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Overview

In this chapter we’ll consider the following probability

distribution functions used in Nuclear and Particle Physics:

Distibution Function In Root TRandom Class

▪ Uniform Distribution Double_t Uniform(Double_t x1 = 1)

▪ Exponential Distribution Double_t Exp(Double_t tau)

▪ Binomial Distribution Int_t Binomial(Int_t ntot, Double_t prob)

▪ Poisson Distribution Int_t Poisson(Double_t mean)

▪ Gaussian Distribution Double_t Gaus(Double_t mean=0, Double_t sigma=1)

▪ Landau Distribution Double_t Landau(Double_t mean=0, Double_t sigma=1)

▪ Breit-Wigner Distribution Double_t BreitWigner(Double_t mean=0, Double_t gamma=1)

▪ Student’s t Distribution

▪ X2 Distribution
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Uniform Distribution

Example:

Silicon strip detector:

resolution for one-strip clusters:
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Exponential Distribution

Example:

Decay time of an unstable particle at rest:
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http://www1.gantep.edu.tr/~bingul/muon
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Binomial Distribution

The binomial distribution function specifies 

the number of times (k) that an event occurs 

in n independent trials. If p is the 

probability of the event occurring in a 

single trial, then:

* Use binomial distribution to model processes with two outcomes: success or failure

* Trials are independent

* p is constant from one trial to another.

Example:

Detection efficiency (either we detect particle or not).
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Example 1

A coin is thrown 30 times.

(a) Calculate the mean (expected) number heads and standard deviation

(b) Imagine you observed 20 heads. Compute how many standard deviations your 

observation differ from the mean value. Is the coin fair?

(c) Imagine you observed 30 heads. Compute how many standard deviations your 

observation differ from the mean value. Is the coin fair?

15)5.0)(30( === npx

83.1
74.2

1520
=

−
=N

74.2)5.0)(5.0)(30()1( ==−= pnp

47.5
74.2

1530
=

−
=N

N < 3 sigma

20 heads is consistent with 15 => the coin is fair

N > 5 sigma

20 heads is not consistent with 15. 

Discovery => the coin is not fair
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Poisson Distribution

In the binomial equation, if the 

probability p is so small then the 

distribution of events can be approximated 

by the Poisson distribution.

Examples:

* Clicks of a Geiger counter in a given time interval

* Mean number of p-p interactions per bunch crossing at LHC (pile-up events)

* Number of atmoshperic muons passing through unit area per unit time 

* Number of photons generated in Cherenkov Radiation process
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Example 2

Inefficency of a muon detector is 1%. Determine the probability of detecting single

Higgs Boson from the decay channel: H → ZZ* → μ+μ- μ+μ-

k Probability _

0   0.960789439152323

1   0.038431577566093

2   0.000768631551322

3   0.000010248420684

4   0.000000102484207

Hence, we can detect H with

%96 probability.
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Example 3

If the velocity of a charged

particle is larger than the

velocity of light in the medium

v > c / n (n: refractive index), 

it emits ‘Cherenkov Radiation’ 

with cone angle:

Number of photons generated (N) 

per unit length (dx) for the

wavelength λ can be found from:

Do not forget dispersion,

i.e. n = n(λ)
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Problem: Calculate number of generated photons/cm 

for the visible light (400-700 nm) in water (n=1.33) for

charged particle of veloctiy beta ~ 1.

If dx = 2 cm => N = 430. Dist. of N for 1000 particles:
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Gaussian (Normal) Distribution

In Statistics, if the number of events is very large (n>30), 

then the Gaussian (normal) distribution function may be 

used to describe nearly all events. 

The Gaussian distribution is a continuous 

Random Variable of the form:
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Example Normal Distributions

▪ Here we will examine some interesting real data whose 

values are distributed normally.

▪ For each example, histogram of the data is fitted to a 

Gaussian Function.
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Annual Rainfall (1960-2012)
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Annual Rainfall (1960-2012)

Mean       :   <x> = 651.10 mm

Std. Dev. :     σ =   74.35 mm

Data: http://www.mgm.gov.tr 
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Air temperature in Istanbul for the last 105 years.

Mean temperature:   <x> = 21.97 oC

Std. Dev.              :     σ =   1.12  oC

Data: http://data.giss.nasa.gov/tmp/gistemp/STATIONS/tmp_649170620000_14_0/station.txt 
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“EP106 General Physics II” Course exam results (2010)

Mean score:   <x> = 49.0

Std. Dev.    :     σ = 17.9

Data: http://www1.gantep.edu.tr/~physics/ep106/exam-statistics.php
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Background Radiation in Gaziantep (2013)

Mean          :   <x> = 101.3 counts / sec

Std. Dev.    :     σ =    2.5  counts / sec

Data is obtained by: Research Assistant Sadık Zuhur (University of Gazaintep)
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Tracker Resolution of ALEPH Detector (p – ptrue distributions)
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Tracker Resolution of ALEPH Detector

(σp = resolution = width of Gaussian)
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Standard Normal Curve

The normal distribution function for

is called the standard normal distribution function.

µ = 0 and σ = 1
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Area Under the Curve

Total area under the standard normal curve is 1.
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Area under the standard normal curve between [-1, 1] is:

This corresponds

+- 1 sigma
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Area under the standard normal curve between [-2, 2] is:

This corresponds

+- 2 sigma
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Area under the standard normal curve between [-3, 3] is:

This corresponds

+- 3 sigma


−

− =

3

3

2/ 0.9973   
2

1 2

dxe x





Sayfa 32

Area under the standard normal curve between [a, b] is:

The values of the

function phi(x)

can be taken from 

a table or from the

figure on next page.
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Mean weight of 500 male students at a certain university is 72 kg and the standard 

deviation is 5 kg. Assuming that the weights are normally distributed, find how 

many students weigh:

(a) between 66 and 75 kg (Answer: 305)

(b) more than 80 kg (Answer: 27)

(a)  Convertion to standard normal values

a = (66-72)/5 = -1.2

b = (75-72)/5 = 0.6
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Why are Gaussians so useful?

Central limit theorem:

When independent random variables are added, their properly normalized 

sum tends toward a normal distribution even if the original variables

themselves are not normally distributed.

More specifically:

Consider n random variables with finite variance σi
2 and arbitrary pdfs:

Measurement uncertainties are often the sum of many independent

contributions. The underlying pdf for a measurement can therefore be

assumed to be a Gaussian.

Sum or difference of two Gaussian random variables is again a Gaussian.
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Landau Distribution

TRandom::Landau(mu,sigma)

Root generates random number following a Landau distribution 

with location parameter mu and scale parameter sigma (x-mu)/sigma.

Note that mu is not the mpv and sigma is not the standard deviation 

of the distribution which is not defined. 

For mu =0 and sigma=1, the mpv = -0.22278

Example:

* Describes energy loss of charged

particles in a thin layer of material.

Tail with large energy loss due to

occasional cration of delta rays.

L. Landau, J. Phys. USSR 8 (1944) 201

W. Allison and J. Cobb, Ann. Rev. Nucl. 

Part. Sci. 30 (1980) 253.
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Breit-Wigner Distribution

• Breit-Wigner = Cauchy = Lorentzian

• Mean and std is not defined!

Example: 𝝓 → 𝑲+𝑲− Decay

Production cross section of a

resonance with mass M 

and width Γ (full width at half maximum)
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Student’s t Distribution

x1,. . ., xn are selected from a normal distribution with mean μ & StdDev σ

Sample mean and 

estimate of the variance:
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X2 (chi-square) Distribution

Let x1, x2, . . ., xn be n independent 

standard normal (μ = 0, σ = 1) random

variables. Then the sum of their squares

follows a χ2 distribution with n dof

(degrees of freedom).

Example:

Quantifies goodness of fit:
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