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Introduction

The deterministic systems are described by some mathematical 

rule. But some systems are not deterministic known as random 

or stochastic. The Monte Carlo Method is a numerical technique 

for calculating probabilities and related quantities by using

sequences of random numbers.

Pioneers
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Some Applications

MC method is often used to simulate experimental data.

Applications Field Example

Physics Simulation of Radioactive decay

Engineering Tolerance Analysis

Bioinformatics Protein Folding

Statistics Distribution Functions 

Economy Modelling Stock Exchange

Medicine Treatment Planning in Radiation Therapy
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In Particle Physics

Simulation of experimental data is typically done in two stages:

1. Event generation (Pythia, Sherpa, Herwig, …)

2. Detector simulation (GEANT4)
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Random Numbers

In principle, the best way to obtain a series of random numbers:

{x1 , x2 , x3 , ... xn}

is to use some process in nature: 

▪ Throw a coin or dice 

▪ Lotto results of last Sunday.

▪ Number of particles from radioactive decay in every 1 min.

▪ Number of cosmic muons falling on 10cm x 20 cm area in 10 s.

▪ Brightness level of a star observed in atmoshpere in every 1 s.

These are not very efficient. 

Therefore, random number generator algorithms have been 

developed to be used in computers.



Sayfa 7

Uniformly Distributed Random Numbers

Linear Conguential Method (1948)

uses 32-bit integers have a period of at most 231 ~ 109. 

The method is employed by an equation of the form: 

xi+1 = ( a xi + b ) mod m

where mod means modulo. Constants a, b and m are chosen 

carefully such that the sequence of numbers becomes chaotic and 

evenly distributed. The resulting values are therefore more correctly 

called pseudorandom.

RULES:

▪ First initial number, x0, called seed, is selected.

▪ m > x0, a, b ≥ 0 

▪ The range of values is 0 to m. The period generator is m-1. 

▪ Divide by m to convert to 0. to 1.
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Example 1

if we select a = b = x0 = 7 and m = 10 results in the squence:

x = {7, 6, 9, 0, 7, 6, 9, 0, ...}

and dividing each number by 10 gives:

r = {0.7,0.6,0.9,0.0, 0.7,0.6,0.9,0.0, ...}

very poor!

-------

Some good generators are proposed:

▪ IBM in 1960: xi+1 = ( 69069 xi ) mod 231-1 

▪ Park and Miller: xi+1 = ( 16807 xi ) mod 231-1

▪ P.L. L'Ecuyer: xi+1 = ( 40692 xi ) mod 2147483399

Some advanced algorithms:

▪ RANLUX has period of 10143 (Root uses this algorithm)

▪ Mersenne twister has period of 106000
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Example 2: Implementation of RANDU

m = 2^31-1; % maximum value

x = 314;    % the seed

for i = 1:10

x = mod(69069*x, m); % integer

r = x / m;           % real

disp(r)

end

OUTPUT

0.0101

0.5352

0.6915

0.3512

0.5424

0.8728

0.6736

0.2940

0.4968

0.9160
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Uniformly Distributed Random Numbers

Assume that r is a uniform random real number in the range [0,1] 

A and B are real numbers,

M and N are integer numbers, then the value 

x = A + (B−A)r

will be random real number in the range [A, B]

x = M + int(Nr)

will be random integer number in the range [M,N].

Two examples:

Random decay angle in the range [0, 2π]

phi = 2*pi*r;

Random integer in the range [1, 6]

D = 1 + int(6*r);
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Built-in Random Number Generators

C++

https://cplusplus.com/reference/random/

Obsolete C++

int k = rand(); returns random integer in the range [0, RAND_MAX]

double r = double(k)/RAND_MAX;

Root

TRandom rnd;

double = rnd.Uniform(); returns random real in the range (0,1).

MATLAB

r = rand returns random real in the range (0,1).

r = rand(3,2) generates random 3x2 random matrix.
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Example 3: Using rand function

n = 1000;

r = rand(n,1);

histogram(r,10)

xlabel('r')

ylabel('Entries')

grid on
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Box-Muller Algorithm for S.N.D.

To get a random number taken from standard normal distribution:

• use function normrnd(0,1) in MATLAB.

• use function rnd.Gaus(0,1) in Root.
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Example 4: using normrnd function

n = 1000;

r = normrnd(0,1, n,1);

histogram(r,12)

xlabel('r')

ylabel('Entries')

grid
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Example 5: ECAL Detector Resolution
Photon energy measured, E, is proportional to 

number of electrons, n, which are counted in the ECAL

shower, because the number of charges is related with

energy deposition in any space. Thus: 𝐸 ∝ 𝑛. 

But, this counting is a statistical process carrying a 

statistical uncertainty 𝜎𝐸 ∝ 𝑛. Then, 

or

for ATLAS R = 0.10 GeV1/2

for CMS    R = 0.05 GeV1/2

𝜎𝐸

𝐸
∝

𝑛

𝑛
= 

1

𝑛

𝜎𝐸

𝐸
= 

𝑅

𝑛



Sayfa 16

We can model ECAL by smearing the photon energies (E is in GeV). 

𝜎𝐸 = 0.1 𝐸

For example, assume that E = 20 GeV. Then, the following code block can 

roughly simulate the response of ATLAS ECAL for n = 100 000 photons.

E = 20;

sigmaE = 0.1*sqrt(E);

n = 1e5;

energy = normrnd(E,sigmaE,n,1);

histfit(energy,30)

xlabel('Measured Energy')

ylabel('Entries')
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Random Distributions

In simulations of random processes, we often require a non-uniform 

distribution of random numbers. Two standard methods are: 

▪ The Transformation Method 

▪ The Rejection Method 

The aim of both these methods is to convert a uniform distribution of 

random numbers of the form u(r) into a non-uniform distribution of the form 

f(x). The values of x can then be treated as simulated measurements
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Transformation Method (Continues RV)

Let u(r) be uniform distribution in the range [0,1]. 

Consider a distribution f(x) from which we want to draw random numbers, x.

Conservation of random numbers!

𝑢 𝑟 𝑑𝑟 = 𝑓 𝑥 𝑑𝑥

The aim is to find a transformation function x = T(r) such that the distribution

of random variable x is f(x). 
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Since u(r) = 1, we need to solve D.E.

𝑑𝑟 = 𝑓 𝑥 𝑑𝑥
𝑟 = ∫ 𝑓 𝑥 𝑑𝑥

Right hand side is CDF:

𝐹 𝑥 = න
−∞

𝑥

𝑓 𝑥 𝑑𝑥 =න
0

𝑟

𝑢 𝑟 𝑑𝑟 = 𝑟

𝐹 𝑥 = 𝑟

We want to get x from inverse CDF.

𝑥 = 𝐹−1 𝑟 = 𝑇(𝑟)

This function is known as the

Transformation Function.
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Example 6

We want a random distibution function

𝑓(𝑥) = 2𝑥 [0 < x < 1]

Then we can find the transformation function

T(r) as follows:        

𝑟 = ∫2𝑥𝑑𝑥 = 𝑥2 =>   𝑥 = 𝑟 = 𝑇(𝑟)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

We want a random distibution function

𝑓 𝑡 =
1

𝜏
𝑒−𝑡/𝜏 [0 < t < ∞]

Transformation function:

𝑟 = ∫𝑓(𝑡)𝑑𝑡 = 1 − 𝑒−𝑡/𝜏 =>  

𝑡 = −𝜏 ln 1 − 𝑟 = −𝜏ln(𝑟) = 𝑇(𝑟)

________________________________________________________________

• In MATLAB, we use exprnd(tau)

exprnd(2)     returns single value with mean 2

exprnd(2,5,1) returns 5x1 matrix (array)

• In Root, we use double Exp(double tau)

rnd.Exp(2) returns single value with mean 2
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Example 7: Uniform point on a sphere
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n = 500;

R = 1;

phi = 2*pi*rand(n,1);

theta = acos(1-2*rand(n,1));

x = R*sin(theta).*cos(phi);

y = R*sin(theta).*sin(phi);

z = R*cos(theta);

plot3(x,y,z,'.')

grid
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Transformation Method (Discrete RV)

Suppose X can take on n distinct values X = {x1 , x2 , x3 , ... xn} with

PDF: f(x) = {f1 , f2 , f3 , ... fn} and

CDF: F(x) = {f1 , f1 + f2 , ... , f1 + f2 + f3 + ... + fn}

Then to generate a sample value of X

1. Generate uniform ranfom number r in the range [0, 1].

2. for j = 1 to n 

Set X = xj if Fj−1 < r ≤ Fj

end
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Example 8: Branching Ratio

D*± decays into 3 different channels.

Select a decay mode randomly. 

x = [1 2 3];             % decay mode #

f = [0.677 0.307 0.016]; % BR

F = [0.677 0.984 1.000]; % CDF

N = 1000;                % Look at 1000 decays

X = zeros(N,1);

for i = 1:N

r = rand;

for j = 1:3

if j==1 && r <= F(j)

X(i) = x(j);

elseif j > 1 && r > F(j-1) && r <= F(j)

X(i) = x(j);

end

end

end

histogram(X,3,'BinEdges',0.5:4.5,'Normalization','pdf')

xlabel('Channel')

ylabel('Branching Ratio')

grid on
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Rejection Method

The Transformation Method is useful when the function T(r) can 

easly be evaluated. However, there are cases when desired 

distribution may not be known in analytic form. 

Two examples are as follows:

Gaussian fuction : 𝑓 𝑥 = 𝑒−𝑥
2

Quadratic function : 𝑓 𝑥 = 1 + 𝑥2

Such problems can be handled with algorithm known as 

Rejection Method. 

It has the advantage of being able to create a distribution 

for any function. 
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Rejection Method
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Example 9: Maxwell Distribution in C++
double Maxwell_Boltzman(double m, double T){

//-----------------------------------------------------------------

// Returns, for an atom of mass m (kg) and temperature T (K), 

// a velocity in m/s which is randomly selected from

// a Maxwell-Boltzman Distribution function using Rejection Method.

//-----------------------------------------------------------------

double const kB = 1.38e-23;

double kT = kB*T;

double C    = M_PI*sqrt(2.0) * pow(m/(M_PI*kT),1.5);

double vp = sqrt(2.0*kT/m);

double vmin = 0.0;

double vmax = 10*vp;

double fmax = C * vp*vp * exp(-1.0), Ptest, fmb;

// Rejection algorithm

while(1)

{

double r = rnd.Uniform();

double v = rnd.Uniform();

Ptest = fmax*r;

v     = vmin + (vmax-vmin)*v;

fmb = C * v*v * exp(-0.5*m*v*v/kT);

if (fmb > Ptest) return v;

}

}
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Example 9: Maxwell Distribution in Matlab
clear;

T = 300;     % K,  room temperature

m = 1.8e-25; % kg, mass of silver atom

kB = 1.38e-23; % Boltzman constant

kT = kB*T;

C    = pi*sqrt(2.0) * (m/(pi*kT))^1.5;

vp = sqrt(2.0*kT/m); % peak velocity

vmin = 0.0;

vmax = 20*vp;

fmax = C * vp*vp * exp(-1.0);

n    = 100000; % number of random numbers

r    = zeros(n,1);

for i = 1:n

% Rejection algorithm

while 1

Ptest = fmax*rand;

v     = vmin + (vmax-vmin)*rand;

fmb = C * v*v * exp(-0.5*m*v*v/kT);

if fmb > Ptest

break;

end

end

r(i) = v; % random value from function

end

histogram(r,50,'Normalization','pdf')

xlabel('Speed (m/s)')

ylabel('Normalized Entries')
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Monte Carlo Integration

Typical Error (Standard deviation) 

Not efficient in 1D integrals. Very good at higher dimensions.

Exercise: Find volume of the intersection of a cone and a torus

‣ Hard to solve analytically

‣ Easy to solve by scattering points homogeneously inside a cuboid 

containing the intersect.
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Example 10: 

Evaluate the following integrals via MC integration method.

(a) ∫0
𝜋
sin 𝑥 𝑑𝑥 = 2.0

(b) ∫0
2𝜋
∫0
𝜋
sin 𝜃 𝑑𝜃 𝑑𝜙 = 4𝜋 ≈ 12.5664

% solution of (a)

n = 10000;

s = 0;

for i=1:n

    x = pi*rand;

    f = sin(x);

    s = s + f;

end

integ = (pi-0) * s/n

% solution of (b)

n = 10000;

s = 0;

for i=1:n

theta = pi*rand;

phi = 2*pi*rand;

f = sin(theta);

s = s + f;

end

integ = (2*pi-0)*(pi-0) * s/n
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Example 11: Estimating π using MC

Populate a square with n randomly-

placed points [the blue and red points]

-1.0 ≤ x < +1.0

-1.0 ≤ y < +1.0

Count the number of points m that lie 

inside a circle of unit Radius [the blue 

points] then m / n   / 4    4 m / n

blue area =  r2 =  12 =  units

red area = 22 = 4 units

n = 100000;

x = 2*rand(n,1)-1;

y = 2*rand(n,1)-1;

m = sum( x.^2 + y.^2 < 1);

disp(4*m/n)
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Some Applications

1. Modelling Cherenkov Radiation Photons

http://www1.gantep.edu.tr/~bingul/zemax/src/cherenkov.m

2. Simulation of Two-Body Decay

http://www1.gantep.edu.tr/~bingul/simulation/twoBody

3. Simulation of Stern-Gerlach Experiment

http://www1.gantep.edu.tr/~bingul/seminar/spin

4. Simulation of Fussion Chain Reaction

http://www1.gantep.edu.tr/~bingul/simulation/fission/

5. Tolerance Analysis of a Lens

See Section 9.3 at:

http://www1.gantep.edu.tr/~bingul/ep208/latex/ep208_LectureNotes.pdf

6. Predicting Potential Energy Function in Schrödinger Equation via MC

coming soon …
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