1) A system function is \(H(s) = \frac{4(s+1)}{s^2 + 8s + 15} \).

(a) Plot the pole/zero diagram.

(b) By the help of the pole/zero diagram, sketch the (approximate) magnitude and phase characteristics.

2) A transfer admittance is \(Y_T(s) = \frac{s+4}{s^2+7s+9} \).

(a) Plot the pole/zero diagram.

(b) Sketch the magnitude and phase characteristics.

(c) Given the input \(v_1(t) = 9 + 3 \cos(2t+15°) - 7 \sin(3t-60°) \), find the steady-state output \(i_2(t) \).

3)

(a) Obtain the input impedance \(Z(s) \).

(b) Plot the pole/zero diagram.

(c) By the help of the pole/zero diagram, sketch the (approximate) magnitude and phase characteristics.

4) (a) Obtain the system function.

(b) Plot the pole/zero diagram.

(c) Sketch the magnitude and phase characteristics.

\[C = 5 \text{ nF}, \quad R = 4 \text{ k\Omega} \]

\(L_1 = 60 \text{ mH}, \quad L_2 = 20 \text{ mH}, \quad M = 20 \text{ mH} \)

(a) - \(I - \)
4) Synthesize N.

5) (a) Find the natural frequencies of the circuit.
(b) Obtain the transfer function $H(s) = \frac{V_{R}(s)}{V_{C}(s)}$.
 Plot the pole/zero diagram.
 Sketch the magnitude and phase characteristics.
(c) Repeat Part (b) for the input admittance $Y_i(s) = \frac{I_{C}(s)}{V_{C}(s)}$.
(d) What are the natural frequencies of $V_{R}(s)$ and $V_{C}(s)$?

6) (a) Obtain the input admittance.
 Plot the pole/zero diagram.
 Sketch the magnitude and phase characteristics.
(b) Obtain the input admittance.
 Plot the pole/zero diagram.
 Find the resonant frequency ω_0.
 Sketch the approximate magnitude and phase characteristics.
(c) Let E be the total average stored energy in the one-port and P be the average power input to the one-port at ω_0.
 Compute $\omega_0 E/P$. Discuss.
7) \(R = 5 \Omega, \ C = \frac{1}{10} F, \ L = \frac{1}{8} H, \ r = \frac{1}{20} \Omega \). Obtain the input impedance. Plot the pole/zero diagram. Find the resonant frequency \(\omega_0 \).

Sketch the approximate magnitude and phase characteristics.

Scale the circuit so that the new value of \(R \) is 10 k\(\Omega \) and the new value of \(C \) is 1 \(\mu F \).

8) \(\omega_0 = \frac{1}{\sqrt{LC}} \), \(2\alpha = r/L \), \(\Omega = \omega_0/2\alpha \), \(\text{Req} = \frac{\Omega}{\Omega^2 r} \).

Find the resonant frequency \(\omega_0 \). Express it in terms of \(\omega_0 \) and \(\Omega \).

Obtain the input impedance \(Z(s) \). Express it in terms of \(s/\omega_0 \), \(\Omega \), and \(\text{Req} \).

Plot the pole/zero diagram.

Sketch the approximate magnitude and phase characteristics.

Let \(E \) be the total average stored energy in the one-port and \(P \) be the average power input to the one port at \(\omega_0 \). Show that \(\frac{\omega_0 E}{P} = \Omega \).

\[
L = \frac{5}{2} H, \ r = \frac{7}{5} \Omega, \ C = \frac{1}{10} F
\]
\(\hat{\Omega} = \frac{\omega_0 L}{r} \)

\[
L = \frac{5}{2} H, \ r = \frac{7}{5} \Omega, \ C = \frac{1}{10} F
\]
\(\hat{\Omega} = \frac{1}{\omega_0 CR} \)
9) The op-amp is ideal and operates in the linear region.

(a) Obtain the transfer function. Plot the pole/zero diagram.
(b) Scale the circuit so that the new value of R is 10 kΩ and the magnitude response peaks at 4 kHz/sec.

10) K = 0, R = 10 kΩ, C = 1 F.

(a) Obtain the transfer function.
(b) Scale the circuit so that R = 10 kΩ and C = 100 nF.
(c) Sketch the magnitude and phase characteristics of the scaled circuit.

11) The op-amp is ideal and operates in the linear region.

(a) Obtain the transfer function.
(b) Design the circuit (find C and R) so that the circuit is a second order bandpass filter whose center frequency is 10 kHz/sec and half-power bandwidth is 1 kHz/sec.

12) Plot the pole/zero diagram. Sketch the magnitude and phase Bode plots.

(a) \(H(s) = \frac{100(5s+1)}{(s+1)(s+1000)} \), (b) \(H(s) = \frac{60s^2}{(s+20)(s^2+14s+4)} \), (c) \(H(s) = \frac{s^2+100s+1000}{(s+10)^2} \), (d) \(H(s) = \frac{100s}{(s+20)(s+1000)} \)

13) Obtain the transfer function.

Plot the pole/zero diagram.
Sketch the magnitude and phase Bode plots.
Sketch the approximate magnitude and phase characteristics.