<u>AHMED H. M. E. HAREEDY</u>

Assistant Professor, EEE Department, Middle East Technical University

Address: Üniversiteler Mahallesi, Dumlupınar Bulvarı No:1 06800 Çankaya, Ankara, Turkey. E-mail: ahareedy@metu.edu.tr. Phone number: +90 531 505 7285.

PERSONAL INFORMATION

- Date of birth: March 22, 1984.
- *Citizenship:* Egyptian.

RESEARCH INTERESTS

- My research interests are broadly in coding/information theory, focusing on state-of-the-art coding techniques for data-hungry applications, including data storage, cloud storage, blockchain-based systems, machine learning, distributed computing, quantum computing, DNA analysis, computer systems, and wireless communications.
- The techniques I develop involve tools from combinatorics, graph theory, linear algebra, algorithms, probability theory, stochastic processes, statistics, abstract algebra, and optimization.

WORK EXPERIENCE

Assistant Professor at Middle East Technical University (METU)

• Assistant Professor in the Electrical and Electronics Engineering (EEE) Department, Middle East Technical University, 2022-present.

Affiliated Faculty at Middle East Technical University (METU)

• Affiliated Faculty Member in the Institute of Applied Mathematics (IAM), Middle East Technical University, 2023-present.

Director of the Reliable and Efficient INformation Systems (REINS) Group at METU.

Postdoctoral Associate at Duke University

- Postdoctoral Associate in the Electrical and Computer Engineering (ECE) Department, Duke University, 2018-2021.
- *Overall rating:* Exceptional in 2018-2019, 2019-2020, and 2020-2021.
- *Major projects:* Developing coding theoretic techniques to enhance the performance and the reliability of modern data storage, cloud storage, computational storage, distributed computing, DNA data storage, and quantum computing systems.

Development Engineer at Mentor Graphic Corporation

- Senior Development Engineer in the Device Modeling Team (DMT), Analog-Mixed Signal (AMS) Verification, Deep Sub-Micron (DSM) Division, Mentor Graphics Corporation (MGC), 2006-2014.
- *Major projects:* Device models implementation/testing, TSMC modeling interface (TMI), inputoutput buffer information specification (IBIS) modeling, reliability framework standardization, and parameter extraction for new technologies.

INTERNSHIP EXPERIENCE

ECC Architect at Intel Corporation

- Error-Correction Coding (ECC) Architect in the Non-Volatile Memory Solutions Group (NSG), Intel Corporation, June 2017-September 2017.
- *Major project:* Designing spatially-coupled codes for Flash memories.
- Error-Correction Coding (ECC) Architect in the Non-Volatile Memory Solutions Group (NSG), Intel Corporation, June 2015-September 2015.
- *Major project:* Designing non-binary LDPC codes for Flash memories.

EDUCATION

Ph.D. in Electrical and Computer Engineering, 2018

- *Institution:* The University of California, Los Angeles (UCLA).
- GPA: 3.925. Advanced to candidacy in June 2016.
- *Lab*: Laboratory for Robust Information Systems (LORIS).
- *Dissertation:* Graph-Based Error Correcting Codes for Modern Dense Storage Devices. Distinguished Ph.D. Dissertation Award

M.S. in Electronics and Communications Engineering, 2011

- *Institution:* Cairo University.
- *Rating:* Distinction (94.70%) and ranked 1st.
- Thesis: LDPC Decoding Using Selective Max-Min (SMM) Algorithm: Theory and Implementation.

Bachelor of Electronics and Communications Engineering, 2006

- *Institution:* Cairo University.
- *Rating:* Distinction with honor (86.03%).
- *Graduation project:* CUSPARC Processor: Optimization, Characterization and Testing. Egyptian Engineering Day Award

MAJOR STUDIES

• Coding theory, information theory, data storage, data analysis, signal processing, communication theory, mathematics, computer systems, and electronics (device physics/modeling).

TEACHING EXPERIENCE

Instructor at METU

- Instructor for Coding Theory (EE 534) at METU, spring 2022.
- Instructor for Signals and Systems II (EE 306) at METU, spring 2022.
- Instructor for Coding Theory (EE 534) at METU, fall 2022.
- Instructor for Computer Architecture I (EE 445) at METU, fall 2022.
- Instructor for Signals and Systems II (EE 306) at METU, spring 2023.
- Instructor for Coding Theory (EE 534) at METU, fall 2023.
- Instructor for Computer Architecture I (EE 445) at METU, fall 2023.

- Instructor for Signals and Systems II (EE 306) at METU, spring 2024.
- Instructor for Probability and Random Variables (EE 230) at METU, spring 2024.

Instructor at Duke University

- Instructor for Modern Coding Theory with Applications in Data Science (ECE/CS 590) at Duke University, spring 2020.
- *Overall rating:* Average: 4.60/5.00. Median: 5.00/5.00.
- Several conference and journal papers resulted from the course projects.

Teaching Assistant at UCLA

- Teaching Assistant for Probability and Statistics (EE 131A) at UCLA, winter 2017.
- *Overall rating:* Average: 8.24/9.00. Median: 9.00/9.00. Excellence in Teaching Award
- Teaching Assistant for Probability and Statistics (EE 131A) at UCLA, winter 2016.
- *Overall rating:* Average: 8.17/9.00. Median: 9.00/9.00.

AWARDS & HONORS

Best Paper Award, 2020

• My paper "A combinatorial methodology for optimizing non-binary graph-based codes: Theoretical analysis and applications in data storage" won the 2018-2019 Best Student Paper Award of the IEEE Data Storage Technical Committee (DSTC).

Distinguished Ph.D. Dissertation Award, 2019

• I won the prestigious 2018-2019 Distinguished Ph.D. Dissertation Award in Signals and Systems from the Electrical and Computer Engineering (ECE) Department at UCLA.

Memorable Paper Award, 2018

• My paper "A three-stage approach for designing non-binary spatially-coupled codes for Flash memories," which is a summary of my paper "High performance non-binary spatially-coupled codes for Flash memories," won the inaugural Memorable Paper Award at the 2018 Non-Volatile Memories Workshop (NVMW), in the area of devices, coding, and information theory.

Dissertation Year Fellowship, 2017

• I was one of only four Ph.D. candidates in the Electrical Engineering Department at UCLA who won the 2017-2018 Dissertation Year Fellowship (DYF), which is a campus-wide fellowship.

Excellence in Teaching Award, 2017

• I won the 2016-2017 Electrical Engineering Henry Samueli Excellence in Teaching Award for teaching Probability and Statistics (EE 131A) at UCLA.

ITA Graduation Day Talk, 2017

• I represented UCLA by giving a Graduation Day (GD) Talk at the 2017 Information Theory and Applications Workshop (ITA).

Best Paper Award, 2015

• My paper "Non-binary LDPC code optimization for partial-response channels" won the Best Paper Award at the 2015 IEEE Global Communications Conference (GLOBECOM), Selected Areas in Communications (SAC), Data Storage Track.

Ph.D. Scholarship, 2014-2018

• I received a Ph.D. scholarship offer to work as a Graduate Student Researcher (GSR) with LORIS Lab in the ECE Department at UCLA.

Egyptian Engineering Day Award, 2006

• My CUSPARC graduation project was the winner of the first prize at the 2006 Egyptian Engineering Day (EED) organized by IEEE Young Professionals (YP) Egypt.

FUNDING

- I have been awarded the TÜBİTAK 2232-B International Fellowship for Early Stage Researchers in 2022. My Research Project Proposal is titled "Reliable low-latency storage and computing at the network edge via combining machine learning and coding," under the Research Plan titled "From devices to clouds and beyond: Coding for modern and next generation storage and computing systems."
- I contributed to an NSF proposal with collaborators at Duke University and at the University of Arizona (UA) on quantum error correction, funded by the CISE Directorate in 2021.
- I submitted an NSF proposal as a co-PI with Robert Calderbank titled "Reconfigurable constrained codes for modern data storage devices" to the CISE Directorate in 2019.

PUBLICATIONS

Journal Articles

- C. Irimagzi, Y. Uslan, and A. Hareedy, "Protecting the future of information: LOCO coding with error detection for DNA data storage,"
 - accepted at IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 2024.
- I. Guzel, D. Ozbayrak, R. Calderbank, and A. Hareedy, "Eliminating media noise while preserving storage capacity: Reconfigurable constrained codes for two-dimensional magnetic recording," accepted at *IEEE Transactions on Information Theory*, 2024.
- A. Hareedy, S. Zheng, P. Siegel, and R. Calderbank, "Efficient constrained codes that enable page separation in modern Flash memories," *IEEE Transactions on Communications*, vol. 71, no. 12, pp. 6834-6848, Dec. 2023.
- S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek, "Breaking the computational bottleneck: Probabilistic optimization of high-memory spatially-coupled codes," *IEEE Transactions on Information Theory*, vol. 69, no. 2, pp. 886-909, Feb. 2023.
- A. Hareedy, B. Dabak, and R. Calderbank, "The secret arithmetic of patterns: A general method for designing constrained codes based on lexicographic indexing," *IEEE Transactions on Information Theory*, vol. 68, no. 9, pp. 5747-5778, Sep. 2022.

• S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek, "Hierarchical coding for cloud storage: Topology-adaptivity, scalability, and flexibility," *IEEE Transactions on Information Theory*, vol. 68, no. 6, pp. 3657-3680, Jun. 2022.

J. Centers, X. Tan, A. Hareedy, and R. Calderbank, "Power spectra of constrained codes with level-

- J. Centers, X. Tan, A. Hareedy, and R. Calderbank, "Power spectra of constrained codes with levelbased signaling: Overcoming finite-length challenges," *IEEE Transactions on Communications*, vol. 69, no. 8, pp. 4971-4986, Aug. 2021.
- A. Hareedy, B. Dabak, and R. Calderbank, "Managing device lifecycle: Reconfigurable constrained codes for M/T/Q/P-LC Flash memories," *IEEE Transactions on Information Theory*, vol. 67, no. 1, pp. 282-295, Jan. 2021.
- B. Dabak, A. Hareedy, and R. Calderbank, "Non-binary constrained codes for two-dimensional magnetic recording,"

IEEE Transactions on Magnetics, vol. 56, no. 11, Nov. 2020.

• A. Hareedy, R. Kuditipudi, and R. Calderbank, "Minimizing the number of detrimental objects in multi-dimensional graph-based codes,"

IEEE Transactions on Communications, vol. 68, no. 9, pp. 5299-5312, Sep. 2020.

• A. Hareedy, R. Wu, and L. Dolecek, "A channel-aware combinatorial approach to design high performance spatially-coupled codes,"

IEEE Transactions on Information Theory, vol. 66, no. 8, pp. 4834-4852, Aug. 2020.

- A. Hareedy and R. Calderbank, "LOCO codes: Lexicographically-ordered constrained codes," *IEEE Transactions on Information Theory*, vol. 66, no. 6, pp. 3572-3589, Jun. 2020.
- A. Hareedy, C. Lanka, N. Guo, and L. Dolecek, "A combinatorial methodology for optimizing nonbinary graph-based codes: Theoretical analysis and applications in data storage," **Best Paper Award** *IEEE Transactions on Information Theory*, vol. 65, no. 4, pp. 2128-2154, Apr. 2019.
- H. Esfahanizadeh, **A. Hareedy**, and L. Dolecek, "Finite-length construction of high performance spatially-coupled codes via optimized partitioning and lifting," *IEEE Transactions on Communications*, vol. 67, no. 1, pp. 3-16, Jan. 2019.
- H. Esfahanizadeh, A. Hareedy, R. Wu, R. Galbraith, and L. Dolecek, "Spatially-coupled codes for channels with SNR variation," *IEEE Transactions on Magnetics*, vol. 54, no. 11, Nov. 2018.

• H. Esfahanizadeh, A. Hareedy, and L. Dolecek, "Spatially-coupled codes optimized for magnetic recording applications,"

IEEE Transactions on Magnetics, vol. 53, no. 2, Feb. 2017.

- A. Hareedy, C. Lanka, and L. Dolecek, "A general non-binary LDPC code optimization framework suitable for dense Flash memory and magnetic storage," *IEEE Journal on Selected Areas in Communications*, vol. 34, no. 9, pp. 2402-2415, Sep. 2016.
- A. Hareedy, B. Amiri, R. Galbraith, and L. Dolecek, "Non-binary LDPC codes for magnetic recording channels: Error floor analysis and optimized code design," *IEEE Transactions on Communications*, vol. 64, no. 8, pp. 3194-3207, Aug. 2016.
- A. H. Hareedy and M. M. Khairy, "Selective max-min algorithm for low-density parity-check decoding,"

IET Communications, vol. 7, no. 1, pp. 65-70, Jan. 2013.

Preprints

• S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek, "Hierarchical hybrid error correction for time-sensitive devices at the edge."

• B. Dabak, A. Hareedy, A. Ashikhmin, and R. Calderbank, "Unequal error protection achieves threshold gains on BEC and BSC via higher fidelity messages."

Conference Papers

- C. Irimagzi, A. Tanrikulu, and A. Hareedy, "Probabilistic design of multi-dimensional spatially-coupled codes,"
 - accepted at IEEE International Symposium on Information Theory (ISIT), 2024.
- D. Ozbayrak, D. Uyar, and A. Hareedy, "Low-complexity constrained coding schemes for twodimensional magnetic recording,"

accepted at IEEE International Symposium on Information Theory (ISIT), 2024.

• B. Dabak, E. Tiryaki, R. Calderbank, and A. Hareedy, "LDPC decoders prefer more reliable parity bits: Unequal data protection over BSC,"

in Proc. International Symposium on Topics in Coding (ISTC), Brest, France, Sep. 2023, pp. 1-5.

- A. Hareedy, S. Zheng, P. Siegel, and R. Calderbank, "Read-and-run constrained coding for modern Flash devices," in *Proc. IEEE International Conference on Communications (ICC)*, Seoul, South Korea, May 2022, pp. 3466-3471.
- S. Yang, A. Hareedy, S. Venkatasubramanian, R. Calderbank, and L. Dolecek, "GRADE-AO: Towards near-optimal spatially-coupled codes with high memories," in *Proc. IEEE International Symposium on Information Theory (ISIT)*, Melbourne, Australia, Jul. 2021, pp. 587-592.
- A. Hareedy, B. Dabak, and R. Calderbank, "Q-ary asymmetric LOCO codes: Constrained codes supporting Flash evolution," in *Proc. IEEE International Symposium on Information Theory (ISIT)*, Los Angeles, CA, USA, Jun. 2020, pp. 688-693.
- S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek, "Topology-aware cooperative data protection in blockchain-based decentralized storage networks," in *Proc. IEEE International Symposium on Information Theory (ISIT)*, Los Angeles, CA, USA, Jun. 2020, pp. 622-627.
- S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek, "Hierarchical coding to enable scalability and flexibility in heterogeneous cloud storage," in *Proc. IEEE Global Communications Conference (GLOBECOM)*, Waikoloa, HI, USA, Dec. 2019, pp. 1-6.
- A. Hareedy and R. Calderbank, "Asymmetric LOCO codes: Constrained codes for Flash memories,"

in Proc. Allerton Conference on Communications, Control, and Computing (Allerton), Monticello, IL, USA, Sep. 2019, pp. 124-131.

• A. Hareedy, R. Kuditipudi, and R. Calderbank, "Increasing the lifetime of Flash memories using multi-dimensional graph-based codes,"

in Proc. IEEE Information Theory Workshop (ITW), Visby, Sweden, Aug. 2019, pp. 1-5.

• A. Hareedy and R. Calderbank, "A new family of constrained codes with applications in data storage,"

in Proc. IEEE Information Theory Workshop (ITW), Visby, Sweden, Aug. 2019, pp. 1-5.

- A. Hareedy, H. Esfahanizadeh, A. Tan, and L. Dolecek, "Spatially-coupled code design for partialresponse channels: Optimal object-minimization approach," in *Proc. IEEE Global Communications Conference (GLOBECOM)*, Abu Dhabi, UAE, Dec. 2018, pp. 1-7.
- H. Esfahanizadeh, A. Hareedy, and L. Dolecek, "Multi-dimensional spatially-coupled code design through informed relocation of circulants," in *Proc. Allerton Conference on Communications, Control, and Computing (Allerton)*, Monticello, IL, USA, Oct. 2018, pp. 695-701.
- H. Esfahanizadeh, A. Hareedy, R. Galbraith, R. Wu, and L. Dolecek, "Spatially-coupled codes for channels with SNR variation,"

in Proc. IEEE International Magnetics Conference (INTERMAG), Singapore, Singapore, Apr. 2018.

- A. Hareedy, H. Esfahanizadeh, and L. Dolecek, "High performance non-binary spatially-coupled codes for Flash memories," Memorable Paper Award in *Proc. IEEE Information Theory Workshop (ITW)*, Kaohsiung, Taiwan, Nov. 2017, pp. 229-233.
- H. Esfahanizadeh, A. Hareedy, and L. Dolecek, "A novel combinatorial framework to construct spatially-coupled codes: Minimum overlap partitioning," in *Proc. IEEE International Symposium on Information Theory (ISIT)*, Aachen, Germany, Jun. 2017, pp. 1693-1697.
- H. Esfahanizadeh, A. Hareedy, and L. Dolecek, "The finite length analysis of spatially-coupled codes for 1-D magnetic recording channels," in *Proc. Asilomar Conference on Signals, Systems, and Computers (Asilomar)*, Pacific Grove, CA, USA, Nov. 2016, pp. 1128-1132.
- A. Hareedy, C. Lanka, C. Schoeny, and L. Dolecek, "The weight consistency matrix framework for general non-binary LDPC code optimization: Applications in Flash memories," in *Proc. IEEE International Symposium on Information Theory (ISIT)*, Barcelona, Spain, Jul. 2016, pp. 2709-2713.
- A. Hareedy, B. Amiri, S. Zhao, R. Galbraith, and L. Dolecek, "Non-binary LDPC code optimization for partial-response channels," **Best Paper Award** in *Proc. IEEE Global Communications Conference (GLOBECOM)*, San Diego, CA, USA, Dec. 2015, pp. 1-6.
- E. E. O. Hussein *et al.*, "CUSPARC IP processor: Design, characterization and applications," in *Proc. International Conference on Microelectronics (ICM)*, Cairo, Egypt, Dec. 2010, pp. 435-438.
- Y. Sabry, A. Hareedy, and M. Selim, "Novel method for modeling IBIS4.2 four-level hysteresis behavior in an analog simulator," in *Proc. Electronics Packaging Technology Conference (EPTC)*, Singapore, Singapore, Dec. 2008, pp. 1403-1408.

Workshop Abstracts

• A. Hareedy, S. Zheng, P. Siegel, and R. Calderbank, "Read-and-run constrained coding for modern Flash memories," *Non-Volatile Memories Workshop (NVMW)*, San Diego, CA, USA, Mar. 2024.

J. Centers, X. Tan, A. Hareedy, and R. Calderbank, "Power spectra of finite-length constrained codes with level-based signaling,"

Non-Volatile Memories Workshop (NVMW), San Diego, CA, USA, Mar. 2021.

• S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek, "Cooperative data protection for topologyaware decentralized storage networks," *Non-Volatile Memories Workshop (NVMW)*, San Diego, CA, USA, Mar. 2021.

• H. Esfahanizadeh, A. Hareedy, and L. Dolecek, "Multi-dimensional spatially-coupled code design with improved cycle properties,"

Non-Volatile Memories Workshop (NVMW), San Diego, CA, USA, Mar. 2019.

- A. Hareedy, H. Esfahanizadeh, and L. Dolecek, "A three-stage approach for designing non-binary spatially-coupled codes for Flash memories," (summary of my ITW 2017 paper) *Non-Volatile Memories Workshop (NVMW)*, San Diego, CA, USA, Mar. 2018.
- A. Hareedy, C. Lanka, and L. Dolecek, "Non-binary LDPC code optimization for modern storage systems,"

Non-Volatile Memories Workshop (NVMW), San Diego, CA, USA, Mar. 2017.

• C. Schoeny, B. Amiri, A. Hareedy, and L. Dolecek, "Quasi-cyclic non-binary LDPC codes for MLC NAND Flash memory,"

Non-Volatile Memories Workshop (NVMW), San Diego, CA, USA, Mar. 2015.

COMMUNITY SERVICE

- *TPC member:* TPC member at the IEEE ICC, Selected Areas in Communications (SAC): Cloud Computing, Networking, and Storage, 2024.
- *TPC member:* TPC member at the NVMW, 2024.
- *Guest Editor:* Editor for a special issue of the IEEE BITS Magazine (the IEEE Information Theory Magazine) on data storage, 2023.
- *DSTC member*: Member of the IEEE Data Storage Technical Committee (DSTC).
- **TPC member:** TPC member at the IEEE ICC, Selected Areas in Communications (SAC): Cloud Computing, Networking, and Storage, 2023.
- Session chair: Session chair for SAC-CCNS-2 (Edge Computing II) at the IEEE ICC, 2022.
- *TPC member:* TPC member at the IEEE GLOBECOM, Selected Areas in Communications (SAC): Cloud & Fog/Edge Computing, Networking, and Storage (CCNS), 2021.
- Session chair: Session chair for 4A (Devices and ECC) at the NVMW, 2021.
- *TPC member:* TPC member at the NVMW, 2021.
- *TPC member:* TPC member at the IEEE GLOBECOM, Selected Areas in Communications (SAC): Cloud & Fog/Edge Computing, Networking, and Storage (CCNS), 2020.
- *TPC member:* TPC member at the IEEE International Conference on Cloud Computing (CLOUD), 2020.
- **TPC member:** TPC member at the NVMW, 2020 (also served on the Memorable Paper Award Selection Subcommittee).
- Session chair: Session chair for SAC CCNS1 (Coded Data Storage) at the IEEE GLOBECOM, 2019.
- *Reviewer:* I regularly review papers for various journals and conferences in coding/information theory, communications, and storage:
 - IEEE Transactions on Information Theory (TIT),
 - IEEE Transactions on Communications (TCOM),
 - IEEE Transactions on Magnetics (TMAG),
 - o IEEE Communications Letters (COML),

- o IET Communications,
- IEEE International Symposium on Information Theory (ISIT),
- o IEEE Information Theory Workshop (ITW),
- IEEE Global Communications Conference (GLOBECOM),
- IEEE International Symposium on Topics in Coding (ISTC).

TALKS

Oral Tutorials

• A. Hareedy, "Graph-based error correcting codes for Flash memories," *Flash Memory Summit (FMS)*, Santa Clara, CA, USA, Aug. 2019.

Oral Presentations

• A. Hareedy, S. Zheng, P. Siegel, and R. Calderbank, "Read-and-run constrained coding for modern Flash devices,"

IEEE International Conference on Communications (ICC), Seoul, South Korea, May 2022.

• A. Hareedy, "From devices to clouds: Coding for modern and next generation storage and computing systems,"

Télécom Paris (ENST), Oct. 2021.

- A. Hareedy, "From devices to clouds: Coding for modern and next generation storage systems," Koç University, Jun. 2021.
- A. Hareedy, "From devices to clouds: Coding for modern and next generation storage systems," Middle East Technical University (METU), Jun. 2021.
- A. Hareedy, "From devices to clouds: Coding for modern and next generation storage systems," Bilkent University, Apr. 2021.
- A. Hareedy, "From devices to clouds: Coding for modern and next generation storage systems," The Pennsylvania State University (Penn State), Feb. 2021.
- A. Hareedy, B. Dabak, and R. Calderbank, "Q-ary asymmetric LOCO codes: Constrained codes supporting Flash evolution,"

IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA, USA, Jun. 2020.

- A. Hareedy, "From devices to clouds: Coding for modern and next generation storage systems," The University of Colorado, Boulder (CU Boulder), Mar. 2020.
- A. Hareedy, "Modern coding techniques for highly reliable massive storage systems," Eindhoven University of Technology (TU/e), Oct. 2019.
- A. Hareedy and R. Calderbank, "Asymmetric LOCO codes: Constrained codes for Flash memories," Allerton Conference on Communications Control and Commuting (Allerton) Monticello II USA

Allerton Conference on Communications, Control, and Computing (Allerton), Monticello, IL, USA, Sep. 2019.

- A. Hareedy, H. Esfahanizadeh, A. Tan, and L. Dolecek, "Spatially-coupled code design for partialresponse channels: Optimal object-minimization approach," *IEEE Global Communications Conference (GLOBECOM)*, Abu Dhabi, UAE, Dec. 2018.
- A. Hareedy, H. Esfahanizadeh, and L. Dolecek, "A three-stage approach for designing spatiallycoupled codes for Flash memories," Non Volatile Memories Workshop (NUMW) See Diago CA, USA, Man 2018

Non-Volatile Memories Workshop (NVMW), San Diego, CA, USA, Mar. 2018.

• A. Hareedy, H. Esfahanizadeh, and L. Dolecek, "High performance non-binary spatially-coupled codes for Flash memories,"

IEEE Information Theory Workshop (ITW), Kaohsiung, Taiwan, Nov. 2017.

- A. Hareedy, C. Lanka, and L. Dolecek, "LDPC codes for Flash memories," *UCLA ECE Annual Research Review (UCLA ARR)*, Los Angeles, CA, USA, Apr. 2017.
- A. Hareedy, C. Lanka, and L. Dolecek, "Non-binary LDPC code optimization for modern storage systems,"

Non-Volatile Memories Workshop (NVMW), San Diego, CA, USA, Mar. 2017.

- A. Hareedy and L. Dolecek, "Graph-based error correcting codes for modern dense storage devices," ITA Graduation Day Talk *Information Theory and Applications Workshop (ITA)*, San Diego, CA, USA, Feb. 2017.
- A. Hareedy, C. Lanka, C. Schoeny, and L. Dolecek, "The weight consistency matrix framework for general non-binary LDPC code optimization: Applications in Flash memories," *IEEE International Symposium on Information Theory (ISIT)*, Barcelona, Spain, Jul. 2016.
- A. Hareedy, B. Amiri, S. Zhao, R. Galbraith, and L. Dolecek, "Non-binary LDPC code optimization for partial-response channels," *IEEE Global Communications Conference (GLOBECOM)*, San Diego, CA, USA, Dec. 2015.
- C. Schoeny, B. Amiri, A. Hareedy, and L. Dolecek, "Quasi-cyclic non-binary LDPC codes for MLC NAND Flash memory," *Flash Memory Summit (FMS)*, Santa Clara, CA, USA, Aug. 2015.
- Y. Sabry, A. Hareedy, and M. Selim, "Novel method for modeling IBIS4.2 four-level hysteresis behavior in an analog simulator," *Electronics Packaging Technology Conference (EPTC)*, Singapore, Singapore, Dec. 2008.

PROGRAMMING SKILLS

- MATLAB (including Simulink).
- C and C++.
- Shell scripting.
- R and Python.
- Verilog/VHDL (digital design).
- FPGA experience.
- Verilog-A/VHDL-AMS (analog/mixed signal design).
- XML and HTML.

COURSES & TRAINING

Technical Skills

Selected courses:

- (UCLA) Matrix Analysis, Coding for Modern Storage Devices, Graphs and Network Flows, Information Theory, Network Information Theory (audit), Convex Optimization (audit), Analysis (A and B, audit).
- (MGC) Device Physics, Quantum Mechanics.

Soft Skills

Selected courses:

- (Think Logic) Time Management, Presentation Skills.
- (Dale Carnegie) Communication Skills, Problem Solving and Decision Making.

LANGUAGES

• English and Arabic.

<u>HOBBIES</u>

• Writing poems, reading in different fields, calligraphy, and practicing/watching sports.

ADDITIONAL INFORMATION

Additional information is available at my:

- Website <u>http://users.metu.edu.tr/ahareedy</u>.
- LinkedIn account <u>https://www.linkedin.com/in/ahmed-hareedy-8a063063</u>.
- ORCID <u>https://orcid.org/0000-0002-8523-6754</u>.
- Google Scholar account <u>https://scholar.google.com/citations?user=yNJ0Tq4AAAAJ&hl=en&oi=ao</u>.
- Research Gate account <u>https://www.researchgate.net/profile/Ahmed_Hareedy</u>.