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Introduction
� Classification procedures that use unlabeled samples 

are called unsupervised.
� Reasons for working such an “unpromised” approach :

� computational cost of labeling a huge sample (training) set 
� for systems whose class-specific pattern generation change 

in time, it is necessary to adopt  continuously 
� training with huge unlabeled data first, labeling  the 

clusters afterwards, is more preferable
� some useful features can be found during unsupervised 

classification 

� Two main approaches :
� Parametric strategy : assume forms are known, combined 

classification and parameter estimation
� Nonparametric strategy : Partitioning
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Parametric Unsupervised Learning (1/2)

� There are initial assumptions :
� Samples are from c number of classes
� A priori class probabilities, p(wk), are known
� Form of conditional prob, p(x|wk,Θk), is known
� Deterministic parameter vector is unknown
� Class labels are unknown

� Samples are assumed to be obtained by
� selecting a state of nature wk with p(wk), then
� selecting an x according to p(x|wk, Θk)
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Parametric Unsupervised Learning (2/2)

� Mixture density can be written as :
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� Goal : First estimate unknown parameter, 
then decompose mixture into its components 
to make a classification

� Note that different values of unknown parameter may lead 
to the same mixture density � “identifiable” densities are 
assumed (usually, a problem in discrete densities)
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Parametric Unsupervised Learning
Maximum Likelihood (ML) Estimate (1/2)

� Let X={ x1,…, xn} be n unlabelled samples drawn 
independently from )(),|()|(
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Parametric Unsupervised Learning
Maximum Likelihood (ML) Estimate (2/2)

� Since parameters 
for different 
classes are 
functionally 

independent

� Considering the relation between derivative and log, we 
obtain the equation below to be solved for all i. 
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� If P(wj)’s are also unknown, ML estimate can be obtained by 
using a similar formulation

� Since it is nonlinear, solution can be obtained iteratively. 
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Parametric Unsupervised Learning
ML Estimate for Multivariate Normal (1/2)

� Assuming only mean is unknown, ML estimate :
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� No explicit solution; mean can be obtained iteratively with no 
guarantee for global minimum
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Parametric Unsupervised Learning
ML Estimate for Multivariate Normal (2/2)

� Consider the following example : µa =(µ1,µ2 )= (−2, 2) :
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� Note that starting from two different starting points, the 
iterative algorithm reaches two different solutions = µa& µb

� unidentifiable 

sample data drawn from the density
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Parametric Unsupervised Learning
K-means algorithm (1/2)

� K-means or ISODATA or c-means algorithm :

1) Choose initial mean values for k (or c) classes

2) Classify n samples by assigning them to “closest” mean

3) Recompute the means as the average of samples in their (new) 
classes

4) Continue till there is no change in mean values

� If we find the nearest mean µm to xk � approximate as
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� Then, the iterative ML estimation becomes K-means
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Parametric Unsupervised Learning
K-means algorithm (2/2)

� The trajectory of the mean values during iterations 
for different initial values

sample data drawn from the density

� For 2-D unsupervised data, 
Voronoi regions change 
during iterations
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Nonparametric Unsupervised Learning

� For non-trivial distributions parametric approaches 
usually fail

� An obvious alternative approach is using a priori 
information to design a classifier, then classify 
unlabelled data using this initial classifier (decision 
directed strategy)

� Some problems related such a strategy :
� Initial classification is critical
� An unfortunate sequence of samples will create more 

errors compared to estimating likelihood
� Even if the initial classification is optimal,  samples from 

the tails of other overlapping distributions will create 
biased estimates (i.e. less probable samples from one class 
will be included in the other class)
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Nonparametric Unsupervised Learning

� Clustering : A procedure yields a data 
description in terms of groups of data 
points that posses strong internal 
“similarities” (criterion fnct.)

� Partitioned samples in one cluster should be 
more similar to samples in the same cluster 
(wrt to the samples in other clusters), but

� how to measure similarity between samples?

� how one should evaluate a partitioning?
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Nonparametric Unsupervised Learning
Similarity Measures (1/2)

� A good similarity measure is some ‘distance’ 
(e.g. Euclidian) between two samples

� It is expected to have shorter distance 
between the samples in one cluster, compared 
to the samples in different clusters

� Using a threshold, clusters can be classified, 
as “similar” or “dissimilar”

� In order to be scale independent, either 
� use normalization (can be problematic)
� use non metric similarity functions, such as 

normalized inner product :
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Nonparametric Unsupervised Learning
Similarity Measures (2/2)

� Threshold selection is critical

� Normalization can be problematic
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Nonparametric Unsupervised Learning
Criterion Function for Clustering 

� Criterion function measures the clustering quality of 
any partition of data

1) Sum-of-squared-error criterion (minimum variance) :

2) Related minimum variance criteria :

∑∑∑
∈= ∈

=−=
ii Xxi

i

c

i Xx
ie x

n
mwheremxJ

1

1

2

),(),(min

average :),(
1

 generally, More

1

2

1

,,

2

2

2
1

xxsmediansorxxssor

xxs
n

s

orxx
n

swheresnJ

i
i

i i

i i

Xxx
i

Xxx
i

Xx Xxi
i

Xx Xxi
i

c

i
iie

′=′=

′=

′−==

∈′∈′

∈′ ∈

∈′ ∈=

∑ ∑

∑ ∑∑



METU EE 583 Lecture Notes by A.Aydin ALATAN © 2014

Nonparametric Unsupervised Learning
Iterative Optimization (1/4)

� Clustering becomes a well-defined problem as 
as soon as criterion function is selected

� One option for a solution is exhaustive search
e.g. 5 clusters, 100 samples --> 1067 partitioning !

� Iterative optimization is another option
Begin from a reasonable initial partition, then 
“move” samples from one group to another if that 
move is feasible

� Iterative optimization is suboptimal since it 
depends on initial partitioning
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Nonparametric Unsupervised Learning
Iterative Optimization (2/4)

� Assume sum-of-squared-error criterion
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� Since total criterion, Je, is tried to be 
minimized, transfer from Xi to Xj is accepted 
if decrease in Ji is greater than increase in Jj
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Nonparametric Unsupervised Learning
Iterative Optimization (3/4)

� Minimum squared algorithm :
1) Select an initial partition for n samples; compute Je 

and mean
2) Select next candidate, x, (let x belong to cluster i)
3) Compute 

4) Transfer x to Xk if ak <aj for all j
5) Update Je, mi and mk

6) If Je does not change after n attempts, STOP
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Note that MSE is the sequential version of K-means
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Nonparametric Unsupervised Learning
Iterative Optimization (4/4)

� Experimentally, it is shown that
� MSE is more susceptible to being trapped by a local minima 

compared to ISODATA
� MSE depends on the order of choosing samples
� MSE is step-wise optimal (if the problem is sequential, it is 

advantageous)

� A common problem to iterative optimization methods is 
selection of starting points

� A solution is to use (c-1)-cluster problem as an initial 
estimate c-cluster problem. Beginning from 1-cluster, 
use the sample furthest from all samples to obtain the 
next cluster mean �basis for hierarchical clustering
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Nonparametric Unsupervised Learning
Hierarchical Clustering (1/4)

� Two main strategies for hierarchical 
clustering
� Agglomerative (bottom-up) :

Start with n singleton clusters and reach to c clusters by 
merging “similar” clusters by decreasing cluster number

� Divisive (top-down) :
Start with 1 cluster which contains n samples and reach 

to c clusters successively split clusters

� For n (large number) samples to be classified 
into c (large number) classes, agglomerative  
approaches are better from computational 
point of view (or vice versa) : n    c                 1
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Nonparametric Unsupervised Learning
Hierarchical Clustering (2/4)

� Agglomerative Hierarchical Clustering :

1) Let c’=n, Xi={xi} i=1,…,n
2) If c’<c STOP  (c=# of regions)
3) Find “nearest” pair of distinct clusters, Xi & Xj

4) Merge Xi & Xj ; delete Xj; decrement c’; GOTO 2

Similarity scale 
can be used to 
determine 
whether groupings 
are natural or 
forced
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Nonparametric Unsupervised Learning
Hierarchical Clustering (3/4)

� In this hierarchy, at any level, distance 
between clusters gives a similarity value for 
finding the nearest clusters 

� Following distance measures can be utilized
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Nonparametric Unsupervised Learning
Hierarchical Clustering (4/4)

� Stepwise Optimal Hierarchical Clustering :
� Change one step of “Agglomerative Clustering” algorithm so 

that at every step a stepwise optimal procedure (wrt a 
criterion function) is extremized (Ward’s Algorithm):

Find pair of distinct clusters Xi & Xj whose merger would 
increase (decrease) the criterion function, minimum
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In practice, de usually favors merging small regions to large 
regions  rather than merging two mid-size region
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� If we choose distance function as below, then the increase 
in sum-of squared error criterion is minimized at every step
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Nonparametric Unsupervised Learning
Graph Theoretic Approaches (1/3)

� Graph Theory can be applied to nonparametric 
unsupervised learning

� The samples to be clustered can be assumed to be 
nodes of a graph

� If two nodes are found out to be similar (belonging to 
the same cluster) � an edge is placed between these 
nodes

� All nodes, which are connected to each via chain of 
edges belong to the same cluster

� At any state, how to merge two clusters in such a 
graph?
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Nonparametric Unsupervised Learning
Graph Theoretic Approaches (2/3)

� Assume merging two clusters corresponds to 
adding an edge between these two nodes

� Since edges linking for clusters never make 
loops, in graph theory, such edge groups are 
called trees

� If continue edge linking till all clusters are 
merged, then a spanning tree is obtained which 
reaches all nodes

� If dmin(Xi,Xj) measure is used during merger 

� resulting graph is a minimal spanning tree, 
� i.e nearest neighbor clustering algorithm can be 

viewed as an algorithm to obtain minimal spanning 
tree
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Nonparametric Unsupervised Learning
Graph Theoretic Approaches (3/3)

� Conversely, given a minimal spanning tree, clusters obtained by 
the nearest neighbor algorithm can be found by first dividing 
tree into two by removing the longest edge, then ...

� Instead of removing the longest edge, one option is to remove 
the most ‘inconsistent’ edge incident to the same node

� Another option is to determine 
the edge length distribution and 
segment different edge length 
groups accordingly
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Graph theoretic Clustering
� A top-down approach

� Tokens (nodes) are represented by using a 
weighted graph.

� affinity matrix, A (similar nodes have 
higher entries)

� Cut up this graph to get subgraphs with 
strong links

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach

Affinity 
matrix
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Affinity Matrix with scale (σ)

aff x, y( )= exp − 1
2σ d
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Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach



METU EE 583 Lecture Notes by A.Aydin ALATAN © 2014

29

Solution via Eigenvectors
� Idea:  Find vector, w, giving the association between each node 

and a cluster

� Elements within a cluster should have strong affinity with 
each other

� Maximize the following relation: wTA w (A : affinity matrix)
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• Above relation maximizes, in case all 3 terms are non-zero (or not very 
small) 

• There should be an extra constraint, as wT w=1

• Optimize by method of Lagrange multiplier : max { wTAw + λ (wTw-1) }

• Solution is an eigenvalue problem 

• Choose the eigenvector of A with the largest eigenvalue

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach
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Solution via Eigenvectors

points

matrix

eigenvector

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach
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Normalized cuts

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach

� Previous criterion only
evaluates within cluster
similarity, but not across 
cluster difference

� Instead, one would like to 
maximize within cluster 
similarity compared to the 
across cluster difference

� Write graph V, one cluster 
as A and the other as B

� Minimize Normalized Cut

cut(A,B) : sum of edges 
between A&B

assoc(A,V) : sum of edges only 
in A

� Construct A, Bsuch that 
their within cluster 
similarity is high, 

� compared to their association 
with the rest of the graph
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Normalized cuts

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach

cut(A,B) : sum of edges between A&B

assoc(A,V) : sum of edges only in A
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Normalized cuts

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach

� Defined vector y, has elements as

� 1,  if item is in A,

� -b, if item is in B

� After derivations

is shown to be equivalent to 

� with the constraint 

(Read proof in the distributed notes)

� This is so called Rayleigh Quotient
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Normalized cuts

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach

� Its solutions is the generalized eigenvalue problem

which gives

� Optimal solution is the eigenvector due to second smallest 
eigenvalue 

� Now, look for a quantization threshold that maximizes the 
criterion --- i.e. all components of y above that threshold go to 
one, all below go to -b

maxy yT D − W( )y( ) subject to yTDy = 1( )

D − W( )y = λDy

min


