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Introducing Myself

» Postdoctoral Associate in the ECE Department at Duke University.
» Education:

0 Ph.D. in ECE from UCLA. M.S. and Bachelor from Cairo University.
» Industry experience:

0 Intel Corporation and Mentor Graphics Corporation (Siemens EDA).
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» Connections in industry:
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Research Interests and Contributions

> Research interests:

0 Questions in coding/information theory that are fundamental to
opportunities created by unparalleled access to data and computing.

0 Data storage, cloud storage, distributed computing, machine learning,
DNA storage, quantum systems, and wireless communications.

» Research contributions:
0 Reconfigurable constrained (LOCO) codes for storage and transmission.
Unequal error protection (UEP) for storage and communications.
Non-binary graph-based code design and optimization.
Spatially-coupled (SC) graph-based codes for data storage.
Multi-dimensional (MD) graph-based codes.
Performance prediction of LDPC codes over non-canonical channels.
Algebraic codes for flexible and scalable distributed (cloud) systems.
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Seminar Outline

» Motivation and technical vision

» Reconfigurable constrained codes for data storage
» High performance graph-based codes

» Coding solutions for cloud storage

» How coding and machine learning can cooperate
» Challenges in DNA storage and guantum systems

» Conclusion and additional directions




Today’s Seminar in One Slide

» What are we going to talk about?
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Storage Densities Are Rapidly Growing

» Modern applications (loT) require storage densities to grow rapidly.

0 Data storage is a story where density increases as a result of advances in
physics/architecture and innovations in signal processing.

» Data storage types:
0 Non-volatile, magnetic (HDD).

. . : Tunneling MR head

Q Non—volat!Ie, soll.d-'state (Flash). | Giant MR head

Q Non-volatile, resistive (3D XPt). ™ g head

TDMR

10" ¢

0 Volatile, solid-state (DRAM). % 2.
» The cold-warm-hot axis. z | V-NAND QLC
‘a 10t
» Densities approach 10 Tbpsi! E 1o°; V-NAND TLC
a With the vertical NAND ot
5 NAND MLC —HDD products

(3D NAND), Flash devices :
o o2 NANDSLC. | | ‘ |
dare already winning: 1990 1995 2000 2005 2010 2015 2020 2025

Production year

=== Flash products




Understanding Flash Operation

» The Flash cell is a MOSFET but with a floating gate (FG). Very high +ve voltage
0 Programming is performed via applying very
high positive voltage to the gate (NPN).

a Electrons tunnel into the FG.

0 The charge level in the FG controls threshold.

» Advances in physics enabled more than two charge

levels per cell (SLC vs. M/T/Q/P-LC).
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Sources of Error in Flash Devices

» Inter-cell interference (ICl):

0 Parasitic capacitances result in charge propagation (101 in SLC).
» Programming (wear-out) errors:

0 Failed programming/erasing operations result in asymmetric errors.
» Other sources of error:

0 Charge leakage over time and Gaussian electronic noise.

N
__I I : Solid vertical lines are the 3 hard reads.
Dashed vertical lines are 6 soft reads.

MLC Flash
HHHHH A A

Probability density

v

ngh Low ngh Threshold voltage

» What about magnetic recording devices?

0 Inter-symbol interference (ISl), inter-track interference (in TDMR), jitter
or timing problems, and Gaussian noise.




How Can We Take Full Advantage?

» Data storage devices operate at very low error rates.
» My technical vision is:

0 To devise efficient coding techniques that exploit the advances in
physics to significantly improve performance.

» Mitigating interference:
0 Constrained codes prevent error-prone patterns from being written.
0 LOCO codes forbid these patterns with minimal redundancy.
0 LOCO codes can be easily reconfigured as the device ages.

» Handling other sources of error:
0 Graph-based (LDPC) codes correct the errors after reading.
0 OO/GRADE-AO techniques generate powerful custom SC codes.
0 Careful coupling of SC codes generates excellent MD codes.

» These techniques result in significant lifetime and density gains!
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Introduction to Constrained Codes

» Constrained codes impose restrictions on written (transmitted) data.
0 The set of forbidden patterns can be symmetric or asymmetric.
0 The rate is (# of input bits)/(# of coded bits or symbols).

» The universe of constrained sequences is represented by an FSTD. The
capacity, i.e., the highest achievable rate, is the graph entropy.

» Example: $; = {010, 101} constraint.
0 The adjacency matrix of this FSTD is:

QO The capacit_y is logz(/lm_aX(F)),
which is 0.6942 here.
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History and My LOCO Codes

1948 Shannon: FSTD of constrained codes [R1]

1970 Tang and Bahl: RLL codes [R2]

Cover: Enumerative source coding [R3]

Claude
Shannon

Franaszek

1980 Adler, Coppersmith, and Hassner: State
splitting and merging to produce FSMs [R4]

1990 Karabed, Immink, Siegel, and Wolf: . wi

Optimization of FSMs [R5, R6] 3

2000 Immink and Braun: Constrained codes y 7
ees

based on lexicographic indexing [R7, R8]

2
General method
for finite sets

Immink

020 LOCO codes: Constrained codes that are capacity-
achieving, simple, and reconfigurable [H1, H2]
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Device Physics Determine Patterns to Forbid

» Consider Flash devices with g levels per cell:
0 SLC (g = 2), MLC (g = 4), TLC (g = 8), QLC (g = 16), PLC (g = 32).
a Symbolsin GF(q) = {0, 1, «, ..., aq‘z} are written as charge (threshold)
levelsin{0,1,2,..,qg — 1}.

» What should we forbid?
O Patterns resulting in max charge at the outer
cells but less at the inner ones [R9]. L =
0 Let & be in GF(q)\{a?2}. The set of
forbidden patterns is:
T2{a?285a972,v8) € [GF(g)\{a972}]Y | 1 < y < x}.
a If g = 2 (binary), 92 = {101,1041, ...,10*1}.

AHFARHFHHHE

q—1 <qg—1 q-1

0 The codes are g-ary asymmetric LOCO (QA-LOCO) codes.
0 Handling x > 1 can increase the lifetime and reduce the time to market.
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Formal Definition and Group Structure

»> A QA-LOCO code QC’,‘,ILx is defined by:
0 Each codeword ¢ € QC,?,L’x has symbols in GF(g) and is of length m.

0 Codewords in QC’,‘,IW are ordered lexicographically.

0 Each codeword ¢ € QC’,f,’l’x does not contain any patternin Qz, x = 1.

0 All codewords satisfying the above properties are included.

» Codewords in QC’,E,’l,x, m = 2, are partitioned into three groups:

0 Group 1: Codewords starting with §, V9, from the left.
0 Group 2: Codewords starting with 9= 2a9~2 from the left.

0 Group 3: Codewords starting with a9 26%%1, v8%*1, from the left.

» What QA-LOCO codes offer [H3]:
0 They mitigate ICl, and they are capacity-achieving.
0 They have simple encoding-decoding, and they are reconfigurable.
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QA-LOCO Codes Withg = 2andx =1

m =4
0
1
2
3 Group 1
4
5
6
7
3 Group 3
9
10 Group 2
11
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Enumerating the Codewords

» Theorem: Let N, (m, x) be the cardinality of QC’,?Lx. Define:
No(m,x) £ (q— 1™ —x<m<=<0,and N;(1,x) £ q.
Then, N,(m, x), m = 2, is recursively given by:
N,(m,x) = qN,(m — 1,x) — (q — DNy(m — 2,x)
+(q — D** N, (m — x — 2,x).

» Example: Forq = 2and x = 1:

N,(m,1) = 2N,(m — 1,1) = N,(m — 2,1) + N,(m — 3,1).

o N,(—1,1) 21,N,(0,1) 2 1,N,(1,1) £ 2.

o N,(2,1) =2N,(1,1) — N,(0,1) + N,(—-1,1) = 4.
o N,(3,1) =2N,(2,1) — N,(1,1) + N,(0,1) = 7.
o N,(4,1) =2N,(3,1) — N,(2,1) + N,(1,1) = 12.
O The numbers are consistent with the table.
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Encoding-Decoding Rule of the Codes

» Theorem: The index of a QA-LOCO codeword ¢ £ ¢,;,_1Cp—2 ... Co E QC’,?Lx,
m = 2, is given by the rule:
g(©) = X% a;(q — DYiNg (i — v, %),
where a; £ gflog,(c;) + 1, ¢c; # 0, is the level equivalent of ¢;, and
v; = x — k; + 1; k; is the distance to the closest a9~ symbol.
0 For example, if cscs = a9 %a, thenag =q—1,ks = 1,and ys = x.

» For the binary case (¢ = 2):

m—1 . 0 0000

g(C) — Zi=0 a;N, (l — Aj+1X, x). 1 0001
Group 1

2 0010

» Example:qg =2, m=4,andx = 1: S
d g(C = 1110) 7 1000 Group 3

= Z?:o aiN, (i — ajyq,1) j 122(1)
= NZ (3, 1) + N2(1; 1) + NZ (O' 1) 10 1110 Group 2

=74+24+1=10. 11 1111
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Data Protection Almost for Free!

» Bridging is needed to prevent forbidden patterns across codewords.
0 Bridge with x consecutive 0’s or x consecutive a9 ?’s.
» Self-clocking is needed to maintain calibration of the system.

0 Just remove the all 0 and the all 9% codewords from QC,E,’LX.

» The rate of a self-clocked QA-LOCO code in input bits/coded symbol is:
s© [log2 (N, (m, x) — 2)]

m+x m+ x
0 Codes are capacity-achieving.

C —
Rqa-Loco =

» Rate examples for x = 1:

0 Exploiting physics: Less than 26 0.9506 27 0.9554
. [ N\

3% redundancy suffices for 44 0.9704 45 0.9728
ICl mitigation! 71 0.9769 66 0.9813 |

0 Achieved at low complexity. Capacity | 0.9939 Capacity | 0.9987
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Reconfigurability and Comparisons

» Encoding and decoding of QA-LOCO codes are performed via the rule.
0 Encoding: Mapping from index to codeword (subtractions).
0 Decoding: Demapping from codeword to index (additions).

» The same hardware can support multiple constraints by updating N’s.

» QA-LOCO codes can be easily reconfigured [H3].
0 As the device ages, the set of patterns to forbid becomes bigger (x > 1).
0 Reconfiguration is as easy as reprogramming an adder!
0 A small number of multiplexers pick the appropriate cardinalities.

Near-optimal LOCO solutions can help

» Comparisons vs. other techniques:
0O Itis quite complicated to design capacity-achieving non-binary
constrained codes based on FSMs.

0 Other codes either do not exploit Flash physics [R2], incur higher
complexity [R10], or designed only for x = 1 [R10, R11].
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UEP Achieves Significant Density Gains

» | simulated three setups in an industry-recommended MR system.
» Setup 3 (LDPC + LOCO on parity bits only) achieves [H1]:
0 About 20% (16%) density gain compared with Setup 1 (Setup 2).
0 Investing the additional redundancy via LOCO is more beneficial!
O Even the error floor performance in Setup 3 is better.
0 | theoretically demonstrated such UEP gains on canonical channels [H4].

Overall length 4270 bits
Overall rate 0.645

FER

The diffusion of more
reliable information
provides the LDPC
decoder with a better
channel.

—e—1: Baseline LDPC
—4—2: Lower rate LDPC
—-=—3: LDPC + LOCO

| | | | | |
1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7
Density
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Constrained Codes for TDMR

» The TDMR technology does not require new magnetic materials.

0 Shingled writing, squeezed tracks, and advanced signal processing are
adopted to remarkably increase MR densities [H2].

» With wide read heads, error-prone patterns become two-dimensional.
0 They take the shape of a plus sign (+): Plus isolation patterns.

0 : : 1 . 10°
o @] 0] [1]@]:

0 1 ol

- Message length 67 bits
102! / LOCO rate 0.9306
» LOCO codes achieve significant
performance gains in TDMR even / —e-Uncoded
—-==LOCO code

before LDPC decoding [H2]. 10”

0.7 0.8 0.9 1 1.1 1.2 1.3 14
TD density
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Commun., 2021.
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Introduction to LDPC Codes

» Parity-check codes are a class of block error-correction codes (ECCs).

0 The code is defined by a parity-check matrix H.
0 A codeword v satisfies Hv! = 0.

H(n—k)xn — [P(T1‘1—k)><k l(n—k)x(n—k)]: Gixn = [Ikxk ka(n—k)]-

o o - o o - o o -
- o o o - o o o -

0
1
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1
0
0
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1
0

1
0
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1
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o o = (=] =9 (=] - o o
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0
1
0
0
1
0
0
1
0

= o o - (=] o == o o

The corresponding bipartite graph:
Circles represent VNs.

Squares represent CNs.

Systematic form

Robert
Gallager

Columns represent bit or variable nodes (VNs).
Rows represent check nodes (CNs).
Non-zero values represent edges.
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Message Passing and Lifting

» Decoding is iterative; via messages between VNs and CNs [R12].

%
c1 =v1 D vy Dusg D wvs, _171 2 V3 Uy Vs Ve Vy

B a1 11 0 1 0 O]
Co = U1 D vy D vg D ve, H—C2 1 1.0 1 0 1 0
c3 = v1 b vz D vg D vy, ¢c31 01 1 0 0 1
cqy = Vs D vg D vr. C4_0 0O 0 0 1 1 1

0 Binary example: Gallager A decoding, and we receive [0 0 1 1 0 0 O].

0 CNs ¢; and ¢, are the only unsatisfied CNs. VN v, flips to 1 for Hv' = 0.

» Lifting a protograph (seed) to generate an LDPC code:
Q ¥ (k) is the column (row) weight, i.e., VN (CN) degree.
0 HP is the protograph matrix. ¢ is the z X z circulant matrix, ¥ = 1.

00.4- 0.1

Q

11111 03| o?
1111111 ————) | 1], 0] 2,34

HP withy =3andk =5

Q

Q

T
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Detrimental Objects in LDPC Codes

» Absorbing sets [R13, R14] result in decoding failure — error floor.

0 For an (a, b) absorbing set: The size of the set is a, the number of
unsatisfied CNs connected to it is b, and each VN is connected to more
satisfied than unsatisfied neighboring CNs. ..m m-

0 A (4,4) binary absorbing set (y = 4): O . Circles represent

. VNs. White (gre
0 More parameters are added for non-binary. 4 - squares repgse}'\)t

satisfied
.. (unsatisfied) CNs.

» Define an (a, d,) unlabeled elementary
trapping (absorbing) set (UTS) ((UAS)).

» Detrimental objects depend on the physics [H5].

A
Solid vertical lines are the 3 hard reads.

Dashed vertical lines are 6 soft reads.

MLC Flash Channel asymmetry

Probability density

v

Threshold voltage
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Absorbing Sets Absorb the Decoder

» How can an absorbing set (AS) cause a decoding error?
0 Assume the all 0 codeword is transmitted.

O Assume errors occur only on the four VNs in the shown (4, 4) AS in the
graph of the binary LDPC code.

O Thus, all these VNs are now 1’s.

O Consider hard decision decoding. el e

0 Each degree-2 CN now is satisfied Q) - (v
(1 4+ 1 = 0), while degree-1 CNs are not.

0 Each VN receives 3 stay and only 1 ., Co Cs .
flip messages from the connected CNs. 2

0 Despite being in error, all VNs \ lS
stick to their wrong values. u,(( - _\> \

0 Consequently, the decoder is absorbed! toS JF




Construction of SC Codes

» SC codes have excellent error-correction performance [R15].
0 They offer additional degrees of freedom in the code design.

» The construction steps are:
0 Partition H (size yz X kz) into m + 1 components: Hy, Hy, ..., H,,,.
0 Couple component matrices L times to

construct Hqc (size yz(L + m) X kzL).
Q If non-binary, assign weights € GF(q)\{0}.

A replica

Hz2Y o Hy, HP £ 37 (HJ (all 1%s).

Hgc =

» My goal is to eliminate detrimental objects
via optimized partitioning and lifting.
0 We know such objects in data storage
systems (differ from AWGN) [H6].




What Techniques Do | Propose?

» Previous work on partitioning includes [R16], [R17], and [H7].

» Operate on the protograph then the unlabeled graph to design Hg:
0 For low m, derive the optimal partitioning (OO) [H8, HI].
0 For high m, derive a near-optimal partitioning (GRADE-AO) [H10].
0 Next, optimize the lifting (CPO) [H8, HI]. Stop here if binary (the focus).
0 If non-binary, optimize the edge weights (WCM) [H5, H6].

L4 L% V3

» Common (4,2) AS (6,0) AS b L . (3,3)UAS
substructures: (]
a Minimize # r/] [\! B L [ ]
| B
of cycles-6 — N\
(S Lt /’
and cycles-8. \ y, [
e ==
U
| -

A\




00: What Are the Overlap Parameters?

» The set of independent non-zero overlap parameters is O;,4-
» Example: Fory = 3andm = 1:

Oind = {t{op t{1y ti2y to,13 Lo,2) t(a,2) Lio,1,23 } (the onesiin Hp).
O Other overlap parameters are functions of the ones in Ojp 4.

> lillustrate their definitions via an example:
0 Consider the case of k = 11:
Loy = 5.
tiy = 5.
tizy = 6. HP =
tioy = 1.
tio2y = 1.
t{1,2) = 3. Define a degree-u

tio1,2) = 0. " overlap and a degree-u
overlap parameter.

!

o 00 00 0 o
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Building a Discrete Optimization Problem

» Theorem: The total number of cycle-6 instances in the protograph of an SC

codewithy = 3,k,m,andL =Zm + 1is: Aty b taip Ha )
= tirinis) (Finiaisy = 1) (Hininy —2)
m—|—]. : N+
k +t{‘i1,iz‘ia} (t{flsia} - t{il-iz-ia]’) (t{iz-‘ia} - J‘)
F — : : (L - k + 1)F]_ J +(t{iuiz} 7t{?‘1-?2-in}) iy iavia} (t{f:-in} 7l)+
k_l + (t{u,u} - t{'l.],'ig.i;‘;}) (f{il.ig} - t{it,?ﬂﬂﬂ}) t{izﬂﬁ}‘

F{‘ is the number of instances starting from R; and spanning k replicas.
F]il — Z "4' (t{il,’ig}ﬂ t{il,ig}vt{ig,?:g}J t{il,‘ig,’ig}) ? With a % g? a 7é g? g % g?
{i1,92,i3}C{0,...,(m+1)y—1} and i, £ (i, mod 7).
» The discrete optimization problem is described as follows.

O Mathematical formulation:

F* = min F.
Oind

O Optimization constraints:
Interval constraints and the balanced (uniform) partitioning constraint.
0 A solution to this problem is t*. t* is called an optimal vector.

» The CPO then breaks the reflection condition [R18] for as many cycles in
the optimal SC protograph (designed via t*) as possible.
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Notable Performance Gains in Flash

» Channel: Normal-Laplace mixture (NLM) Flash [R19].
0 IBM MLC channel, with 3 reads and sector size 512 bytes.
0 RBER is raw BER. UBER is uncorrectable BER = FER/(512 X 8).

» Allthe codeshavey = 3,k =z = 19,

0 Length 14440 bits and rate 0.834.

10°®

» The O0-CPO-WCM approach
outperforms existing methods:
0 Code 6 outperforms Code 2
by 2.5 orders of magnitude.
0 Code 6 achieves 200% RBER
gain compared with Code 2.

108}

UBER

10

» Appropriately-designed SC codes
outperform block codes [H9].

10-7 L

107 ¢

410 |

101t -

m=1,L = 20,and g = 4.

=@ 2:5CCVwAB, rand weights
= 3:SC OO w AB, rand weights

=@=5: Uncoupled w AB, opt weights

=@ 1:Uncoupled w AB, rand weights | |

=8 4:SC 00-CPO w CB, rand weights

mihe= 6: SC 00-CPO w CB, opt weights |
L L L L L L ]

1
0.006 0.008 0.01

1 1
0.003 0.004
RBER

1
0.001 0.002 0.02

35



GRADE-AO: Gradient Descent Optimizer

» SC codes perform better as the memory becomes higher.
0 The complexity of the OO technique grows rapidly with m and y.

» GRADE-AOQ is a probabilistic technique that enables high memories.
0O Denote the probability (edge) distribution by p £ [py P71 ... Pmm]-

0 Define the polynomial f(X,p) 2 Y™, p;X". []; is the coefficient of X',

» Theorem: A necessary condition to minimize the probability of a cycle-6
under random partitioning is [f>(X,p)f2(X~ 1, p)]; = ¢y, Vi € {0, 1, ..., m}.
0 This probability is [f3(X,p)f3(X~1,p)l,.
0 Consider Lg(p) = [f°X,p)f> (X~ p)lo + c[1 - X2 pil.
0 Then, V, L¢(p) = 0 leads to the necessary condition.

» Gradient descent is then used to find p that satisfies the condition.
0O GRADE-AO plus CPO give Hg¢. Analysis is also done for cycles-8 [H10].
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Uniform Partitioning Is Not the Answer!

» Now, compare the gradient descent (GD) SC codes with high performance
uniform (UNF) SC codes. Performance of (4,29, 29, 19, 20)

SC codes over the AWGN channel
0
10 | -Io-UNF SC ;:ode

GD l 0 0 Lot ~==GD SC code
(3,7,13,5,100) 4

UNF 0 6292 102

GD [ 0 528090
(4,29,29,19,20) 107 ¢

UNF 0 1087268 £

» GD SC codes have superior performance 10°}

. Il . . Below |
in all regions. 105) 2108 T
0 They have potential in data storage | I | |
. . . 24 2.6 2.8 3 3.2 34
and wireless communication systems. SNR (dB)

» For high m, vastly skewed distributions give better thresholds!
0 We are working on theoretical justification.

Alexei Ashikhmin
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Construction of MD Graph-Based Codes

» What is the idea of my technique?

0 Optimally couple multiple copies of a high performance OD code to
mitigate (MD) system non-uniformity [R20] in storage devices.
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Significant Lifetime and Density Gains!

> Effective MD coupling [H11]:
0 Eliminates all instances of certain detrimental objects.
0 Achieves 1800 P/E cycles gain in Flash devices (left).
0 Achieves 1.1 dB and 4 orders of magnitude gain in MR devices (right).
0 These gains are vs. OD codes of the same parameters.

10%¢

-4 | |=#=Long OD code
=a=MD code

10°- Length 15162 bits
Rate 0.825

107}

10° ¢

103}
10-4 :
10°F

6|

Length 5202 bits
Rate 0.740

UBER
FER

107- 1200 P/E cycles

- 10 1.1dB
1071 x/10*
\
) -8
10° ¢ 1800 P/E cycles 10 [[~e-Long OD code \
=a=MD code simulated \
10" Hl=a :MD code estimated \F
10'10 | | 1 | | | | | | | 1 1 1 1 1 1 | 1 | | |
0.004 0.006 0.01 0.02 0.03 0.04 11.75 12 12.25 12,5 12,75 13 13.25 13.5 13.75 14 14.25 14.5
RBER SNR (dB)

Observe threshold/waterfall gains: Opportunity in wireless.
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Types of Cloud Storage Systems

» Centralized cloud storage: A central cloud is connected to local clouds.
0 Only the central cloud owner can rent storage spaces to customers.

O Examples: Amazon Web Services and Microsoft Azure.

» Decentralized cloud storage: No central cloud exists. No fixed topology.
0 Clouds can directly communicate, and users can rent storage spaces.

0 Examples: Blockchain-based cloud storage and Storj.

» A codeword is distributed over multiple servers of the cloud.

-
.
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N\

45




Supporting Scalability and Flexibility

» Local and higher-level erasure-correction capabilities are provided.
0 Higher-level capability via central cloud or via cooperation of clouds.

» Our cloud storage solutions, which are based on algebraic coding, support:

0 Scalability: New clouds are added with minimal changes needed to the
existing system (cost saving). =

0 Flexibility: A cloud that has its data suddenly
becoming hot (of higher demand) can split
into smaller, faster clouds.
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0 Heterogeneity: Data lengths in various clouds
are allowed to differ.

0 Topology-awareness: In the decentralized case,
the solution adapts to the network topology.
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My Related Work
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correction for time-sensitive devices at the edge,” ArXiv, 2021.

» S.Yang, A. Hareedy, R. Calderbank, and L. Dolecek, “Hierarchical coding to enable
scalability and flexibility in heterogeneous cloud storage,” in Proc. IEEE
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New Storage Channels Are Hard to Model

» Ultra dense, next-gen storage devices have underlying channels with
various effects to model.

0 Examples on devices: V-NAND QLC/PLC Flash and TDMR devices.
0 Examples on effects: All effects contributing to MD non-uniformity.

» Machine learning can help us break the barriers!

0 The available mathematical models are quite complicated and do not
capture everything.

0 Thus, coding solutions based on them
can be notably improved.

QO | suggest using machine learning to
direct the reconfiguration of LOCO codes
and guide the design of LDPC codes.
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Machine Learning to Help Coding

» Regarding constrained codes:
0 As the device ages, error-prone patterns change.

0 We can learn the updated set of patterns to forbid from the LRs for
errors collected at the output of the channel.

0 Next, we respond by reconfiguring the LOCO code (online).

» Regarding error-correction codes:

0 We can learn the set of detrimental objects from the LRs for errors
collected at the output of the EC decoder.

0 Next, we design the LDPC code guided by that (offline).

» Significant lifetime gains can be achieved through these ideas.
0 Machine learning can help improve detection and EC decoding as well.

» This is a research direction | am following (with Duke and UCSD).
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A Framework for Computational Storage

» Distributed machine learning promises lower latency, higher accuracy, and
better scaling with large datasets.

0 Computer architects have been searching for speed-up solutions, e.g.,
computing via GPUs.
0 Oneidea is to bring

SSD storage is Flash-based.

. . . |
distributed computing ! l :
) I -
units closer to data EC encoder: Strageler- = computing
. Storage robust distributed encoder | 1 module
storage units. module I :
with ECC |
SSD storage unit -
» | want to develop e | s
coding solutions that
—p I >
enable low-latency :
. ——— I >
computational storage : $
without compromising — , >

Computational storage can handle time-sensitive data in edge computing.

the reliability.
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Coding to Help Machine Learning

» Writing to the storage module:
0 EC encoding can be performed distributively to speed up writing.
» Reading from the storage module:
0 Processing cores need not wait for an entire block to be decoded.
O Message LRCs can significantly reduce the time to start computing.

Multi-level, adaptive EC capability

» Speeding up distributed computing:
0 If a worker straggles, the computation will not be completed.
0O Straggler-resilient coding handles this problem and reduces latency.

» The above ideas can be applied via graph-based codes (high reliability).

» This is a research direction | am following (with Duke and UCLA).
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Data Processing for DNA Storage

> DNA storage can revolutionize data storage.
0 Orders of magnitude gains in density and lifetime.

» Stages of storing information are:
0 DNA synthesis to generate the strands, storing these
strands in a container, and sequencing to read.
0 All three stages suffer from errors.

» External data processing includes:
0 Clustering, sequence reconstruction, and error correction.

» | want to develop novel data processing schemes for DNA data storage.
0 Deep understanding of DNA characteristics is important.
0 Collaboration with other faculty members is crucial.
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Coding for Quantum Systems

» Quantum computers promise to solve problems remarkably
faster than any classical computer.
0 They are now becoming a reality.

» Coding is required to ensure that computing and storage
in quantum systems are performed reliably.

IBM quantum
computing system
> | want to translate my classical results on high

performance ECCs to the quantum world:
O Quantum LDPC codes are important.
0 Quantum absorbing sets degrade performance!

» This is a direction | am following (with Duke and UA).
0 Collaboration with other faculty members is crucial.
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Takeaways and More Directions

> Conclusion:

Q

O 00000 O

Storage densities are rapidly growing. Data require high protection.
LOCO codes exploit physics to fortify devices with minimal redundancy.
As the device ages, LOCO codes can be reconfigured to extend lifetime.

High performance SC codes are designed via OO/GRADE-AO techniques.

MD graph-based codes achieve significant lifetime and density gains.
Our coding solutions for cloud storage achieve scalability and flexibility.
Machine learning and coding can make the task of each other easier.

Advanced data processing improves DNA storage and quantum systemes.

> Additional research directions:

Q
Q
Q

MD-LOCO codes with MD-LDPC codes for MD storage devices.
Hierarchical algebraic codes for SSDs in multi-task systems.
Data processing methods for in-memory computing and analytics.
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Thank You!




