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Random Variable
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Example 1
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Example 2: Two Body Decay Angles in CM

Consider the two-body decay in center of mass frame:

Decay angles are continues RV: 
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Probability Distribution Function (PDF)
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Discrete RV Examples:

Throwing a coin:
X = { H, T}

f(x) = {1/2, 1/2}

Thorowing a dice:
X = {1,2,3,4,5,6}

f(x)= {1/6,1/6,1/6,1/6,1/6,1/6}

Distribution

(pmf)
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Discrete RV Examples:

Throwing two coins:
X = {HH, HT,  TH,  TT}

f(x) = {1/4, 1/4, 1/4, 1/4}

P(HH) = P (HT) = P(TH) = P(TT) = 0.25

Throwing two coins:

Let X = {number of heads}

X = { 0, 1,   2}

f(x) = {1/4, 1/2, 1/4}

x

HH HT

f(x)

0.25

TH TT

0 1

f(x)

0.25
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x
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Discrete RV Examples:

Two dice are thrown. Let X = {sum of number}, Namely

X = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

f(x) = ?

Probabilities:

P(X=2) = P(1)P(1) = P11                            = 1/36

P(X=3) = P(1)P(2)+P(2)P(1) = P12+P21 = 1/36+1/36   = 2/36

P(X=4) = P(1)P(3)+P(3)P(1)+P(2)P(2)  = P13+P31+P22 = 3/36

. . .
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P(X= 2) = P11                     = 1/36 = 0.0278

P(X= 3) = P12+P21                 = 2/36 = 0.0556

P(X= 4) = P13+P31+P22             = 3/36 = 0.0833

P(X= 5) = P14+P41+P23+P32         = 4/36 = 0.1111

P(X= 6) = P15+P51+P24+P42+P33     = 5/36 = 0.1389

P(X= 7) = P16+P61+P25+P52+P34+P43 = 6/36 = 0.1667

P(X= 8) = P26+P62+P35+P53+P44     = 5/36 = 0.1389

P(X= 9) = P36+P63+P45+P54         = 4/36 = 0.1111

P(X=10) = P46+P64+P55             = 3/36 = 0.0833

P(X=11) = P56+P65                 = 2/36 = 0.0556

P(X=12) = P66                     = 1/36 = 0.0278  
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Notice that:

X      f(X)

--- ----

2      1/36

3      2/36

4      3/36

5      4/36

6      5/36

7      6/36

8      5/36

9      4/36

10      3/36

11      2/36

12      1/36
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Continues RV Examples:

Two-body decay angles:

Φ = [0, 2π]

f(φ) = 1 / 2π

cosΘ = [-1, 1]

f(θ) = ½ sin(θ)

Last eqn. is obtained from:

where fx(x) is a uniform pdf in the range [-1,1].
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Continues RV Examples:

T = {Run-time of a program in a server}

f(t) = {measured discrete values}  might be continues!
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Discrete Continues

f(x) is NOT a probability! It has dimension 1/x
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Expectation Values
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Definition of Mean

NOTE1: Notation for mean can be E [ X ] or < X > or

NOTE2:  In Quantum Mechanics, expectation value of 

position is postulated/defined as follows:             In general:
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Mean of Squares

Definition:

Root Mean Square:
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Variance and Standard Deviation

The variance ( 2) of a random variable X is defined by:

discrete

continuous

The standard deviation is then

This is a measure of by how much the distributution varies about the mean value.

This is generally 

easier to calculate

Property:
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Example 3: Tossing 3 coins:
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Example 4: Tossing a dice:

X = {1, 2, 3, 4, 5, 6}

f(x) = {1/6, 1/6, 1/6, 1/6, 1/6, 1/6}

Find:
(a) <X>  = 1 * 1/6 + 2 * 1/6 + ... + 6 * 1/6 =  3.50

(b) <X2> = 12 * 1/6 + 22 * 1/6 + ... + 62 * 1/6 = 15.17

(c) RMS = sqrt(<X2>)   = 3.89

(d) σ2 = <X2> - <X>2 = 15.17 - (3.5)2 = 2.92 

(e) σ = sqrt(2.92) = 1.71
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Example 5: Uniform Dist.

X = [0, 1]

f(x) = c = constant

(a) Find c

(b) Mean and std.dev
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Example 6: Freefall Experiment

We took a video of a freely

falling ping-pong ball.

As it falls, we snap totally N = 59 

frames (photos). Frame rate of the

camera was F = 120 fps. I drop it from an initial height h = 1.3 m.

(a) Determine the probability density function, f(x), of the ball

where x is the distance from the intial height.  

(b) Plot the distribution of ball’s position extracted randomly from

1000 photos using image processing tool. (Namely, you have

59 photos. You select 1000 random photos from the pool of 

59 photos and evaluate ball position).



Sayfa 25

Position:

Velocity:

Total time:

Probability of getting any image is Pi = 1/N = 1/59.

Probability that the camera flashes in time dt is  Pc = dt / T = Pi (dt = 1/F = 1/120).

Therefore p.d.f. is
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Example 7:

Maxwell Speed Distribution Function

here

m = mass of the particle (gas atom)

T = temperature (Kelvin)

k = Boltzman const. (k = 1.38065×10−23 J/K)

• It is first defined and used for describing particle speeds (v) in idealized gases.

• f(v) is pdf = probability per unit speed of finding the particle with a speed near (v). 
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Mean values:

Expectation value of K.E.

Pressure (V = volume of the container):

Probability of having speed greater than c / 1000 = 3x105 m/s: 
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Example 8: 

Parton Distribution Functions in proton
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Cumulative Distribution Function (CDF)

Given a pdf, f(x’), probability to have outcome less than or

equal to x is:

• F(x) is called cdf. 

• F(-∞) = 0 and F(+∞) = 1. 

• If cdf is given, then pdf can be calculated from:

)()'(
1

xFxf
x

i

i 


)(')'( xFdxxf

x




x

F
xf




)(

dx

dF
xf )(



Sayfa 32



Sayfa 33

Example 9: 

Given X = {1.0, 2.0, 3.0, 4.0} and

f(x) = {0.3, 0.5, 0.1, 0.1} 

Determine cdf
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Example 10:
We can describe an unstable particle, that decays with a lifetime τ. In this

case total probability of finding the particle in space is not a constant and

decrease with time (t):

(a) Determine cdf and pdf.

(b) Determine mean lifetime of the particle.

(c) For muons at τ = 2.2 μs. What is the probability that a muon can survive 200 μs 

i. if it is at rest?

ii. if it moving at p = 10 GeV/c?

iii. if it moving at p = 100 GeV/c?
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Answers:

(a)

(b)

(c) τ = 2.2 μs, t = 1 ms = 200 us

i. Psurvive(t) = 0 [p = 0]

ii. Psurvive(t) = 0.3815 [p = 10 GeV]

iii. Psurvive(t) = 0.9081 [p = 100 GeV]
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