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Introduction

s Classification procedures that use unlabeled samples
are called unsupervised.

= Reasons for working such an "unpromised” approach :
= computational cost of labeling a huge sample (training) set

= for systems whose class-specific pattern generation change
in time, it is necessary to adopt continuously

= training with huge unlabeled data first, labeling the
clusters afterwards, is more preferable

= some useful features can be found during unsupervised
classification

= Two main approaches :

= Parametric strategy : assume forms are known, combined
classification and parameter estimation

= Nonparametric strategy : Partitioning
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Parametric Unsupervised Learning (1/2)

= There are initial assumptions :
= Samples are from c number of classes
= A priori class probabilities, p(wy), are known
= Form of conditional prob, p(x|w,®),), is known
=« Deterministic parameter vector is unknown
= Class labels are unknown

= Samples are assumed to be obtained by
= selecting a state of nature w, with p(w,), then
= selecting an x according to p(x|w, ©))
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Parametric Unsupervised Learning (2/2)

= Mixture density can be written as :
p(x|®) => p(x|©;,w;)p(w;) mixturedensity

i=1 > g

componentlensity

=

= Goal : First estimate unknown parameter,
then decompose mixture into its components
to make a classification

" Note that different values of unknown parameter may lead

to the same mixture density - “identifiable” densities are
assumed (usually, a problem in discrete densities)
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Parametric Unsupervised Learning
Maximum Likelihood (ML) Estimate (1/2)

= Let X={ x;,..., x} be n unlabelled samples drawn
mdependen’rly from p(x|©) = Z p(XIW G)p(w)

= ML estimate : O, = argmax p(X |©) = argmgxn p(X, [©)
= Let [=logp(X|©)=> logp(x O)
k=1

= In order to maximize /

n n

Hol =2 Ho (log p(x, |©)) = Z p(xl| o) o, (Z P(X [w, ,@,-)p(wj)j =0

dlogu(x)) = 1 odu(x)
0X _u(x) 0X

Notethat
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Parametric Unsupervised Learning
Maximum Likelihood (ML) Estimate (2/2)

= Since parameters [ | = n 1 0o, (P(x W, ©;) p(w))

for different & p(x 0)

classes are o(w )

functionally = Z 0o, (P(% 1W,©,))
) p(X, |O)

independent m

P(X W ,©;)
= Considering the relation between derivative and log, we
obtain the equation below to be solved for all i.

0o | :Zn: p(w, | %,,©)0, (log p(x, [w,0,))=0 i=1....c
P(% [W, ;) p(w)
Zp(xklvvj,@j) p(w)

= Since it is nonlinear, solution can be obtained iteratively.

where p(w [ X ,0) =

= If P(w)'s are also unknown, ML estimate can be obtained by
using a similar formulation
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Parametric Unsupervised Learning
ML Estimate for Multivariate Normal (1/2)

= Assuming only mean is unknown, ML estimate :

log p(x| W, 4) = —log((2m)*2 | =, |)—%(x—ui>t > (x- )

= 0, log p(x|w, f) =2~ (x~ f4)

= > pW %, A (%~ 4)=0  wherefis ML estimate
k=1

weightedaverageof x,

ip(wi | X, )%,
= = kzln wherep(w | X, 1) = cp(Xk W, ) p(w)
D p(W | %, A1) > p(x |wi, 4) p(w;)
k=1 j=1

= No explicit solution; mean can be obtained iteratively with no
guarantee for global minimum

(j+1) = Zp(w | %, ﬂ(J))xk/Z P(W, | X, 22(]))
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Parametric Unsupervised Learning
ML Estimate for Multivariate Normal (2/2)

= Consider the following example : p =(p,,1,)= (-2, 2) :

_ 1 1l 2 1l
p(XIﬂl,ﬂz)——zﬂex 2(x ) }+N§Te>¢{ 2(>< ﬂz)}

—
sample data drawn from the density

= Note that starting from two different starting points, the
iterative algorithm reaches two different solutions = pa& pb

- unidentifiable
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Parametric Unsupervised Learning
K-means algorithm (1/2)

= If we find the nearest mean 1, o x, = approximate as
1 ifi=m

. 0) =
P 1% ) {0 otherw.

= Then, The iterative ML estimation becomes K-means
g(j+)= Zp(w | X, ﬂ(J))xk/Z P(W | X, (D)= A (1 +D) = Y % /ny,

XX (i)

» K-means or ISODATA or c-means algorithm :

1) Choose initial mean values for k (or ¢) classes

2) Classify n samples by assigning them to “closest” mean

3) Recompute the means as the average of samples in their (new)
classes

4) Continue till there is no change in mean values
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Parametric Unsupervised Learning
K-means algorithm (2/2)

= The trajectory of the mean values during iterations
for different initial values

plx

Ml,’,‘

- -3 -2 -1 0 i 2 3 -+
— _/
—— .
sample data drawn from the density

X,
s

= For 2-D unsupervised data,
Voronoi regions change
during iterations
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Nonparametric Unsupervised Learning

= For non-trivial distributions parametric approaches
usually fail

= An obvious alternative approach is using a priori
information to design a classifier, then classify
unlabelled data using this initial classifier (decision
directed strategy)

= Some problems related such a strategy :
= Initial classification is critical

= Anunfortunate sequence of samples will create more
errors compared to estimating likelihood

= Even if the initial classification is optimal, samples from
the tails of other overlapping distributions will create
biased estimates (i.e. less probable samples from one class
will be included in the other class)
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Nonparametric Unsupervised Learning

= Clustering : A procedure yields a data
description in ferms of groups of data
points that posses strong internal
“similarities” (criterion fnct.)

» Partitioned samples in one cluster should be
more similar fo samples in the same cluster
(wrt to the samples in other clusters), but

= how to measure similarity between samples?

= how one should evaluate a partitioning?
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Nonparametric Unsupervised Learning
Similarity Measures (1/2)

= A good similarity measure is some 'distance’
(e.g. Euclidian) between two samples

= It is expected to have shorter distance
between the samples in one cluster, compared
to the samples in different clusters

s Using a threshold, clusters can be classified,
as "similar” or “dissimilar”
= Inorder to be scale independent, either

= use normalization (can be problematic)

= use non metric similarity functions, such as

normalized inner product : —_— X%,
2
%, HH 2”
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Nonparametric Unsupervised Learning
Similarity Measures (2/2)

. Thr'eshold selec‘rlon is critical

/J do — 1

”\'; 14 |
s ( ) 'ﬁ& A X

02 > 2
PN 7y , % A A

vy
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Nonparametric Unsupervised Learning
Criterion Function for Clustering

= Criterion function measures the clustering quality of
any partition of data

1) Sum-of-squared-error criterion (minimum variance) :
< 2
J.=D. > |[x-m|” wherem ——Zx
i=1 xUX; | XOX;
2) Related minimum variance cr'l’rer'la
J ——Zna where 3——

| XOX, xOX

Moregenerallys = Z D s(x,X) :average

| XOX; xOX;

or S =min s(x,X) or § =medians(x,Xx)
X, XX X, X0X,
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Nonparametric Unsupervised Learning
Iterative Optimization (1/4)

= Clustering becomes a well-defined problem as
as soon as criterion function is selected

= One option for a solution is exhaustive search
e.g. b clusters, 100 samples --> 1067 partitioning |

= Iterative optimization is another option

Begin from a reasonable initial partition, then
"move" samples from one group to another if that
move is feasible
= Iterative optimization is suboptimal since it
depends on initial partitioning
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Nonparametric Unsupervised Learning
Iterative Optimization (2/4)

= Assume sum-of-squared-error crl‘remon

3,230 y=Yhemf m=tyx
=1

XX | XUX;

= Let x move from cluster X to X
* x-m
mj:mj+ J, J. =J +

n, +1 : : n+1

),Z_m * _ | PN 2
J=J -1 |g-
n-1 ''n —1HX mH

= Since total criterion, J,, is tried to be
minimized, transfer from X; to X; is accepted
if decr'ease in J |s greater than increase in J;

L Jg-mf <

m =m -

n+1
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Nonparametric Unsupervised Learning
Iterative Optimization (3/4)

= Minimum squared algorithm :
1) Select an initial partition for n samples; compute Je

and mean
2) Select next candidate, x, (let x belong to cluster i)
3) COmpUTC n )'Z—n‘&‘ 5 i#i
aj:<nj+1
b og-mff j=i
n-1

4) Transfer x to X, if ay <a; for all j
5) Update J,, m; and m,
6) If J, does not change after n attempts, STOP

Note that MSE is the sequential version of K-means
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Nonparametric Unsupervised Learning
Iterative Optimization (4/4)

= Experimentally, it is shown that

= MSE is more susceptible to being trapped by a local minima
compared to ISODATA

= MSE depends on the order of choosing samples
= MSE is step-wise optimal (if the problem is sequential, it is
advantageous)
= A common problem to iterative optimization methods is
selection of starting points

= A solution is to use (c-1)-cluster problem as an initial
estimate c-cluster problem. Beginning from 1-cluster,
use the sample furthest from all samples to obtain the
next cluster mean >basis for Aierarchical clustering
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Nonparametric Unsupervised Learning
Hierarchical Clustering (1/4)

= Two main strategies for hierarchical
clustering

= Agglomerative (bottom-up) :

Start with n singleton clusters and reach to ¢ clusters by
merging "similar” clusters by decreasing cluster number

= Divisive (top-down) :
Start with 1 cluster which contains n samples and reach
to c clusters successively split clusters

= For n (large humber) samples to be classified
into ¢ (large number) classes, agglomerative
approaches are better from computational
point of view (or vice versa) : n—c: 1
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Nonparametric Unsupervised Learning
Hierarchical Clustering (2/4)

s Agglomerative Hierarchical Clustering :

1) Let c¢'=n, X:={x.} i=1,...n
2) If c'<c STOP (c=# of regions)

3) Find "nearest” pair of distinct clusters, X; & X,
4) Merge X; & X; . delete X;; decrement ¢ GOTO 2

X

L

o

i nu Il

Xy Xi Xi

i

Xs

_ff

YT

X
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0

similarity scale

Similarity scale
can be used to
determine
whether groupings
are natural or
forced



METU EE 583 Lecture Notes by A.Aydin ALATAN © 2014

Nonparametric Unsupervised Learning
Hierarchical Clustering (3/4)

» In this hierarchy, at any level, distance
between clusters gives a similarity value for
finding the nearest clusters

» Following distance measures can be utilized
doyin (X, X) = min_ [x=x

XOX; ;X 0X;

Nearest neighbour measure

dmax(xi ’ Xj) = Mmax

XOX; 5 xX0X

Qayg (Xi X)) = D 2 [x=X

XOX; XTOX;

dmean(xi ! XJ) = Hm B mu

~

x=X| Furthest neighbour measure

Compromise between two
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Nonparametric Unsupervised Learning
Hierarchical Clustering (4/4)

= Stepwise Optimal Hierarchical Clustering :

= Change one step of "Agglomerative Clustering” algorithm so
that at every step a stepwise optimal procedure (wrt a
criterion function) is extremized (Ward's Algorithm):

Find pair of distinct clusters Xi & Xj whose merger would
increase (decrease) the criterion function, minimum

3= T-mf - 03,= X x-m] "2l m|’ -ZHX m [

r=1 xtC, xDC

= If we choose distance function as below, then the increase
in sum-of squared error criterion is minimized at every step

(X, %) =03, = |2 |m —m]|

In practice, d, usually favors merging small regions to large
regions rather than merging two mid-size region
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Nonparametric Unsupervised Learning
Graph Theoretic Approaches (1/3)

= Graph Theory can be applied o nonparametric
unsupervised learning

= The samples to be clustered can be assumed to be
nodes of a graph

= If two nodes are found out to be similar (belonging to
the same cluster) = an edge is placed between these
nodes

= All nodes, which are connected to each via chain of
edges belong to the same cluster

= At any state, how o merge two clusters in such a
graph?
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Nonparametric Unsupervised Learning
Graph Theoretic Approaches (2/3)

= Assume merging two clusters corresponds to
adding an edge between these two nodes

= Since edges linking for clusters never make
loops, in graph theory, such edge groups are
called trees

= If continue edge linking till all clusters are

merged, then a spanning tree is obtained which
reaches all nodes

= If d,;(Xi,X]) measure is used during merger

=> resulting graph is a m/nimal spanning tree,

= i.e nearest neighbor clustering algorithm can be
viewed as an algorithm to obtain minimal spanning
tree
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Nonparametric Unsupervised Learning
Graph Theoretic Approaches (3/3)

= Conversely, given a minimal spanning tree, clusters obtained by
the nearest neighbor algorithm can be found by first dividing
tree into two by removing the longest edge, then ...

= Instead of removing the longest edge, one option is to remove
the most 'inconsistent’ edge incident to the same node

. . .
.
.
. .
- - -
-, - - -
s S o

= Another option is to determine N
the edge length distribution and
segment different edge length

groups accordingly I I I [ I
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Graph theoretic Clustering

= A top-down approach & 2
= Tokens (nodes) are represented by using a 5 ﬁ
weighted graph.
« affinity matrix, A (similar nodes have
higher entries)

= Cut up this graph to get subgraphs with
strong links

Affinity
matrix

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach
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Affinity Matrix with scale (o)
aff (x,y) = exp{—( %aﬁ) (x- yHZ)}

- *

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach



~SSFGRVia Eigenvectors

= Idea: Find vector, w, giving the association between each node
and a cluster

= Elements within a cluster should have strong affinity with
each other

= Maximize the following relation: WA w(A : affinity matrix)

WTAw=ZV\{a,.'jo
]

' '

& Wi

= Z[assocof node to cluster} similarity node & node | assocof nodeto cluster

Wi

- Above relation maximizes, in case all 3 terms are non-zero (or not very
small)

* There should be an extra constraint, as w" w=1

* Optimize by method of Lagrange multiplier : max {w'Aw + A (w'w-1) }
- Solution is an eigenvalue problem

* Choose the eigenvector of Awith the largest eigenvalue

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach 29
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Solution via Eigenvectors
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Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach
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Normalized cuts

= Previous criterion only o
evaluates within cluster
similarity, but not across
cluster difference

= Instead, one would like to
maximize within cluster

similarity compared to the

across cluster difference

= Write graph V, one cluster

as

Minimize Normalized Cut

cut(A, B)
asso¢B,V)

cut(A, B)
asso¢A\V)

cut(A,B) : sum of edges
between A& B

asso¢A,V) : sum of edges only

and the other as B

= Construct A, Bsuch that
their within cluster
similarity is high,
= compared to their association
with the rest of the graph

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach
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Normalized cuts

NCUL(A B) :( cut(A, B) H cut(A, B) j D i ofedges e A

assoc¢A,V) asso¢B,V)
(1+x) (D -W)(1+X) (1 X)" (D -W)(1-X)
k1'D1 k1'D1

X:vectorof enteriestl, x(i) =1 < IUA; x(I))=-1< 10LB

> D(i.i)
W :affinity matrix; D(i,1) = ZW(' i) k=220

ZD( )

Lety=(1+x)-b(1-x), whereb=k/(1-k)

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach
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Normalized cuts

= Defined vectory, has elements as
« 1, if itemisin A,
= -b,if itemisinB

cut(A, B) N cut(A, B)
asso¢A\V) asso¢B,V)
y'(D —W)yj

y' Dy

s After derivations mMIiNnNCut(A, B) = min(

is shown to be equivalent to miny(
= with the constraint y' D1=0

(Read proof in the distributed notes)
= This is so called Rayleigh Quotient

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach
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Normalized cuts

= Its solutions is the generalized eigenvalue problem
min ,(yT (D —W)y) subject tc(yT Dy = 1)

which gives (D-W)y = ADy

:>D_U2(D—W)D_l/2y=ﬂ,y

= Optimal solution is the eigenvector due to second smallest

eigenvalue
= Now, look for a quantization threshold that maximizes the
criterion --- i.e. all components of y above that threshold go to

one, all below go to -b

’ 1 —e
05
o ’,

e

|t

D 0
Eigenvector NCut scores

—

80 100 120

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach



