Effect of Thickness-to-Chord Ratio on Flow Structure of a Low Swept Delta Wing
Burak Gülsaçan, Gizem Şencan and Dr. M. Metin Yavuz
Middle East Technical University, Department of Mechanical Engineering, 06800 Ankara, TURKEY

Motivation and Objective:
Increasing interest in micro air vehicles (MAV), unmanned combat air vehicles (UCAV) and unmanned air vehicles (UAV) for commercial and military purposes in recent years, attracts aerodynamicists to work on the enhancement of flow over nonslender delta wings, typically $\wedge \leq 50$ deg, which can be considered as the simplified planforms of these vehicles.
The effect of thickness-to-chord (t / C) ratio has been studied in literature with particular interest in aerodynamic performance of high and moderate swept delta wings, where global flow fields on these wings have not been quantified and studied thoroughly. In addition, considering the low swept wings, no study focusing on t / C ratio has been reported. The present study aims to characterize the effect of t / C ratio on flow structure of a delta wing with sweep angle of 35 deg

(a)

Figure 3. The dimensionless pressure distribution $-\mathcal{C}_{p}$ with respect to dimensionless half Figure 3. The dimensionless pressure distribution $-\mathcal{C}_{p}$ with respect to
span for $t / C=0.0475,0.0095,0.1425$ and 0.19 at different attack angles

Figure 4. Laser-illuminated surface flow smoke visualizations of $\mathrm{t} / \mathrm{C}=0.0475$ and 0.1425 for angle of attack of $\alpha=6 \mathrm{deg}$ at Re= 1.0×10^{4}

Figure 5. Comparison of patterns of time-averaged streamlines $\langle\Psi\rangle$ with cross flow smoke Figure 5. Comparison of patterns of time-averaged streamlines $\langle\Psi\rangle$ with cross flow smoke
visualizations and constant contours of axial vorticity $\langle\omega\rangle$ for $\alpha=10$ at $\left.\left.\operatorname{Re}=3.5 \times 10^{4}:[\backslash \omega\rangle\right\rangle\right]_{\text {min }}=200 \mathrm{~s}^{-1}$, $\Delta[|\omega\rangle\rangle]=100 \mathrm{~s}^{-1}$.

Figure 6. The dimensionless thickness of the smoke distribution in the cross flow plane at
Re $=1.0 \times 10^{4}$ for $t / C=0.0475,0.095,0.1425$ and 0.19 and $\alpha=4,6,8$ and 10 degrees Conclusions:

1) At low attack angles, the strength of the leading edge vortices increases as the t / C ratio increases. This might suggest a better vortex-induced lift performance for high t / C ratio wing at low angles of attack.
2) The wing with $t / C=0.0475$ has pronounced surface separation at higher attack angle compared to the wing with $\mathrm{t} / \mathrm{C}=0.19$, which indicates that the lowest t / C ratio wing might be more resistive to the prestall and stall conditions.
3) The thickness of the smoke distribution in the cross flow plane is directly correlated with the wing thickness. This needs further investigation to draw conclusion on how this might effectively be utilized.
