle.

10.16 A tree T equals its line-core if and only if T is a block-cutpoint tree.

(Harary and Plummer [HP19]))
10.17 For any graph G, the following are equivalent :

1. G has a line-core,

2. %(G) = Bi(G), |
3. a,(G) = By(G). (Harary and Plummer [HP19])

10.18 If G is a connected graph having a line-core C,(G), then
a) C,(Q) is a spanning subgraph of G,
b) C4(C1(G)) = C4(G),
¢) the components of C,(G) are bipartite subgraphs of G which are not reducible.
(Hararv an d Plummer [HP19])

\fiqalialy aiivu 11 171

1019 If G is a graph with line-core C,(G) and B is a bipartite subgraph of G properly
containing C,(G), then B is reducible. (Harary and Plummer [HP 19])

10.20 The point-core C4(G) is the subgraph of G induced by the union of all independent
sets S of a,(G) points. A graph G has a point-core if and only if it has a line-core.

(Harary and Plummer [HP 18])
1021 If G = Cy(G), then G has a 1-factor. (Harary and Plummer [HP 18])

10.22 If G is regular of degree n, then there is a partition of ¥ into at most 1 + [#n/2]
subsets such that each point is adjacent to at most one other point in the same subset.

(Gerencsér [ G6])



CHAPTER 11

PLANARITY

Return with me a while to the plains of Flatland,
and I will shew you that which you have often

reasoned and thought about . . .
EDWIN A. ABBOTT, Flatland

Topological graph theory was first discovered in 1736 by Euler (V — E +
F = 2) and then was dormant for 191 years. The subject was revived when
Kuratowski found a criterion for a graph to be planar. Another pioneer in
topological graph theory was Whitney, who developed some important
properties of the embedding of graphs in the plane.

All the known criteria for planarity are presented. These include the
theorems of Kuratowski and Wagner, which characterize planar graphs in
terms of forbidden subgraphs, Whitney’s result in terms of the existence of a
combinatorial dual, and MacLane’s description of the existence of a pre-
scribed cycle basis.

Several topological invariants of a graph are introduced. The genus of
a graph has been determined for the complete graphs and bipartite graphs,
the thickness for “most” of them, and the crossing number for only a few.

PLANE AND PLANAR GRAPHS

A graph is said to be embedded in a surface S when it is drawn on § so that

no two edges intersect. Asnoted in Chapter 1, we shall use “points and lines”
for abstract sranhs. “vertices and edges” for geometric graphs (embedded
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in some surface). A graph is planar 1f it can be embedded in the plane; a
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DO X <TO—< >

(a) (b)
Fig. 11.1. A planar graph and an embedding.
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plane graph has already been embedded in the plane. For example, the cubic
graph of Fig. 11.1(a) is planar since it is isomorphic to the plane graph in
Fig. 11.1(b).

We will refer to the regions defined by a plane graph as its faces, the
unbounded region being called the exterior face. When the boundary of
a face of a plane graph is a cycle, we will sometimes refer to the cycle as a
face. The plane graph of Fig. 11.2 has three faces, f;, f, and the exterior
face f;. Of these, only f, is bounded by a cycle.

N L2 Js

Fig. 11.2, A plane graph.

The subject of planar graphs was discovered by Euler in his investigation
of polyhedra. With every polyhedron there is associated a graph consisting
only of its vertices and edges, called its I-skeleton. For example, the graph
Q, is the 1-skeleton of the cube and K, , , that of the octahedron. The
Euler formula for polyhedra is one of the classical results of mathematics.

Theorem 11.1 (Euler Polyhedron Formula). For any spherical polyhedron
with V vertices, E edges, and F faces,

V - E+ F=2. (11.1)

For the 3-cube we have V = 8, E = 12, and F = 6 so that (11.1) holds;
for a tetrahedron, V = F = 4 and E = 6. Before proving this equation, we
will recast it in graph theoretic terms. A plane map is a connected plane
graph together with all its faces. One can restate (11.1) for a plane map in
terms of the numbers p of vertices, g of edges, and r of faces,

p—q+r=2 (11.1)

It is easy to prove this theorem by induction. However, this equation
has already been proved in Chapter 4 where it was established that the cycle
rank m of a connected graph G is given by

m=gq—p+ 1

Since it is easily seen that if (11.1") holds for the blocks of G separately, then
(11.1") holds for G also, we assume from the outset that G is 2-connected.
Thus every face of a plane embedding of G is a cycle.

We have just noted that p = V and q = E for a plane map. It only

remains to link m with F. We now show that the interior faces of a plane
graph G constitute a cycle basis for G, so that they are m in number. This
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holds because the edges of every cycle Z of G can be regarded as the symmetric
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f all the interior faces (regarded as edge sets), we that
m=F —1 Hencem =q — p + lbecomesF—l_E— V+1.

Euler’s equation has many consequences.

fa CE is
b

Cl
o

Corollary 11.1(a) If G is a (p, g) plane map in which every face is an n-cycle,
then

q = nlp — 2)/(n - 2). (11.2)

Proof. Since every face of G is an n-cycle, each line of G is on two faces and
each face has n edges. Thus nr = 2g, which when substituted into (11.1")
gives the result.

A maximal planar graph is one to which no line can be added without
losing planarity. Substituting » = 3 and 4 into (11.2) gives us the next’
result.

Corollary 11.1(b) If G is a (p, g) maximal plane graph, then every face is a
triangleand g = 3p — 6. If Gisa plane graphin which every face is a 4-cycle,
theng = 2p — 4.

Because the maximum number of edges in a plane graph occurs when
each face is a triangle, we obtain a necessary condition for planarity of a
graph in terms of the number of lines.

Corollary 11.1(c) If G is any planar (p, q) graph with p > 3, thengq < 3p — 6.
If G is 2-connected without triangles, then ¢ < 2p — 4.

Corollary 11.1(d) The graphs K and K; ; are nonplanar.

Proof. The (5, 10) graph K is nonplanar because ¢ = 10 > 9 = 3p — 6;
for Ky 3,9 =9and2p — 4 = 8.

As we will soon see, the graphs K5 and K; ; play a prominent role in
characterizing planarity. The above corollaries are extremely useful in
investigating planar graphs, especially maximal planar graphs.

Corollary 11.1(e) Every planar graph G with p > 4 has at least four points
of degree not exceeding 5.

Clearly, a graph is planar if and only if each of its components is planar.
Whitney [ W12] showed that in studying planarity, it is sufficient to consider .
2-connected graphs.

Theorem 11.2 A graph is planar if and only if each of its blocks is planar.

It is intuitively obvious that any planar graph can be embedded in the
sphere, and conversely. This fact enables us to embed a planar graph in the
plane in many different ways.
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Theorem 11.3 Every 2-connected plane graph can be embedded in the plane
so that any specified face is the exterior.

Proof. Let fbe a nonexterior face of a plane block G. Embed G on a sphere
and call some point interior to fthe “North Pole.” Consider a plane tangent
to the sphere at the South Pole and project* G onto that plane from the
North Pole. The result is a plane graph isomorphic to G in which f is the
exterior face.

e

Corollary 11.3(a) ‘Every planar graph can be embedded in the plane so that a
prescribed line is an edge of the exterior region.

Whitney also proved that every maximal planar graph is a bloék,
and more.

Theorem 11.4 Every maximal planar graph with p > 4 points is 3-connected.
W5:
(a) (b)

Fig. 11.3. Plane wheels.

There are five ways of embedding the 3-connected wheel Wy in the
plane: one looks like Fig. 11.3(a), and the other four look like Fig. 11.3(b).
However, there is only one way of embedding W on a sphere, an observation
which holds for all 3-connected graphs (Whitney [W13]).

the sphere.

Theorem 11.5 Every 3-connected planar graph is uniqu

Gl: Gz:

Fig. 11.4. Two plane embeddings of a 2-connected graph.

To show the necessity of 3-connectedness, consider the isomorph
graphs G, and G, of connectivity 2 shown in Fig. 114. The graph G, is
embedded on the sphere so that none of its regions are bounded by

edges while G, has two regions bounded by five edges.

Q..
Q..

* This is usually called stereographic projection.
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A polyhedron is convex if the straight line segment joining any two of its
points lies entirely within it. The next theorem is due to Steinitz and
Rademacher [SR2].

Theorem 11.6 A graph is the 1-skeleton of a convex 3-dimensional polyhedron
if and only if it is planar and 3-connected.

One of the most fascinating areas of study in the theory of planar
graphs is the interplay between considering a graph as a combinatorial
object and as a geometric figure. Very often the question arises of placing
geometric constraints on a graph. For example, Wagner [ W1], Fary [F1],
and Stein [S15] independently showed that every planar graph can be
embedded in the plane with straight edges.

Theorem 11.7 Every planar graph is isomorphic with a plane graph in which
all edges are straight line segments.

OUTERPLANAR GRAPHS

A planar graph is outerplanar if it can be embedded in the plane so that all its
vertices lie on the same face ; we usually choose this face to be the exterior.
Figure 11.5 shows an outerplanar graph (a) and two outerplane embeddings
(b) and (c). In (c) all vertices lie on the exterior face.

A T — |

R\ |

(a) (b) (©

Fig. 11.5. An outerplanar graph and two outerplane embeddings.

In this section we develop theorems for outerplanar graphs parallel
with those for planar graphs. The analogue of Theorem 11.2 is immediate.

Theorem 11.8 A graph G is outerplanar if and only if each of its blocks is
outerplanar.

An outerplanar graph G is maximal outerplanar if no line can be added

without losing outerplanarity. Clearly, every maximal outerplane graph is
a triangulation of a

LSRR AV MY &

polveon, while everv maximal plane graph is a tri-
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angulation of the sphere. The three maximal outerplane graphs with 6
vertices are shown in Fig. 11.6.

Theorem 11.9 Let G be a maximal outerplane graph with p > 3 vertices all
lying on the exterior face. Then G has p — 2 interior faces.
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Fig. 11.6. Three maximal outerplanar graphs.

KA .

Fig. 11.7. The forbidden graphs for outerplanarity.

Proof. Obviously the result holds for p = 3. Suppose it is true for p = n
and let G have p = n + 1 vertices and m interior faces. Clearly G must have
a vertex v of degree 2 on its exterior face. In forming G — v we reduce the
number of interior faces by 1 sothat m — 1 =n — 2. Thusm=n—1 =
p — 2, the number of interior faces of G.

This theorem has several consequences.
Corollary 11.9(a) Every maximal outerplanar graph G with p points has
a) 2p — 3 lines,
b) at least three points of degree not exceeding 3,
c) at least two points of degree 2,
d) x(G) = 2.

All plane embeddings of K, and K, ; are of the forms shown in Fig. 11.7,
in-which each has a vertex inside the exteriorcycle. Therefore, neither of these
graphs is outerplanar. We now observe that these are the two basic non-
outerplanar graphs, following [ CH3].

Two graphs are homeomorphic if both can be obtained from the same

graph by a sequence of subdivisions of lines. For example, any two cycles
are homeomorphic, and Fig. 11.8 shows a homeomorph of K.

Theorem 11.10 A graph is outerplanar if and only if it has no subgraph
homeomorphic to K, or K, 5 except K, — x.

It is often important to investigate the complement of a graph with a
given property. For planar graphs, the following theorem due to Battle,
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Fig. 11.8. A homeomorph of K.

Harary, and Kodama [BHK1] and proved less clumsily by Tutte [T16],
provides a sufficient condition for the complement of a planar graph to be
planar.

Theorem 11.11 Every planar graph with at least nine points hasa n
complement, and nine is the smallest such number.
This result was proved by exhaustion; no elegant or even reasonable

proof is known.

onplana
plana

=

The analogous observation for outerplanar graphs was made in [GS5].

Theorem 11.12 Every outerplanar graph with at least seven points has a
nonouterplanar complement, and seven is the smallest such number.

Fig. 11.9. The four maximal outerplanar graphs with seven points.

Proof. To prove the first part, it is sufficient to verify that the complement
of every maximal outerplanar graph with seven points is not outerplanar.
This holds because there are exactly four maximal outerplanar graphs with
p = 7 (Fig. 11.9) and the complement of each is readily seen to be non-
outerplanar. The minimality follows from the fact that the (maximal)
outerplanar graph of Fig. 11.6(b) with six points has an outerplanar
complement. '

KURATOWSKI'S THEOREM

Until Kuratowski’s paper appeared [K14], it was a tantalizing unsolved
problem to characterize planar graphs. The following proof of his theorem
is based on that by Dirac and Schuster [DS1].
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Theorem 11.13 A graph is planar if and only if it has no subgraph homeo-
morphic to K5 or K3 ;.

Proof. Since K5 and K, ; are nonplanar by Corollary 11.1(d), it follows that
if a graph contains a subgraph homeomorphic to either of these, it is also

nonplanar.

The proof of the converse is a bit more involved. Assumeitis false. Then
there is a nonplanar graph with no subgraph homeomorphic to either K4
or K; ;. Let G be any such graph having the minimum number oflines. Then
G must be a block with 6(G) > 3. Let x, = uyv, be an arbitrary line of G.
The graph F = G — x, is necessarily planar.

We will find it convenient to use two lemmas in the development of the
proof.

Lemma 11.13(a) There is a cycle in F containing u#, and v,.

Proof of Lemma. Assume that there is no cycle in F containing u, and v,.
Then u, and v, lie in different blocks of F by Theorem 3.3. Hence, there
exists a cutpoint w of F lying on every u,—v, path. We form the graph F,
by adding to F the lines wu, and wy, if they are not already preseit in F.
In the graph F,, u, and v, still lie in different blocks, say B, and B,, which
necessarily have the point w in common. Certainly, each of B, and B, has
fewer lines than G, so either B, is planar or it contains a subgraph homeo-
morphicto K or K3 5. If however, the insertion of wu, produces a subgraph
H of B; homeomorphic to K5 or K3 i, then the subgraph of G obtained by
replacing wu, by a path from u, to w which begins with x, is necessarily
homeomorphic to H and so to K5 or K3 3, but thisis a contradiction. Hence,
B, and similarly B, is planar. According to Corollary 11.3(a), both B, and
B, can be drawn in the plane so that the lines wu, and wu, bound the exterior
region. Hence it is possible to embed the graph F, in the plane with both
wu, and wy, on the exterior region. Inserting x, cannot then destroy the
planarity of F,. Since G is a subgraph of F; + x,, G is planar; this contra-
diction shows that there is a cycle in F containing u, and vj,.

Let F be embedded in the plane in such a way that a cycle Z containing
uy and v, has a maximum number of regions interior to it. Orient the edges
of Z in a cyclic fashion, and let Z[u, v] denote the oriented path from u to v
along Z. If v does not immediately follow u on Z, we also write Z(u, v) to
indicate the subpath of Z[u, v] obtained by removing u and v.

By the exterior of cycle Z, we mean the subgraph of F induced by the
vertices lying outside Z, and the components of this subgraph are called the
exterior components of Z. By an outer piece of Z, we mean a subgraph of
F induced by all edges incident with at least one vertex in some exterior
component or by an edge (if any) exterior to Z meeting two vertices of Z.
In a like manner, we define the interior of cycle Z, interior component, and
inner piece.
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Fig. 11.10. Separating cycle Z illustrating lemma.

An outer or inner piece is called u—v separating if it meets both Z(u, v)
and Z(v, u). Clearly, an outer or inner piece cannot be u—v separating if u and
v are adjacent on Z.

Since F is connected, each outer piece must meet Z, and because F has
no cutvertices, each outer piece must have at least two vertices in common
with Z. No outer piece can meet Z(u,, v,) or Z(vy, 4,) in more than one
vertex, for otherwise there would exist a cycle containing u, and v, with more
interior regions than Z. For the same reason, no outer piece can meet u, Or
v,- Hence, every outer piece meets Z in exactly two vertices and is uy—v,
separating. Furthermore, since x, cannot be added to F in planar fashion,
there is at least one u,—v, separating inner piece.

Lemma 11.13(b) There exists a u,—v, separating outer piece meeting Z(u,, vy),
say at u;, and Z(vy, u,), say at vy, such that there is an inner piece which is
both us—v, separating and u,—v, separating.

Proof of Lemma. Suppose, to the contrary, that the lemma does not hold.
It will be helpful in understanding this proof to refer to Fig. 11.10.

We order the u,—v, separating inner pieces for the purpose of relocating
them in the plane. Consider any u,—v, separating inner piece I, which is
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Fig. 11.11. The possibilities for nonplanar subgraphs.

nearest to u, in the sense of encountering points of this inner piece on moving
along Z from u,. Continuing out from u,, we can index the g~y separating
inner pieces I,, I, and so on.

Let u, and u, be the first and last points of I, meeting Z(u,, vy) and v,
and v, be the first and last vertices of I, meeting Z(v,, u,). Every outer piece
necessarily has both its common vertices with Z on either Z[v,, u,] or
Z[us, v,], for otherwise there would exist an outer piece meeting Z(u,, v,)
at u, and Z(vy, u,) at v, and an inner piece which is both u,—v, separating
and u,—v, separating, contrary to the supposition that the lemma is false.
Therefore, a curve C joining v, and u, can be drawn in the exterior region so
that it meets no edge of F. (See Fig. 11.10.) Thus, I, can be transferred outside
of C in a planar manner. Similarly, the remaining u,—v, separating inner
pieces can be transferred outside of Z, in order, so that the resulting graph
is plane. However, the edge x, can then be added without destroying the
planarity of F, but this is a contradiction, completing the lemma.

Proof of Theorem. Let H be the inner piece guaranteed by Lemma 11.13(b)
which is both u,—v, separating and u,—v, separating. In addition, let
Wo, Wo, Wy, and w' be vertices at which H meets Z(uq, v,), Z(vg, o), Z(u,, v,),
and Z(v,, u,), respectively. There are now four cases to consider, depending
on the relative position on Z of these four vertices.

CASE 1. One of the vertices w, and w) is on Z(u,, vy) and the other is on
Z(vy, uy). We can then take, say, wy, = w; and wy = w), in which case G
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contains a subgraph homeomorphic to K, ;, as indicated in Fig. 11.11(a), in
which the two sets of vertices are indicated by open and closed dots.

!

D s Y0 s
loss of generality we assume the first situation. There are two possibilities:

either v, # wyorv, = wy. If v; # wy, then G contains a subgraph homeo-
morphic to K, 5, as shown in Fig. 11.11(b) or (c), depending on whether wy
lies on Z(u,, v,) or Z(v,, u,), respectively. If v, = wyp (see Fig. 11.11d),
then H contains a vertex r from which there exist disjoint paths to w,, wi,
and v,, all of whose vertices (except w,, w), and v,) belong to H. In this case
also, G contains a subgraph homeomorphic to K3 ;.

CASE3. w; = v, and w) # u,. Without loss of generality, let w| be on
Z(ug, vp). Once again G contains a subgraph homeomorphic to K3 ;. If
wp is on (vy, v;), then G has a subgraph K, ; as shown in Fig. 11.11(e). If, on
the other hand, wj is on Z(v,, u,), there is a K 5 as indicated in Fig. 11.11(f).
This figure is easily modified to show G contains K 5 if wy = v;.

’ ’

3

otherwise we are in a situation covered by one of the first 3 cases. We
distinguish between two subcases. Let P, be a shortest path in H from u,
to vy, and let P, be such a path from u, to v,. The paths Py, and P, must
intersect. If P, and P, have more than one vertex in common, then G
contains a subgraph homeomorphic to K; ; as shown in Fig. 11.11(g);
otherwise, G contains a subgraph homeomorphic to K as in Fig. 11.11(h).

Since these are all the possible cases, the theorem has been proved.

In his paper “How to draw a graph,” Tutte [T17] gives an algorithm
for drawing in the plane as much of a given graph as possible and shows
that whenever this process stops short of the entire graph, it must contain
a subgraph homeomorphic to K5 or K5 ;. Thus his algorithm furnishes an
independent proof of Theorem 11.13.

An elementary contraction of a graph G is obtained by identifying two
adjacent points u and v, that is, by the removal of 4 and v and the addition

H1 Wi

AN AN

Wg

(a) (b) ©
Fig. 11.12. Nonplanarity of the Petersen graph.
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of a new point w adjacent to those points to which u or v was adjacent.
A graph G is contractible to a graph H if H can be obtained from G by a
sequence of elementary contractions. For example, as indicated in Fig.
11.12(a) and (b), the Petersen graph is contractible to K by contracting
each of the five lines up; joining the pentagon with the pentagram to a new
point w;. A dual form of Kuratowski’s theorem (in the sense of duality in
matroid theory) was found independently by Wagner [W2] and Harary
and Tutte [HT3].

Theorem 11.14 A graph is planar if and only if it does not have a subgraph
contractible to K5 or K5 3.

We have just seen that the Petersen graph is contractible to K. Since
every point has degree 3, it clearly does not have a subgraph homeomorphic
to K5; Fig. 11.12(c) shows one homeomorphic to K ;.

OTHER CHARACTERIZATIONS OF PLANAR GRAPHS

Several other criteria for planarity have been discovered since the original
work of Kuratowski. We have already noted the “dual form” in terms of
contraction in Theorem 11.14. Tutte’s algorithm for drawing a graph in
the plane may also be regarded as a characterization.

Whitney [ W12, W14] expressed planarity in terms of the existence of
dual graphs. Given a plane graph G, its geometric dual G* is constructed
as follows : place a vertex in each region of G (including the exterior region)
and, if two regions have an edge x in common, join the corresponding
vertices by an edge x* crossing only x. The result is always a plane pseudo-
graph, as indicated in Fig. 11.13 where G has solid edges and its dual G*
dashed edges. Clearly G* has a loop ifand only if G has an endvertex, and G*
has multiple edges if and only if two regions of G have at least two edges in
common. Thus, a 2-connected plane graph always has a graph or multi-
graph as its dual, while the dual of a 3-connected graph is always a graph.
Other examples of geometric duals are given by the Platonic graphs: the
tetrahedron is self-dual, whereas the cube and octahedron are duals, as are
the dodecahedron and the icosahedron.

Fig. 11.13. A plane graph and its geometric dual.
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Fig. 11.14. Different geometric duals of the same abstract graph.

As defined, the geometric dual of a plane graph G is also plane, and 1t
follows that the dual of the dual of G is the original graph G. However, an
abstract graph with more than one embedding on the sphere can give rise to

s nsen o e s pe oraml  Thi MNargtreatad E‘ o 11142 xsla 3 gra
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G and H are abstractly isomorphic, but as embedded they have different
duals G* and H*. However, since a triply connected graph has only one
spherical embedding, as noted in Theorem 11.5, it must have a unique
geometric dual.

Whitney gave a combinatorial definition of dual, which is an abstract
formulation of the geometric dual. To state this, we recall from Chapter 4
that for a graph G with k components, the cycle rank is given by m(G) =
g — p + k and the cocycle rank by m*(G) = p — k.

The relative complement G — H of a subgraph H of G is defined to be
that subgraph obtained by deleting the lines of H. A graph G* is a combina-
torial dual of graph G if there is a one-to-one correspondence between their
sets of lines such that for any choice Y and Y* of corresponding subsets of
lines,

m*(G — Y) = m*(G) — m(Y*)), (11.3)
where {Y*) is the subgraph of G* with line set Y*. This definition is illus-

. trated by Fig. 11.15 where the correspondence is x;«>y, Here Y =
{x,, X3, X4, Xg}, 50 that m*(G — Y) = 1, m*(G) = 4, and m(Y*) = 3, so



OTHER CHARACTERIZATIONS OF PLANAR GRAPHS 115

Vi

Xg X7 Y2 Yz
Fal Xs ¥ % . Yo

G . Xg G*:
Xa T‘-%
Vs Ve
Xg
1

Y2 Y4

{Y*):
V3
Ve

Fig. 11.15. Combinatorial duals.
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|

the defining equation is satisfied. It is of course very difficult to check
whether two graphs are duals using (11.3) since it involves verifying this
equation for every set y of lines in G.

As with geometric duals, combinatorial duals of planar graphs are not
necessarily unique However, if two graphs are combinatorial duals of
isOfl‘lOi'puiC gi’&pub, there is a one-to-one corresponuence between their sets
of lines which preserves cycles as sets of lines (that is, their cycle matroids
are isomorphic). The correspondence x; «> y; of G* and H* in Fig. 11.14
illustrates this.

Whitney proved that combinatorial duals are equivalent to geometric

duals, giving another criterion for planarity.
Theorem 11.15 A graph is planar if and only if it has a combinatorial dual.

Another criterion for planarity due to MacLane [M1] is expressed in
terms of cyclic structure.

Theorem 11.16 A graph G is planar if and only if every block of G with at least
three points has a cycle basis Z,, Z,, - - -, Z,, and one additional cycle Z,
such that every line occurs in exactly two of these m + 1 cycles.

We only indicate the necessity, which is much easier. As mentioned
in the proof of Theorem 11.1, all the interior faces of a 2-connected
plane graph G constitute a cycle basis Z,, Z,, - - -, Z,,, where m is the cycle
rank of G. Let Z, be the exterior cycle of G. Then obviously each edge of
G lies on exactly two of the m + 1 cycles Z,.

Tn nrove ﬂn:- enﬂ?m1pnr‘v 1f i necessarv 1'n nnnefrn
r J’ AT LAW'W J WALSAAIDRL W

of a given graph G with the stipulated properties.
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All of these criteria for planarity are summarized in the following
list of equivalent conditions for a graph G.
(1) G is planar.
(2) G has no subgraph homeomorphic to K or K3 .
(3) G has no subgraph contractible to K5 or K 5.
(4) G has a combinatorial dual.

(5) Every nontrivial block of G has a cycle basis Z,, Z,,---, Z, and one
additional cycle Z, such that every line x occurs in exactly two of these

m + T cycles.

GENUS, THICKNESS, COARSENESS, CROSSING NUMBER

In this section four topological invariants of a graph G are considered.
These are genus: the number of handles needed on a sphere in order to
embed G, thickness: the number of planar graphs required to form G,

PaYa Yok dor-Cal-T0la] tha W\n" o, R A 1iemnn Atots JURpR P ) P,

uucu DUILUDD I..U.G ula.)uuu.uu llulllUCl Ul llllC'UlDJUllll. llUllPlle.a.l buusl apllb
in G, and crossing number : the number of crossings there must be when G
is drawn in the plane. We will concentrate on three classes of graphs—com-
plete graphs, complete bigraphs, and cubes—and indicate the values of
these invariants for them as far as they are known.

+

Fig. 11.16. Embedding a graph on an orientable surface.

As observed by Konig, every graph is embeddible on some orientable
surface. This can easily be seen by drawing an arbitrary graph G in the plane,
possibly with edges that cross each other, and then attaching a handle to
the plane at each crossing and allowing one edge to go over the handle
and the other under it. For example, Fig. 11.16 shows an embedding of K
in a plane to which one handle has been attached. Of course, this method
often uses more handles than are actually required. In fact, Konig also
showed that any embedding of a graph on an orientable surface with a
minimum number of handles has all its faces simply connected.
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Fig. 11.17. An embedding of K, on the Fig. 11.18. A toroidal embedding of
torus. K,

We have already noted that planar graphs can be embedded on a sphere..
A toroidal graph can be embedded on a torus. Both K5 and K, , are toroidal ;
in fact Figs. 11.17 and 11.18 show embeddings of K, and K, , on the torus,
represented as the familiar rectangle in which both pairs of opposite sides
are identified. No characterization of toroidal graphs analogous to Kura-
towski’s Theorem has been found. However, Vollmerhaus [ V6] settled a
conjecture of Erdos in the affirmative by proving that for the torus as well
as any other orientable surface, there is a finite collection of forbidden
subgraphs.

The genus y(G) of a graph G is the minimum number of handles which
must be added to a sphere so that G can be embedded on the resulting surface.
Of course, y(G) = Oifand only if G is planar, and homeomorphic graphs have
the same genus.

The first theorem of this chapter presented the Euler characteristic
equation, ¥V — E + F = 2, for spherical polyhedra. More generally, the
genus of a polyhedron* is the number of handles needed on the sphere for
a surface to contain the polyhedron. Theorem 11.1 has been generalized
to polyhedra of arbitrary genus, in a result also due to Euler. A proof may
be found in Courant and Robbins [CR1].

Theorem 11.17 For a polyhedron of genus y with V vertices, E edges and
F faces,
V—E+F=2-2. (11.4)

11111

to follow on the genus and thickness of particular graphs. Its corollaries,
which offer no difficulty, are often more convenient for this purpose.

* For a combinatorial treatment of the theory of polyhedra, see Griinbaum [G10).
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Corollary 11.17(a) If G is a connected graph of genus y in which every face
is a triangle, then

q=3p — 2+ 2y); (11.5)
when every face is a quadrilateral,
q=2p—2+ 2y). (11.6)

As mentioned in [BH2], it is easily verified from these two equations
that the genus of a graph has the following lower bounds.

Corollary 11.17(b) If G is a connected graph of genus y, then

7 =54 —2p — 2); (11.7)
if G has no triangles, then

y>4a -3 -2 (11.8)

The determination of the genus of the complete graphs has been a long,
interesting, difficult, successful struggle. In its dual form, it was known as
the Heawood Conjecture and stood unproved from 1890 to 1967. We
return to this aspect of the problem in the next chapter. There have been
many contributors to this result and the coup de grace, settling the conjecture
in full, was administered by Ringel and Youngs [RY1].

Theorem 11.18 For every positive integer p, the genus of the complete

graph is
_ -3 -4

The proof of the easier half of equation (11.9) is due to Heawood [ H38].
It amounts to substituting ¢(K ) into inequality (11.7) to obtain

(11.9)

1 /N 1 /. aAvg AN
1fp 1 \p— I\ — )
K)>- —=(p—-2)= .
Y(”—éb) 5P =2 12
Then since the genus of every graph is an integer,
P —3p—-49
Y K,) = { B .

The proof that this expression is also an upper bound for (K ) can only be
accomplished by displaying an embedding of K, into an orientable surface
of the indicated genus. When Heawood originally stated the conjecture
in 1890, he proved that y(K,) = 1, as verified by the embedding shown in
Fig. 11.17, which triangulates the torus.

Heffter proved (11.9) in 1891 for p = 8 through 12. Not until 1952 did
Ringel prove it for p = 13. At that stage, it was realized that because of its
form, it was natural to try to settle the question for one residue class of p
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in 1954 for all comple e graphs K, with r = 5. Durlng 1961 65, Rlngel
extended the result to r = 7, 10, and 3, and concurrently Youngs [YI] with
his colleagues Gustin, Terry, and Welch settled the casesr = 4,0,1,9, 6. In
196768, Ringel and Youngs [RY1, 2] worked together to achieve appro-
priate embeddings of K, for r = 2, 8, and 11. The isolated cases p = 18,
20, and 23 remained unproved by these methods. The proof was completed
Dy IIlC I'fOleSSOf Ol I‘I'Cnbll L.lI.CI'dILlI'C at IHC ui‘uversuy UI _lVlOfltpElllCl'
named Jean Mayer, when he embedded K, for these three values of p,
see [M6].

For complete bigraphs, the corresponding result is less involved, and
was obtained by Ringel alone. Since inequality (11.8) applies to the graph

ndnla +n+ "o “’fif 1Mo — 1%

1 1 (m—2n -2
gmn =S mtn—2) = ; :

The other inequality is demonstrated [R12] by displaying a suitable em-
bedding of K,,, ,..

Theorem 11.19 The genus of the complete bigraph is

) = {(m = 2 = 2)}; (11.10)

WK
i mn

A R

The genus of the cube was derived by Ringel [R13] and Beineke and
Harary [BH3]. For the graph Q,, we have p = 2" and q = n2"" !, so that
by (11.8),

QW) <1+ (n— 42777

proving the easier half of the next equation.
Theorem 11.20 The genus of the cube is
/ Q) =1+ (n — 4)2" 73, (11.11)

We now mention some more general considerations involving genus.
It was shown in Battle, Harary, Kodama and Youngs [BHKY1] that the
genus of a graph depends only on the genus of its blocks, as anticipated in
Theorem 11.2.

Theorem 11.21 If a graph G has blocks B,, B,, ***, B,, then

#G) = 3. 9(B). (11.12)

This result was generalized slightly by Harary and Kodama [HK1].
Recall from Theorem 5.8 that two n-components of a graph have at most
n points in common.
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Theorem 11.22 Let an n-connected graph G be the union of two (n + 1)-
components B and C. Letov,, -, v, be the set of points of B n C. Call G;
the graph obtained by adding line vv; to G. If y(G;)) = ®G) + 1 whenever
1 <i<j< n then

YWG) = ¢y(B) + Y(C) + n — 1. (11.13)

We have already observed in Theorem 11.10 that every planar graph
with 9 points has a nonplanar complement. Define the thickness 8(G) of a
graph as the minimum number of planar subgraphs whose union is G.
Then Theorem 11.11 can be stated in the form 8(Ky) > 2. Actually the thick-
ness of K, 1s 3 but K iscritical with respect to thickness since (K, — x) = 2.
Therefore 6(K,) = 2 for p = 5 to 8. Of course 6(G) = 1 if and only if G
is planar. Since a maximal planar graph has g = 3p — 6 lines, it follows
that the thickness 6 of any (p, ¢) graph has the bound,

6 > 3p“_ - (11.14)

This observation is useful in making conjectures about thickness and proving
the easier half.

The thickness of the complete graphs was investigated in [BH5] and
Beineke [B6]. Applying (11.14) to K, we find

p(p — 1)/2

oK) = 50—

Applying some algebraic manipulations, we obtain

pp — 12 +3p -2 —1 p+7
K) > = )
o= | P2 6
Theorem 11.23 Whenever p # 4 (mod 6), the thickness of the complete graph
18
7
0(K,) = [B%—] (11.15)

unless p = 9.

When p = 4 (mod 6), sometimes equation (11.15) holds and sometimes
it doesn’t. For 6(K,o) = 3 # [%’], but Hobbs and Grossman [HG1]
produced a decomposition of K,, into 4 = [22] planar subgraphs and
Beineke [B6] showed that (K ,s) = 5 = [3*]. Very recently, Jean Mayer
(again!) obtained constructions showing that 6(K,,) = 6 and (K ,,) = 7.
The only value of p < 45 for which 6(K,) is not yet known is p = 16. It is
conjectured that 6(K,4) = 4, but for all p = 4 (mod 6), and p > 46, that
(11.15) holds.

The thickness of complete bigraphs was studied in [BHM1] and Beineke
[B7].
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Theorem 11.24 The thickness of the complete bigraph is

mn
0(K,.,) = {Z(m P 2)} (11.16)

L

except possibly when m < n, mn is odd, and there exists an integer k such
that n = [2k(m — 2)/(m — 2k)].

Corollary 11.24(a) The thickness of K, , is [(n + 5)/4].
The corresponding problem for the cube was settled by Kleinert [ K8].

Theorem 11.25 The thickness of the cube is

0(Q,) = {" : 1}. (11.17)

P. Erd6s (verbal communication) made a fortuitous slip, while trying
to describe the concept of thickness. By speaking of the maximum number
of line-disjoint nonplanar subgraphs contained in the given graph G, he
first defined the coarseness £(G). Thus both thickness and coarseness involve
constructions which factor a graph into spanning subgraphs (planar and
nonplanar respectively) in the sense of Chapter 9. Formulas for the coarse-
~ ness of a complete graph are not as neat as those for other topological
invariants. The reason is that K; ; or a homeomorph thereof is a most
convenient subgraph for coarseness constructions. This suggests the reason
for the form of the next result due to Guy and Beineke [ GB1]. Figure 11.19
shows four line-disjoint homeomorphs of K ; contained in K.

Theorem 11.26 The coarseness of the complete graphs is given by

(;) (p = 3n < 15),
é(K3n) = 4
(g) + [2} (p = 3n > 30),
N (11.18)
(Kans1) = (2) + 2|:§:| p=3n+1=19
and p # 9r + ),

EKyns2) = ('2‘) N [%}

All of the values of £(K ,) are either known exactly from (11.18) or have the
value given in Table 11.1 or 1 greater; see [ GB1].

For the coarseness of the complete bigraph, the results of Beineke and
Guy [BG1] are incomplete and involve many cases.
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Fig. 11.19. Four nonplanar subgraphs of X ,.

Theorem 11.27 The coarseness of the complete bigraph K, , satisfies

é(K3r+d,3s+e) =rs + min (l:_e;jl’ |:£i3_s:|)

for d =0o0rl1l and e =0o0rl.

E(Kapspa) = 15 + BJ when r > 1.

. < 15+ min ([r + s]’ [é], [Sr + 16s + 2})
- 3 3 39
E(Ksrs2,3511) 9 s 4+ 2 . v [ 2s (11.19)
> rs + max (I}T ], min (lig], I:?]))

- for r>2s2>17.

(These are equal when r > 2s.)

r< i r + 2s 2r + s 16r + 16s + 4
< S + min 3 , 3 , 39

> z+§+I for 1 <r<
k_rs—|— 3 3 9 0 < r < s

The crossing number v(G) of a graph G is the minimum number of
pairwise intersections of its edges when G is drawn in the plane. Obviously
v(G) = 0 if and only if G is planar. The exact value of the crossing number
has not yet been determined for any of the three families of graphs; only
upper bounds are definitely established. The prevailing conjecture is that
the bounds in (11.20) and (11.21) are exact. Several authors have deluded
themselves into thinking they had proved equality. For details, see Guy
[G12].

(K3 42,3542 S
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Table 11.1
CONJECTURED VALUES FOR i(KP)
4 13 18 21 24 27 9n + 7
dj(Kp) 7 15 21 28 36 (9?‘12 + 13n + 2)2

Theorem 11.28 The crossing number of the complete graph satisfies the

inequality
1 -1 — 2 -3
v(Kp)s—I:g][p - ][p > ][p . ] (11.20)

Theorem 11.29 The crossing number of the complete bigraph satisfies the

inequality
WKo,) < [%][m—;—l][g][" . 1]. (11.21)

T. Saaty showed that (11.20) is an equation for p < 10 while D. Kleitman
proved equality in (11.21) for m < 6. These are the only known values of
v(K ) and ®(K,, ). For the cubes, no one has even conjectured what is v.

EXERCISES

11.1 Ifa(py, q,) graph and a (p,, q,) graph are homeomorphic, then
Pt 4=p2+ 4

11.2 Every plane culerian graph contains an eulerian trail that never crosses itself.

11.3 A 3-connected graph with p > 6 is nonplanar if and only if no subgraph is
homeomorphic to K 5. (D. W. Hall [H6])

*11.4 Every 4-connected planar graph is hamiltonian. (Tutte [T6])
11.5 Every 5-connected planar graph has at least 12 points. Construct one.
116 There is no 6-connected planar graph.

*11.7 If G is a maximal plane graph in which every triangle bounds a region, then G is
hamiltonian. (Whitney [W12])

11.8 Not every maximal planar graph is hamiltonian, (Whitney [W12])

11.9 If, in a drawing of G in the plane, every pair of nonadjacent edges cross an even
number of times, then G is planar,

(R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T, Tutte)

11.10 Prove or disprove: every connected nonplanar graph has K; or K3, as a
contraction.
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11.11 Prove or disprove: A graph is planar if and only if every subgraph with at most
six points of degree at least 3 is homeomorphic to a subgraph of K, + P,.

11:12 Prove or disprove: The cycle basis of a plane graph consisting of the interior
faces always comes from a tree (cf. Chapter 4).

*11.13 Every triply connected planar graph has a spanning tree with maximum degree 3,
(Barnette [B3])
11.14 A plane graph is 2-connected if and only if its geometric dual is 2-connected.
11.15 All wheels are self-dual.
11.16 The square of a connected graph G is outerplanar if and only if G is K or a path.
11.17 The following statements are equivalent :

(1) The line graph L(G) is outerplanar.
(2) The maximum degree A(G) < 3 and every point of degree 3 is a cutpoint.
(3) The total graph T(G) is planar.

(Chartrand, Geller, and Hedetniemi [CGH2], Behzad [B4])

11.18 A graph G has a planar square if and only if A(G) < 3, every point of degree 3
is a cutpoint, and all blocks of G with more than 3 points are even cycles.

(Harary, Karp, and Tutte [HKT1])

11.19 A graph G has a planar line graph if and only if G is planar, A(G) < 4, and every

point of degree 4 is a cutpoint. {Sediacek [S10])
11.20 Find the genus and crossing number of the Petersen graph.

11.21 Prove or disprove: A nonplanar graph G has v = 1 if and only if G — x is
planar for some line x.

11.22 The arboricity of every planar graph is at most 3. Construct a planar graph with
arboricity 3.

11.23 Every graph is homeomorphic to a graph with arboricity 1 or 2, and hence of
thickness 1 or 2,

11.24 The skewness of G is the minimum number of lines whose removal results in a
planar graph. Find the skewness of

a) K, b) K,, . ¢) O,. (A. Kotzig)

11.25 If G is outerplanar without triangles, then

g < (3p — 4)/2.

11.26 If G is a graph such that for any two points, there are at most two point-disjoint
paths of length greater than 1 joining them, then

a) Gis planar.

b) g <2p - 3.

¢} If G is nonseparable and p > 5, then there is a unique hamiltonian cycle.
(Tang [T2])

11.27 Embed the cube Q, on the surface of a torus.
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11.28 The genus y of any graph G with girth g has the lower bound
v>1r/1—g\q—(p—2ﬂ-
2\ ") J
(Beineke and Harary [BH2])

—1
*11.29 y(K, ) =(" ) ) (G. Ringel)

11.30 If G, and G, are homeomorphic, then {(G,) = &(G,) and w(G,) = W(G,).

11.31 The maximum number of line-disjoint K, 3 subgraphs in K,, , is

S EHIER]
K, > [g[g J

Thus for all n,

(Beineke and Guy [BG1))



)
o
=
3
-]
o
P
o

COLORABILITY

Suppose there’s a brown calf and a big brown dog, and an artist

is makine a nicture of them He hac
s ar uaw AL RiAdwidl . s o “ad

Liliamniiip;g & poa

tell them apart the minute you look at them, hain’t he? Of course.
Well, then, do you want him to go and paint both of them brown?
Certainly you don’t. He paints one of them blue, and then you can’t
make no mistake. It’s just the same with maps.

That’s why they make every state a different color . . .

SaMUEL CLEMENS (MARK TWAIN)

The Four Color Conjecture (4CC) can truly be renamed the “Four Color
Disease” for it exhibits so many properties of an infection. It is highly
contagious. Some cases are benign and others malignant or chronic. There
1s no known vaccine, but men with a sufficiently strong constitution have
achieved life-long immunity after a mild bout. It is recurrent and has been
known to cause exquisite pain although there are no terminal cases on record.
At least one case of the disease was transmitted from father to son, so it
may be hereditary.

It is this problem which has stimulated results on colorability of graphs,
which have led in turn to the investigation of several other areas of graph
theory. After describing the coloring of a graph and its chromatic number,
the stage is set for a proof of the Five Color Theorem and a discussion of
the Four Color Conjecture. We then introduce uniquely colorable graphs,
which can only be colored in one way, and critical graphs, which are minimal
with respect to coloring. The intimate relationship between homomorphisms
and colorings is investigated. The chapter concludes with a development
of the properties of the chromatic polynomial.

THE CHROMATIC NUMBER

A coloring of a graph is an assignment of colors to its points so that no two
adjacent points have the same color. The set of all points with any one
color is independent and is called a color class. An n-coloring of a graph G
uses n colors; it thereby partitions V into n color classes. The chromatic

126
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1 2 2 3 2 3
2 1 1 2 1 4
1 2 3 1 3 2

(a) (b) (©)
Fig. 12.1. Three colorings of a graph.

number ¥(G) is defined as the minimum n for which G has an n-coloring.
A graph G 1s n-colorable if y(G) < n and is n-chromatic if y(G) = n.

Since G obviously has a p-coloring and a y(G)-coloring, it must also
have an n-coloring whenever x(G) < n < p. The graph of Fig. 12.1 is
2-chromatic ; n-colorings for n = 2, 3, 4 are displayed, with positive integers
designating the colors.

The chromatic numbers of some of the familiar graphs are easily
determined, namely y(K,) = p, y(K, — x) = p — 1, ¢(K,) = 1, x(K,,.,) = 2,
x(C,,) = 2, ¢(C,,,,) = 3, and for any nontrivial tree T, y(T) = 2.

Obviously, a graph is 1-chromatic if and only if it is totally disconnected.
A characterization of bicolorable (2-colorable) graphs was given by Konig
[K10, p. 170], as Theorem 2.4 already indicates.

Theorem 12.1 A graph is bicolorable if and only if it has no odd cycles.

It is likely to remain an unsolved problem to provide a characterization
of n-colorable graphs for n > 3, since such a criterion even for n = 3 would
help to settle the 4CC. No convenient method is known for determining the
chromatic number of an arbitrary graph. However, there are several known
bounds for y(G) in terms of various other invariants. One obvious lower
bound is the number of points in a largest complete subgraph of G. We now
consider upper bounds, the first of which is due to Szekeres and Wilf [SW1].

Theorem 12.2 For any graph G,
x(G) < 1 + max §(G), (12.1)
where the maximum is taken over all induced subgraphs G’ of G.

Proof. Theresultis obviousfor totally disconnected graphs. Let G be an arbi-
trary n-chromatic graph, n > 2. Let H be any smallest induced subgraph such
that y(H) = n. The graph H therefore has the property that y(H — v) = n — 1
for all its points v. It follows that degv > n — 1 so that (H) > n — 1 and
hence

n — 1 < d(H) < max §(H') < max §G’),

the first maximum taken over all induced subgraphs H' of H and the second
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]] . 1 1 ] ] 3, E 3 I] . . ]- ]
~

x(G) = n <1 + max §G).

Corollary 12.2(a) For any graph G, the chromatic number is at most one
greater than the maximum degree,

y<1+A (122)

Brooks [B16] showed, however, that this bound can often be improved.
Theorem 12.3 If A(G) = n, then G is n-colorable unless

1) n = 2 and G has a component which is an odd cycle, or
i) n > 2 and K, , ; is a component of G.

A lower bound, noted in Berge [B12, p. 34] and Ore [O5, p. 225], and
an upper bound, Harary and Hedetniemi [HH1], involve the point inde-
pendence number §, of G.

Theorem 12.4 For any graph G,

P/Bo <x<p-—PBo+ 1 (12.3)

(A — n then IV can he nartitionaed imto » coloarclaceee Vo V4L -
1 \ ’l’ CALlWALR 7 wlAAL LW 1—'“1 VAPAVALWYNA LILA WV Fi WLV L WIWOOWD F 1’ r z, L]

V,, each of which, as noted above, is an independent set of points. If| V] = p,
then every p; < B, so that p = X p, < nf,.

To verify the upper bound, let S be a maximal independent set containing
Bo points. It is clear that (G — S) > »(G) — 1. Since G — S has p — B,
points, (G — S) < p — B,. Therefore, y(G) < (G — S)+ 1 <p — po + 1.

None of the bounds presented here is particularly good in the sense
that for any bound and for every positive integer n, there exists a graph G
such that y(G) differs from the bound by more than n.

From the discussion thus far, one may very well be led to believe that
all graphs with large chromatic number have large cliques and hence contain
triangles. In fact, Dirac [D7] asked if there exists a graph with no triangles
but arbitrarily high chromatic number. This was answered affirmatively
and independently by Blanche Descartes* [D3], Mycielski [M19], and
Zykov [Z1]. Their result was extended by Kelly and Kelly [KK1], who
proved that for all n > 2, there exists an n-chromatic graph whose girth
exceeds 5. In the same paper, they conjectured the following theorem,
which was first proved by Erdos [E2] using a probabilistic argument and
later by Lovasz [L5] constructively.

* This so-called lady is actually a nonempty subset of {Brooks, Smith, Stone, Tutte}; in this
case {Tutte}.
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Theorem 12.5 For every two positive integers m and n, there exists an n-
chromatic graph whose girth exceeds m.

The number ¥ = ¥(G) = ¥(G) is the minimum number of subsets which
partition the point set of G so that each subset induces a complete subgraph
of G. It is clear that ¥(G) > f,(G). Bounds on the sum and product of the
chromatic numbers of a graph and its complement were developed by
Nordhaus and Gaddum [NG1].

Theorem 12.6 For any graph G, the sum and product of y and y satisfy the
inequalities:

2/psx+x<p+ 1 (12.4)
p< 1% < (p—t 1)2 (12.5)
< < > .
Proof. Let G be n-chromatic and let V,, V,, - - -, ¥, be the color classes of G,

where |V = p,, Then of course £ p, = p and max p, > p/n. Since each V
induces a complete subgraph of G, ¥ > max p; > p/n so that yy > p. Since
the geometric mean of two positive numbers never exceeds their arithmetic
mean, it follows that y + ¥ > 2\/5. This establishes both lower bounds.

To show that y + ¥ < p + 1, we use induction on p, noting that
equality holds when p = 1. We thus assume that y(G) + ¥(G) < p for all
graphs G having p — 1 points. Let H and H be complementary graphs
with p points, and let v be a point of H. Then G = H —vand G = H — v
are complementary graphs with p — 1 points. Let the degree of v in H
be d so that the degree of vin Hisp — d — 1. It is obvious that

!

¥(H) < x(G) + 1 and ¥(HY < y(G) + 1.
If either
(H)Y < 7G)+1  or  jH) < HG) + 1,

then y(H) + ¥(H) < p + 1. Suppose then that y(H) = y(G) + 1 and
x(H) = 7(G) + 1. This implies that the removal of v from H, producing G,
decreases the chromatic number so that d > »(G). Similarly

p—d—12=yG);
thus y(G) + x(G) < p — 1. Therefore, we always have
xWH) + yH)<p+ 1
Finally, applying the inequality 4y7 < (y + ¥)* we see that

1 < [ + /2]
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THE FIVE COLOR THEOREM

Although it is not known whether all planar graphs are 4-colorable, they
are certainly 5-colorable. In this section we present a proof of this famous
result due to Heawood [ H38].

Theorem 12.7 Every planar graph is 5-colorable.

Proof. We proceed by induction on the number p of points. For any planar
graph having p < 5 points, the result follows trivially since the graph is
p-colorable.

As the inductive hypothesis we assume that all planar graphs with p
points, p > 5, are 5-colorable. Let G be a plane graph with p + 1 vertices.
By Corollary 11.14d), G contains a vertex v of degree 5 or less. By hypothesis,

" the plane graph G — v is 5-colorable.

Consider an assignment of colors to the vertices of G — v so that a
5-coloring results, where the colors are denoted by ¢;, 1 < i < 5. Certainly,
if some color, say c;, is not used in the coloring of the vertices adjacent with
v, then by assigning the color c; to v, a 5-coloring of G results.

This leaves only the case to consider in which deg v = 5 and five colors
are used for the vertices of G adjacent with v. Permute the colors, if necessary,
so that the vertices colored c¢;, ¢,, ¢3, ¢4, and ¢ are arranged cyclically
about v. Now label the vertex adjacent with v and colored¢;byv, 1 < i < 5
(see Fig. 12.2).

I

[>F3 Dy

Uy U3

Fig. 12.2. A step in the proof of the Five Color Theorem.

Let G, ; denote the subgraph of G — v induced by those vertices colored
¢, orc;. Ifv, and v, belong to different components of G, 5, then a 5-coloring
of G — v may be accomplished by interchanging the colors of the vertices
in the component of G,; containing v,. In this 5-coloring, however, no
vertex adjacent with v is colored ¢,, so by coloring v with the color ¢, a
5-coloring of G results.

If, on the other hand, v, and v; belong to the same component of G, 5,
then there exists in G a path between v, and v, all of whose vertices are
colored ¢, or ¢;. This path together with the path v,vv, produces a cycle
which necessarily encloses the vertex v, or both the vertices v, and vs. In any
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case, there exists no path joining v, and v, all of whose vertices are colored ¢,
or ¢,. Hence, if we let G,, denote the subgraph of G — v induced by the
vertices colored ¢, or ¢, then v, and v, belong to different components
of G,,. Thus if we interchange colors of the vertices in the component of
G,, containing v,, a 5-coloring of G — v 1s produced in which no vertex
adjacent with v is colored c¢,. We may then obtain a 5-coloring of G by
assigning to v the color c,.

THE FOUR COLOR CONJECTURE

In Chapter 1 we mentioned that the 4CC served as a catalyst for graph

discussion of this infamous problem. A coloring of a plane map G is an
assignment of colors to the regions of G so that no two adjacent regions are
assigned the same color. The map G is said to be n-colorable if there 1s a
coloring of G which uses n or fewer colors. The original conjecture as

described in Chapter 1 asserts that every plane map is 4-colorable.
Four Color Conjecture (4CC) Every planar graph is 4-colorable.

We emphasize that coloring a graph always refers to coloring its vertices
while coloring a map indicates that it is the regions which are colored!
Thus the conjecture that every plane map is 4-colorable is in fact equivalent
to this statement of the Four Color Conjecture. To see this, assume the
4CC holds and let G be any plane map. Let G* be the underlying graph of
the geometric dual of G. Since two regions of G are adjacent if and only
if the corresponding vertices of G* are adjacent, map G is 4-colorable
because graph G* is 4-colorable.

Conversely, assume that every plane map 1s 4-colorable and let H be
any planar graph. Without loss of generality, we suppose H is a connected
plane graph. Let H* be the dual of H, so drawn that each region of H*
encloses precisely one vertex of H. The connected plane pseudograph H*
can be converted into a plane graph H' by introducing two vertices into each
loop of H* and adding a new vertex into each edge in a set of multiple edges.
The 4-colorability of H' now implies that H is 4-colorable, completing the
verification of the equivalence.

If the 4CC is ever proved, the result will be best possible, for it is easy
to give examples of planar graphs which are 4-chromatic, such as K, and
W (see Fig. 12.3).

Each of the graphs K, and Wy has more than 3 triangles, which is
necessary according to a theorem of Griinbaum [ G9].

Theorem 12.8 Every planar graph with fewer than 4 triangles is 3-colorable.

From this the following corollary is immediate ; it was originally proved
by Grétzsch [ G8].
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We:

Fig. 12,3, Two 4-chromatic planar graphs.

Corollary 12.8(a) Every planar graph without triangles is 3-colorable.

Any plane map which requires 5 colors will necessarily contain a large
number of regions, for Ore and Stemple [ OS1] showed that all plane maps
with up to 39 regions are 4-colorable, increasing by 4 regions the earlier
result of this kind.* All evidence indicates that the Four Color Conjecture
1strue. However, attempts to prove the 4CC using the plane map formulation
can be directed at a special class of plane maps, as we shall now see.

Theorem 12.9 The Four Color Conjecture holds if and only if every cubic
bridgeless plane map is 4-colorable.

Proof. We have already seen that every plane map is 4-colorable if and
only if the 4CC holds. This is also equivalent to the statement that every
bridgeless plane map is 4-colorable since the elementary contraction of
identifying the endvertices of a bridge affects neither the number of regions
in the map nor the adjacency of any of the regions.

Certainly, if every bridgeless plane map is 4-colorable, then every cubic
bridgeless plane map is 4-colorable. In order to verify the converse, let G
be a bridgeless plane map and assume all cubic bridgeless plane maps are
4-colorable. Since G is bridgeless, it has no endvertices. If G contains a
vertex v of degree 2 incident with edges y and z, we subdivide y and z, denoting
the subdivision vertices by u and w, respectively. We now remove v, identify u
with one of the vertices of degree 2 in a copy of the graph K, — x and identify
w with the other vertex of degree 2 in K, — x. Observe that each new
vertex added has degree 3 (see Fig. 12.4). If G contains a vertex v, of degree
n > 4 incident with edges x,, x,, - - *, X,, arranged cyclically about v, we
subdivide each x; producing a new vertex v, We then remove v, and add
the newedgesv
has degree 3.

Denote the resulting bridgeless cubic plane map by G’, which, by
hypothesis, is 4-colorable. If for each vertex v of G with degv # 3, we

e DD o o -1 pp. Acaineach ofthe vertices so added
l UZ, U2U3, , './'n_ l Un, Unuln z Ac“‘.‘.‘. bW Ll WA AL T W R LA WS bW b W W

* Finck and Sachs[FS1] proved that every plane graph with at most 21 triangles is 4-colorable.
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Fig. 12.4. Conversion of a graph into a cubic graph.

identify all the newly added vertices associated with v in the formation of
G’, we arrive at G once again. Thus let there be given a 4-coloring of G
The aforementioned contraction of G’ into G induces an m-coloring of G,
m < 4, which completes the proof.

Another interesting equivalence was proved by Whitney [W16].

Theorem 12.10 The Four Color Conjecture holds if and only if every
hamiltonian planar graph is 4-colorable.

As there are equivalents of the Four Color Conjecture involving the
coloring of regions, so too is there an equivalent of the 4CC concerned
with the coloring of lines.

A line-coloring of a graph G is an assignment of colors to its lines so that
no two adjacent lines are assigned the same color. An n-line-coloring of G
1s a line-coloring of G which uses exactly n colors. The line-chromatic
number* y'(G) is the minimum »n for which G has an n-line-coloring. It follows
that for any graph G which is not totally disconnected, y'(G) = y(L(G)).
Tight bounds on the line-chromatic number were obtained** by Vizing [ V4].

Theorem 12.11 For any graph G, the line-chromatic number satisfies the
inequalities :
A<y <A+ 1 (12.6)

* Sometimes called the chromatic index.
** A proof in English can be found in Ore [O7, p. 248].
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X'=A ) T X'=A+1

Fig. 12.5. The two values for the line-chromatic number.

The two possible values for y'(G) are illustrated in Fig. 12.5. It is not
known in general for which graphs ' = A.

Theorem 12.12 The Four Color Conjecture is true if and only if ¥(G) = 3
for every bridgeless cubic planar graph G.

Proof. We have already shown in Theorem 12.9 that the 4CC is equivalent
to the statement that every cubic bridgeless plane map is 4-colorable. We
show now that a cubic bridgeless plane map G is 4-colorable if and only
if ¥'(G) = 3.

First we assume that G is a bridgeless, cubic plane map which is 4-
colorable. Without loss of generality, we take G to be connected and therefore
a plane map which, by hypothesis, is 4-colorable. For the set of colors we
select the elements of the Klein four-group F, where addition in F is defined
by k; + k; = kyand k, + k, = k,, with k, the identity element.

Let there be given a 4-coloring of the map G. We define the color of an
edge to be the sum of the colors of the two distinct regions which are incident
with the edge~ It is now immediate that the edges are colored with elements
of the set {k,, k,, k3} and that no two adjacent edges are assigned the same
color ; thus ¥'(G) = 3.

Conversely, let G be a bridgeless cubic plane graph with ¥'(G) = 3,
and color its edges with the three nonzero elements of F. Select some region
R, and assign to it the color k,. To any other region R of G, we assign a
color in the following manner. Let C be any curve in the plane joining the
interior of R, with the interior of R such that C does not pass through a
point of G. We then define the color of R to be the sum of the colors of those
edges which intersect C.

That the colors of the regions are well-defined depends on the fact that
the sum of the colors of the edges which intersect any simple closed curve
not passing through a vertex of G is k,. Let S be such a curve, and let
¢, €2, ¢, be the colors of the edges which intersect S. In addition, let
d, ds, - -, d, be the colors of those edges interior to §. Observe that if
¢(v) denotes the sum of the colors of the 3 edges incident with a vertex v,
then ¢(v) = ko,. Hence for all vertices v interior to S, X ¢(v) = ky. On the
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other hand, we also have

Yewy=c +c+ +c, +2d; +dy + -+ d,)
=c¢ + ¢+ 4,

since every element of F is self-inverse. Thusc¢; + ¢, + - + ¢, = ko It
isnow a routine matter to show that this constitutes a 4-coloring of the regions
of G, completing the proof.

Since each line color class resulting from an s-line coloring of a regular
graph G of degree n is a 1-factor of G, the preceding result produces another
equivalent of the Four Color Conjecture.

Corollary 12.12(a) The Four Color Conjecture holds if and only if every
bridgeless, cubic planar graph is 1-factorable.

Theorem 12.12 has been generalized in terms of factorization (see Ore
[O7, p. 103]).

Theorem 12.13 A necessary and sufficient condition that a connected planar
map G be 4-colorable is that G be the sum of three subgraphs G,, G,, G; such
that for each point », the number of lines of each G, incident with v are all
even or all odd.

Although it 1s the 4CC which has received the preponderance of publicity,
there are several other conjectures dealing with coloring. One of the most
interesting of these involves contractions and is due to Hadwiger [ H1].

Hadwiger’s Conjecture. Every connected n-chromatic graph is contractible
to K, '

Not surprisingly, this conjecture is related to the 4CC. Hadwiger’s
Conjecture is known to be true for n < 4, a result of Dirac [DS]. Forn = §,
this conjecture states that every 5-chromatic graph G is contractible to K.
By Theorem 11.14, every such graph G 1s necessarily nonplanar. Thus
Hadwiger’s Conjecture for n = 5 implies the 4CC. The converse was
established by Wagner [W3].

Theorem 12.14 Hadwiger’s Conjecture for n = 5 1s equivalent to the Four

C'alar Claniactiira
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THE HEAWOOD MAP-COLORING THEOREM

Let §, be the orientable surface of genus n; thus, S, is topologically equivalent
to a sphere with n handles. The chromatic number of S,, denoted ¥(S,), is the
maximum chromatic number among all graphs which can be embedded
on §,. The surface S, is simply the sphere and the determination of y(S,)
is the problem we have already encountered on several occasions. The Four
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Color Conjecture states that y(Sy) = 4 although, of course, we know only
(by Theorem 12.7) that x(S,) is 4 or 5.

For the torus, Heawood [H38] was able to prove that ¥(S,) = 7. The
inequality x(S,) = 7 follows from the fact that it is possible to embed K,
on the torus. This is shown in Fig. 11.18. The equality x(S,) = 7 comes from
the fact that Heawood was also able to prove (see the proof of Theorem 12.15
below) that the chromatic number of the orientable surface of positive
genus n has the upper bound

ﬂms[T+V;+“q (n > 0). (12.7)

For n = 1, we have x(S,) < 7, so that y(§,) = 7.

Heawood, who found the error in Kempe’s “proof”’ of the Four Color
Conjecture, was himself not infallible. He believed that he had proved
equality in his formula, but just one year later, Heffter [ H40] pointed out
errors of omission in Heawood’s arguments resulting in only the inequality
(12.7). Heffter did prove equality for 0 < n < 6. Eventually, the statement
that equality holds in Heawood’s formula became known as the Heawood
Map-Coloring Conjecture. We now show that when Ringel and Youngs
proved that (K,) = {(p — 3)(p — 4)/12}, Theorem 11.18, they settled this
conjecture.

Theorem 12.15 (Heawood Map-Coloring Theorem). For every positive
integer n, the chromatic number of the orientable surface of genus # is
given by

— i |

xmb{i+V;+@1 (n > 0). (12.8)

Proof. We first prove inequality (12.7). Let G be a (p, q) graph embedded
on §,. We may assume G is a triangulation, since any graph can be aug-
mented to a triangulation of the same genus by adding edges, without
reducing y. If 4 is the average degree of the vertices of G, then p, ¢, and r (the
number of regions) are related by the equations

dp = 2q = 3r. (12.9)
Solving for q and r in terms of p and using Euler’s equation (11.4), we obtain
d=12(n — 1)/p + 6. (12.10)

Since d < p — 1, this gives the inequality
p—1=12n— 1)/p + 6. (12.11)

Solving for p and taking the positive root, we obtain

[7+ T+ 4n]
sz : J. (12.12)
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Let H(n) be the right-hand side of (12.8). Then we must show that
H(n) colors are sufficient to color the points of G. Clearly if p = H(n) we
have enough colors. If, on the other hand, p > H(n), we substitute H(n) for
p in (12.10), to obtain the inequality

d < 12(n — 1)/H(n) + 6 = H(n) — 1, (12.13)

with the latter equality obtained by routine algebraic manipulation. Thus
when p > H(n), there 1s a point v of degree at most H(n) — 2. Identify v
and any adjacent point (by an elementary contraction) to obtain a new
graph G'. If pP = p — 1 = H(n), then G’ can be colored in H(n) colors.
If p’ > H(n), repeat the argument. Eventually an H(n)-colorable graph will
be obtained. It is then easy to see that the coloring of this graph induces a
coloring of the preceding one in H(n) colors, and so forth, so that G itself
is H(n)-colorable.

The other half of the theorem is the difficult part, but Ringel and Youngs
have provided the means. If the complete graph K, can be embedded in
S,, then by equation (11.9),

}. (12.14)

Since the quantity in braces increases by less than one for each unit increase
in p, for each n there will be a greatest value of p which gives equality in
(12.14). Then solving (12.14) for p in terms of »n gives

,— [7 + J1 + 48n:|. (12.15)

2

Since x(K,) = p, we have found a graph with genus n and chromatic
number equal to H(n). This shows that H(n) is a lower bound for ¥(S,) and
completes the proof.

Note that (12.8) specialized to n = 0 is precisely the 4CC.

UNIQUELY COLORABLE GRAPHS

Let G be a labeled graph. Any x(G)-coloring of G induces a partition of the
point set of G into y(G) color classes. If y(G) = n and every n-coloring of G
induces the same partition of V, then G is called uniquely n-colorable or
simply uniquely colorable. The graph G of Fig. 12.6 is uniquely 3-colorable
since every 3-coloring of G has the partition {u,}, {,, u,}, {us, us} while
the pentagon is not uniquely 3-colorable; indeed, five different partitions
of its point set are possible.

We begin with a few elementary observations concerning uniquely
colorable graphs. First, in any n-coloring of a uniquely n-colorable graph G,
every point v of G is adjacent with at least one point of every color different
from that assigned to v; for otherwise a different n-coloring of G could be
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Fig. 12.6. A uniquely colorable graph.

obtained by recoloring ». This further implies that d(G) = n — 1. A
necessary condition for a graph to be uniquely colorable was found by
Cartwright and Harary [CH2].

Theorem 12.16 In the n-coloring of a uniquely n-colorable graph, the
subgraph induced by the union of any two color classes i1s connected.

Proof. Consider an n-coloring of a uniquely n-colorable graph G, and
suppose there exist two color classes of G, say C, and C,, such that the
subgraph § of G induced by C, u C, is disconnected. Let §; and S, be two
components of S. From our earlier remarks, each of §; and S, must contain
points of both C, and C,. An n-coloring different from the given one can
now be obtained if the color of the points in C; n §, is interchanged with
the color of the points in C, n §,. This implies that G is not uniquely
n-colorable, which is a contradiction.

The converse of Theorem 12.16 1s not true, however. This can be seen
with the aid of the 3-chromatic graph G of Fig. 12.7. It has the property
that in any 3-coloring, the subgraph induced by the union of any 2 color
classes is connected, but G is not uniquely 3-colorable.

From Theorem 12.16, it now follows that every uniquely n-colorable
graph, n > 2, is connected. However, a stronger result can be given, due
to Chartrand and Geller [CG1].

Theorem 12.17 Every uniquely n-colorable graph is (n — 1)-connected.

Proof. Let there be given an n-coloring of a uniquely n-colorable graph
G. If G is complete, it is necessarily K, and sois (n — 1)-connected. Assume

Fig. 12.7. A counterexample to the converse of Theorem 12.16.
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that G 1s neither complete nor (n — 1)-connected so that there exists a set U
of n — 2 points whose removal disconnects G. Thus, there are at least two
distinct colors, say C; and C,, not assigned to any point of U. By Theorem
12.16, a point colored C, is connected to any point colored C, by a path all
of whose points are colored C, or C,. Hence, the set of points of G colored

C, or C, lies within the same component of G — U, say G,. Another »-
no]nrmo of G can therefore be obtained hv takine any nmn'r of G — U which
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isnot in G, and recoloring it either C, or C ,- This contradlcts the hypothesis
that G is uniquely n-colorable; thus G is (n — 1)-connected.

Since the union of any k color classes of a uniquely n-colorable graph,
2 < k < n,induces a uniquely k-colorable graph, we arrive at the following
consequence.

Corollary 12.17(a) In any n-coloring of a uniquely n-colorable graph, the
subgraph induced by the union of any k color classes, 2 < k < n, is
(k — 1)-connected.

It is easy to give examples of 3-chromatic graphs containing no triangles;
indeed we have seen in Theorem 12.5 that for any n, there exist n-chromatic
graphs with no triangles and hence no subgraphs isomorphic to K,. In this
connection, a stronger result was obtained by Harary, Hedetniemi, and
‘Robinson [HHR1].

Theorem 12.18 For all n > 3, there is a uniquely n-colorable graph which
contains no subgraph 1somorphlc to K,,.

For n = 3, the graph G of Fig. 12.8 illustrates the theorem.
Naturally, a graph is uniquely 1-colorable if and only if it is 1-colorable,
that is, totally disconnected. It is also well known that a graph G is uniquely

2-colorable if and nnlv if G is 2-chromatic and connected. As michf be

expected, the 1nformat10n concerning uniquely n-colorable graphs, n > 3, is

Fig. 12.8. A uniquely 3-colorable graph having no triangles.
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very sparse. In the case where the graphs are planar, however, more can be
said, although in view of the Five Color Theorem, we need to consider only
the values 3 < n < 5. The results in this area are due to Chartrand and
Geller [CG1].

Theorem 12.19 Let G be a 3-chromatic plane graph. If G contains a triangle
T such that for each vertex v of G there 1s a sequence T, T,, T, - - -, T, of
triangles with v in T, such that consecutive triangles in the sequence have
an edge in common, then G is uniquely 3-colorable.

The next result is now immediate.

Corollary 12.19(a) If a 2-connected 3-chromatic plane graph G has at most
one region which is not a triangle, then G is uniquely 3-colorable.

The converse of Corollary 12.19(a) is not true, for a uniquely 3-colorable
planar graph may have more than one region which is not a triangle; see
Fig. 12.9. However, every uniquely 3-colorable planar graph must contain
triangles.

Fig. 12.9. A uniquely 3-colorable planar graph.

Theorem 12,20 If G is a uniquely 3-colorable planar graph with at least 4
points, then G contains at least two triangles.

In the case of uniquely 4-colorable planar graphs, the situation is
particularly simple.

Theorem 12.21 Every uniquely 4-colorable planar graph is maximal planar.

Proof. Let there be given a 4-coloring of a uniquely 4-colorable planar graph
G with the color classes denoted by V,, 1 < i < 4, where |V} = p,. Since the
subgraph induced by V; U V,, i # j, is connected, G must have at least
Z(p; + p; — 1) lines, 1 <i < j<4. However, this sum is obviously
3p — 6. Hence ¢ > 3p — 6 and so by Corollary 11.1(b), G is maximal
planar. “<° g-chcomatic

Although the existence of a 5-&olorable planar graph is still open, a
result of Hedetniemi given in [ CG1] settles the problem for unique 5-color-
ability; its proof is similar to that of the preceding theorem.

Theorem 12.22 No planar graph is uniquely 5-colorable.
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CRITICAL GRAPHS

If the Four Color Conjecture is not true, then there must exist a smallest
5-chromatic planar graph. Such a graph G has the property that for every
point v, the subgraph G — vis4-chromatic. Thus we havea natural approach
to a possible proof of the 4CC in its contrapositive formulation. This suggests
the basic problem of investigating such 5-chromatic graphs G or, more
generally, those n-chromatic graphs G with the propertythat (G — v) = n — 1
for all points v of G.

Following Dirac [D5], a graph G is called critical* if (G — v) < x(G)
for all points v;if y(G) = n, then G is n-critical. Of course, if G is critical, then
(G — v) = y(G) — 1 for every point v.

Obviously, no graph is 1-critical. The only 2-critical graph is K,, while
the only 3-critical graphs are the odd cycles. For n > 4, the n-critical
graphs have not been characterized.

Ordinarily, it is extremely difficult to determine whether a given graph
1s critical ; however, every n-chromatic graph, n > 2, contains an n-critical
subgraph. In fact, if H 1s any smallest induced subgraph of G such that
¥(H) = x(G), then H is critical.

It is clear that every critical graph G is connected ; furthermore, since
1(G) = max y(B) over all blocks B of G, it follows that G must be a block.
This 1s only one of several properties which critical graphs enjoy.

The next statement has already been demonstrated within the proof
of Theorem 12.2,

Theorem 12.23 If G is an n-critical graph, then 6(G) > n — 1.
We now make an observation on the removal of points.
Theorem 12.24 No critical graph can be separated by a complete subgraph.

Corollary 12.24(a) Every cutset of points of a critical graph contains two
nonadjacent points.

Every complete graph is critical; indeed for U < V(K,), (K, — U) =
p — |U|. For any other critical graph, however, it is always possible to
remove more than one point without decreasing the chromatic number by
more than one; in fact, if S is any independent set of points of an n-critical
graph, then (G — S) = n — 1. This further implies that if ¥ and v are any
two points of an n-critical graph G which is not complete, there exists an
n-coloring of G such that u and v are in the same color class and an n-coloring
of G such that u and » are in different color classes.

* If other kinds of critical graphs are present, these should be called color-critical.
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One area of research on critical graphs deals with cycle length, in partic-
ular with circumference and girth. By Theorem 12.23 and Corollary 7.3(b), if
G is an n-critical graph with p points such that p < 2n — 1, then G is

hamiltonian. More generally, Dirac [ D6] proved the following result.

Theorem 12.25 If G is an n-critical graph, n > 3, then either G is hamiltonian
or the circumference of G is at least 2n — 2.

Dirac [ D6] once conjectured that every 4-critical graph is hamiltonian;
however, Kelly and Kelly [KK1] showed this conjecture is not true. Dirac
[D6] also conjectured that for all m and n, n > 3, there exists a sufficiently
large value of p such that all n-critical graphs with at least p points have
circumference exceeding m. Kelly and Kelly proved this to be true. Itisa
consequence of Theorem 12.5 that for all m and n, there exists an n-critical
graph whose girth exceeds m.

A critical graph G may have the added property that for any line x of G,
¥(G — x) = y(G) — 1;in such a case, G is called line-critical, and if (G) = n,
G is n-line-critical. Although every line-critical graph is necessarily critical,
the converse does not hold. For example, the graph G of Fig. 12.10 is 4-
critical but is not line-critical since (G — x) = 4.

X

Fig. 12.10. A critical graph which is not line-critical.

Thus every property of critical graphs is also possessed by line-critical
graphs; but in some instances more can be said about the latter.

Theorem 12.26 If G is a connected n-chromatic graph containing exactly one
point of degree exceeding n — 1, then G is n-line-critical.

Proof. Let x be any line of G, and consider G — x. Certainly, (G — x) <
n — 2,and, moreover, foreveryinduced subgraph G'of G — x,d(G’) < n — 2.
Thus by Theorem 12.2, (G — x) < n — 1, implying that (G — x) = n — 1
and that G is n-line-critical.

According to Theorem 12.23, if G is an n-critical graph, then 2q >
(n — 1)p. For line-critical graphs, however, Dirac [D7] improved this
result.

Theorem 12,27 If G is an n-line-critical graph, n > 4, which is not complete,
then
2q=2mn—1)p+n— 3.
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HOMOMORPHISMS

It is convenient to consider only connected graphs in this section. An
elementary homomorphism of G is an identification of two nonadjacent
points. A homomorphism of G is a sequence of elementary homomorphisms.
If G’ 1s the graph resulting from a homomorphism ¢ of G we can consider ¢
as a function from V onto V' such that if ¥ and v are adjacent in G, then ¢u
and ¢v are adjacent in G'. Note that every line of G' must come from some
line of G, that is, if ¥’ and v" are adjacent in G', then there are two adjacent
points u and v in G such that ¢u = v’ and ¢v = v'. We say that ¢ is a homo-
morphism of G onto G', that G’ is a homomorphic image of G, and write G' = ¢G.
Thus in particular every isomorphism is a homomorphism. The path
P, has just 4 homomorphic images, shown in Fig. 12.11.

g oy 2 d A »r—————= *’r—y

Fig. 12.11. The homomorphic images of path P,.

A homomorphism ¢ of G is complete of order n if ¢G = K,. Note that
any homomorphism ¢ of G onto K, corresponds to an n-coloring of G since
the points of K, can be regarded as colors and by definition of homomorphism
no two points of G with the same color are adjacent. Each coloring defined by
a complete homomorphism has the property that for any two colors, there
are adjacent points « and v of G colored with these colors. In this case we have
a complete coloring. Figure 12.12 shows a graph with complete colorings
of order 3 and 4, where colors are indicated by positive integers. Obviously
the smallest order of all complete homomorphisms of G must be y(G).

The next theorem [HHP1] generalizes an earlier result due to Hajos
[H3] which appears as its corollary.

Theorem 12.28 For any graph G and any elementary homomorphism ¢ of G,

7(G) < 7(eG) < 1 + ¥G). (12.16)

1 4

3 2 4 4

Fig. 12.12. Two complete colorings of a graph.
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Proof. Let ¢ be the elementary homomorphism of G which identifies the
nonadjacent points ¥ and v. Then any coloring of £G yields a coloring of G
when the same color is used for u and v, so ¥(G) < x(¢G). On the other hand,
a coloring of ¢G is obtained from a coloring of G when the new point is given
a color different from all those used in coloring G, so that ¥(eG) < 1 + x(G).

Corollary 12.28(a) For any homomorphism ¢ of G, y(G) < y(¢G).

It is now natural to consider the maximum order of all complete homo-
morphisms of G. Thisinvariantiscalled the achromatic number and is denoted
Y(G). Since G can be colored with p colors, itis obviousthat y(G) < ¥(G) < p.
Neither of these inequalities is a particularly good bound for .

Theorem 12,29 For any graph G and any elementary homomorphism ¢ of G,
Y(G) — 2 < Y(eG) < Y(G). (12.17)

The example in Fig. 12.13 shows that the lower bound can be attained,
and hence is best possible. It is easy to verify that y(G) = 5 while ¥(¢G) = 3.

G: G

q i
Fig. 12.13. A homomorphism which decreases y by 2.

The next result, called the Homomorphism Interpolation Theorem in
[HHP1] depends quite strongly on the bounds given in (12.16).

Theorem 12,30 For any graph G and any integer n between y and ¢, thereisa
complete homomorphism (and hence a complete coloring) of G of order n.

Proof. Let Y(G) = t and let ¢ be a homomorphism of G onto K,. If ¢ 1s
just an isomorphism, then G is K, and y(G) = y¥(G). Otherwise, we can write
¢ = &, " &; & whereeachg;is an elementary homomorphism. Let G, = ¢,G,
G, = &G, ", K, = G,, = ¢,G,,_,. We know from (12.16) that y(G;, ) <
x(G;) + 1 for each i. Since ¥(G,) = ¥(G), it follows that for each n with

xG) £ n < t = Y(G), there exist

one eravh in flqn sequence (G.). say P
AV ¥ AW Eluyll Huvll\/\l \U l ou_y U

!

with chromatic number n. But then G, has a complete homomorphism ¢
of order n, and so ¢’e,; - - - &, &, is a homomorphism of G onto K,,.

Many upper bounds for ¥(G) are also bounds for ¥(G). As an example,
we extend the upper bounds in (12.3) and (12.4), as in [HH1].
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Theorem 12.31 For any graph G,
W+ r<p+ 1 (12.18)

The next result follows from (12.18) and the fact that ¥ > f,,.
Corollary 12.31(a) For any graph G,
Yy <p— By + 1 (12.19)

This inequality can also be proved directly using the proof of (12.3),
which it sharpens.

THE CHROMATIC POLYNOMIAL

The chromatic polynomial of a graph was introduced by Birkhoff and Lewis
[BL1] in their attack on the 4CC. Let G be a labeled graph. A coloring of G
from t colors is a coloring of G which uses t or fewer colors. Two colorings of
G from t colors will be considered different if at least one of the labeled
points is assigned different colors.

Let us denote by f(G, t) the number of different colorings of a labeled
graph G from ¢ colors. Ofcoursef(G, t) = 0ift < x(G). Indeed the smallest
t for which f(G, t) > 0 is the chromatic number of G. The 4CC therefore

asserts that for every planar graph G, f(G, 4) > 0.
For example, there are t ways of coloring any given point of K5. For a
second point, any of t — 1 colors may be used, while there are t — 2 ways of

coloring the remaining point. Thus
f(Ks 1) = it — 1) — 2).
This can be generalized to any complete graph,*
SEK, )=t - 1)t =2) -t —p+ 1) =ty (12.20)

The corresponding polynomial of the totally disconnected graph K p 18
particularly easy tofind since each ofits p points may be colored independently
in any of t ways:

f(K,, t) =t~ (12.21)

The central point vy of K 4 in Fig. 12.14 may be colored in any of t ways
while each endpoint may be colored in any of t — 1 ways. Therefore
f(K, 4 t) = tt — 1)*. Ineach of these examples, f(G, t) is a polynomial in ¢.
This is always the case, as we are about to see.

Theorem 12.32 If u and v are nonadjacent points in a graph G, and ¢ is the
elementary homomorphism which identifies them, then

f(G, t) = f(G + uv, t) + f(eG, t). (12.22)

* Following Riordan [R15], we denote the expression for the falling factorial by ¢,,.
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O Uz
Ug

[2F) Ug

Fig. 12.14. A labeled copy of K| ,.

Proof. The equation follows directly from two observations. First, the
number of ways of coloring G from ¢ colors where u and v are colored
differently is precisely the number of ways of coloring G + uv from ¢ colors.
Second, the number of ways of coloring G from ¢ colors where u and v are
colored the same is exactly the number of ways of coloring the homomorphic
image G from ¢ colors, where ¢ identifies u and v.

This theorem now implies that if G is any noncomplete (p, q) graph, then
there are graphs G, with g + 1 lines and G, with p — 1 points such that
f(G, t) = f(Gy, t) + f(G,, t). The equation (12.22) can then be applied to
G, and G,, and so on, until only complete graphs are present. Hence
f(G, t)is the sum of expressions of the form f (K, t). Howeverf(K,, t) = ¢,
is a polynomial in .

Corollary 12.32(a) For any graph G, f(G, t) is a polynomial in ¢.

We thus refer to f(G, t) as the chromatic polynomial of G. To illustrate
the theorem, we employ a device introduced by Zykov [Z1] where a diagram
of the graph is used to denote its chromatic polynomial, with ¢ understood.
We indicate by u and v the nonadjacent points considered at each step,
following the exposition of Read [R6].

Thus for the graph G of Fig. 12.15,

f(G, 1) = ts) + 3ty + ta) = > — Tt* + 18> — 20¢* + 8t

In particular, the number of ways of coloring G from 3 colors is f(G, 3) = 6.
There are several properties of chromatic polynomials which now follow
directly from Theorem 12.32.

Theorem 12.33 Let G be a graph with p points, g lines, and & components
Gl’ Gz, Tt Gk' Then

1. f(G, t) has degree p.

2. The coefficient of t? in f(G, t) is 1.

3. The coefficient of t* ! in f(G, t) is —gq.
4. The constant term in f(G, t) is 0.

5. (G, 1) = Ti-, f(G, 1),

6

. The smallest exponent of ¢ in f(G, t) with a nonzero coeflicient is k.
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G, 1)

B 1
> >

f(K59 t)+3f(K4! t)+f(K3a t)

Fig. 12.15. The determination of a chromatic polynomial.

Not quite so obvious is the following result discovered by Whitney
[W10] and generalized by Rota [ R20] using his powerful methods involving
Mobius inversion.

Theorem 12.34 The coefficients of every chromatic polynomial alternate in
sign.

Certainly, every two isomorphic graphs have the same chromatic
polynomial. However, there are often several nonisomorphic graphs with
the same chromatic polynomial ; in fact, all trees with p points have equal
chromatic polynomials.

Theorem 12.35 A graph G with p points is a tree if and only if
f(G, 1) = t(t — 1P~ 1L,

Proof. First we show that every labeled tree T with p points has t(t — 1)?~!
as its chromatic polynomial. We proceed by induction on p, the result being
obviousfor p = 1and p = 2. Assume the chromatic polynomial of all trees
with p — 1 pointsis given by #((t — 1)?~2. Let v be an endpoint of T and sup-
pose x = uvis the line of T incident with v. By hypothesis, thetreeT' =T — v
has t(t — 1)?~2 for its chromatic polynomial. The point v can be assigned
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any color different from that assigned to u, so that v may be colored in any

oft — 1 ways, Thusf(T,8) = (t — )f(T,t) = t{t — 1)»~ L.

Conversely, let G be a graph such that f(G, t) = #(t — 1)~ ', Since the
coefficient of ¢ in f(G, t) is nonzero, G is connected by Theorem 12.33(6).
Furthermore, the coefficient of t?~'is —(p — 1)so that G has p — 1 lines by
Theorem 12.33(3). Theorem 4.1 now guarantees that G is a tree.

It remains an unsolved problem to characterize graphs which have the
same chromatic polynomial. Ofa more basic nature is the unsolved problem
of determining what polynomials are chromatic. For example, the poly-
nomial t* — 3t® + 3¢? satisfies all the known properties of a chromatic
polynomial, but is not chromatic. For if it were f(G, t) for some graph G, then
necessarily G would have 4 points, 3 lines, and 2 components so that
G = K; v K,. However, the chromatic polynomial of this graph is .

f(G, 1) = tat = t* — 33 + 212

It has been conjectured by Read [R6] that the absolute value of the
coefficients of every chromatic polynomial are strictly increasing at first,
then become strictly decreasing and remain so.

EXERCISES

12.1 Concerning the join of two graphs,

a) (G, + Gy) = xGy) + x(Gy),
b) G, and G, are critical if and only if their join G, + G, is.

4 TL .~ o - T Py o 1. Y 1 . | P RS T £y - . s 4
1Z.2 Iin = 31sthe length of the longest odd cycie of G, then ¥(G) < n + 1.
(Erdos and Hajnal [EH1])

12.3 If the points of G are labeled v, v;, '+, v, so that d; > d, = -+ > d, then
#(G) < max;min {i, d; + 1}. (Welsh and Powell [WP1])

124 If not every line lies on a hamiltonian cycle, then ¥ < 1 + p/2.

12.5 The chromatic number of the conjunction G, A G, of two graphs does not
exceed that of either graph. (S. T. Hedetniemi)

12.6 The only regular graph of degree n > 3 which is (n + 1)-chromatic is K, , ;.

12.7 The following regular graphs are all those for which the upper bounds in (12.4)
and (12.5) are realized;

a) x + ¥ =p + lonlyfor K, K, and Cs.
b) xx = [((p + 1)/2)*] only for K,, K,, K, and Cs. (Finck [F4])
) If p = p(G) is a prime, then y¥ = p only for K, and K,.
) > + 7> =p* + 1 if and only if G = K, or K,; otherwise
PR <p-1)+4 (Finck [F4])

12.9 Every outerplanar map is 3-colorable.

128 a
b

12.10 Every 4-connected plane map is 4-colorable.
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12.11 In any coloring of a line-graph, each point is adjacent with at most two points
of the same color.
12.12 Consider a connected graph G which is not an odd cycle. If all cycles have the
same parity, then ¥(G) = A(G). (J. A. Bondy and D. J. A, Welsh)
12.13 Find the line-chromatic numbers of K, and of K, ,..

(Behzad, Chartrand, and Cooper [BCC1])

12.14 1f H is the graph obtained from G by taking V(H) = X(G) and x, y are adjacent
in H whenever they do not both lie in a complete subgraph of G, then y(H) is the minimum
number of complete subgraphs whose union is ¥V u X. (Havel [H37])

12.15 Every toroidal graph has é < 6, and hence has ¥ < 7.
12.16 There is a 5-critical graph with 9 points,
12.17 What is the smallest uniquely 3-colorable graph which is not complete?

12.18 What is the minimum number of lines in a uniquely n-colorable graph with
p points? (Cartwright and Harary [CH2])

12.19 Obviously the chromatic number of any graph is at least as large as §,. For any
odd cycle C,,py, 1 > 2, By is 2 and y is 3. Construct a graph with no triangles,
Bo = 2, and y = 4.

(This can be done with only 11 points.)

12.20 If y(G) = n = 5, then there are n points such that each pair are connected by at
least four disjoint paths. (Dirac [D9])

1221 For any integers d and n such that 1 < d < n, there exists an n-critical graph
with f, = d. (House [H47])
12.22 a) Every 3-chromatic maximal planar graph is uniquely 3-colorable.

b) An outerplanar graph G with at least 3 points is uniquely 3-colorable if and
only if it is maximal outerplanar. (Chartrand and Geller [CG1])

12.23 An n-critical graph cannot be separated by the points of a uniquely (n — 1)-
colorable subgraph. (Harary, Hedetniemi, and Robinson [HHR1])

12.24 For any independent set S of points of a critical graph G, (G — S) = x(G) — 1.
(Dirac [D12])
12.25 For any elementary contraction # of a graph G, |x(G) — x(nG)| < 1.
(Harary, Hedetniemi, and Prins [HHP1])
12.26 Determine the achromatic nun:lber of P, C,, W,,and K, .

12.27 The n-chromatic number y,(G) is the smallest number m of colors needed to color
G such that not all points on any path of length » are colored the same.

a) For any n there is an outerplanar graph G such that y,(G) = 3.
b) For any n there is a planar graph G such that y,(G) = 4.

(Chartrand, Geller, and Hedetniemi [CGH1])
12.28 If e is the length of a longest path in G then ¥(G) < e + 1. (Gallai [G4])
12.29 The chromatic number of any graph G satisfies the lower bound

1G) = p¥(p* — 29).



CHAPTER 13

MATRICES

Wait coldly columned, dead, prosaic.
Poet, breathe on them and pray
They burn with life in your mosaic.

J. LuzzZATO

A graph is completely determined by either its adjacencies or its incidences,
This information can be conveniently stated in matrix form. Indeed, with a
given graph, adequately labeled, there are associated several matrices,
including the adjacency matrix, incidence matrix, cycle matrix, and cocycle
matrix. It is often possible to make use of these matrices in order to identify
certain properties of a graph. The classic theorem on graphs and matrices
is the Matrix-Tree Theorem, which gives the number of spanning trees in
any labeled graph. The matroids associated with the cycle and cocycle

matrices of a graph are discussed.

THE ADJACENCY MATRIX

The adjacency matrix A = [a;;] of a labeled graph G with p points is the
p X p matrix in which a;; = 1ifp; is adjacent with v; and a;; = 0 otherwise.
Thus there is a one-to-one correspondence between labeled graphs with p
points and p x p symmetric binary matrices with zero diagonal.

Figure 13.1 shows a labeled graph G and its adjacency matrix A. One
immediate observation is that the row sums of A are the degrees of the points
of G. In general, because of the correspondence between graphs and matrices,
any graph-theoreticconceptisreflected in theadjacency matrix. Forexample,
recall from Chapter 2 that a graph G is connected if and only if there 1s no
partition V = V, u V, of the points of G such that no line joins a point of V;
with a point of V,. In matrix terms we may say that G is connected if and only
if there is no labeling of the points of G such that its adjacency matrix has the

reduced form
_ All 0
4 = [ 0 Azz]’

150



THE ADJACENCY MATRIX 151

Ug

1 U

1 01 10

Uy Ug
Fig. 13.1. A labeled graph and its adjacency matrix.

where A, and 4,, are square. If A; and A, are adjacency matrices which
correspond to two different labelings of the same graph G, then for some
permutation matrix P, A, = P~ '4,P. Sometimes a labeling is irrelevant,
as 1n the following results which interpret the entries of the powers of the
adjacency matrix.

Theorem 13.1 Let G be a labeled graph with adjacency matrix 4. Then the
i, j entry of A" is the number of walks of length n from v; to v;.

Corollary 13.1(a) For i # j, the i, j entry of A% is the number of paths of
length 2 from v, to v;. The i, i entry of A2 is the degree of v; and that of 4°
1s twice the number of triangles containing v;.

Corollary 13.1(b) If G is connected, the distance between v; and v; for i # j
is the least integer n for which the i, j entry of 4" is nonzero.

The adjacency matrix of a labeled digraph D is defined similarly: A =
A(D) = [a;;] has a;; = 1 if arc vp; is in D and is O otherwise. Thus A4(D)
is not necessarily symmetric. Some results for digraphs using A(D) will
be given in Chapter 16. By definition of A(D), the adjacency matrix of a
given graph can also be regarded as that of a symmetric digraph. We now
apply this observation to investigate the determinant of the adjacency
matrix of a graph, following [ H27].

A linear subgraph of a digraph D is a spanning subgraph in which each
point has indegrce one and outdegree one. Thus it consists of a disjoint
spanning collection of directed cycles.

Theorem 13.2 If D 1s a digraph whose linear subgraphs are D;,i = 1, - -, n,
and D, has ¢; even cycles, then

det A(D) = Z (—1)°.

Every graph G is associated with that digraph D with arcs v;v; and v;
whenever v; and v; are adjacent in G. Under this correspondence, each linear
subgraph of D yields a spanning subgraph of G consisting of a point disjoint

collection of lines and cycles, which is called a linear subgraph of a graph.
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Those components of a linear subgraph of G which are lines correspond to
the 2-cycles in the linear subgraph of D in a one-to-one fashion, but those
components which are cycles of G correspond to two directed cycles in D.
Since A(G) = A(D) when G and D are related as above, the determinant of
A(G) can be calculated.

Corollary 13.2(a) If G 1s a graph whose linear subgraphs are G;,i = 1,-- -, n,
where G; has ¢; even components and c, cycles, then

det A(G) = Z (—1)724,

THE INCIDENCE MATRIX

A second matrix, associated with a graph G in which the points and lines are
labeled, is the incidence matrix B = [b;;]. This p x g matrix has b;; = 1
if v; and x; are incident and b;; = O otherwise. As with the adjacency matrix,
the incidence matrix determines G up to isomorphism. In fact any p — 1
rows of B determine G since each row is the sum of all the others modulo 2.

The next theorem relates the adjacency matrix of the line graph of G to
the incidence matrix of G. We denote by BT the transpose of matrix B.

Theorem 13.3 For any (p, q) graph G with incidence matrix B,
A(L(G)) = B™B — 2I,.
Let M denote the matrix obtained from — A by replacmg the ith dlagonal

| | PRGN I oy PO S

en n ™. . £ aine <
ent _y U)’ UUg U 1n€ 10110wWInNng 1E0rein lb Co1l ICU lIl LIIC [JlUJ.lCC[lng WUIK

of Kirchhoff [K?].

Theorem 13.4 (Matrix-Tree Theorem) Let G be a connected labeled graph
with adjacency matrix A. Then all cofactors of the matrix M are equal and
their common value is the number of spanning trees of G.

Proof. We begin the proof by changing either of the two 1’s in each column
of the incidence matrix B of G to — 1, thereby forming a new matrix E. (We
will see in Chapter 16 that this amounts to arbitrarily orienting the lines of
G and taking E as the incidence matrix of this oriented graph.)

The i, j entry of EE" is e;,e;, + ene; + - + e,e;, Which has the
value degv; if i = j, —1if v; and v, are ad_]acent and 0 otherwise. Hence
EET = M.

Consider any submatrix of E consisting of p — 1 of its columns. This
p x (p — 1) matrix corresponds to a spanning subgraph H of G having
p — 1 lines. Remove an arbitrary row, say the kth, from this matrix to
obtain a square matrix F of order p — 1. We will show that |det F| is 1 or
0 according as H is or is not a tree. First, if H is not a tree, then because
H has p points and p — 1 lines, it is disconnected, implying that there is a
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component not containing v,. Since the rows corresponding to the points of
this component are dependent, det F = 0. On the other hand, suppose Hisa
tree. In this case, we can relabel its lines and points other than v, as follows:
Let u; # v, be an endpoint of H (whose existence is guaranteed by Corollary
4.1(a)), and let y, be the line incident with it; let u, # v, be any endpoint of
H — u, and y, its incident line, and so on. This relabeling of the points and
lines of H determines a new matrix F’ which can be obtained by permuting
the rows and columns of F independently. Thus|det F'| = |det F|. However,
F'islower triangular with every diagonal entry + 1 or —1 ; hence, |det F| =

The following algebraic result, usually called the Binet-Cauchy Theorem,
will now be very useful.

Lemma 13.4(a) If P and Q ar nand n x matrlces, respectlvely, w1th
aan o . dlense Aae DM e 2 Niieen 0 .
i = ri, L11CI1 UCL Fg lb LIIC d>Ulll Ol

determinants of P and Q.

(A major determinant of P or Q has order m, and the phrase “corre-
sponding major determinants” means that the columns of P in the one
determinant are numbered like the rows of Q in the other.)

We apply this lemma to calculate the first principal cofactor of M.
Let E; be the (p — 1) x g submatrix obtained from E by striking out its
first row. By letting P = E, and Q = E?, we find, from the lemma, that the
first principal cofactor of M is the sum of the products of the corre-
sponding major determinants of E, and ET. Obviously, the corresponding
major determinants have the same value. We have seen that their product is
1ifthe columns from E, correspond to a spanning tree of G and is 0 otherwise.
Thus the sum of these products is exactly the number of spanning trees.

The equality of all the cofactors, both principal and otherwise, holds for
every matrix whose row sums and column sums are all zero, completing the
proof.

To illustrate the Matrix-Tree Theorem, we consider a labeled graph G
taken at random, say K, — x. This graph, shown in Fig. 13.2, has eight
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X3 X1

X4

X2
X7 *1 X7

*4 Xe ‘ X2 Xg

Xs X5

Fig. 13.3. Two graphs with the same cycle matrix.
spanning trees, since the 2,3 cofactor, for example,

3 -1 -1 -1

3 —1 -1
of M= “'} f *; ‘1) is —|-1 —-1 —-1|=8.
T h -1 0 2

-1 0 -1 2

The number of labeled trees with p points is easily found by applying the
Matrix-Tree Theorem to K,. Each principal cofactor is the determinant
of orderp — 1:

p—1 -1 - - - -1
—1 p— 1 - - - —1

-1 -1 - - - p=1
Subtracting the first row from each of the others and adding the last p — 2

columns to the first yields an upper triangular matrix whose determinant
is p?~2,

Corollary 13.4(a) The number of labeled trees with p points is p?~ 2.

There appear to be as many different ways of proving this formula as
there are independent discoveries thereof. An interesting compilation of
such proofs is presented in Moon [M15].

THE CYCLE MATRIX

Let G be a graph whose lines and cycles are labeled. The cycle matrix
C = [¢;;] of G has a row for each cycle and a column for each line with
¢;; = 1if the ith cycle contains line x; and c¢;; = O otherwise. In contrast to
the adjacency and incidence matrices, the cycle matrix does not determine
a graph up to isomorphism. Obviously the presence or absence of lines
which lie on no cycle is not indicated. Even when such lines are excluded,
however, C does not determine G, as is shown by the pair of graphs in Fig. 13.3,
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which both have cycles

Z, = {xu X2, x3} Z, = {xz, X4, X5 xe}
Zy = {xq, X7, X5} Z, = {x, X1 Xz Xe, X}

3 D’ i [ L 12 32 a3 27 )
Zs = {xzs Xgs Xs55 X7, xs} Zg = {xls X3, Xg5 Xs55 X7, xs}

and therefore share the cycle matrix

(1 11 00 0 0 0]2Z,
0101110 0]2Z,
c_|00000 11 1|2
1 011110 0f2,
0101101 1]2Z
1011101 1]Z

The next theoretn provides a relationship between the cycle and incidence
matrices. In combinatorial topology this result is described by saying that
the boundary of the boundary of any chain is zero.

Theorem 13.5 If G has incidence matrix B and cycle matrix C, then
CBT = 0 (mod 2).

Proof. Consider the ith row of C and jth column of BY, which is the jth row
of B. The rth entries in these two rows are both nonzero if and only if x, is
in the ith cycle Z; and is incident with v;. If x, is in Z,, then v; is also, but
if v; is in the cycle, then there are two lines of Z; incident with v; so that the
i jentryof CBTis1 + 1 = 0 (mod 2).

Analogous to the cycle matrix, one can define the cocycle matrix C*(G).
If G is 2-connected, then each point of G corresponds to the cocycle (minimal
cutset) consisting of the lines incident with it. Therefore, the incidence matrix
of a block is contained in its cocycle matrix.

Since every row of the incidence matrix B is the sum modulo 2 of the
other rows, it is clear that the rank of B is at most p — 1. On the other hand,
if the rank of Bis less than p — 1, then there is some set of fewer than p rows

whose sum, modulo 2, is zero. But then there can be no line joining a point
in the set belongine to those rows and a nmnf not in that set. so (G cannot be

232 Taab 2L ULAVlIpAdip YV raaR oW 4 Lrasle SrAsiv 2ARST 222 laaisn 3%

connected. Thus we have one part of the next theorem. The other parts
follow directly from the results in Chapter 4 which give the dimensions of the
cycle and cocycle spaces of G.

~
Theorem 13.6 For a connected graph G, the ranks of the cycle, incidence,
and cocycle matricesare (C) = g — p + land v(B) = H(C*) = p — 1.

In view of Theorem 13.6, an important submatrix of the cycle matrix C
of a connected graph is given by any m = g — p + 1 rows representing a
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U X Ug Uy Xy U2
G X2 X5 T X3
X4
Uz X3 Uy Uy X3 Uq

Fig. 13.4. A graph and a spanning tree.

cycle basis. Each such reduced matrix C,(G)is anm x g submatrix of C, and
similarly a reduced cocyle matrix C¥(G) is m* x g, where m* = p — 1.
Then by Theorem 13.5, we have immediately CC*T = 0 (mod 2) and hence
also C,C*¥T = 0(mod 2). A reduced incidence matrix B, is obtained from B
by deletion of the last row. By an earlier remark, no information is lost by
so reducing B.

If the cycles and cocycles are chosen in a special way, then the reduced
incidence, cycle, and cocycle matrices of a graph have particularly nice
forms. Recall from Chapter 4 that any spanning tree T determines a cycle
basis and a cocycle basis for G. In particular, if X| = {x,, x5, " -+, x,_,} is
the set of twigs (lines) of T, and X, = {x,, x,11, -, X,} is the set of its
chords, then there is a unique cycle Z;in G — X, + x;,, p < i <gq,and a
unique cocycle Z¥in G — X + x; 1 < j < p — 1, and these collections of
cycles and cocycles form bases for their respective spaces. For example, in the
graph G of Fig. 13.4 the cycles and cocycles determined by the particular
spanning tree T shown are

Z, = {x1, X3 X4}, Z¥ = {xy, X4 X5},
ZS = {xlv x23 x35 xs}v Z=2k = {x2a Xa, xs},
Zg‘ = {x3’ x5}'

The reduced matrices, which are determined both by G and the choice of T,
are:

X, X,
Xy Xg X31X4 X5
r
vy {1 1 0,0 O
ByG, T)=v,|1 O 0:1 1],
v |0 1 111 0O
|
Xy X,
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and X, X,
—~—Ht—

Z¥[1 0 0,1 1
C¥G,T)=2Z%|0 1 011 1}

z#lo o 1,0 1

It is easy to see that this is a special case of the following equations (all
modulo 2) which hold for any connected graph G and spanning tree T :

X X2 X, X,
B, = BO(G T) = [B1 Bz] Cy = Co(Gs T) = [C1 Iml
and
X, X,
" ——
= CE(G, T) = [Im* Cg‘]s

where CT = B{'B, = C¥and C¥ = B{'B, = [I,.» CT]. It follows from
these equations that, given G and T, each of the partitioned matrices B,
C,, and C¥ determines the other two.

Excursion—Matroids Revisited

The cycle and cocycle matrices are particular representations of the cycle
matroid and cocycle matroid of a graph, introduced in Chapter 4. A matroid
is called graphical if it is the cycle matroid of some graph, and cographical if it
is a cocycle matroid. Tutte [T12] has determined which matroids are
graphical or cographical, thereby inadvertently solving a previously open
problem in electric network theory.

The smallest example of a matroid which is not graphical or cographical is
the self-dual matroid obtained by taking M = {1, 2, 3, 4} and the circuits
all 3-element subsets of M.

N

Fig. 13.5. The new circuits in the whirl of W,

Another example, Tutte [T19], of a matroid which is not graphical

Invnlvpc fl’lﬂ wheel w =K, +C ch n\rn]n mqfrn111 haeg HZ —n + 1

¥Y llwwl rr + 1 _— AN 1 1 \/ JUI\J ARIALLE UiV 11840

circuits since there are that many cycles in a wheel. If in this matroid we
remove from the collection of circuits the cycle C, which forms the rim of the
wheel, and add to it all of the “spoked rims” (the sets of lines in the subgraphs
shown in Fig. 13.5), then it can be shown that the result is a new matroid
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which is not graphical or cographical. This is called a whirl of order n and is
generated by n? circuits.

Even if a matroid is graphical, it need not be cographical. For example,
the cycle matroid of K 5 is not cographical. In fact a matroid is both graphical
and cographical if and only if it is the cycle matroid of some planar graph.

EXERCISES

13.1 a) Characterize the adjacency matrix of a bipartite graph.

b) A graph G is bipartite if and only if for all odd » every diagonal entry of 4" is 0.
13.2 Let G be a connected graph with adjacency matrix A. What can be said about A if

a) v; is a cutpoint?

b) v, is a bridge?
13.3 If ¢,(G) is the number of n-cycles of a graph G with adjacency matrix A, then

a) ¢3(G) = Ltr(43).

b) culG) = 3[tr(4% — 2g — 2 5, ; aP]

c) ¢s(G) = toltr(4®) — 5tr(4%) — SEL | 2, (a; — 2)af].

(Harary and Manvel [HM1])

134 a) If G is a disconnected labeled graph, then every cofactor of M is 0.
b) If G is connected, the number of spanning trees of G is the product of the
number of spanning trees of the blocks of G.

(Brooks, Smith, Stone, and Tutte [BSST1])

13.5 Let G be a labeled graph with lines x;, x,, - - -, x,. Define the p x p matrix

q

M, = [m;] by
—-Xx if x,=vp
my=4 KT ‘ for i+ j,
0 if v; and v; are not adjacent
ml-,- = Z m,-".

n¥i

By the term of a spanning tree of G is meant the product of its lines. The tree polynomial
of G is defined as the sum of the terms of its spanning trees.

The Variable Matrix Tree Theorem asserts that the value of any cofactor of the
matrix M, is the tree polynomial of G.

13.6 Do there exist two different graphs with the same cycle matrix which are smaller
than those in Fig. 13.3?

13.7 The “cycle-matroid” and “cocycle-matroid” of a graph do indeed satisfy the
first definition of matroid given in Chapter 4.

138 Two graphs G, and G, are cospectral if the polynomials det (4, — tI) and
det (4, — tI) are equal. There are just two different cospectral graphs with 5 points.

(F. Harary, C. King, and R. C. Read)

13.9 If the eigenvalues of A(G) are distinct, then every nonidentity automorphism of
G has order 2. (Mowshowitz [M17])
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13.10 Let f(t) be a polynomial of minimum degree (if any) such that every entry of
J(A) is 1, where A is the adjacency matrix of G. Then a graph has such a polynomial if
and only if it is connected and regular. (Hoffman [H45])
13.11 An eulerian matroid has a partition of its set S of elements into circuits,

a) A graphical matroid is eulerian if and only if it is the cycle matroid of an
eulerian graph,
b) Not every eulerian matroid is graphical.
13.12 In a binary matroid, the intersection of every circuit and cocircuit has even
cardinality. Every cocircuit of a binary eulerian matroid has even cardinality. In other
words, the dual of a binary eulerian matroid 1s a “bipartite matroid,” defined as expected.

(Welsh [W9])



CHAPTER 14

GROUPS

Tyger! Tyger! burning bright

In the forests of the night,

What immortal hand or eye

Could frame thy fearful symmetry?

WILL1AM BLAKE

From its inception, the theory of groups has provided an interesting and
powerful abstract approach to the study of the symmetries of various con-
figurations. Itisnot surprising that there is a particularly fruitful interaction
between groups and graphs. In order to place the topic in its proper setting,
we recall some elementary but relevant facts about groups. In particular, we
develop several operations on permutation groups. These operations play
an important role in graph theory as they are closely related to operations on
graphs and are fundamental in graphical enumeration.

Any model of a given axiom system has an automorphism group, and
graphs are no exception. Itis observed that the group of a composite graph
may be characterized in terms of the groups of its constituent graphs under
suitable circumstances. Results are also presented on the existence of a
graph with given group and given structural properties. The chapter is
concluded with a study of graphs which are symmetric with respect to their
points or lines.

THE AUTOMORPHISM GROUP OF A GRAPH

117 manmnll #l 4 oo ass ~ ~ L~ [P Y Ny U (Y
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with a binary operation, denoted by the juxtaposition «,a, for o, o, in A,
constitutes a group whenever the following four axioms are satisfied :

Axiom 1 (closure) For all a;, a, in A4, a,a, is also an element of A.
Axiom 2 (associativity) For all «,, «,, a5 in A4,

ay(a0s) = (aq00p)ots.

160
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Axiom 3 (identity) There is an element i in 4 such that
it =oai =a for all ain A.

Axiom 4 (inversion) If Axiom 3 holds, then for each a in A4, there is an element
denoted «~ ! such that

o ! = o la = i

A 1-1 mapping from a finite set onto itself is called a permutation. The
usual composition of mappings provides a binary operation for permutations
on the same set. Furthermore, whenever a collection of permutations is
closed with respect to this composition, Axioms 2, 3, and 4 are automatically
satisfied and it is called a permutation group. If a permutation group A acts
on object set X, then |A4| is the order of this group and | X| is the degree.

When A4 and B are permutation groups acting on the sets X and Y
respectively, we will write A =~ B to mean that 4 and B are isomorphic
groups. However A = B indicates not only isomorphism but that 4 and B
are identical permutation groups. More specifically A =~ B if there is a 1-1
map h: A < B between the permutations such that for all «,, a, in A4,
h(oyo,) = h(o)h(a;). To define A = B precisely, we also require another
1-1 map f: X < Y between the objects such that for all x in X and « in 4,
flox) = h(a) f(x).

An automorphism of a graph G is an isomorphism of G with itself. Thus
each automorphism « of G is a permutation of the point set V which preserves
adjacency. Of course, « sends any point onto another of the same degree.
Obviously any automorphism followed by another is also an automorphism,
hence the automorphisms of G form a permutation group, I'(G), which acts
on the points of G. It is known as the group of G, or sometimes as the point-
group of G. The group I'(D) of a digraph D is defined similarly.

The identity map from V onto V is of course always an automorphism
of G. Forsome graphs, it is the only automorphism ; these are called identity
graphs. The smallest nontrivial identity tree has seven points and is shown in
Fig. 14.1, as is an identity graph with six points.

The point-group of G induces another permutation group I',(G), called
the line-group of G, which acts on the lines of G. To illustrate the difference
between these two groups, consider K, — x shown in Fig. 14.2 with points
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53] X1 Ug
Ky—x: Xq X5 X3
Fig. 14.2. A graph with labeled points and
lines. Vs X Os

labeled v,, v,, v3, v, and lines x,, x,, X3, X4, X5. The point-group I'(K, — x)
consists of the four permutations:

(v )V )v3)va), (v (v3)vyv,), (v2)(va)(v103), (v103)(V,0,).

The identity permutation of the point-group induces the identity
permutation on the lines, while (v, v3)v,v,) induces a permutation on the
lines which fixes x s, interchanges x, with x, and x, with x5. In this way, one
sees that the line-group I' (K, — x) consists of the following permutations,
induced respectively by the above members of the point-group:

(e XX )X Nx5), (g X HX2X3)(Xs)h (X X2)(X3% HXs), (61 X3)(x2Xa)(X5).

Of course the line-group and the point-group of K, — x are isomorphic.
But they are certainly not identical permutation groups since I' (K, — x)
has degree S and I'(K, — x) has degree 4. Note that the line x; is fixed by
every member of the line-group. Even the permutation group obtained from
I',(K, — x) by restricting its object set to x,, X, X3, X, is not identical with
I'(K, — x), since these two isomorphic permutation groups of the same
degree have different cycle structure. Furthermore, it can be shown that
even when two permutation groups have the same degree and the same cycie
structure, they still need not be identical ; see Polya [P5, p. 176].

The next theorem [HP15] answers the question: when are I'(G) and
I',(G) isomorphic? Sabidussi[S1] demonstrated the sufficiency using group
theoretic methods.

Theorem 14.1 Theline-group and the point-group of a graph G are isomorphic
if and only if G has at most one isolated point and K, is not a component
of G.

Proof. Let o be the permutation in I';(G) which is induced by the permuta-
tion « in I'(G). By the definition of multiplication in I';(G), we have

o' f = (afy
for all o, f in I'(G). Thus the mapping ¢« — «' is a group homomorphism
from I'(G) onto I';(G). Hence I'(G) = I',(G) if and only if the kernel of this
mapping is trivial.
To prove the necessity, assume I'(G) = I';(G). Then a # i (the identity

permutation) implies o' # i. If G has distinct isolated points v, and v,, we
can define « € I'(G) by a(v,) = v,, a(v,) = vy, and a(v) = vforallv # vy, v,.
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Then o # ibut ' = i. If K, is a component of G, take the line of K, to be
x = v,v, and define « € I'(G) exactly as above to obtain o« # ibut o’ = i.

To prove the sufficiency, assume that G has at most one isolated point
and that K, is not a component of G. If I'(G) is trivial, then obviously I',(G)
fixes every line and hence I'{(G) is trivial. Therefore, suppose there exists
o € I'(G) with a(u) = v # u. Then the degree of u is equal to the degree of v.
Since u and v are not isolated, this degree is not zero.

CASE 1. uis adjacent to v. Let x = uv. Since K, 1s not a component, the
degrees of both u and v are greater than one. Hence there is a line y # x
which is incident with u and «'(y) is incident with v. Therefore o'(y) # y
and so o # i.

CASE 2. u is not adjacent to v. Let x be any line incident with u. Then
®'(x) # x and so a’ # i, completing the proof.

OPERATIONS ON PERMUTATION dROUPS

There are several important operations on permutation groups, which
produce other permutation groups. We now develop four such binary
operations : sum, product, composition, and power group.

Let A be a permutation group of order m = |A| and degree d acting on the
set X = {x,, x,, ', X4}, and let B be another permutation group of order
n = |B| and degree e actingon theset Y = {y,, y,,* -, y.}. Forexample, let
A = C,, the cyclic group of degree 3, which actson X = {1, 2, 3}. Then the
three permutations of C; may be written (1)(2)(3), (123), and (132). With
B = S,, the symmetric group of degree 2, actingon Y = {a, b}, we have the
permutations (a)(b) and (ab). We will use these two permutation groups to
illustrate the binary operations defined here.

Their sum* A + B is a permutation group which acts on the disjoint
union X v Y and whose elements are all the ordered pairs of permutations
ain A and § in B, written & + . Any element z of X U Y is permuted by
o + B according to the rule:

oz, ze X

b ey’ (14.1)

(@ + B)z) = {

Thus C; + §, contains 6 permutations each of which can be written as the
sum of permutations « € C; and ff € S, such as (123)(ab) = (123) + (ab).
The product** A x B of A and B is a permutation group which acts on
the set X x Y and whose permutations are all the ordered pairs, written
o % B, of permutations « in A and f in B. The element (x, y) of X x Y is

* Sometimes called o n
sometimes called p uct 1 tp uct ar
C

=
=]
=
o]
[=1
=
[#]
-+
w
[+]
3]
~
o)
— )
.

** Also known as cartesia
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Table 14.1
OPERATIONS ON PERMUTATION GROUPS

Sum Product Composition Power
group A B A+ B A x B A[B] B4
objects X Y XuY XxY XxY Y%
order m n mn mn mn® mn?
degree d e d+ e de de e’

permuted by « x f as expected:

(@ x B)x, y) = (ax, By). (14.2)

The product C; x S, also has order 6 but while the degree of the sum
C; + S, is 5, that of the product is 6. The permutation in C; x §, corre-
sponding to (123) + (ab) in the sum is (1a 2b 3a 1b 2a 3b), where for brevity
la denotes (1, a).

The composition* A[ B] of“A4 around B” alsoactson X x Y. Foreach «
in A and any sequence (8,, B,, - - -, B,) of d (not necessarily distinct) permuta-

tions in B, there is a unique permutation in A[ B] written («; B, B2, -~ -, BJ)
such that for (x;, y;)in X x Y:
(@ Bys Bas s Bad(xis y;)) = (orx;, Biyj)' (14.3)

The composition C,[S,] has degree 6 but its order is 24. Each permutation
in C4[S,] may be written in the form in which it acts on X x Y. Using the
same notation la for the ordered pair (1, a) and applying the definition (14.3),
one can verify that ((123) ; (a)(b), (ab), (a)(b)) is expressible as (1a 2a 3b 1b 2b 3a).
Note that S,[C;] has order 18 and so is not isomorphic to C;[S,].

The power group** denoted by B acts on Y*, the set of all functions
from X into Y. We will always assume that the power group acts on more than
one function. For each pair of permutations « in 4 and f in B there is a
unique permutation, written 8* in B4, We specify the action of #* on any
function f in Y* by the following equation which gives the image of each
x € X under the function *f:

B0 = Bf (). (14.4)

The power group S$° has order 6 and degree 8. It is easy to see by applying
(14.4) that the permutation in this group obtained from « = (123) and
B = (ab) has one cycle of length 2 and one of length 6.

Table 14.1 summarizes the information concerning the order and degree
of each of these four operations.

* Called “Gruppenkranz” by Polya[P6] and “‘wreath product™ by Littlewood [L3] and others.
** Not called by any other name as vet.
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Table 14.2
PERMUTATION GROUPS OF DEGREE p

Symbol Order Definition
Symmetric S, p! All permutations on {1, 2, - - -, p}
Alternating A, pl2 All even permutations on {1,2, - - -, p}
Cyclic C, P Generated by (12 - - - p)
Dihedral D, 2p Generated by (12 - - - p) and (1p)(2 p—1) - - -
Identity E, | (I)(2) - - - (p) is the only permutation.

We now see that three of these operations are not all that different.
Theorem 14.2 The three groups 4 + B, A x B, and B* are isomorphic.

It is easy to show that A + B =~ A4 x B. Toseethat A + B =~ B*, we
define the map f: B* - A + B by f(«; B) = «~ !B, and verify that f is an
A+ B=B+ A Ax B=B x A, and B =~ A3

Table 14.2 introduces notation for five well-known permutation groups
of degree p. In these terms, we can describe the groups of two familiar
graphs with p points.

Theorem 14.3 a) The group I'(G)is S, ifand only if G = K
W If (7 ic a } D

o
Wy 41 A7 10 O v

Thus two particular permutation groups of degree p, namely S, and D,
belong to graphs with p points. For all p > 6, there exists an 1dent1ty graph
with p points and in fact whenever p > 7, there is an identity tree.

THE GROUP OF A COMPOSITE GRAPH

Now we are ready to study the group associated with a graph formed from
other graphs by various operations. Since every automorphism of a graph

preserves both adjacency and nonadjacency, an obvious but important
mediatelv follows

S alsitwa ANSAARS WY 2.

[
F

Theorem 14.4 A graph and its complement have the same group,
I'(G) = I'(G). (14.5)

A “composite graph” is the result of one or more operations on disjoint
graphs. The group of a composite graph may often be expressed in terms of
the groups of the constituent graphs. Frucht [F10] described the group of
a graph nG which consists of n disjoint copies of a connected graph G.
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Theorem 14.5 If G is a connected graph, then
I'(nG) = §,[T(G)]. (14.6)

To illustrate the theorem, consider the graph G = 5K,, whose group is
Ss[S3]. An automorphism of G can always be obtained by performing an
arbitrary automorphism on each of the five triangles, and then following this
by any permutation of the triangles among themselves.

Theorem 14.6 If G, and G, are disjoint, connected, nonisomorphic graphs,
then
I(G, v G,) = I'(G,) + I(Gy,). (14.7)

Any graph G can be written as G = n,G, v n,G, U - - - U n,G,, where
n; is the number of components of G isomorphic to G;. Applying the last
two theorems, we have the result,

NG =S MGN + S TG +---+ 8
\~J “mLlt 171 ' Mpalt\vMis) ! !

a

(G (14.8)
L*\~r/]" \2 T J

Corollary 14.6(a) The group of the union of two graphs is the sum of their
groups,
G, v G,) = I'(G)) + I(G,), ' (14.9)

if and only if no component of G, is isomorphic with a component of G,.

The next corollary follows from Theorem 14.4, the preceding corollary,
and the fact that the complement of the join of two graphs is the union of
their complements, that is,

Corollary 14.6(b) The group of the join of two graphs is the sum of their
groups,

NG, + G,) = I(G,) + I(Gy), (14.11)
if and only if no component of G, is isomorphic with a component of G,.

A nontrivial graph G is prime if G = G; x G, implies that G, or G, is
trivial ; G is composite if it is not prime. Sabidussi [S5] observed that the
cartesian product of graphs is commutative and associative. He also devel-
oped a criterion for the group of the product of two graphs to be the product
of their groups. Since he proved that every nontrivial graph is the unique
product of prime graphs, the meaning of relatively prime graphs is clear.

Theorem 14.7 The group of the product of two graphs is the product of their
groups,
(G, x G;) = I'(Gy) x I(Gy), (14.12)

if and only if G, and G, are relatively prime.

Sabidussi [S4] settled the question raised in [H21] by providing a
criterion for the group of the lexicographic product (composition) of two
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Table 14.3
THE GROUPS OF THE LITTLE CONNECTED GRAPHS

Graph Group Graph Group

. Sl Sz + SZ

S, N S, + E,

Sa[E.]

i j S3 D4
S4 i El + S3

graphs to be the composition of their groups. The neighborhood of a point uis
the set N(u) consisting of all points v which are adjacent with u. The closed
neighborhood is N[u] = N(u) U {u}.

Thanwnse 1AQ TF ] o nnttnta "17 1ernnnantad than tha ar~iinm Aaftha camnacr
LuCuUiIciil 1“%.0 4Ll T 1 1D L1V L LULGL ]J. 1WA ICAY L\.cu, L1l 1l L1l ELUUP Ul L1l UU.I.IJ.IJUDI
tion of two graphs G, and G, is the composition of their groups,

I'(G,[G.]) = T(G[I(G,)), (14.13)
if and only if the following two conditions hold :

1. If there are two points in G, with the same neighborhood, then G, is
connected.

2. If there are two points in G, with the same closed neighborhood, then
G, is connected.

With these results, the groups of all graphs with p < 4 points can be
symbolized. The group of one of these graphs, namely K, — x, has already
been illustrated. The groups of the disconnected graphs are not given in
Table 14.3 but can be obtained by using Theorem 14.4.

The conditions for the group of the lexicographic products of two
graphs to be identical to the composition of their groups are rather complex.
This suggests that another operation on graphs be constructed for the purpose
of realizing the composition of their groups only up to group isomorphism.

The corona G, » G, of two graphs G, and G, was defined by Frucht and
Harary [FH1] as the graph G obtained by taking one copy of G, (which has
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A

Y

G, G, ® Gy ° Gy Gyo G,

A

Fig. 14.3. Two graphs and their two coronas.

p, points) and p, copies of G,, and then joining the ith point of G, to every
point in the ith copy of G,. For the graphs G, = K, and G, = K ,, the
two different coronas G, - G, and G, o G, are shown in Fig. 14.3. Itfollows
from the definition of the corona that G, - G, has p,(1 + p,) points and

q; + P14z + p1p, lines.

Theorem 14.9 The group of the corona of two graphs G; and G, can be
written explicitly in terms of the composition of their groups,

(G, G,) = TG [E, + T(G,)], (14.14)

if and only if G, or G, has no isolated points. The term E, in (14.14) when
' applied to Corollary 14.6(a) gives the next result.

Corollary 14.9(a) The group of the corona G, - G, of two graphs isisomorphic
to the composition I'(G,)[I'(G,)] of their groups if and only if G, or G, has
no isolated points.

GRAPHS WITH A GIVEN GROUP

Konig [K10, p. 5] asked: When is a given abstract group isomorphic with
the group of some graph? An affirmative answer to this question was given
constructively by Frucht [F8]. His proof that every group is the group of
some graph makes use of the Cayley “color-graph of a group” [ C4] which we
now define. Let F = {f,, fi, -, f,—.} be a finite group of order n whose
identity element is f,. Let each nonidentity element f; in F have associated
with it a different color. The color-graph of F, denoted D(F), is a complete
symmetric digraph whose points are the n elements of F. In addition, each
arc of D(F), say from f; to f}, is labeled with the color associated with the
element f; 'f; of F. Of course, in practice we simply label both points and
arcs of D(F) with the elements of F.

For example, consider the cyclic group of order 3, C; = {0, 1, 2}. The
color-graph D(C,) is shown in Fig. 144.

Frucht observed the next result, which is simple but very useful.
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Fig. 14.4, The color graph of the Fig. 14.5. Doubly-rooted graph to replace arc f, f;.
cyclic group Cj.
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Fig. 14.6. Frucht’s graph whose group is C; and a smaller such graph.

Lemma 14.1(a) Every finite group F is isomorphic with the group of those
automorphisms of D(F) which preserve arc colors.

To construct a graph G whose group I'(G) is isomorphic with F, Frucht
replaced each arcf; f;in D(F) by a doubly rooted graph. This is done in such a
way that every arc of the same color is replaced by the same graph. We
show in Fig. 14.4 the graph which replaces the arc f; f;. Let {7 'f; = f, and
introduce new points {u,,} and {v,,} so that in Fig. 14.5 the paths joining u,
with u; and v; with v;, ; contain 2k — 2 and 2k — 1 points respectively. In
effect, Frucht’s construction assigns a colorful undirected arrow to each arc
f:f;- Thus the resulting graph G has n*(2n — 1) points and I'(G) = F.

Theorem 14.10 For every finite abstract group F, there exists a graph G such
that I'(G) and F are isomorphic.

The graph obtained by this method from the cyclic group C; is shown in
Fig. 14.6(a). It should beclear from this example that the number of points in
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any graph so constructed is excessive. Graphs with a given group and fewer
points can be obtained when the group is known to have m < n generators.
In that case the color-graph is modified to include only directed lines which
correspond to the m generators. Thus a graph containing n(m + 1)2m + 1)
points can be obtained for the given group. Since C; can be generated by
one element, there is a graph with 18 points for C,. Itisshown in Fig. 14.6(b).

Fig. 14.7. A smallest graph whose group
is Cj.

The inefficiency of even this improvement of the method of construction
1s shown by the graph of Fig. 14.7. This is one of the two smallest graphs
whose automorphism group is cyclic of order three [HP3] and it has only
9 points and 15 lines.

Later Frucht [F9] showed that one could also specify that G be cubic.
It was becoming apparent that requiring G to have a given abstract group of
automorphisms was not a severe restriction. In fact Sabidussi [S2] showed
that there are many graphs with a given abstract group having one of several
other specified properties such as connectivity, chromatic number, and
degree of regularity.

Theorem 14.11 Given any finite, abstract, nontrivial group F and an integer
j (1 < j < 4), there are infinitely many nonhomeomorphic graphs G such
that G is connected, has no point fixed by every automorphism, I'(G) = F,
and G also has the property P;, defined by

P,: k(G) = n, nx>1

P,: x(G) = n, n>2
P.: Gis recular of deeree »n n > 3
d - r (W ] vau‘.ul A g uvavv 'l, e = -
P,: G is spanned by a subgraph homeomorphic to a given graph.

When Theorem 14.11 was published, Izbicki [11 ] looked into the problem
of constructing a graph with a given group which satisfies several of these
conditions simultaneously. By exploiting the results of Sabidussi [S2]
on the product of two graphs and making some constructions, he was able
to obtain a corresponding result involving regular graphs of arbitrary
degree and chromatic number.
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Corollary 14.11(a) Given any finite group F and integers n and m where
n > 3and 2 < m < n, there are an infinite number of graphs G such that
I'(G) = F, y(G) = m, and G is regular of degree n.

SYMMETRIC GRAPHS

The study of symmetry in graphs was initiated by Foster [ F6], who made
a tabulation of symmetric cubic graphs. Two points u and v of the graph G
are similar if for some automorphism a of G, a(u) = v. A fixed point is not
similar to any other point. Two lines x; = u;v, and x, = u,v, are called
similar if there is an automorphism « of G such that «({u,, v,}) = {u,, v,}.
We consider only graphs with no isolated points. A graph is point-symmetric
if every pair of points are similar; it is line-symmetric if every pair of lines are
similar ; and it is symmetric if it is both point-symmetric and line-symmetric.
The smallest graphs that are point-symmetric but not line-symmetric
(the triangular prism K; x K,) and vice versa (the star K, ,) are shown in
Fig. 14.8.

Fig. 14.8. A point-symmetric and a line-symmetric graph.

Note that if « is an automorphism of G, then it is clear that G — u and
G — ofu) are isomorphic. Therefore, if u and v are similar, then G — u =
G — v. Surprisingly, the converse of this statement is not true.* The graph
in Fig. 14.9 provides a counterexample. It is the smallest graph which has
dissimilar points 4 and v such that G — u = G — v, see [HP5].

AVNVANENES

Fig. 14.9. A counterexample to a conjecture.

The degree of a line x = uv is the unordered pair (d,, d,) with
d, = degu, and d, = degv. A graph is line-regular if all lines have the
same degree. In Fig. 14.10, the complete bipartite graph K, ; is shown it is
line-symmetric but not point-symmetric and is line-regular of degree (2, 3).

* A purported proof of Ulam’s conjecture depended heavily on this converse.
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K2.3:

Fig. 14.10. A line-regular line-symmetric
graph.

properties of line-symmetric graphs. Note the 0bv1ous but important
observation that every line-symmetric graph is line-regular.

symmetnc or bipartite.

Proof. Consider a line symmetric graph G with no 1solated points, having

~lina Than fA tha +lanct 4 anitnamarnhic .
(4 ]J.].lUD 1 llUll lUl all)’ 1111\/ J\r, LllUlb a-l\.l a-l' IUaDL ‘1 AULULLIVL Plllallla Wl, wz,

of G whichmap x onto thelinesof G. Letx = v,v,, V; = {o,(vy), -+, (vl)}
and V, = {o;(v,), - - -, ®,(v,)}. Since G has no isolated points, the union of
V, and V, is V. There are two possibilities: V; and V, are disjoint or they
are not.

CASE 1. If V] and V; are disjoint, then G is bipartite.

Consider any two points ¥, and w,; in V,. If they are adjacent, then
there is a line y joining them. Hence for some automorphism «;, we have
a{x) = y. This implies that one of these two points is in V; and the other is
in V,, a contradiction. Hence V; and V, constitute a partition of V' such that
no line joins two points in the same subset. By definition, G is bipartite.

CASE 2. If V| and V, are not disjoint, then G is point-symmetric.

Let u and w be any two points of G. We wish to show that u and w are
similar. If u and w are both in V; or both in V,, let o be an automorphism
mapping x onto a line incident with u and let § map x onto a line incident
with w. Then fa~ (1) = wso that any two points u and w in the same subset
are similar. If u is in ¥, and w is in V,, let v be a point in both V;
and V,. Since vis similar with ¥ and with w, u and w are similar to each other.

Corollary 14.12(a) If G is line-symmetric and the degree of every line is
(dy, d,) with d, # d,, then G is bipartite.

Corollary 14.12(b) If G is line-symmetric, has an odd number of points, and the
degree of every line is (d,, d,) with d;, = d,, then G is point-symmetric.

Corollary 14.12(¢) If G is line-symmetric, has an even number of points, and is
regular of degree d > p/2, then G is point-symmetric.

With these three corollaries, the only line-symmetric graphs not yet
characterized are those having an even number of points which are regular
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of degree d < p/2. The polygon with six points is an example of such a
line-symmetric graph which is both point-symmetric and bipartite. The
icosahedron, the dodecahedron, and the Petersen graph are examples of
such line-symmetric graphs which are point-symmetric but not bipartite.
But not all regular line-symmetric graphs are point-symmetric, as Folkman
[F5] discovered.

Theorem 14.13 Whenever p > 20 is divisible by 4, there exists a regular
graph G with p points which is line-symmetric but not point-symmetric.

HIGHLY SYMMETRIC GRAPHS

Following Tutte [ T20], an n-route is a walk of length n with specified initial
point in which no line succeeds itself. A graph G is n-transitive, n > 1, if it
has an n-route and if there is always an automorphism of G sending each
n-route onto any other n-route. Obviously acycle of any length is n-transitive
for all n, and a path of length n is n-transitive. Note that not every line-sym-
metric graph is l-transitive. For example, in the line-symmetric graph
K, , of Fig. 14.8, there is no automorphism sending the 1-route uv onto the
1-route vw.

If W isan n-route vy v, - - - v, and u is any point other than v,_, adjacent
with v,, then the n-route v, - - - v,uis called a successor of W. If W terminates
in an endpoint of G, then obviously W has no successor. For this reason, it
is specified in the next two theorems that G is a graph with no endpoints. We
now have a sufficient condition [T20, p. 60] for n-transitivity.

Theorem 14.14 Let G be a connected graph with no endpoints. If W is an
n-route such that there is an automorphism of G from W onto each of its
successors, then G is n-transitive.

There s a straightforward relationship [ T20, p. 61] between n-transitivity
and the girth of a graph.

Theorem 14.15 If G is connected, n-transitive, is not a cycle, has no endpoints
and has girth g, thenn < 1 + g/2.

e

~

Fig. 14.11. The Heawood graph.
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Using Theorem 14.14, it can be shown that the Heawood graph in
Fig. 14.11 is 4-transitive. Furthermore, it is easily seen from Theorem 14.15
that this graph is not 5-transitive.

There are regular graphs called “cages” which are, in a sense, even more
highly symmetric than n-transitive graphs. A graph G is n-unitransitive* ifit is
connected, cubic, and n-transitive, and if for any two n-routes W, and W,,
there is exactly one automorphism « of G such that «W; = W,. An n-cage,
n > 3, is a cubic graph of girth n with the minimum possible number of

points.
[T20, pp.

71-83].

Uy g

—

Fig. 14.12. The 7-cage is the union of the above subgraphs as labeled.

—

Fig. 14.13. The 8-cage is the union of the above subgraphs as labeled.

* Called n-regular in[T20, p. 62].
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Information about cages is presented in the next statement
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Table 14.4
THE KNOWN CAGES

n The n-cage n The n-cage

3 K, (shown in Fig. 2.1) 6 Heawood graph (Fig. 14.11)
4 K; 4 (Fig. 2.5) 7 McGee graph (Fig. 14.12)

5 Petersen graph (Fig. 9.6) 8 Levi graph (Fig. 14.13)

Theorem 14.16 There exists an n-cage for alln > 3. For n = 3 to 8 there is
a unique n-cage. Each of these n-cages is t-unitransitive for some t = t(n),
namely, #(3) = 2, t{4) = t(5) = 3, 6) = «7) = 4, and ¢(8) = 5.

All the known cages are now specified.

There are no n-transitive cubic graphs for n > 5, hence no n-unitransitive
ones; see Tutte [T8]. However, there are other n-unitransitive graphs,
n < 5, in addition to the cages. In particular, Frucht [F11] constructed
a l-unitransitive graph of girth 12 with 432 points, the cube Q5 and the
dodecahedron (Fig. 1.5) are 2-unitransitive, and Coxeter [C10] found 3-
unitransitive graphs other than the 4-cage and S-cage. One of these is
shown in Fig. 14.14.

This graph is a member of a class of graphs defined in [CH3]. For any
permutation « in S, the a-permutation graph of a labeled graph G is the
union of two disjoint copies G, and G, of G together with the lines joining
point v; of G, with v, of G,. Thus Fig. 14.14 shows a permutation graph
of the cycle C,,. The dust jacket of this book shows all four permutation
graphs of Cs.

Fig. 14.14. Another 3-unitransitive graph.
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EXERCISES
14.1 Find the groups of the following graphs: (a) 3K,, (b) K, + C,, (¢) K,,
(d) K, ,[K;]) (e) Ky v C,.
14.2 If G has a point which is not in a cycle of length four, then G is prime.
(Sabidussi [S2])
1 3 { witl Tl ) is prime if and onlv if G i |
formn > 2. (Palmer [P1])

144 Construct a graph of 9 points and 15 lines (different from Fig. 14.7) whose group
is cyclic of order 3. (Harary and Palmer [ HP3))

14.5 Construct a connected graph with 11 points whose group is cyclic of order 6.
14.6 Construct a graph with 14 points whose group is cyclic of order 7.
(Sabidussi [S3])

*14.7 Let c(m) be the smallest number of points in a graph whose group is isomorphic
to C,,. Then the values of ¢(m) for m = »" and n prime are

a) o2) =2, and c(2) = 2" + 6 whenr > 1.
b) ¢(n) = n" + 2nforn = 3, 5.
c) ey =n" + nforn>7.
[Note: c¢(m) can be calculated when m is not a prime power, but the expression is
complicated. | (R. L. Meriwether)
14.8 There are no nontrivial identity graphs with less than 6 points.
14.9 There are no cubic identity graphs with less than 12 points.
14.10 Construct a cubic graph whose group is cyclic of order 3.
14.11 The group of the Petersen graph is identical to the line-group of K.

14.12 There exists a graph G whose group is the dihedral group D, such that G is not
a cycle or its complement. What is the smallest value of p for which this holds?

14.13 For p > 3 there are no graphs G such that I'(G) = A, or C,. And when p > 4
there are no digraphs D with I'(D) = A,. (Kagno [K1], Harary and Palmer [HP10])

1414 The only connected graph with group isomorphic to §,, n > 3,

a) with n points is K,

b) with n + 1 pointsis K, ,,

¢) withn + 2 pointsis K, + K, ,. (Gewirtz and Quintas [GQ1])
14.15 Given a finite group F, let G(F) be the graph obtained by Frucht’s Theorem.
Then every nonidentity automorphism of G(F) leaves no point fixed.

14.16 What is the smallest tree T containing dissimilar points u and v such that
T—ux=T-—1? (Harary and Palmer [HP2])
1417 Every connected, point-symmetric graph G is a block.

14.18 A starred polygon is a graph G containing a spanning cycle v; v, * - * v, v; such
that whenever the line v,v, is in G, so are all lines v;v; where j — i = n — 1 (mod p). A -

connected graph with a prime number p of points is point-symmetric if and only if it is
a starred polygon. (Turner [T4))
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14.19 Prove or disprove the following eight statements: If two graphs are point-

symmetric (line-symmetric), then so are their join, product, composition, and corona.

14.20 Every symmetric, connected graph of odd degree is 1-transitive.
(Tutte [T20, p. 59])

14.21 Every symmetric, connected, cubic graph is n-transitive for some n.
(Tutte [T20, p. 63])
14.22 Find necessary and sufficient conditions for the point-group and line-group of a

graph to be identical. (Harary and Palmer [HP15})
14.23 If G is connected, then I'(G) = I'(L(G))ifand only if G # K,, K, 3 + x, K,
or K,. (Whitney [W11])

14.24 If G is point-symmetric, then I'(G) is a group of the form S, + S, + -+ + §,.
(McAndrew [M8])

1425 The only doubly transitive graphical permutation group of degree p is S,,.

14.26 Let A and B be two permutation groups acting on the sets X = {x;, x5, -, X4}
and Y respectively. The exponentiation group, denoted [B]4, acts on the functions
Y*. For each permutation « in A and each sequence of permutations f;, 5, - -, B,
in B there is a unique permutation [a; f,, B2 - -, B2] in [B]* such that for x; in X

and fin Y*¥

[os Bu, Bas =, Bal f(x) = Buf (ax)).
Then the group of the cube Q,, is [S,]%* and the line-group of K, , is [ S, ]*~
(Harary [H18])
*14.27 There exists a unique smallest graph of girth 5 which is regular of degree 4. It

o T o Camb e el AL o T ..
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(Robertson [R18])

14.28 Let G be a triply connected planar (p, q) graph whose group has order s. Then
4q/sis an integer and s = 4q if and only if G is one of the five platonic graphs.

(Weinberg [ W8], Harary and Tutte [HT4)])

14.29 The group of any tree can be obtained from symmetric groups by the operations
of sum and composition. (Pdlya [P5, p. 209])

14.30 A collection of p — 1 transpositions (u; v,), (#, v,), - -+ on n objects generates
the symmetric group S, if and only if the graph with p points and the p — 1 lines u;v; is
a tree. (Pdlya [P5])

1431 The a-permutation graph of a labeled 2-connected graph G is planar if and only
if G is outerplanar and can be drawn in the plane with a cyclic labeling of its points so
that o is in the dihedral group D, (Chartrand and Harary [CH3])

*14.32 An endomorphism of G is a homomorphism from G into itself. The semigroup
of a graph is the collection of all its endomorphisms. Every finite semigroup with unit
is isomorphic with the semigroup of some graph. (Hedrlin and Pultr [HP23])

*14.33 The smallest nontrivial urnnh having only v the denmv endomornhism has 8§
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points. (Hedrlln and Pultr [HP24}))



CHAPTER 15

ENUMERATION

How do I love thee? Let me count the ways.

EL1ZABETH BARRETT BROWNING

There is something to be said for regarding enumerative methods in com-
binatorial analysis as more of an art than a science. With the discovery and

development of more general and powerful viewpoints and techniques, it is
to be hoped that this situation will become reversed. The pioneers in
graphical enumeration theory were Cayley, Redfield, and Pdlya. In fact,
as noted in [HP11], all graphical enumeration methods in current use were
anticipated in the unique paper by Redfield [R8] published in 1927 but
unfortunately overlooked.

We begin with the easiest enumeration problems, those for labeled graphs.
We then present Pdlya’s classical enumeration theorem and use it to derive
counting series for trees and various other kinds of graphs. Podlya’s theorem
has been generalized to the Power Group Enumeration Theorem which is
useful for certain counting problems where the equivalence classes are
determined by two permutation groups. For the sake of completeness, we
conclude with lists of both solved and unsolved problems in graphical
enumeration.

LABELED GRAPHS

All of the labeled graphs with three points are shown in Fig. 15.1. We
see that the 4 different graphs with 3 points become 8 different labeled
graphs. To obtain the number of labeled graphs with p points, we need
only observe that each of the (§) possible lines is either present or absent.

4
Theorem 15.1 The number of labeled graphs with p points is 2(2).

178
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Fig. 15.1. The labeled graphs with three points.

Corollary 15.1(a) The number of labeled (p, ¢) graphs is

)

Cayley [C6] was the first to state the corresponding result for trees:
The number of labeled trees with p points is p? ~ 2. Since 1889, when Cayley’s
paper appeared, many different proofs have been found for obtaining his
formula. Moon [M15] presents an outline of these various methods of
proof, one of which was given in Corollary 13.3(a).

In Fig. 15.2 are all the 16 labeled trees with 4 points. The labels on these
trees are understood to be as in the first and last trees shown. We note
that among these 16 labeled trees, 12 are isomorphic to the path P, and 4
to K, ;. The order of I'(P,) is 2 and that of I'(K, ;) is 6. We observe that
since p = 4 here, we have 12 = 4!/I'(P,)| and 4 = 41/[I(K, ;). The

U]_ U2

R

AN

Uy Ug

/NN

Fig. 15.2. The labeled trees with four points.

LUy D3



180 ENUMERATION

-
expected generalization of these two observations holds not only for trees,
but also for graphs, digraphs, relations, and so forth ;see [HR1] and [HPR1].

Theorem 15.2 The number of ways in which a given graph G can be labeled
is pY/IT(G)|.

Outline of proof. Let A be a permutation group acting on the set X of objects.
For any element x in X, the orbit of x, denoted 0(x), is the subset of X which
consists of all elements y in X such that for some permutation ain 4, ax = y.
The stabilizer of x, denoted A(x), is the subgroup of A which consists of all
the permutations in 4 which leave x fixed. The result follows from an
application of the well-known formula |6(x) - |A(x)] = |4| and its inter-
pretation in the present context.

POLYA’S ENUMERATION THEOREM

Many enumeration problems are formulated in such a way that the answer

can be given by finding a formula for the number of orbits (transitivity
qvqtpmq\ determined hv a permutation group. Often. weights are assigned

BLviiad) e lwd xaaalivRe PP A RAL e MR RARSAS L ] Dmaad faV S2l2in

to the orbits and Polya [PS] showed how to obtaln a formula which enumer-
ates the orbits according to weight and which depends on the cycle structure
of the permutations in the given group. Pdlya’s theorem in turn depends on

a generalization of a well-known counting formula due to Burnside
[B20, p. 191].

Theorem 15.3 Let A be a permutation group acting on set X with orbits
0,,0,,---, 0, and let w.be a function which assigns a weight to each orbit.
Furthermore, w is defined on X so that w(x) = w(f;) whenever x € 0;. Then
the sum of the weights of the orbits is given by

|A|§: wd) =) > wix) (15.1)

aed x=ax

Proof. We have already seen that the order | A| of the group A is the product
|A(x)| - |6(x)| for any x in X, where A(x) is the stabilizer of x. Also, since the
weight function is constant on the elements in a given orbit, we see that

164 wi0) = 3, wix),

xef;

for each orbit 8,. Combining these facts, we find that
4] w(0;) = | AX) w(x). .

xef;

Summing over all orbits, we have

| Al 7 w() = Y Y A wix),

1—1 xef;

from which (15.1) follows readily.
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The conventional form of Burnside’s Lemma can now be stated as a
corollary to this theorem. For a permutation o, expressed as a product of

. L Au.-mLA_‘ PR P Wy
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Corollary 15.3(a) (Burnside’s Lemma) The number N(A) of orbits of the
permutation group A is given by

N) = 2 agh(a)

Let 4 be a permutation group of order m and degree d. The cycle
index Z(A) is the polynomial in d variables a,, a,, - -, a; given by the
formula

Z(A) = D H af<®), (15.2)
|A| xcd k=1

. 1 . LI 8 ol

Since, for any permutation «, the numbers j, = j, () satisfy
i+ 2j; + - + djy =4,

they constitute a partition of the integer d. It is useful to employ the vector
notation (j) = (Jj,, j», - *, jo) in describing . We note that this method of
expressing partitions differs from that used in Chapter 6; for example, the
partition 5 = 3 + 1 + 1 corresponds to the vector (j) = (2,0, 1, 0, 0).

The classical counting problems to which Polya’s Theorem applies all
have the same general form. Let there be given a domain D, a range R, and
a weight function w defined on R. To illustrate with a particular weight
function, let w assign to each r € R an ordered pair w(r) = (w,r, w,r) of
nonnegative integers. The objects to be counted will then appear as functions
“from D to R. To complete the statement of the problem, we need to stipulate
when two functions in R? are considered the same. This is done by specifying
a group A which acts on D, so that two functions are equivalent when they
are in the same orbit of E4, where E is the identity group of degree |R|.

We digress for a moment to illustrate these ideas with the “necklace
problem.” Consider necklaces which are to have say 4 beads, some red and
some blue. Two such necklaces are regarded as equivalent if they can be
made “congruent,” with preservation of the colors of their beads. Here the
domain D is the set of locations where the beads are to be put, the range R is
the set {red bead, blue bead}, and a function fe R® is an assignment of one
bead to each place, giving a necklace. In th1s example, A is the dihedral
group D,, and the weight function w can be taken as w(red bead) = (1, 0)
and w(blue bead)= (0, 1).

Following the intuitive terminology of Pdlya, domain elements are
places, range elements are figures, functions are configurations, and the
permutation group A is the configuration group. We assign a weight W(f)
to each fe R? by the equation

W(f) = H xwlf(d)ywzf(d)_ (153)

deD
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It is easy to see that each function in a given orbit of R? under E* has the
same weight, so that the weight of an orbit can be defined as the weight of
any function in it, ,

Suppose there are c,, figures of weight {m, n) in R and C,,, orbiis
(equivalence classes of configurations) of weight x™y" in R?. The figure
counting series

c(x, y) = 2, CppX™y" (15.4)
enumerates the elements of R by weight, and the configuration counting
weres Cx, ) = T, Cpp™y" (15.5)

is the generating function for erfﬁivalence classes of functions. Pélya’s
Theorem [P5] expresses C(x, y) in terms of ¢(x, y).

If in (15.2) we write Z(A) = Z(A; a,, a,, - - -, a,), then for any function
h(x, y), we define

Z(A, hix, ) = Z(4; h(x, y) hx% 32, B, y) (15.6)

Theorem 15.4 (Polya’s Enumeration Theorem) The configuration counting
series is obtained by substituting the figure counting series into the cycle
index of the configuration group,

C(x, y) = Z(A, c(x, y)). (15.7)

Proof. Let a be a permutation in 4, and let & be the corresponding permuta-
tion in the power group E4. Assume first that fis a configuration fixed by
a and that { is a cycle of length k in the disjoint—cycle decomposition of a.
Then f(d) = f({d) for every element d in the representation of {, so that all
elements permuted by { must have the same image under f. Conversely,
if the elements of each cycle of the permutation « have the same image under
a configuration f, then & fixes £ Therefore, all configurations fixed by &
are obtained by independently selecting an element r in R for each cycle { of
o and setting f(d) = r for all d permuted by {. Then if the weight w(r) is
(m, n) wherem = w,rand n = w,r and { has length k, the cycle { contributes
a factor of Z,. (x™y") to the sum Z,_,  W(f). Therefore, since
%(X"‘y”)" = c(x", "),
we have, for each o in A4,
Y, W(f) = TT ey,
f=af k=1

Summing both sides of this equation over all permutations « in A (or
equivalently over all & in E“) and dividing both sides by |A4| = |E4|, we
obtain

LY W=

B o 2, T A

eE* f=&

> ﬁ c(xk, yryi), (15.8)

acd k=1
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The right hand side of this equation is Z(A4, c(x, y)). To see that the left
hand side is C(x, y), we apply the version of Burnside’s lemma given in
Theorem 15.3. First note that for the power group E4, the sum of the weights
of the orbits is given by

n

Y wml) =Y C,x™y" = C(x, y). (15.9)

i=1

But it follows at once from (15.1) that the left sides of (15.9) and (15.8) are
equal, so that Z(A4, c(x, y)) = C(x, y), proving the theorem.

Returning to the necklace problem with four beads mentioned above,
we note that the cy:ie index of the dihclral group D, is

Z(D,) = 3(at + 2a3%a, + 3a3 + 2a,) (15.10)
and the figure counting series is c(x, y) = x'y® + x%°! = x 4+ y. Sub-
stituting x + y into (15.10) in accordance with (15.6), we obtain

ZDy x + ) = s{lx + p* + 2x + px* + y?)

+ Q{YZ + 152\2 4 7{\(4 4 1:4\1
Y I LI Y )

-I\,w 1
= x* + x3y + 2x2p% + xp® + ¥~ (15.11)

The coeflicient of x™y”" in (15.11) is the number of different necklaces with
four beads, m red and n blue. The 6 different necklaces are shown in
Fig. 15.3.

All red All blue

Figure 15.3

Incidentally, necklaces can also be counted by using 1 4+ x as the figure

counting series instead of x + y. In this case a red bead has weight 1 and a
blue bead weight 0. Thenin Z(D,, 1 + x) = x* + x> + 2x* 4+ x + 1, the
coefficient of x™ is the number of necklaces with m red beads and hence
4 — m blue ones; compare (15.11). As we shall see in the next section, the
figurecountingseries1 + xplaysanimportant rolein enumeration problems,
since x° indicates absence of a figure and x' presence. Thereason isindicated
in the following consequence [H31] of Polya’s Theorem. An n-subset of a

set X is a subset with exactly n elements.

Corollary 15.4(a) If A is a permutation group acting on X, then the number of
orbits of n-subsets of X induced by A4 is the coefficient of x" in Z(4, 1 + x).
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In applications of Polya’s Enumeration Theorem, certain permutation
groups occur frequently. The formulas for the cycle indexes of the five
important permutation groups listed in Table 14.2 are now given. In (15.12)
and (15.13), the sum is over all partitions (j) of p. In (15.14), ¢(k) is the
“Euler ¢-function,” the number of positive integers less than k and relatively
prime to k, with ¢(1) = 1.

1 p! L .
Z(S ) %H—liﬁ a{‘ ale T a{;’ (1512)
£ A _I_T‘p [1 + 1)f2+j4+"':| j1 iz . Jip 1 & 11
L(/‘.l.p} p L Hi):l k-"‘]k‘ iy d3 ﬂp \12.10)
1
2¢) =% dllar™ (15.14)
1 Ja,af~ b2, podd
Z(D)==-Z(C 15.15
(D) 2 (€) + {:}(a‘z’/z + a?a'f~ ), p even ( )
Z(E) = af (15.16)

There are several very useful formulas which give the cycle indexes of
the binary operations of the sum, product, composition, and power group of
.Aand Bin terms of Z{A) and Z(B). They are given in equations(15.17)15.22)
and appear in [H31]. By Z(A)[Z(B)] we mean the polynomial obtained by
replacmg each variable g, in Z(A) by the polynomial which is the result of
rnn]hn]vmg the subscrints of the variables in 7(R\ bv k.

Z(A + B) = Z(A)Z(B) (15.17)
Z(A x B) adG )i 1s6) 15.18
4xB =g (Zi,,gl (119
where d(r s) and m(r, s) are the g.c.d. and l.c.m. respectively.
Z(A[B]) = Z(A)[Z(B)]. (15.19)
1 :

Z(BA) — aJk(d;ﬂ)

- A~ 1Bl & (15.20)
where (a; f) = f* and

d Jrela)

Jiles B) = T1 (Z| sjs(ﬁ)) (15.21)
k=1\slk
and fork > 1
Jas B) = —Z#( )Jl(a ) (15.22)
s|lk

with p the familiar number-theoretic mébius function.*

* By definition u(n) = 0 unless » is the product of distinct primes p,, - -, p,, in which case

H(n) = (—1)"
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ENUMERATION OF GRAPHS

We now describe how to obtain the polynomial g,(x) which enumerates
graphs with a given number p of points. Let g,, be the number of (p, q)
graphs and let

gp(x) = Z 9paX". (15.23)

By inspection of all graphs with 4 points, one easily verifies that
gax) =1 4+ x + 2x2 + 3x3 + 2x* + x3 + x5. (15.24)

Let V.= {1,2,---,p}and let R = {0, 1}. We denote by D = V® the
collection of subsets {i, j} of distinct elements of V, that is, of 2-subsets of V.
Then each function f from D into R represents a graph whose p points
are the elements of V, in which i is adjacent with j whenever f{i, j} = 1.
Thus the image of {i, j} under fis 1 or 0 in accordance with the presence or
absence of a line joining i and j. The weight function w on R is defined by
w(0) = 0 and w(1) = 1, so that it is the identity function. Hence the figure
counting series 1s ¢{x) = 1 + x. Specializing (15.3) to one variable, the
weight of a function f'is given by

W(f) = x 2 w(f{i, j}) (15.25)

where the sum is taken over all pairs {i, j} in V®, Thus the weight of function
fis the number of lines in the graph corresponding to f.

Now let E, be the identity group acting on R and let S, act on V. We
denote by S’ the pair group which acts on V¥ whose permutatlons are
induced by S That is, for each permutation « in S, there is a permutation
o in SP such that «'{i,j} = {oi, aj}. Applying Pélya’s theorem to the
configuration group S\, we have the next result, also due to Pdlya; see

rer117
il

Theorem 15.5 The counting polynomial for graphs with p points is

2
g x) = Z(SP, 1 + x), (15.26)
where
[r/2]
Z(ng)) = i' Z pp—'”( l_[ (akagg l)jzk. (1527)
P! @ e ! K iy
lp—1)2] lpr21 s
afr [1a® [T ang
k=0 1<r<s<p-—1
A Aa timn ~F 18 YT 10 ala TF21 = 20T T Asmmandiv T tha
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number of (p, g)-graphs is tabulated through p = 9.

Similar counting formulas have been obtained which enumerate rooted
graphs and connected graphs. Various classes of graphs have also been
enumerated by modifications of this method. These include directed
graphs, pseudographs, and multigraphs. We illustrate some of these
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enumeration formulas by describing how they follow readily from the
preceding theorem. First to enumerate rooted graphs, it is necessary to fix

avta atatka a¥a g3 1rd e Haakshkakkaly D—— ataika 2 [] NANoed Dle

Corollary 15.5(a) The counting polynomial for rooted graphs with p points

X)) = Z((S; + S, )@, 1 + x). (15.28)

When there are at most two lines joining each pair of points, we need
only replace the figure counting series for graphs by 1 + x + x2.

Corollary 15.,5(b) The counting polynomial for multigraphs with at most
two lines joining each pair of points is

gox) = Z(S2, 1 + x + x?). (15.29)
For arbitrary multigraphs, the figure counting series becomes

1
1 — x°

L+ x+x*4+x°+- =

Corollary 15.5(c) The counting polynomial for multigraphs with p points is

m(x) = z(sg,z), 1 1 ) (15.30)

X

The enumeration of digraphs [H11] is also accomplished, as for graphs,
by finding a formula for the cycle index of the appropriate configuration
group and applying Pdlya’s theorem. For digraphs, we need to use the
reduced ordered pair group, denoted Sl As before S, acts on
vV ={1,2,---, p}. By definition, SI?! acts on V2|, the ordered pairs of
distinct elements of V, as induced by S,. Thus every permutation « in §,
induces a permutation o' in SU?! such that (i, j) = (o, o) for (i, j) in V2,
Applying Pélya’s theorem to the cycle index of SU*), we obtain d,(x), the
polynomial in which the coefficient of x? is the number of digraphs with ¢
directed lines.

Theorem 15.6 The counting polynomial for digraphs with p points is
dx) = Z(SP, 1 + x), (15.31)
where
25y =y P [lap e [ st (53)
Pk TE. il K sy 1<r<s<p—1

Of course this theorem has corollaries analogous to those of Theorem
15.5.
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Appendix 1I includes a table for the number of digraphs with p < 8
points.
Although rooted trees and trees were counted much earlier than graphs,

the enumeration of graphs was presented above because of the simplicity
of the figure counting series, viz. 1 + x. We will see that for tree counting
purposes, the most useful figure counting series is the generating function

for rooted trees themselves.

ENUMERATION OF TREES

In order to find the number of trees it is necessary to start by counting
rooted trees. A rooted tree has one point, its root, distinguished from the
others. Let T, be the number of rooted trees with p points. From Fig. 15.4in
which the root of each tree is visibly distinguished from the other points, we
see that T, = 4. The counting series for rooted trees is denoted by

o 0]

T(x) = Y Tx" (15.33)

p=1
We define t, and #(x) similarly for unrooted trees.

]

Fig. 15.4. The rooted trees 6
with four points. e

A recursive type of expression for counting rooted trees was found by
Cayley [C2].

Theorem 15.7 The counting series for rooted trees is given by
T(x) =x]]1 — x)" T, (15.34)
r=1

It is possible to convert (15.34) into a form expressing T(x) in terms of
itself by taking the logarithm of both sides and then manipulating power
series appropriately. This leads to (15.35), a result first obtained by Polya
[P5] by exploiting his enumeration theorem.

Theorem 15.8 The counting series for rooted trees satisfies the functional
equation

T(x) = x exp illr T(x"). (15.35)
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Proof. Let T™(x) be the generating function for those rooted trees in which
the root has degree n, so that

T(x) = Y T"(x). (15.36)

n=0
Thus for example, T°(x) = x counts the rooted trivial graph, while the
planted trees (rooted at an endpoint) are counted by T )(x) = xT(x). In

general a rooted tree with root degree n can be regarded as a configuration
whose figures are the n rooted trees obtained on removing the root. Figure

P

18 & 11..04 o R o, |
Lo.0 1HHIUDLIALe> LI 1UL 11 = J.

SN
SN S

Fig. 15.5. A given rooted tree T and its constituent rooted trees.

Since these n rooted trees are mutually interchangeable without altering
the isomorphism class of the given rooted tree, the figure counting series is
T(x) and the configuration group is S,, giving

T"(x) = xZ(S,, T(x)). (15.37)

The factor x accounts for the removal of the root of the given tree since the
weight of a tree is the number of points.

Fortunately, there is a well-known and easily derived identity which
may now be invoked (where Z(S,) is defined as 1):

i Z(S,, h(x)) = exp f % hx"). (15.38)

On combining the last three equations, we obtain (15.35).

Cayley [C5] was the first to derive an expression for ¢, in terms of the
numbers T, with n < p. He did this by counting separately the number of
centered and bicentered trees. Polya [P5] obtained an alternate expression
for t, by considering separately trees with 1 and 2 centroid points. Otter
[O8] discovered the neatest possible formula for the number of trees in
terms of the number of rooted trees, entirely by means of generating functions.
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Actually, Otter’s equation (15.41) can be derived directly from the Cayley
or Polya expressions for ¢, as shown in [H12], by repeated application of the
adage, “Whenever you see two consecutive summation signs, interchange
the order of summation.” Otter derived (15.41) from the next observation,
which is of independent interest; it is sometimes called “the dissimilarity
characteristic equation for trees.” A symmetry line joins two similar points.

Theorem 159 For any tree T, let p* and ¢* be the number of similarity
classes of points and lines, respectively, and let s be the number of symmetry
lines. Then s = 0 or 1 and

p* — (g* — ) = L. (15.39)

Outline of proof. Whenever T has one central point or two dissimilar central
points, there is no symmetry line, so s = 0. In this case there is a subtree
of T which contains exactly one point from each similarity class of points
in T and exactly one line from each class of lines. Since this subtree has p*
points and ¢* lines, we have p* — ¢* = 1.

The other possibility is that T has two similar central points and hence
s = 1. In this case there is a subtree which contains exactly one point from
each similarity class of points in T and, except for the symmetry line, one
line from each class of lines. Therefore this subtree has p* points and ¢* — 1
lines and so p* — (g* — 1) = 1. Thus in both cases (15.39) holds.

We also require a special theorem of Pélya [P5] which was designed for
counting 1-1 functions. For convenience we use Z(A, — S,) as an abbrevia-
tion for Z(A,) — Z(S,).

Theorem 15.10 The configuration counting series C(x) for 1-1 functions
from a set of n interchangeable elements into a set with figure counting
series ¢{x) is obtained by substituting c(x) into Z{4, — S,):

C(x) = Z(A, — S,, c(x)). (15.40)

Although we will only use (15.40) in the case n = 2, it provides a useful
enumeration device in other contexts [HP20], and it enables us to present
a very concise proof of Otter’s formula for counting trees.

Theorem 15.11 The counting series for trees in terms of rooted trees is given
by the equation
t(x) = T(x) — {T*(x) — T(x2)]. (15.41)

Proof. Fori = 1tot, let p¥, g¥, and s; be the numbers of similarity classes
of points, lines, and symmetry lines for the ith tree with n points. Since
1 = p¥ — (g¥ — s;) for each i, by (15.39), we sum over i to obtain

t, =T, — 2. (qFf — s1). (15.42)

i
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Furthermore X (g¥ — s;) is the number of trees having n points which are
rooted at a line, not a symmetry line. Consider a tree T and take any line
y of T which is not a Symmetry line. Then T — y may be regarded as two
rooted trees which must be nonlaumorpmc Thus each nonsymmetry line
of a tree corresponds to an unordered pair of different rooted trees. Counting
these pairs of trees is equivalent to counting 1-1 functions from a set of two
interchangeable elements into the collection of rooted trees. Therefore we

apply Theorem 15.10 with T(x) as the figure counting series to obtain

> [ 5 (gF - s.-)x"] = Z(A, — S5, T(x)) (15.43)

Since Z(A,) = af and Z(S,) = a} + a,), we have

Z(A, — S,, T(x)) = 3 T*x) — T(xY)] (15.44)
Now the formula in the theorem follows from (15.42)(15.44).

Using (15.35) and (15.41) we obtain the explicit numbers of rooted and
unrooted trees through p = 12,

T(x) = x + x? + 2x* 4+ 4x* + 9x° + 20x° + 487
+ 115x% + 286x° + 719x!° + 1842x!! 4 4766x12 +

(15.45)
Hx) = x + x* 4+ x> 4+ 2x* + 3x% + 6x°® + 11x7 + 23x8

+ 47x° + 106x1° + 235x!! 4 551x!2 4 - - (15.46)

The diagrams for the trees counted in the first 10 terms of (15.46) may
be found in Appendix III, along with a table displaying ¢, and T, for p < 26.

The methods used to derive Theorem 15.11 can be extended to count
various gpecies of trees. We illustrate with two species, homeomorphically
irreducible trees and identity trees [HP20]; others can be handled similarly,
for example colored trees [R14], trees with a given partition [ HP20], and
so on. Let h(x), H(x), and H(x) be the counting series for homeomorphically
irreducible trees, rooted trees, and planted trees respectively.

Theorem 15.12 Homeomorphically irreducible trees are counted by the
three equations,

H(x) = A

(15.47)

epZ
r=1

H(x)=1+x

H(x) — —2—; [H3(x) — H(x?)]. (15.48)

h(x) = H(x) — 3c1_2 [H*x) — H(x?)]. (15.49)
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The number of homeomorphically irreducible trees through 12 points is
found to be:

h(x) = x + x% + x* + x° + 2x° + 2x7 + 4x® + 5x°
+ 10x'° + 14x™ + 26x'2 + --- (15.50)

Let u(x) and U(x) be the counting series for identity trees and rooted
{ t

.
nhicm oronmnm 1 the identity oronm
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Theorem 15.13 Identity trees are counted by the equations

U(x")

U(x) = xexp ) (—1)"*! - (15.51)
n=1
u(x) = Ulx) — 3[U(x) + U(x*)]. (15.52)
The number of identity trees through 12 points is given by
ux) = x + x7 + x¥ + 3x% + 6x!% 4+ 15x! 4+ 29x!2 4 - - (15.53)

POWER GROUP ENUMERATION THEOREM

There is a class of enumeration problems which can be solved using a power
group as the configuration group. Consider the power group B4 acting on
RP. The number of configurations (equivalence classes of functions deter-
mined by B“) can be derived from Pélya’s Theorem as shown in [HP8],
and was discovered by deBruijn [B18] and [B19] in another formulation.
The equation (15.54) given by the next theorem can be readily modified to
count functions with respect to their weights.

Theorem 15.14 (Power Group Enumeration Theorem) The number of

.................. PR o LR SV 5 7 1) Aal-o.. . wad T, Lm oz gpveiiee A o
CLiLqu.lClle L;ld.bbUb O1 lullbtlUllb 111 I\ uvivll ICu U_y LIV lJUWCl BLUU.IJ i 1>
N(BY) = Z Z(A; my(B), my(P), - - -, my(f)) (15.54)
|B| BeB
where
m(B) = 2. sjs(P). (15.55)
sk

to be interchangeable. Clearly the number of necklaces with 4 beads of two
interchangeable colors is N(S%%), the number of orbits of the power group
§2+. For the identity permutation (a)(b) of S, we have from (15.55)

m{(a)(b)) =
fav alll FAar tha frnnnr\nni+;nn {~h {f )Y 3 n ~Ar Y arnardineg ac b 1g
11Ul all Av. 1 UL Lllv LI il D}}UDILIU]I \u } 111 Uz, "'lr \ U}} U ULl L davwvul Luus ao n 1o
odd or even. Applying (15.54) we see that the number of necklaces with
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interchangeable colors is

%[Z(Dll-a 25 2a 2: 2) + Z(D4, O, 2, O, 2)]

By substitution in formula (15.10) for Z(D,) we find that the number of such
necklaces is 4. This calculation is easily verified by observing that the last
two necklaces of Fig. 15.3 are equivalent to the first two, when red and blue
are interchangeable.

The self-complementary graphs with 4 and 5 points are shownin Fig. 2.13.
The result of Read [ R5] for the number s, of self-complementary graphs with
p points is easily obtained from the Power Group Enumeration Theorem.
For this purpose we define a new equivalence relation ~ for graphs with
p points, namely G, ~ G, if G, & G, or G; = G,. Let ¢, be the number of
such equivalence classes of graphs with p points. Since we are dealing with
graphs on p points, we take A = S'? acting on D'?). Because a graph and its
complement are equivalent we let B = S, act on R = {0, 1}. Then under
the power group B4, two functions f, and f, from D® into R are equivalent
whenever they represent the same graph or one represents the complement
of the other. We have already seen the result of applying (15.55) to the
permutations of §,. Hence we have

¢, =3[Z(5952,2,2,2, 1) + Z(87;0,2,0,2,--)].  (15.56)

s

But since s, = 2¢, — g,, we have the following formula obtained by Read.
Theorem 15.15 The number s, of self-complementary graphs on p points is
s, = Z(8;0,2,0,2,--). (15.57)

Finite automata have also been counted using the Power Group
Enumeration Theorem by Harrison [H34] and Harary and Palmer [HP12].
The groups for this problem are subgroups of the product of two power
groups.

SOLVED AND UNSOLVED GRAPHICAL ENUMERATION PROBLEMS
There have now been three lists of unsolved graphical enumeration problems
in the literature, [ H24], [H30], and most recently [ H32, p. 30]. Itisfrequently
necessary to bring these lists up to date. Because of the fact that new prob-
lems arise as old ones are solved, the number of unsolved problems has
remained constant at 27. It is worth noting that it is extremely unlikely that
all of these enumeration problems will soon be settled. For included among
such solutions there would be enough information to decide the validity of the
Four Color Conjecture by comparing the number of planar graphs with the
number of 4-colorable planar graphs.

Table 15.1 presents the fourth list of unsolved graphical enumeration
problems and is so titled. All of these problems can, of course, be proposed
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Table 15.1

UNSOLVED GRAPHICAL ENUMERATION PROBLEMS IV

Category

Enumerate

Digraph

Strong digraphs

Unilateral digraphs

Digraphs with a source

Transitive digraphs

Digraphs which are both self-complementary and self-converse

Traversability

Hamiltonian graphs
Hamiltonian cycles in a given graph
Eulerian trails in a given graph

Topological

Simplicial complexes
k-colorable graphs
Planar k-colorable graphs
Rooted planar graphs
Edge-rooted plane maps

Symmetry

Symmetric graphs

Identity graphs
Graphs with given automorphism

Applications

Even subgraphs of a labeled 3-lattice

Even subgraphs of a labeled 2-lattice with given area
Even subgraphs of a given labeled graph

Pavings of a 2-lattice

Animals

Miscellaneous

Line graphs

Latin squares

Graphs with given radius or diameter

Graphs with given girth or circumference

Graphs with given connectivity

Graphs with given genus, thickness, chromatic number, etc.

for labeled graphs as well, and several of them have been solved in the labeled
case. A few additional definitions are needed for understanding these
problems, each of which challenges the mathematician to determine the
number of configurations named in terms of suitable parameters. Definitions
needed for the digraph category may be found in the next chapter.

Tutte [T15] studied the enumeration of plane maps rooted in the
following way to destroy any symmetry that might be present.” An edge—
rooted plane map is obtained from a plane map by orienting an arbitrary



194 ENUMERATION

edge and by then designating one of the two faces incident with this edge
as the exterior face of the map.

A 2-lattice 1s a graph whose points are ordered pairs of integers (i, j)
wherei =0,1,---,mand j =0, 1, - - -, n; two of these points are adjacent
whenever their distance in the cartesian plane is 1. A 3-lattice is defined
similarly. An even subgraph H of a graph G is one in which every point has
even degree. Thus every even subgraph of a 2-lattice has a certain area,
the number of squares contained in its cycles.

By a paving of a 2-lattice i1s meant a covering of the squares of the lattice
by a given number of single unit squares and double squares like dominoes.
Of course larger and more complicated paving problems can be proposed.

There are three kinds of cell growth problems, one each for the triangle,
the square, and the hexagon, the only three regular polygons which can cover
the plane. Then an animal is a simply connected configuration containing
a given number of triangles, squares, or hexagons; see [ H32, pp. 33-38].

We include here a comprehensive list of solved problems (which will
inevitably be incomplete) in the hope that unnecessary duplication of
combinatorial effort will be minimized. References are given to papers
where solutions are reported ; unpublished solutions are credited only by the
name of the (eventual) author. These solved problems (Table 15.2) are
divided into four categories: trees, graphs, digraphs, and miscellaneous.

Table 15.2
SOLVED GRAPHICAL ENUMERATION PROBLEMS

Trees

Trees Polya [P5], Otter [O8]
Labeled trees Cayley [C6], Moon [M15]

DAantad teaac DAlya DL
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Riordan [R16]
Harary, Mowshowitz, Riordan [HMR1 ]
Harary, Prins, Tutte [HPT1 ]

Tiitta [TIQT awo Tqtta [1LTTH
1 Ullv Ll IUJ, ﬂalaly, 1 ULl LJ.J.].L

Rooted trees with given height
Endlessly labeled trees
Plane trees

Dlans troag unth atvua et
1 lallv LIWVWwO Wllll 51\!6 pcu LiLiuil

.
d

Homeomorphically irreducible trees
Identity trees

Trees with given partition
Trees with given group
Trees with given diameter
Directed trees

Oriented trees

.:usucd trees

Trees of given strength
Trees of given type
Block-cutpoint trees
Colored trees

Forests

Harary, Prins [HP20]
Harary, Prins [HP20]
Harary, Prins [HP20]
Prins [P8]

Harary, Prins [HP20]
Harary, Prins [ HP20]
Harary, Prins [HP20]

nnnnn Deima [TTDHINT]
nax aly, X Iifis LIk Zv |

Harary, Prins [HP20]
Harary, Prins [HP20]
Harary, Prins [HP20]
Riordan [R14]

Harary, Palmer [HP16]
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Graphs
Graphs Pélya [HI1], Davis [D1]
Rooted graphs Harary [H11]
Line rooted graphs Harary [H31]
Graphs rooted at an oriented line Harary, Palmer [HP1]
Connected graphs Riddell, Uhlenbeck [RU1], Harary [HI11]
Multigraphs Harary [H11]
Graphs of given strength Harary [H11]
Graphs of given type Harary [HI1]
Spanning subgraphs and supergraphs of G Harary [H13], [H14], [H19]
Self-complementary graphs Read [RS5]
Signed graphs Harary [H10], Haiary, Palmer [HP13]
Unicyclic graphs Austin, Fagen, Penney, Riordan [AFPR1]
Eulerian graphs (R. W. Robinson})
Graphs with given partition Parthasarathy [P2]
Pseudographs with given partition Read [R3]
Superposed graphs Read [R3]
Superposed graphs with interchangeable
colors Palmer, Robinson [PR1]
Cubic graphs (R. W. Robinson)
Nonseparable graphs (R. W. Robinson)
k-colored graphs Robinson [R19]
Bicolorable graphs Harary, Prins [HP21]
Edge-rooted triangulated maps Tutte [T14]
Cacti Harary, Norman [ HN2], Harary,
Uhlenbeck [HU1]
Graphs with given blocks Ford, Norman, Uhlenbeck [FNU1]
Block graphs Harary, Prins [HP22]
Digraphs
Digraphs Harary [H11], Davis [D1]
Weakly connected digraphs Harary [HI1]
Self -complementary digraphs Read [R5]
Self-converse digraphs Harary, Palmer [ HP9]
Oriented graphs Harary [H16]
Orientations of a given graph Harary, Palmer [HP4]
Tournaments Davis [D2]
Strong tournaments Moon [M16]
Labeled transiiive digraphs Evans, Harary, Lynn [EHLI ]
Digraphs with given partition Harary, Palmer [HP7]
Digraphs with all points of outdegree2  (C. P. Lawes)
Acyclic digraphs (R. W. Robinson)
Functional digraphs Harary [H23], Read [R4]
Eulerian trails in a given digraph de Bruijn, Ehrenfest [BE1 ], Smith, Tutte

[STI]




196 ENUMERATION

Table 15.2 (continued)

Miscellaneous
Automata Harrison [H34], Harary, Palmer [HP12]
Necklace problems Harary [H31]
Algebras of various kinds Harrison [H35]
Boolean functions Poélya [P5], Slepian [S14]
Labeled series-parallel networks Carlitz, Riordan [CR1]
Periodic sequences Gilbert, Riordan [GR1]
Acyclic simplicial complexes Harary, Palmer [HP17], Beineke, Moon

[BM1], Beineke, Pippert [BP1]

EXERCISES

15.1 In how many ways can the graphs (a) K; + K, (b) K5 x K,, (¢} K, ,[K,]
be labeled?

15.2 Write expressions for the cycle indexes of S; + S,, S3 x S, S3[S,], 3 and
S3°.

15.3 There is an integer k such that Z(C,, 2) = Z(D,, 2) holds for all n < k and fails
whenever n > k. Find k.

15.4 The number of partitions of n into at most m parts is the coefficient of x" in

. L
Z\ S, .

15.5 Calculate Z(S%?’) and gs(x). Verify this result using Appendix I.

156 Find a counting series for unicyclic graphs.

(Austin, Fagen, Penney, Riordan [AFPR1])

15.7 Let g(x, y) = £, g,(x)y? be the generating function for graphs and let ¢(x, y)
be that for connected graphs. Then

X1
g(xa ,V) = €Xp Z ; c(xr, .Vr)
r=1

[ Note the similarity to equation (15.38).]

158 Find the number of trees with p points which are (a) planted and labeled,
(b) rooted and labeled.

159 Let G be a labeled graph obtained from K, by deleting r independent lines. The
number of spanning trees of Gis (p — 2)'p?~?"". (Weinberg [W7])
15.10 The number of rooted trees satisfies the inequality 7,,, < Zf'_; T;T,_;,;. It
follows that

T, < l(Zn a 2). (Otter [O8])
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15.11 Define the numbers RY by the equation RY = R, + T,,,_;.- Then the
number of rooted trees can be found using
nT,., = Y iTRY. (Otter [O8])
i=1
15.12 Determine the number s, of self-complementary graphs for p = 8 and 9, both
by formula (15.57) and by constructing them.

15.13 Derive a counting formula for self-complementary digraphs. (Read [R5])

15.14 Let s, and S, be the numbers of self-complementary graphs and digraphs,
respectively. Then s,, = 3,,. (Read [R5])

15.15 For any permuthtion group A with cycle index Z(A) as given in (15.2), the
number of orbits of 4 is
|

b
N(A) = G Z(A)

all @; = 1.

Therefore the number of similarity classes of points in a given graph G (whose permuta-
tion group I'(G) has the variables y; in its cycle index) is

0
p* = - Z(1(G)
V1
15.16 Let G be a connected graph with n similarity classes of blocks. If p* is the number
of dissimilar points of G and p§ is the number of dissimilar points in blocks of the kth
similarity class, then

all y, = 1.

pr—1=3 (-1
k=1

Prove Theorem 15.9 as a corollary. (Harary and Norman [ HN3])



CHAPTER 16

DIGRAPHS

I shot an arrow in the air,
It fell to earth I know not where.

ROBERT LOQUIS STEVENSON

There is so much to digraph theory that it is possible to write an entire book
on the subject.* For the most part we shall emphasize in this chapter those
properties of digraphs which set them apart from graphs. Thus we begin
by developing three different kinds of connectedness: strong, unilateral, and

waalr Aftar nrpcpnhn the hirectinnal hnal‘m Drih n]p we (‘f'IIAKI mafrur‘pc
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related to digraphs and the analogue of the Matrix Tree Theorem for graphs.
We close with a brief description of tournaments.

DIGRAPHS AND CONNECTEDNESS

We have already seen all the digraphs with 3 points and 3 arcs in Fig. 2.4.
For completeness, we begin with definitions, including a few from Chapter 2.
A digraph D consists of a finite set V of points and a collection of ordered
pairs of distinct points. Any such pair (u, v) is called an arc or directed line
and will usually be denoted uv. The arc uv goes from u to v and 1s incident
with 4 and v. We also say that « is adjacent to v and v is adjacent from u.
The outdegree od(v) of a point v 1s the number of points adjacent from it, and
the indegree 1d(v) is the number adjacent to it.

A (directed) walk iIn a digraph is an alternating sequence of points and
arcs, vy, Xy, Uy, * ° *, X»» U, in which each arc x; is v;_,v;. The length of such
a walk is n, the number of occurrences of arcs in it. A closed walk has the
same first and last points, and a spanning walk contains all the points. A
path is a walk in which all points are distinct; a cycle is a nontrivial closed
walk with all points distinct (except the first and last). If there is a path from

* In fact this has been done,[HNCI]. Most of the theorems in this chapter are proved in that
book. Also Moon[MI16] has written a monograph on tournaments.

198
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u to v, then v 1s said to be reachable from u, and the distance, d(u, v), from u to
v1s the length of any shortest such path.

Each walk is directed from the first point v, to the last v,. We alsoneeda
concept which does not have this property of direction and is analogous to a
walk in a graph. A semiwalk is again an alternating sequence v, X, vy, * * °,
X,, v, of points and arcs, but each arc x; may be either v;_,v; or vv;_;. A
semipath, semicycle, and so forth, are defined as expected.

Whereas a graph is either connected or it 1s not, there are three different
ways in which a digraph may be connected, and each has its own idio-
syncrasies. A digraph is strongly connected, or strong, if every two points
are mutually reachable; 1t 1s unilaterally connected, or unilateral, if for any
two points at least one 1s reachable from the other ; and it is weakly connected,
or weak, if every two points are joined by a semipath. Clearly, every strong
digraph is unilateral and every unilateral digraph is weak, but the converse
statements are not true. A digraph is disconnected if it 1s not even weak. We
note that the trivial digraph, consisting of exactly one point, is (vacuously)
strong since it does not contain two distinct points.

We may now state necessary and sufficient conditions for a digraph to
satisfy each of the three kinds of connectedness.

Theorem 16.1 A digraph is strong if and only if it has a spanning closed walk,
it 1s unilateral if and only if it has a spanning walk, and it 1s weak if and only
if it has a spanning semiwalk.

Corresponding to connected components of a graph, there are three
different kinds of components of a digraph. A strong component of a digraph
is a maximal strong subgraph; a unilateral component 1s a maximal unilateral
subgraph ; and a weak component 1s a maximal weak subgraph. It is very
easy to verify that every point and every arc of a digraph D is in just one weak
component and in at least one unilateral component. Furthermore each
point is in exactly one strong component, and an arc lies in one strong com-
ponent or none, depending on whether or not it is in some cycle.

The strong components of a digraph are the most important among
these. One reason 1s the way in which they yield a new digraph which,

/A

S,
S, ’

St S

Sa

Sa Fig. 16.1. A digraph and its condensation.
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although simpler, retains some structural properties of the original. Let
S, Sy, S, be the strong components of D. The condensation D* of D
has the strong components of D as its points, with an arc from §; to §;
whenever there is at least one arc in D from a point of §; to a point in §,.
(See Fig. 16.1)

It follows from the maximality of strong components that the con-
densation D* of any digraph D has no cycles. Obviously the condensation of
any strong digraph is the trivial digraph. It can be shown that a digraph is
unilateral if and only if its condensation has a unique spanning path.

DIRECTIONAL DUALITY AND ACYCLIC DIGRAPHS

The converse digraph D’ of D has the same points as D and the arc uvi1s in D’
ifand only if the arc pu1sin D. Thus the converse of D is obtained by reversing
the direction of every arc of D. We have already encountered other converse
concepts, such as indegree and outdegree, and these concepts concerned
with direction are related by a rather powerful principle. This is a classical
result in the theory of binary relations.

Principle of Directional Duality For each theorem about digraphs, there is a
corresponding theorem obtained by replacing every concept by its converse.

We now illustrate how this principle generates new results. An acyclic
digraph contains no directed cycles.

Theorem 16.2 An acyclic digraph has at least one point of outdegree zero.

Proof. Consider the last point of any maximal path in the digraph. This
point can have no points adjacent from it since otherwise there would be a
cycle or the path would not be maximal.

Th A 1 th M
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Directional Duality. In keeping with the use of D’ to denote the converse of
digraph D, we shall use primes to denote dual results.

Theorem 16.2' An acyclic digraph D has at least one point of indegree zero.

It was noted that the condensation of any digraph is acyclic, and the
preceding results give some information about acyclic digraphs. We now
provide several characterizations.

Theorem 16.3 The following properties of a digraph D are equivalent,

1. D is acyclic.

2. D* i1s isomorphic to D.

3. Every walk of D is a path.
4

. It 18 possible to order the points of D so that the adjacency matrix A(D)
is upper triangular.
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T

[ [) L]

Fig. 16.2. An out-tree and the converse in-tree.

Two dual types of acyclic digraphs are of particular interest. A source
in D is a point which can reach all others; a sink 1s the dual concept. An
out-tree* is a digraph with a source having no semicycles; an in-tree is its
dual, see Fig. 16.2.

Theorem 164 A weak digraph is an out-tree if and only if exactly one point
has indegree 0 and all others have indegree 1.

Theorem 16.4° A weak digraph is an in-tree if and only if exactly one point has
outdegree 0 and all others have outdegree 1.

We next consider some digraphs which are closely related to the above.
A functional digraph is one in which every point has outdegree 1; a contra-
functional digraph is dual, see Fig. 16.3. The next theorem and its dual
provide structural characterizations.

The following are equivalent for a weak digraph D.

Theorem 16.5

1. D is functional.

2. D has exactly one cycle, the removal of whose arcs results in a digraph
in which each weak component is an in-tree.

3. D has exactly one cycle Z, and the removal of any arc of Z results in an
in-tree.

A point basis of D is a minimal collection of points from which all points
arereachable. Thus, a set S of points of a digraph D is a point basisifand only
ifevery point of D is reachable from a point of S and no point of S is reachable
from any other.

Theorem 16.6 Every acyclic digraph has a unique point basis consisting of
all points of indegree 0.

* This is called an “arborescence™ by Berge[B12, p. 13].
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Fig. 16.3. A weak functional digraph.

Corollary 16.6(a) Every point basis of a digraph D consists of exactly one
point from each of those strong components in D which form the point
basis of D*.

A I-basis 1s a minimal collection S of mutually nonadjacent points such
that every point of D is either in S or adjacent from a point of S. Every

1
digraph has a point basis, but not every digraph has a 1-basis. For example,

no odd cycle has one. A criterion for an arbitrary digraph to have a 1-basis
has not yet been found. The theorem by Richardson [R9] generalizes its
corollary, due to von Neumann and Morgenstern [NM1], and discovered
in their study of game theory.

Theorem 16.7 Every digraph with no odd cycles has a 1-basis.
Corollary 16.7(a) Every acyclic digraph has a 1-basis.

DIGRAPHS AND MATRICES

The adjacency matrix A(D) of a digraph D is the p x p matrix [q;;] with
a;; = 1if p; 1s an arc of D, and 0 otherwise. As the example in Fig. 16.4
shows, the row sums of A(D) give the outdegrees of the points of D and the
column sums are the indegrees.

Asinthe case of graphs, the powers of the adjacency matrix 4 ofa digraph
give information about the number of walks from one point to another.

AN v; Uy V3 Uy vy RoOwsum
p,[O 0 0 0 0] 0
D 00, v, |1 0 1 1 0 3
AD): v;]1 0 0 0 O 1
v, O 0O 1 0 O 1
vs O 0 0 0 O 0
.n Us Ly Column sum 2 0 210

Fig. 16.4. A digraph and its adjacency matrix.
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Theorem 16.8 The i, j entry a{} of 4" is the number of walks of length n from
v; to v,

We mention briefly three other matrices associated with D, namely the
reachability matrix, the distance matrix, and the detour matrix. In R, the
reachability matrix, r; 1s 1 if v; is reachable from v;, and 0 otherwise. The
I, j entry in the distance matrix gives the distance from the point v; to the
point v;, and 1s infinity if there is no path from v; to v;. In the detour matrix,
the i, j entry is the length of any longest path from v; to v;, and again is
infinity if there is no such path. These three matrices for the digraph D
of Fig. 16.4 are:

Reachability Distance Detour
Matrix _ Matrix Matrix
1 0 0 0 O 0 o0 o o w 0 o ow o o
1 11 1 0 1 0 1 1 oo 3 0 2 1 w
1 01 0 0O 1 oo 0 o o 1 oo 0 oo o
1 01 1 0 2 o 1 0 o 2 o 1 0 w
0O 0 0 O 1_ o o o o 0 ] o o oo oo 0 i

Corollary 16.8(a) The entries of the reachability and distance matrices can
be obtained from the powers of A as follows:

(1) foralli r; = 1andd;
(2) ry; = 1if and only if for some n, ai? > 0.
(3) d(v,, v;) 1s the least n (if any) such that a? > 0, and is co otherwise.

There is no efficient method for finding the entries of the detour matrix.
This problem is closely related to several other long-standing algorithmic
questions of graph theory, such as finding spanning cycles and solving the
traveling salesman problem.*

The elementwise product** B x C of two trlce B = [b;] and C =
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Corollary 16.8(b) Let v; be a
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The number of spannlng in-trees in a glven dlgraph was found by Bott
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* Consider a network N obtained from a strong digraph D by assigning a positive integer

(cost) to every arc of D. The traveling salesman problem asks for an algorithm for finding a
walk in N whereby the galesman can visit each nmn‘r and return to the starting nmnt while

traversing arcs W1th a minimum total cost.
** Sometimes called the “Hadamard product.”
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U2 U3 I -1 0 0 1 -1 0 0
-1 3 -1 -1 -1 2 -1 -1
D Mcd(D)_ Mld(D):
0 -1 2 -1 0 -1 1 -1
01 04 [ 0 0 0 0_ [ 0 0 0 2_

(253 Us 23 U3

1253 Uy UL Uy

Fig. 16.5. Spanning in-trees and out-trees.

1“‘ matrix tree theorem for digraphs, we need some other matrices related

o D. Let M, denote the matrix obtained from — A4 by replacing the ith
dlagonal entry by od(v;). The matrix M, is defined dually.

-

Theorem 169 For any labeled digraph D, the value of the cofactor of any
entry in the ith row of M, is the number of spanning in-trees with v; as
sink.

Theorem 16.9° The value of the cofactor of any entry in the jth column of
M, 1s the number of spanning out-trees with v, as source.

In accordance with Theorem 16.9, the matrix M_4 of the digraph of
Fig. 16.5 has all cofactors of its entries in the fourth row equal to 3 and the
three spanning in-trees of D with v, as sink are displayed; the directional
dual, Theorem 16.9’, is also illustrated by the second column of M, and the
two spanning out-trees with v, as source.

An eulerian trail in a digraph D 1s a closed spanning walk in which each
arc of D occurs exactly once. A digraph is eulerian if it has such a trail. Just
as in Theorem 7.1 for graphs, one can easily show that a weak digraph D is
eulerian if and only if every point of D has equal indegree and outdegree.
We will now state a theorem giving the number of eulerian trails in an eulerian

digraph. It is sometimes referred to as the BEST theorem after the initials
of de Bruijn, van Aardenne-Ehrenfest, Smith, and Tutte; the first two

ieijaiy SvaA SeNvalAn W AJALL WALIW T Ly  hriaiavaa aaia L2 3 0 W ARA S

[BE1] and the last two [ST1] discovered the 'theorem 1ndependent1y. It
can be elegantly proved using the matrix tree theorem for digraphs, see
Kasteleyn [K4, p. 76].

Corollary 16.9(a) In an eulerian digraph, the number of eulerian trails is

P
C.]__I(di — 1)!
i=1

where d; = id(v,) and c is the common value of all the cofactors of M.
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b1 3 -1 -1 -1
1 2 -1 0
-1 0 2 -1
1 -1 0 2]

Uy

- \Y Fig. 16,6. Counting eulerian trails.
Ug Ug

Note that for an eulerian digraph D, we have M ; = M, and all row sums
as well as column sums are zero, so that all cofactors are equal. For the
digraph in Fig. 16.6, ¢ = 7 and there are 14 eulerian trails. Two of them are
U 0,030, 0,01030,0,40, and D00 040,030,003,

We have just given some indication of how matrices are used in the study
of digraphs. On the other hand digraphs can be used to give information
about matrices. Any square matrix M = [m,;] gives rise to a digraph D,
and also possibly to loopsifarc v;p;is in D whenever my; # 0. The following
algorithm [H25] sometimes simplifies the determination of the eigenvalues
and the inverse (if it exists) of a matrix M.

1. Form the digraph D associated with M.

2. Determine the strong components of D.
3. Form the condensation D*.
4

. Order the strong components so that the adjacency matrix of D* is
upper triangular.

5. Reorder the points of D by strong components so that its adjacency
matrix A 1s upper block triangular.

6. Replace each unit entry of 4 by the entry of M to which it corresponds.

The eigenvalues of M are the eigenvalues of the diagonal blocks of the new
matrix, and the inverse of M can be found from the inverses of these diagonal
blocks.

When M is a sparse matrix,* (or rather has zero entries strategically
located so that there are several strong components), this method can be
quite effective. A generalization to a sometimes more powerful but also more
involved algorithm using bipartite graphs is given by Dulmage and
Mendelsohn [ DM2].

TOURNAMENTS

A tournament is an oriented complete graph. All tournaments with two,
three, and four points are shown in Fig. 16.7. The first with three points is
called a transitive triple, the second a cyclic triple.

* Tn the literature, a sparse matrix has been defined as one with many zeros.



206 DIGRAPHS

VA NRVAN

A A A AN
AN LN LN LN

Fig. 16.7. Small tournaments.

]
s

In a round-robin tournament, a given collection of players or teams
play a game in which the rules of the game do not allow for a draw. Every
pair of players encounter each other and exactly one from each pair emerges
victorious. The players are represented by points and for each pair of
points an arc is drawn from the winner to the loser, resulting in a tournament.

The first theorem on tournaments ever found is due to Rédei [R7];
for small tournaments, it can be verified using Fig. 16.7.

Theorem 16.10 Every tournament has a spanning path.

Proof. The proofis by induction on the number of points. Every tournament
with 2, 3, or 4 points has a spanning path, by inspection. Assume the result
is true for all tournaments with n points, and consider a tournament T
with n + 1 points. Let v, be any point of T. Then T — v, is a tournament
with »n points, so it has a spanning path P, say v, v, - - - v,. Either arc vy,
orarcv,vyisin T. Ifvyv,isin T, then v, v, v, - - v, is a spanning path of T.
If v,v, 1s in T, let v; be the first point of P for which the arc v,v; is in
T,if any. Then v;_,v,isin T, sothatv, v, - v;_, vo v, - " v, 18 @ spanning
path. If no such point v; exists, then v, v, - - - v, vy 1S @ Spanning path. In
any case, we have shown that 7 has a spanning path, completing the proof.

Szele 161 extended thic recult hv nrovine that everv tournament has
il LULVJ WAL WAL WL WA L 3 J A

his result by proving that every tournament has
an odd number of spanning paths. Another type of extension of Réder’s
theorem was provided by Gallai and Milgram [GM1] who showed that
every oriented graph D contains a collection of at most f,(D) point-disjoint
paths which cover V(D).

The next theorem is due to Moser [HM2] ; its corollary was discovered
by Foulkes [F7] and Camion [C1] and is the analogue for strong tourna-
ments of the preceding theorem for arbitrary tournaments.

Theorem 16.11 Every strong tournament with p points has a cycle of length n,
for n =3,4,---,p.

Proof. This proof is also by induction, but on the length of cycles. If a
tournament T is strong, then it must have a cyclic triple. Assume that T
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has a cycle Z = v, v, - - v, v, of length n < p. We will show that it has a
cycle of length n + 1. There are two cases: either there is a point u not
in Z both adjacent to and adjacent from points of Z, or there is no such
point.

CASE 1. Assume there is a point u not in Z and points v and w in Z such
that arcs uv and wu are in T. Without loss of generality, we assume that arc

v;uisin T. Let p; be the first point, going around Z from v, for which arc uy;
isinT. Then v;_yuisin T,and v, v, ' - - v;_u v; - - * v, v; is a cycle of length
n+ 1

CASE 2. There is no such point # as in Case 1. Hence, all points of T which
are not in Z are partitioned into the two subsets U and W, where U is the
set of all points adjacent to every point of Z and W is the set adjacent from
every point of Z. Clearly these sets are disjoint, and neither set is empty
since otherwise T would not be strong. Furthermore, there are points u in
U and w in W such that arc wu i1s in T. Therefore uv, v, - v,_wu is a
cycle of lengthn + 1in T.

Hence, there is a cycle of length n + 1, completing the proof.

Corollary 16.11(a) A tournament is strong if and only if it has a spanning
cycle.

Using terminology from round-robin tournaments, we say that the
score of a point in a tournament is its outdegree. The next theorem due to
Landau [L1] was actually discovered during an empirical study of tourna-
ments (so-called “pecking orders”) in which the points were hens and the
arcs indicated pecking.

Theorem 16.12 The distance from a point with maximum score to any other
point is 1 or 2.

The number of transitive triples can be given in terms of the scores
of the points; see Harary and Moser [HM2]. As a corollary, one can
readily obtain the well-known formula of Kendall and Smith [KS1], which
has proved useful in statistical analysis. It was generalized from cyclic
triples to larger strong subtournaments by Beineke and Harary [BH4].

Theorem 16.13 The number of transitive triples in a tournament with score
sequence (s, s5, " *, 5,) 18 X s,(s; — 1)/2.

Corollary 16.13(a) The maximum number of cyclic triples among all tourna-

ments with p points is r
PP p> —p

H
ﬁ pS 4p

24

if pis odd,

if piseven.
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Fig. 16.8. Two pairs of nonreconstructable strong tournaments.

Excursion on Reconstruction of Tournaments

The special case of Ulam’s Conjecture for tournaments has been partially
solved. Just as for graphs, each tournament T with p points determines p
subtournaments T; = T — v;. We proved* that any nonstrong tournament
with at least five points can be reconstructed. However, the conjecture does
not hold for strong tournaments with p = 5 and 6. This was established
by L. W. Beineke and E. M. Parker, who found that the two pairs of tourna-
ments, Fig. 16.8(a, b) and Fig. 16.8(c, d), are counterexamples.

No larger such examples are yet known, and we conjecture that there
are none!

EXERCISES

16.1 A digraph is strictly weak if it is weak but not unilateral ; it is strictly unilateral
if it is unilateral but not strong. Let C, contain all disconnected digraphs, C,; the
strictly weak ones, C, strictly unilateral, and C, those which are strong. Then the
maximum and minimum possible number g of arcs among all p point digraphs in
connectedness category C;, i = 0to 3 is given in the following table:

Minimum Number Maximum Number
Category of Arcs of Arcs
0 0 (p— 1Xp —2)
1 p—1 (p— 1)p—2)
2 p—1 (p — 1)?
3 p plp — 1)

(Cartwright and Harary [CH1]

* F. Harary and E. M. Palmer, On the problem of reconstructing a tournament from sub-
tournaments, Monatshefte fir Math. 71, 14-23 (1967).
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16.2 The cartesian product D, x D, of two digraphs has V; x V, as its point set,
and (u,, u,) is adjacent to (v,, v,) whenever [u;, = v, and u, adjv,] or [u, = v, and
u, adj v, |. (This is defined just as for graphs in Chapter 2, except that adjacency is
directed) When D is in connectedness category C,, we write ¢(D) = n. Then
oD, x D,) = min {¢(D,), ¢(D,)} unlessc(D,) = ¢(D,) = 2inwhichcasec(D, x D, = 1.

(Harary and Trauth [HT1])

16.3 No strictly weak digraph contains a point whose removal results in a strong

digraph. (Harary and Ross [HR2))
*16.4 There exists a digraph with outdegree sequence (s;, 55, **, 5,), where p — 1 >
$; = 5, = -+ =5, and indegree sequence (f, f, -, t,) where every t; <p — 1

if and only if £ s; = X t;, and for each integer k < p,

k k P
Ys<Ymin{k - Lt} + Y min{k ¢}
i=1 i=1 i

=k+1

(Ryser [R21], Fulkerson [F12])

*16.5 There exists a strong digraph with outdegree and indegree sequences as in the
preceding exercise if and only if £ 5, = Z ¢, each s; > 0, each ¢, > 0, and for each
integer k < p, the following strict inequality holds:

P

k k
Ys;< Yt + > min {k ¢}
i=1 i=1 i 1

=k+
(Beineke and Harary [BH1])

16.6 The line digraph L(D) has the arcs of the given digraph D as its points, and x is
adjacent to y in L(D) whenever arcs x, y induce a walk in D. Calculate the number of

points and arcs of L(D) in terms of D. (Harary and Norman [ HN4))
16.7 The line digraph L(D) of a weak digraph D is isomorphic to D if and only if D or
I¥ is functional. (Harary and Norman [ HN4])

16.8 If D is disconnected, the assertion in the preceding exercise does not hold.

*16.9 Let S and T be disjoint sets of points of D and let X(S, T') be the set of all arcs
from S to T. Then D is a line digraph if and only if there are no two-point sets S and

T such that | X (S, T) = 3. (Geller and Harary [GH1], Heuchenne [H42])
16.10 The number of eulerian trails of a digraph D equals the number of hamiltonian
cycles of L(D). (Kasteleyn [K3])

16.11 Let 7, consist of one point with 2 directed loops. Let T, = L(T}) be the line
digraph (more precisely pseudodigraph) of T, defined as expected, and recursively let
T, = L(T,-,). The structures T, have been called “teleprinter diagrams.” Then the

number of eulerian trails in 7, is
2% (deBruijn and Ehrenfest [BE1])

*16.12 Every digraph in which id v, od v > p/2 for all points v is hamiltonian.
(Ghouila-Houri [G7])

16.13 Consider those digraphs in which for every point u, the sum X d(u, v) of the
distances from u is constant. Construct such a digraph which is not point-symmetric.

(Harary [H20])



210 DIGRAPHS

16.14 The complement D and the converse D’ both have the same group as D.

16.15 Let A betheadjacency matrix of the line digraph of a complete symmetric digraph.
Then A% + A has all entries 1. (Hoffman [H45])

16.16 Two digraphs are cospectral if their adjacency matrices have the same character-
istic polynomial. There exist just three different cospectral strong digraphs with 4 points.

(F. Harary, C. King, and R. C. Read)

16.17 The conjunction D = D; A D, of two digraphs D, and D, has V =V, x V,

as its point set, and u = (u,, uz) is adjacent to v = (v,, v,) in D whenever u, adj v, in

in D,. The adjacency matrix A of the conjunction D = D, A D, is
the

PR [ Uy

¢ adjacency matrices of D, and D,.

(Harary and Trauth [HT1])
16.18 Let D, and D, be digraphs and let d; be the greatest common divisor of the
lengths of all the cyclesin D;, i = 1, 2. Then the conjunction D; A D, is strong if and
only if D| and D, are strong and d, and d, are relatively prime. ~ (McAndrew [M7])
16.19 A digraph is called primitive if some power of its adjacency matrix A has all its
entries positive. A digraph is primitive if and only if it is strong and the lengths of its
cycles have greatest common divisor 1. (see Dulmage and Mendelsohn [DM3, p. 204])
*16.20 Let D be a primitive digraph.
a) If n is the smallest integer such that 4" > 0, thenn < (p — 1)* + L
(Wielandt [W17])

b) Ifnhasthe maximum possible value(p — 1)* + 1, then there exists a permuta-
tion matrix P such that PAP™' has the form [a;]] where a;; = 1 whenever
j=1i+ landa,, = 1, but q;; = 0 otherwise.

(Dulmage and Mendelsohn [ DM3, p. 209])

16.21 An orientation of a graph G is an assignment of a direction to each line of G.
A graph has a strongly connected orientation if and only if it is connected and bridgeless.

(Robbins [R17])
16.22 Let B be the p x ¢ incidence matrix of an arbitrary orientation D of a given
labeled graph G, so that the entry b, of B is +1 if oriented line x; is incident to pomt

— lifx;isincident from v;, and 0 otherWISe Then det BBT is the number of spanning
trees of G. (Compare the rnatrlx BBT with M of Chapter 13.) (Kirchhoff [K7])

16.23 Recall from Chapter 5 that in a graph G, A(u, v) is the minimum number of lines
whose removal separates u and v. Similarly, when u and v are points of a digraph D,
let A(x, v) be the minimum number of arcs whose removal leaves no path from u to v.
For any orientation D of an eulerian graph G, A(u, v) = Ay, u) = 3A(u, v) for every
pair of points.
[Note: The generalization to an arbitrary graph G is much more difficult to prove: A
graph G has an orientation D such that 4(G) > n if and only if 4(G) > 2n.]
(Nash-Williams [N1])
16.24 Every orientation of an n-chromatic graph G contains a path of length n — 1.
(Gallai [G4])

16.25 The scores s; of a tournament satisfy Z s2 = Z (p — s;)%
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16.26 All but two tournaments have a spanning path v, v, - - - v, with a shortcut, the
arc v;v,. The two exceptions are the cyclic triple and tournament of Fig. 16.8(a).

(B. Griinbaum)
16.27 a) The number of cycles of length 4 in any p point tournament is equal to the
number of strong subtournaments with 4 points.

b) The maximum number of strong subtournaments with 4 points in any p
point tournament is t(p, 4) = Hp — 3)(p, 3). See Corollary 16.13(a).

(Beineke and Harary [BH4])

16.28 A group is isomorphic to the point-group of some tournament if and only if 1t

has odd order. (Moon [M14])
16.29 Let I be the point-group and I'; the arc-group of a tournament T. Then I', 1s
transitive if and only if the pair-group of I is transitive. (Jean [J1])

16.30 Let t(x) and s(x) be the generating functions for tournaments and strong tourna-
ments, respectively. Then

Hx)
s(x) = .
1 + tx)
(Moon [M16, p. 88])
16.31 Consider a sequence of nonnegative integers s, < s, < --- < s,,.

a) This is the score sequence of some tournament T if and only if
r k
Ysi=plp— 12 andforallk <p, > s > k(k — 1)2.
1 1

(Landau [L1])
b) Further, T is strong if and only if for all k < p,

Zk:si > k(k — 1)/2.

(Harary and Moser [HM2])
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GRAPH DIAGRAMS

One picture is worth more
than ten thousand words.

ANONYMOUS

It is very useful to have diagrams of graphs available for the accumulation
of data leading to conjectures. Graphs with fewer than 6 points are easily
drawn. The diagrams of 6 point graphs which are presented here were
produced by D. W. Crowe, who also was apparently the first to draw all
7 point graphs. In listing the diagrams, no attempt was made to settle the
problem of assigning a canonical ordering to the various graphs with p
points and g lines. However an index »n is assigned to each graph G, with the
same index going to the complementary graph G. Thus the graph G, , is
the nth (p, q) graph, and is identified to the right of its diagram by the
number n; furthermore G,,, = G,¢)-,,. The (4, 3) and (5, 5) graphs
are of course exceptions to this rule.

As a supplement to tables of this kind, B. R. Heap developed a program
on the computer at the National Physical Laboratory in Middlesex which
has produced one card for each graph with 7 points and is in the process
of producing graphical cards for p = 8. It was found most convenient to
code the graphs in adjacency matrix form. The existence of such lists has
already proved valuable to investigators using computer methods.

For convenience we present here a table displaying the number of
graphs with a given number of points and lines, up through 9 points (cf.
Riordan [R1S5, p. 146]). The entries were obtained using Pdlya’s formula
(15.47).

\

(15.27)

213
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Table Al
THE NUMBER OF GRAPHS WITH p < 9 POINTS AND g LINES

Py 2 3 4 s 6 7 8 9
q
0 | 1 1 1 1 1 1 1 1 1
I 1 I 1 1 1 1 1 1
2 1 2 2 2 2 2 2
3 I 3 4 5 5 5 5
4 2 6 9 10 11 1
5 QO 6 15 21 24 25
6 16 21 41 56 63
7 4 24 65 115 148
8 2 24 97 21 345
9 1 21 i3l 402 771
10 I 15 148 663 1637
1 9 148 980 3252
12 5 131 1312 5995
13 2 97 1557 10120
14 1 65 1646 15615
15 1 41 1557 21933
16 21 1312 27987
17 10 980 32403
18 5 663 34040
g, |1 2 4 11 34 156 1044 12344 308168
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p=35 (cont.)
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GRAPH DIAGRAMS

p=6 (cont.}
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p=6 (cont.)
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p=6 {(cont.)
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p=6 (cont.}
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DIGRAPH DIAGRAMS

The hero jumped on his horse
and rode off in all directions.

S. LEACOCK

The digraphs with at most 4 points are listed here according to the number
of points and arcs. Indices are assigned to each one in such a way that
complements receive the same index, except of course within the (3, 3) and
(4, 6) digraphs. The diagrams only go through p = 4 because to include
those for p = 5 would require another book almost the size of the present
volume. The following table due to Oberschelp [O1] gives the number of

digraphs with p points, p < 8. The entries may be computed using
equation (15.30).

Table A2

THE NUMBER
OF DIGRAPHS
WITH p < 8 POINTS

p d,

1 1
2 3
3 16
4 218
5 9 608
6 1 540 944
7 882 033 440
8 1793 359 192 848

225



226 APPENDIX 2

: {4 4 4
1 < 4 4 <
: N < <<




1.

DIGRAPH DIAGRAMS
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4 (cont.)

p:
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DIGRAPH DIAGRAMS

p=4 (cont.)
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TREE DIAGRAMS

You can’t see the forest for the trees.

ANONYMOUS

The diagrams of all the trees with p < 12 points were developed by Prins
and appear as an appendix in his doctoral dissertation [P8]. We present
here only those diagrams for p < 10, which are also given in [HP21]. The
ordering of trees with a given number of points is somewhat arbitrary, but in
general they are listed by increasing number of points of degree greater than
2. The following table presents the number of trees and rooted trees with p
points for p < 26 (cf. Riordan [R15, p. 138]) and the number of identity
trees and homeomorphically irreducible trees for p < 12 (cf. [HP20]).
These numbers were obtained using formulas (15.41), (15.35), (15.51 and
15.52), and (15.47, 15.48, and 15.49) respectively.

231
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Table A3

THE NUMBER OF TREES, ROOTED TREES, IDENTITY TREES,
AND HOMEOMORPHICALLY IRREDUCIBLE TREES WITH p POINTS

p Ly /4 t, T,
1 1 1 1 13 1 301 12 486
2 1 0 1 14 3 159 32 973
3 1 0 0 15 7 741 87 811
4 2 0 1 16 19 320 235 381
5 3 0 1 17 48 629 634 847
6 6 0 2 18 123 867 1 721 159
7 11 1 2 19 317 955 4 688 676
8 23 1 4 20 823 065 12 826 228
9 47 3 5 21 144 505 35 221 832
10 106 6 10 22 623 756 97 055 181
11 235 15 14 23 828 074 268 282 855
12 551 29 26 24 299 897 743 724 984
25 636 890 2 067 174 645
26 793 450 5 759 636 510




TREE DIAGRAMS 233

>—

*—o—o

ps e el o
R R s Sl P
N b db s

R N L L Tt a e
S e b v SR ok e A

et e ok

g ek W ek X K
wuu\ﬁ/\,«/

2l o e e e
SR N S S S
b Y Y i



333333333333

PR B D S S SPS JS I SN

R I N A s I e
T e e s

A e = £
SR o IR g




BIBLIOGRAPHY






BIBLIOGRAPHY

And thick and fast
They came at last,
And more and more and more.

[.. CARROLL

The references listed below are intended to be those and only those which have been
cited in the text. It should be noted, however, that this list is considerably more selective
than the exceedingly comprehensive bibliography of graph theory and its applications
compiled by Turner [T5]. For the convenience of the reader, each item in this bibliog-
raphy is followed by one or more numbers in square brackets which indicate the pages
where the item is mentioned, following the useful innovation of Griinbaum [G10]. In
accordance with the procedure in Mathematical Reviews, all books are starred.t

Anderson, S. S.

[AH1]

Babler, F.
[B1]

Balaban, A. T.
[B2]

Ball, W. W. R.
* [BCI1]

Barnette, D.

LB ]

(with F. Harary), Trees and unicyclic graphs. Math. Teacher 60 (1967),
345-348. [42]

(with R. E. Fagen, W. F. Penney, and J. Riordan), The number of com-
ponents in random linear graphs. Ann. Math. Statist. 30 (1959),
747-754. [195, 196]

Uber eine spezielle Klasse Euler’scher Graphen. Comment. Math. Helv.
27 (1953), 81-100. [69]

Valence-isomerism of cyclopolyenes. Rev. Roumaine Chim. 11 (1966),
1097-1116. [62]

(with H. S. M. Coxeter), Mathematical Recreations and Essays.
Macmillan, New York, 1947. [4]

Trees in polyhedral graphs. Canad. J. Math. 18 (1966), 731-
See also p. 68.

t One publisher advertised a trigonometry text saying, *This book was starred in Math. Reviews.”
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INDEX OF SYMBOLS

The Greeks had a word for it . . .

Z. AKINS

Most of the letters in the Roman and Greek alphabets have been used as symbols in
this book. Those symbols which occur most often are listed here, separated into three
categories: Roman letters, Greek letters, and operations on graphs and groups.

adjacency matrix
alternating group 165
incidence matrix 152
block graph of G 29
cycle matrix 154
cocycle matrix 135
cycle of lengthn 13
cyclic group 165
cutpoint graph of G 30
digraph 198
condensation of D 200
converse of D 200
dihedral group 165
identity group 165
graph 9

removal of a point 11
removal of a line 11
addition of a line 11
squarcof G 14
dualof G 113
complete graph 16
complete bigraph 17
line digraph of D 209
line graph of G 71
path 13

150, 151

265

n-cube 23

subdivision graph of G 81

symmetric group 165

pair group 185

reduced ordered pair group
186

tree 32

tournament 205

cotree of T 39

total graph of G 84

set of points of G 9

wheel 46

set of lines 9

cycleindex of 4 181

block-cutpoint tree of G 36
circumference 13

degree of v; 14

diameter 14

distance 14, 199
eccentricity 35
girth 13

indegree 198
number of k-cycles 181
number of components 40




266

m(G)
m*(G)
od(v)
14

(p, @)
q

"G)
u, v, W
X, ¥z

INDEX OF SYMBOLS

cycle rank 39
cocycle rank 39
outdegree 198
number of points 9
p points, ¢ lines 9
number of lines 9

radius 35
points 9
lines 9

point covering number 94
line covering number 94
point independence number
95

line independence number
95

genus 117

groupof G 161

line group of G 161
minimum degree 14
maximum degree 14
thickness 120

connectivity 43

local connectivity 49
line-connectivity 43
crossing number 122
coarseness 121

partition of a graph 57
arboricity 90

chromatic number 127
line-chromatic number 133
achromatic number 144
intersection number 19
intersection graph 19

<S>

G, u G,
Gl + Gz
A+ B
G, %X G,
Ax B
G,[G.]
A[B]
G, A G,

G, °G,

induced subgraph 11
union of graphs 21

join of graphs 21

sum of groups 163
product of graphs 21
product of groups 163
composition of graphs 22
composition of groups 164
conjunction of graphs 25
power group 164

corona of graphs 167
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INDEX OF DEFINITIONS

In words, as fashions, the same rule will hold,
Alike fantastic if too new or old;

Be not the first by whom the new are tried,
Nor yet the last to lay the old aside.

A. POPE, Essay on Criticism

achromatic number, 144 centroid, 36
acyclic, digraph, 200 centroid point, 36

graph, 32 0-chain, 37
addition of a line, 11 |-chain, 37
adjacency matrix, of a digraph, 151, 202 chord, 38

of a graph, 150 n-chromatic graph, 127
adjacent lines, 9 chromatic number, of a graph, 127
adjacent points, in a digraph, 198 of a manifold, 135

in a graph, 9 n-chromatic number, 149
animal, 194 chromatic polynomial, 146
arbitrarily traversable graph, 69 circuits, 40, 41
arboricity, 90 circumference, 13
arc, 10 clique, 20
automorphism, 161 clique graph, 20

coarseness, 121
coboundary, 38
cocircuit, 41

1-basis, 202
bigraph, 17
complete, 17

_ . cocycle, 38
Ellgglitltzzgraph’ 17 cocycle basis, 38
s trix, 155

block graph, 29 ok 39
blc:c:e-c;;pomt graph, 36 space, 38
. ree, 3 color class, 126

oundar:’)’/g 7 color-graph, 168
brfmch, n-colorable graph, 127
bridge, 26 map, 131
n-cage, 174 coloring, 126
center, 35 complete, 143
central point, 35 of a graph from 7 colors, 145
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of a plane map, 131
n-coloring, 126
complete bigraph, 17
complete graph, 16
complete n-partite graph, 23
complement, 15
complex, simplicial, 7
component, 13
n-component, 46
composite graph, 166
composition, of graphs, 22
of permutation groups, 164
condensation, 200
configuration, 181
counting series, 182
group, 181
conjunction, of digraphs, 210
of graphs, 25
connected graph, 13
connected, strongly, 199
unilaterally, 199
weakly, 199
n-connected graph, 45
connectivity, 43
function, 45
local, 49
pair, 45
contractible, 113
contraction, elementary, 112
contrafunctional digraph, 201
converse, 200
corona, 167
cospectral digraphs, 210
graphs, 158
cotree, 39
cover, minimum, 94
covering, in a graph, 94
in a matrix, 53
critical graph (color), 141
(cover), 98
n-critical graph (color), 141
critical line (cover), 97
critical point (cover), 97
crossing number, 122
n-cube, 23
cubic graph, 15
cutpoint, 26

graph, 30
cutset, 38
cycle, in a digraph, 198
in a graph, 13
cycle basis, 38
matrix, 154
rank, 39
space, 38
vector, 38
cycle index, 181
cyclic triple, 205

degree, of a line, 171
of a permutation group, 161
of a point, 14
detour matrix, 203
diameter, 14
digraph, 198
acyclic, 200
adjacency matrix of, 151, 202
contrafunctional, 201
disconnected, 199
eulerian, 204
functional, 201
line, 209
primitive, 210
strong, 199
trivial, 199
unilateral, 199
weak, 199
dimension of a simplex, 7
directed graph, 10
directed line, 10, 198
disjoint paths, 47
distance, in a digraph, 199
in a graph, 14
matrix, 206
dual, combinatorial, 114
geometric, 113

eccentricity, 35
elementwise product, 203
embedding, 102
endomorphism, 177
endpoint, 15
eulerian digraph, 204
graph, 64
matroid, 159



trail, in a digraph, 204
trail, in a graph, 64
exponentiation group, 177

face, 103

exterior, 103
factor, 84
n-factor, 84
n-factorable graph, 84
n-factorization, 84
figure, 181

counting series, 182
fixed point, 171
forest, 32
functional digraph, 201

genus, 117

geodesic, 14

girth, 13

graph, 7,9
acyclic, 32
arbitrarily traversable, 69
bipartite, 17
block, 29
block-cutpoint, 36
n-chromatic, 127
clique, 20
color-, 168
n-colorable, 127
complement of, 15
complete, 16
complete n-partite, 23
composite, 166
connected, 13
n-connected, 45
critical, 98, 141
n-critical (color), 141
cubic, 15
cutpoint, 30
directed, 10
eulerian, 64
n-factorable, 84
hamiltonian, 65
identity, 161
infinite, 16
intersection, 19
interval, 20

INDEX OF DEFINITIONS

irreducible, 99
labeled, 10
line, 70
n-line connected, 45
line-critical, 98, 142
n-line critical (color), 142
line-regular, 171
line-symmetric, 171
nonseparable, 26
oriented, 10
outerplanar, 106
planar, 102
plane, 102
point critical (cover), 98
point-symmetric, 171
prime, 166
reducible, 99
regular, 14
n-regular, 174
self-complementary, 15
semi-irreducible, 99
subdivision, 81
symmetric, 171
theta, 66
toroidal, 117
total, 82
totally disconnected, 16
n-transitive, 173
trivial, 9
unicyclic, 41
uniquely colorable, 137
n-unitransitive, 174
graphoid, 41
group, 160
color graph of, 168
configuration, 181
exponentiation, 177
pair, 185
permutation, 161
power, 164
group of a graph, 161

hamiltonian cycle, 65
graph, 65

hereditary property, 96

homeomorphic graphs, 107

homomorphism, 143
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complete of order n, 143 ltne-coloring, 133
elementary, 143 n-line coloring, 133
identical permutation groups, 161 n-line connected graph, 45
identity graph, 161 line-connectivity, 43
in-tree, 201 line-core, 98
incidence, in a digraph, 198 line-covering number, 94
in a graph, 9 line-critical graph (color), 142
matrix, 152 (cover), 98
indegree, 198 n-line critical graph (color), 142
independent points, 95 line disjoint paths, 47
lines, 86 line-group, 161
set, 40 line-regular graph, 171
set of lines, 95 line-symmetric graph, 171
unit entries, 53 linear subgraph, 151
induced subgraph, 11 lines, multiple, 10
infinite graph, 16 loop, 10

intersection graph, 19
intersection number, 19
interval graph, 20
invariant, 11
irreducible graph, 99
isolated point, 15
isomorphic, graphs, 10

map, edge-rooted plane, 193
plane, 103

matching, maximum, 96
unaugmentable, 96

matrix, adjacency, of a digraph, 151, 202
adjacency, of a graph, 150
cocycle, 155

roups, 161
sroup cycle, 154
join, 21 degree, 152
joins, 9 detour, 203

distance, 206

incidence, 152

reachability, 203
matroid, 40, 157

labeled graph, 10
2-lattice, 194

3-lattice, 194

length, in a digraph, 199

in a graph, 13 binary, 159
) cocycle, 40
line, of a graph, 9 )
. cographical, 157
of a matrix, 53
cycle, 40

addition of, 11
cover, 94 .

covering number, 94
critical (cover), 97

eulerian, 159
graphical, 157
multigraph, 10

directed, 198 neighborhood, 167
independence number, 95 closed, 167
ramsey number, 82 network, 52
removal of, 11 nonseparable graph, 26
symmetry, 189

line digraph, 209 orbit, 180

line graph, 71, 73 order of a permutation group, 161
iterated, 133 orientation, 210

line-chromatic number, 133 oriented graph, 10



out-tree, 201

outdegree, 198

outerplanar graph, 106
maximal, 106

pair group, 185
reduced ordered, 186
partition, graphical, 57
of a graph, 57
of a non-negative integer, 57
simple, 61
path, in a digraph, 198
in a graph, 13
paving of a 2-lattice, 194
peripheral potnt, 41
permutation, 161
graph, i75
group, 161
Petersen graph, 89
place, 181
planar graph, 102
maximal, 104
plane graph, 102
planted tree, 188
point, of a digraph, 198
of a graph, 9
central, 35
centroid, 36
cover, 94
covering number, 94
critical (cover), 98
end-, 15
fixed, 171
independence number, 95
isolated, 15
peripheral, 41
removal of, 11
weight at, 35
polyhedron, convex, 106
power group, 164
- primative digraph, 210
prime graph, 166
product, of graphs, 21
of permutation groups, 163
pseudograph, 10

radius, 35
ramsey number, 16
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line form, 82
reachability, 199

matrix, 203
reducible graph, 99
regular graph, 14
n-regular graph, 174
removal, of a point, 11

of a line, 11
rooted tree, 187
n-route, 173

score, 207
self-complementary graph,
semi-irreducible graph, 99
semicycle, 199
semtigroup of a graph, 177
semipath, 199
semiwalk, 199
separates, 47
simtlar points, 171

lines, 171
sink, 201
l1-skeleton, 103
source, 201
spanning subgraph, 11
square of a graph, 14
square root of a graph, 24
stabilizer, 180
star, 17
strong component, 199

digraph, 199
subdivision graph, 81
subgraph, 11

even, 194

induced, 11

linear, 151

spanning, 11
successor walk, 173
sum, of factors, 84

of permutation groups, 163
supergraph, 11 )
symmetric graph, 171
symmetry line, 189

5

theta graph, 66
thickness, 120
toroidal graph, 117
total graph, 82
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totally disconnected graph, 16
tournament, 205
trail, 13
eulerian, 64, 204
n-transitive graph, 173
transitive triple, 205
tree, 32
block-cutpoint, 37
planted, 188
rooted, 187
triangle, 13
trivial digraph, 199
graph, 9
twig, 39

untcyclic graph, 41
unilateral component, 199
digraph, 199

BCDE79876543210

unilaterally connected, 199
union, 21

uniquely colorable graph, 137
n-unitransitive graph, 174

walk, in a digraph, 198
in a graph, 13
closed, in a digraph, 198
closed, in a graph, 13
open, 13
spanning, 198
weak component, 199
digraph, 199
weakly connected, 199
weight at a point, 35
weight function, 180
wheel, 46
whirl, 158



