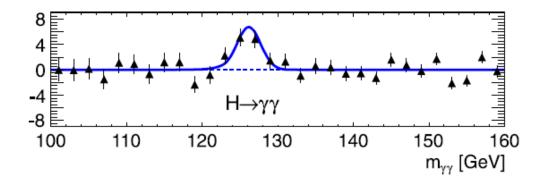


Introduction to Statistical Data Analysis

Chapter 2 Random Variables



Nov 2023

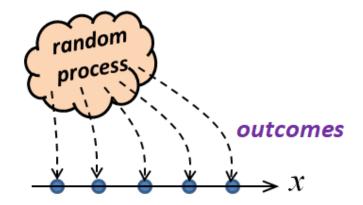
Content

- Random Variable (Discrete / Continuous)
- Expectation of a Random Variable
- Variance and Standard Deviation of Random Variable
- Qumulative Distribution Function
- Examples

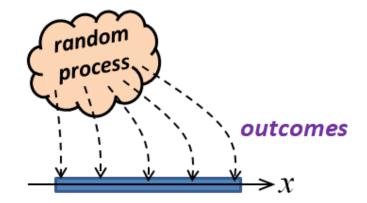
Random Variable

A random variable X is a function that assigns to every element in the sample space S a number representing the outcome of a random process.

We are interested in the range of values of X and their probabilities.



Discrete space; the number of outcomes in this is space is **countable**.



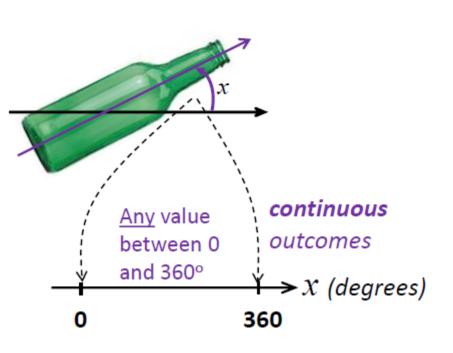
Continuous space; the number of outcomes in this space is **uncountable**.

Note that x is a particular value in the collection X.

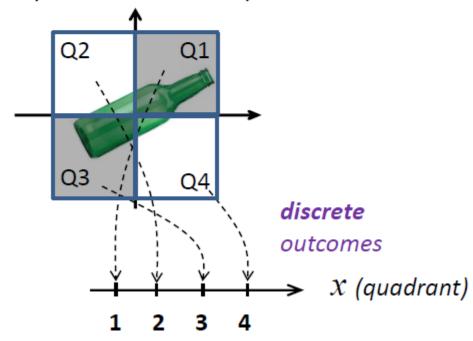
Example 1

The position at which a spinning bottle comes to rest on a smooth surface can be considered to be random.

Random variable X represents the **angle** at which the bottle points when it stops.



Random variable X represents the *quadrant* in which the bottle points when it stops.



Example 2: Two Body Decay Angles in CM

Consider the two-body decay in center of mass frame: $0 \rightarrow 1+2$

$$E_1' = (m_0^2 + m_1^2 - m_2^2) / 2m_0$$

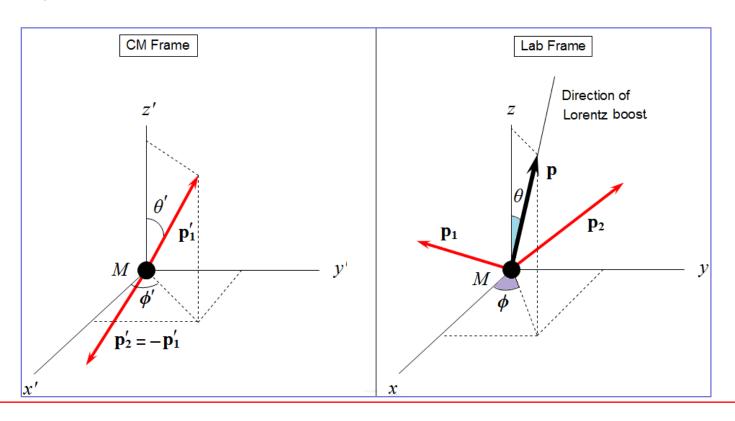
$$E_2' = (m_0^2 + m_2^2 - m_1^2) / 2m_0$$

$$|\mathbf{p}_{1}^{'}| = |\mathbf{p}_{2}^{'}| = \sqrt{E_{1}^{'2} - m_{1}^{2}}$$

Decay angles are continues RV:

$$\phi' = [0, 2\pi]$$

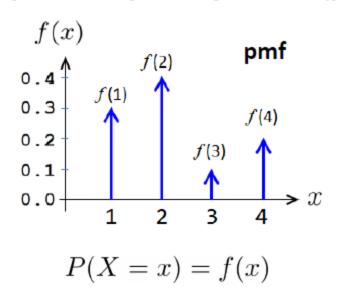
$$\cos\theta'=[-1,1]$$



Probability Distribution Function (PDF)

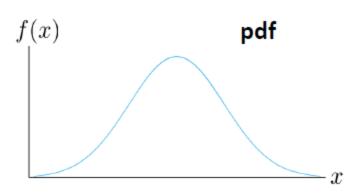
Definition: If X is a random variable, the function given by f(x) = P(X=x) for each x in the range of X is called the probability distribution of X.

If X is **discrete** then f(x) is called the **probability mass function** (pmf).



f(x) represents probability

If X is **continuous** then f(x) is called the **probability density function** (pdf).



$$P(a < X < b) = \int_{a}^{b} f(x)dx$$

f(x) represents probability <u>density</u>

Discrete RV Examples:

Throwing a coin:

$$X = \{ H, T \}$$

 $f(x) = \{1/2, 1/2\}$

Distribution (pmf)

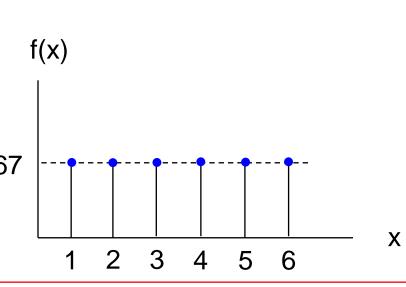


Thorowing a dice:

$$X = \{1,2,3,4,5,6\}$$

 $f(x) = \{1/6,1/6,1/6,1/6,1/6\}$

$$0.167$$

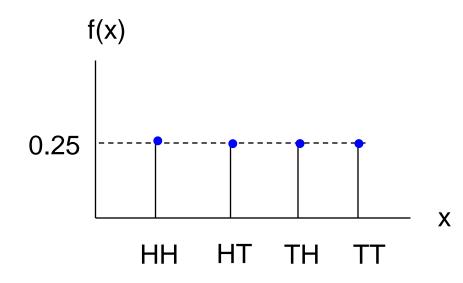


Discrete RV Examples:

Throwing two coins:

$$X = \{HH, HT, TH, TT\}$$

 $f(x) = \{1/4, 1/4, 1/4, 1/4\}$
 $P(HH) = P(HT) = P(TH) = P(TT) = 0.25$

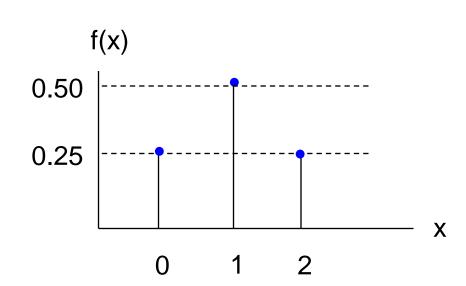


Throwing two coins:

Let X = {number of heads}

$$X = \{ 0, 1, 2 \}$$

 $f(x) = \{1/4, 1/2, 1/4 \}$



Discrete RV Examples:

Two dice are thrown. Let $X = \{sum of number\}$, Namely

```
X = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}

f(x) = ?
```

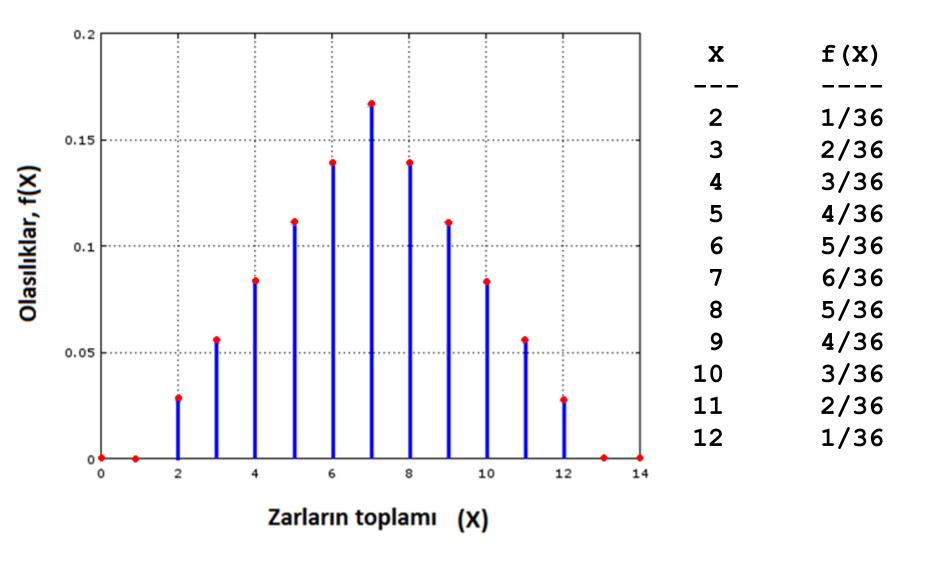
Probabilities:

```
P(X=2) = P(1)P(1) = P11 = 1/36

P(X=3) = P(1)P(2)+P(2)P(1) = P12+P21 = 1/36+1/36 = 2/36

P(X=4) = P(1)P(3)+P(3)P(1)+P(2)P(2) = P13+P31+P22 = 3/36
```

$$P(X=2) = P11$$
 = 1/36 = 0.0278
 $P(X=3) = P12+P21$ = 2/36 = 0.0556
 $P(X=4) = P13+P31+P22$ = 3/36 = 0.0833
 $P(X=5) = P14+P41+P23+P32$ = 4/36 = 0.1111
 $P(X=6) = P15+P51+P24+P42+P33$ = 5/36 = 0.1389
 $P(X=7) = P16+P61+P25+P52+P34+P43$ = 6/36 = 0.1667
 $P(X=8) = P26+P62+P35+P53+P44$ = 5/36 = 0.1389
 $P(X=9) = P36+P63+P45+P54$ = 4/36 = 0.1111
 $P(X=10) = P46+P64+P55$ = 3/36 = 0.0833
 $P(X=11) = P56+P65$ = 2/36 = 0.0556
 $P(X=12) = P66$ = 1/36 = 0.0278



Notice that:
$$\sum_{i} f(x_i) = 1$$

Continues RV Examples:

Two-body decay angles:

$$\Phi = [0, 2\pi]$$

 $f(\phi) = 1 / 2\pi$

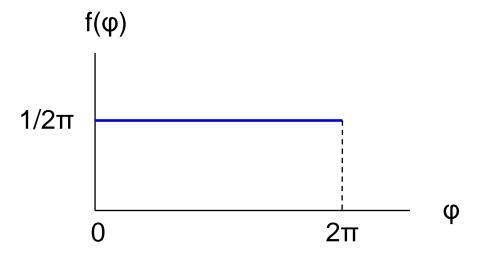
$$cos\Theta = [-1, 1]$$

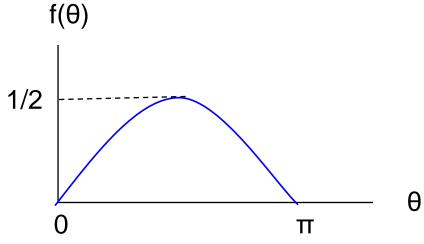
 $f(\theta) = \frac{1}{2} sin(\theta)$

Last eqn. is obtained from:

$$f_{\theta}(\theta)d\theta = f_{x}(x)dx \rightarrow f_{\theta}(\theta) = f_{x}(x)\left|\frac{dx}{d\theta}\right| = \frac{1}{2}\frac{d}{d\theta}[\cos(\theta)]$$

where $f_x(x)$ is a uniform pdf in the range [-1,1].

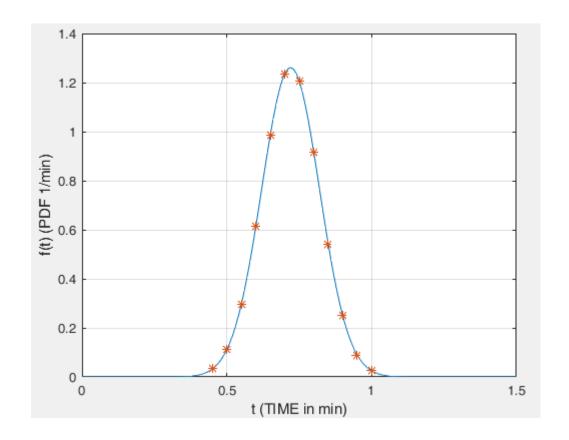




Continues RV Examples:

T = {Run-time of a program in a server}

 $f(t) = \{measured discrete values\} \rightarrow might be continues!$



Some Properties

Discrete

$$f(x_i) \ge 0$$

$$\sum_{i} f(x_i) = 1$$

$$\sum_{i=a}^{b} f(x_i) = P(a \le x \le b)$$

Continues

$$f(x) \ge 0$$

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

$$\int_{a}^{b} f(x)dx = P(a \le x \le b)$$

f(x) is NOT a probability! It has dimension 1/x

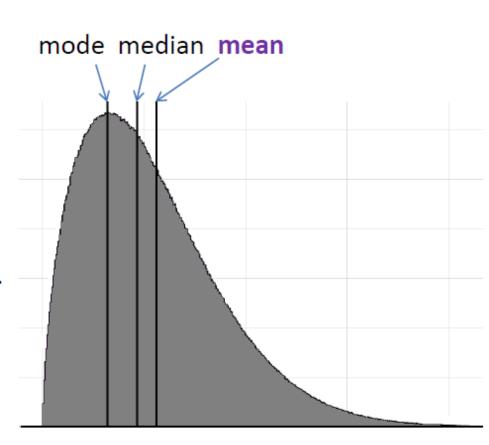
Expectation Values

Expectation values are mathematical objects that summarize a distribution in the form of a few descriptive values (descriptive statistics).

In this course we focus on two objects:

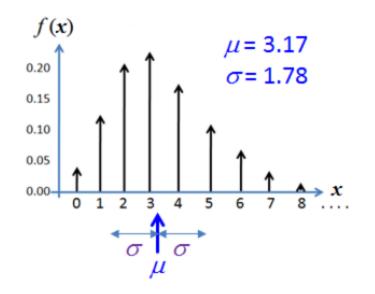
- 1. The **mean**, μ_X This is a measure of the center of the distribution (the center of mass).
- 2. The **standard deviation**, σ_X This is a measure of how much the distribution is spread about the mean.

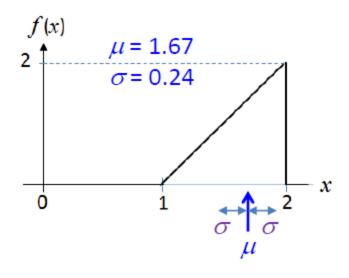
See also skewness and kurtosis (not covered in this course).



Examples of the mean μ and standard deviation σ

(we will learn how to calculate μ and σ later).





Estimation
$$\left\{ \begin{array}{l} \mu = {\rm center~of~mass} \\ \mu \pm \sigma \ {\rm covers} \approx \frac{2}{3} \ {\rm of~the~distribution} \end{array} \right.$$

Definition of Mean

Let X be a random variable with probability distribution f(x).

The **mean** of X is

$$\mu_X = E[X] = \sum_x x f(x) \quad \text{ if X is a discrete random variable}$$

$$\mu_X = E[X] = \int_x x \, f(x) dx \quad \text{if X is a $\it continuous$ random variable}$$

In general:

This is a measure of the location of the distribution (the center of mass).

NOTE1: Notation for mean can be E[X] or $\langle X \rangle$ or \bar{x}

NOTE2: In Quantum Mechanics, expectation value of position is postulated/defined as follows:

$$\langle x \rangle = E[X] = \int_{-\infty}^{+\infty} \Psi^* x \Psi \, dx \qquad \langle g \rangle = E[g] = \int_{-\infty}^{+\infty} \Psi^* g \Psi \, dx$$

Sayfa 17

The expectation of the function g(X) is:

$$\mu_{g(X)} = E[g(X)] = \sum_x g(x)f(x)$$
 if X is discrete

$$\mu_{g(X)} = E[g(X)] = \int_{\mathbb{R}} g(x)f(x)dx$$
 if X is continuous

Simply replace x with g(x)

Some properties

$$E[aX^n+b]=aE[X^n]+b \qquad \qquad \text{a, b, n are constants}$$

$$E[g(X)]\sim g(E[X]) \qquad \qquad \text{This approximation improves as }\sigma\to 0$$

Mean of Squares

Definition:

$$E[X^2] = \sum_i x_i^2 f(x_i)$$

$$E[X^2] = \int_{-\infty}^{+\infty} x^2 f(x) dx$$

Root Mean Square:

$$RMS = \sqrt{E[X^2]}$$

Variance and Standard Deviation

The variance (σ^2) of a random variable X is defined by:

$$\sigma^2=E[(X-\mu)^2]=\sum_x(x-\mu)^2f(x) \qquad \text{discrete}$$

$$\sigma^2=E[(X-\mu)^2]=\int_x(x-\mu)^2f(x)dx \qquad \text{continuous}$$

This is a measure of by how much the distributution varies about the mean value.

$$\begin{split} \sigma_{\mathbf{X}}^2 &= E[(X - \mu_{\mathbf{X}})^2] = E[X^2 - 2X\mu_{\mathbf{X}} + \mu_{\mathbf{X}}^2] \\ &= E[X^2] - 2\mu_{\mathbf{X}} E[X] + \mu_{\mathbf{X}}^2 \\ &= E[X^2] - \mu_{\mathbf{X}}^2 \implies \sigma_{\mathbf{X}}^2 = E[X^2] - E[X]^2 \end{split} \qquad \text{This is generally easier to calculate}$$

The standard deviation is then $\,\sigma_{\!X} = \sqrt{\sigma_{\!X}^2}\,$

Property:
$$\sigma_{(aX+b)}=a~\sigma_X$$

$$\sigma_X=\sqrt{E[X^2]-(E[X])^2}$$

$$=\sqrt{\langle X^2\rangle-\langle X\rangle^2}$$

Example 3: Tossing 3 coins:

What is the mean number of heads obtained when three coins are tossed?

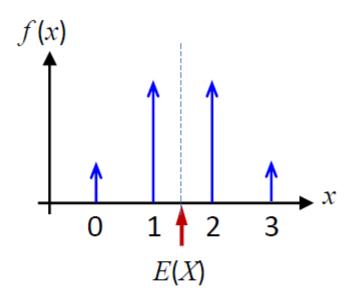
Solution

X	0	1	2	3
f(x)	1/8	3/8	3/8	1/8

$$\mu_X = E[X] = \sum_x x f(x)$$

$$= 0 \times 1/8 + 1 \times 3/8 + 2 \times 3/8 + 3 \times 1/8 = 1.5$$

The mean outcome of the random process is "1.5 heads".



Note that in this case, since μ is the center of mass we can directly say, "by symmetry the mean is 1.5"

Example 4: Tossing a dice:

$$X = \{1, 2, 3, 4, 5, 6\}$$

 $f(x) = \{1/6, 1/6, 1/6, 1/6, 1/6, 1/6\}$

Find:

(a)
$$\langle x \rangle = 1 * 1/6 + 2 * 1/6 + ... + 6 * 1/6 = 3.50$$

(b)
$$\langle X^2 \rangle = 1^2 * 1/6 + 2^2 * 1/6 + ... + 6^2 * 1/6 = 15.17$$

(c) RMS =
$$sqrt(\langle X^2 \rangle)$$
 = 3.89

(d)
$$\sigma^2 = \langle X^2 \rangle - \langle X \rangle^2 = 15.17 - (3.5)^2 = 2.92$$

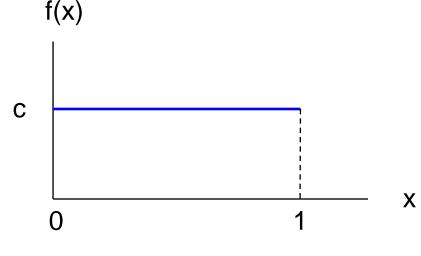
(e)
$$\sigma = \text{sqrt}(2.92)$$
 = 1.71

Example 5: Uniform Dist.

$$X = [0, 1]$$

 $f(x) = c = constant$

(a) Find c



$$\int_{-\infty}^{+\infty} f(x)dx = 1 \longrightarrow \int_{0}^{1} cdx = c(1-0) = 1 \longrightarrow c = 1$$

(b) Mean and std.dev

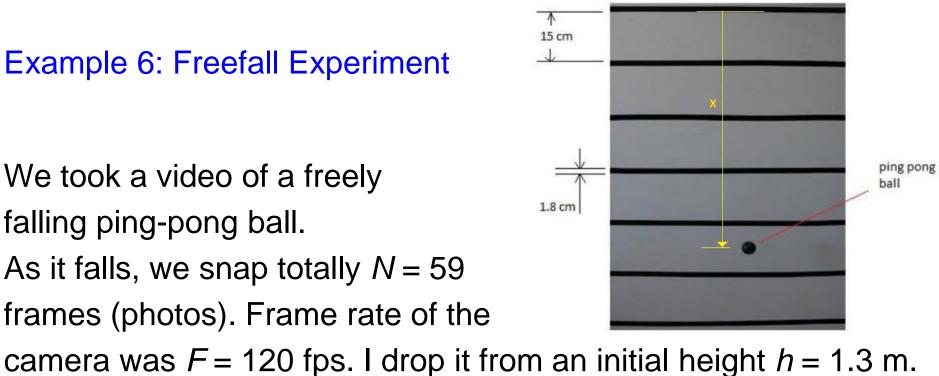
$$\langle X \rangle = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} x dx = \left[\frac{x^{2}}{2} \right]_{0}^{1} = \frac{1^{2}}{2} - \frac{0^{2}}{2} = \frac{1}{2} = 0.5$$

$$\sigma^{2} = \int_{-\infty}^{+\infty} (x - \bar{x})^{2} f(x) dx = \int_{0}^{1} (x - \frac{1}{2})^{2} dx = \frac{1}{12}$$

$$\sigma = \sqrt{\sigma^{2}} = \frac{1}{\sqrt{12}} = 0.289$$

Example 6: Freefall Experiment

We took a video of a freely falling ping-pong ball. As it falls, we snap totally N = 59frames (photos). Frame rate of the

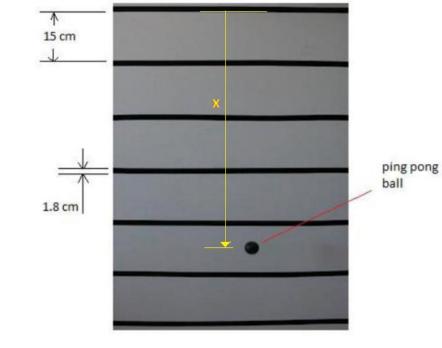


- (a) Determine the probability density function, f(x), of the ball where x is the distance from the intial height.
- (b) Plot the distribution of ball's position extracted randomly from 1000 photos using image processing tool. (Namely, you have 59 photos. You select 1000 random photos from the pool of 59 photos and evaluate ball position).

Position:
$$x = \frac{1}{2}gt^2$$

Velocity:
$$v = \frac{dx}{dt} = gt$$

Total time:
$$T = \sqrt{\frac{2h}{g}}$$



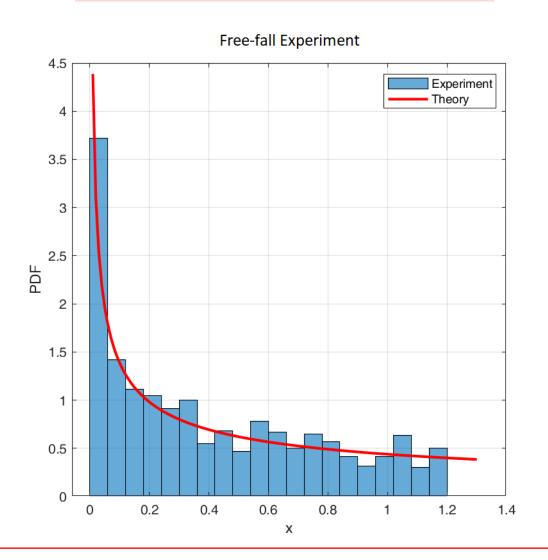
Probability of getting any image is $P_i = 1/N = 1/59$.

Probability that the camera flashes in time dt is $P_c = dt / T = P_i$ (dt = 1/F = 1/120).

$$P = \frac{dt}{T} = \frac{dx/v}{\sqrt{2h/g}} = \frac{dx/gt}{\sqrt{2h/g}} = \frac{dx/gt}{\sqrt{2h/g}} = \frac{1}{2\sqrt{hx}}dx = f(x)dx$$

Therefore p.d.f. is
$$f(x) = \frac{1}{2\sqrt{hx}}$$
 $0 < x < h$

$$f(x) = \frac{1}{2\sqrt{hx}} = \frac{1}{2\sqrt{1.3x}} = \frac{0.4385}{\sqrt{x}}$$



$$\int_{0}^{h} f(x)dx = 1$$
< $x >= \int_{0}^{h} x f(x)dx = 0.43 \text{ m}$

Gas Atoms in a container

Example 7:

Maxwell Speed Distribution Function

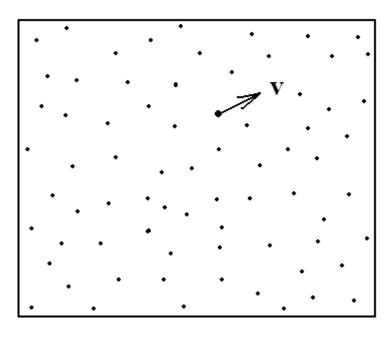
$$f(v) = \sqrt{\frac{2}{\pi} \left(\frac{m}{kT}\right)^3} v^2 \exp\left(\frac{-mv^2}{2kT}\right)$$

here

m = mass of the particle (gas atom)

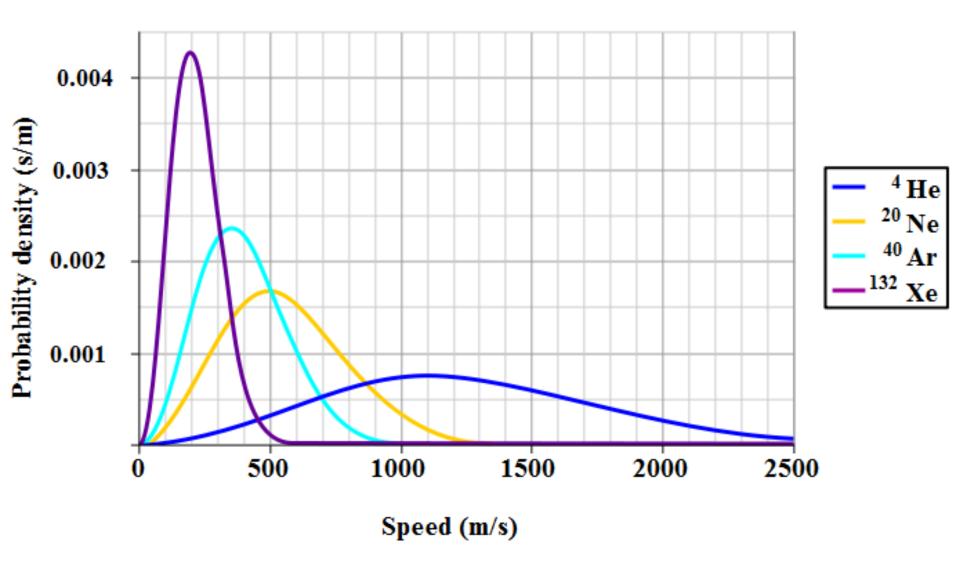
T = temperature (Kelvin)

k = Boltzman const. (k = 1.38065×10⁻²³ J/K)



- It is first defined and used for describing particle speeds (v) in idealized gases.
- f(v) is pdf = probability per unit speed of finding the particle with a speed near (v).

Maxwell-Boltzmann Molecular Speed Distribution for Noble Gases



$$f(v) = \sqrt{\frac{2}{\pi} \left(\frac{m}{kT}\right)^3} v^2 \exp\left(\frac{-mv^2}{2kT}\right)$$

Mean values:
$$\langle v \rangle = \int_{0}^{\infty} v f(v) dv$$
 $\langle v^2 \rangle = \int_{0}^{\infty} v^2 f(v) dv$

Expectation value of K.E.
$$\langle K \rangle = \frac{1}{2}m \langle v^2 \rangle$$

Pressure (
$$V = \text{volume of the container}$$
): $p = \frac{2}{3V} < K >$

Probability of having speed greater than $c / 1000 = 3x10^5$ m/s:

$$P(v > c/1000) = \int_{c/1000}^{\infty} f(v)dv$$

Example 8:

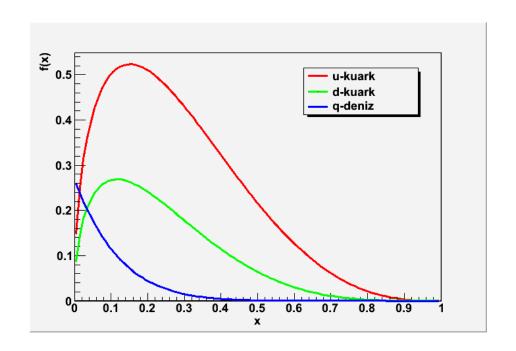
Parton Distribution Functions in proton

$$u_v(x) = 2.13\sqrt{x}(1-x)^{2.8}$$

$$d_v(x) = 1.26\sqrt{x}(1-x)^{3.8}$$

$$q_s(x) = 0.27(1-x)^{8.1}$$

$$< u > = \int_{0}^{1} x u_{v}(x) dx = 0.283$$



Cumulative Distribution Function (CDF)

Given a pdf, f(x'), probability to have outcome less than or equal to \mathbf{x} is:

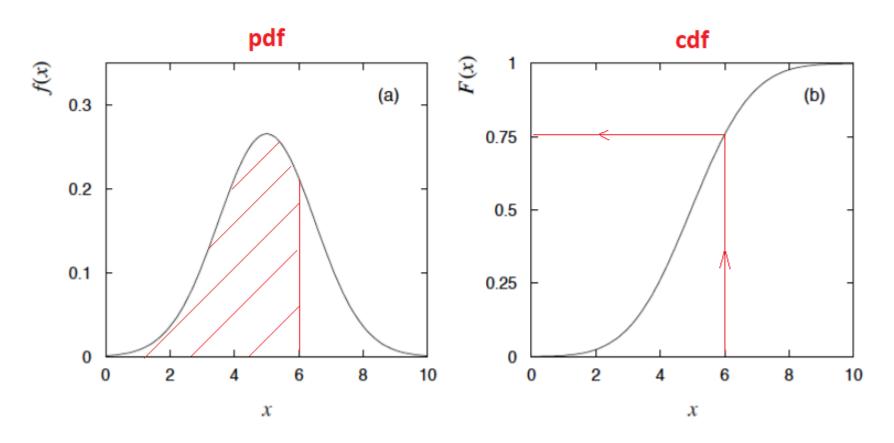
$$\sum_{i=1}^{x} f(x'_i) = F(x)$$

$$\int_{-\infty}^{x} f(x') dx' = F(x)$$

- F(x) is called cdf.
- $F(-\infty) = 0$ and $F(+\infty) = 1$.
- If cdf is given, then pdf can be calculated from:

$$f(x) = \frac{\Delta F}{\Delta x} \qquad f(x) = \frac{dF}{dx}$$

$$\int_{-\infty}^{X} f(x')dx' = F(x)$$



Example 9:

Given
$$X = \{1.0, 2.0, 3.0, 4.0\}$$
 and $f(x) = \{0.3, 0.5, 0.1, 0.1\}$

Determine cdf

$$\sum_{i=1}^{x} f(x'_i) = F(x)$$

$$F(0) = 0.0$$

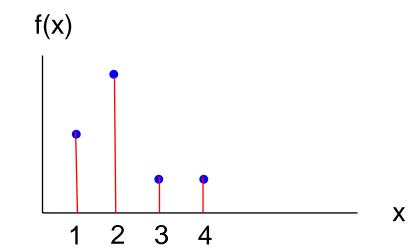
$$F(1) = 0.3$$

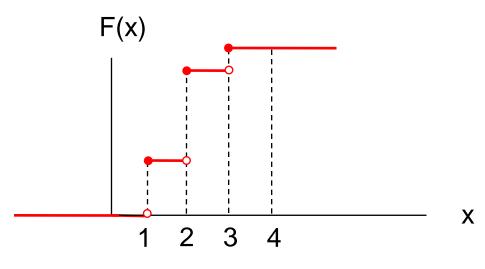
$$F(2) = 0.8$$

$$F(3) = 0.9$$

$$F(4) = 1.0$$

$$F(5) = 1.0$$





Example 10:

We can describe an unstable particle, that decays with a lifetime τ . In this case total probability of finding the particle in space is not a constant and decrease with time (t):

$$P(t) = \int_{-\infty}^{+\infty} |\Psi(x,t)|^2 dx \propto e^{-t/\tau}$$

- (a) Determine cdf and pdf.
- (b) Determine mean lifetime of the particle.
- (c) For muons at τ = 2.2 µs. What is the probability that a muon can survive 200 µs
 - i. if it is at rest?
 - ii. if it moving at p = 10 GeV/c?
 - iii. if it moving at p = 100 GeV/c?

Answers:

(a)
$$f(t) = \frac{1}{\tau} e^{-t/\tau}$$
 $F(t,\tau) = 1 - e^{-t/\tau}$

(b)
$$\langle t \rangle = \tau$$

(c)
$$\tau = 2.2 \mu s$$
, $t = 1 ms = 200 us$

$$P_{survive} = 1 - F(t)$$

$$\tau' = \frac{\tau}{\sqrt{1 - \beta^2}} = \frac{\tau}{\sqrt{1 - p / \sqrt{p^2 + m^2}}}$$

i.
$$P_{\text{survive}}(t) = 0$$

ii.
$$P_{\text{survive}}(t) = 0.3815$$

iii.
$$P_{survive}(t) = 0.9081$$

$$[p = 0]$$

$$[p = 10 \text{ GeV}]$$

$$[p = 100 \text{ GeV}]$$

