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STABILITY - OBJECTIVES

In this chapter:
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DEFINITIONS OF STABILITY

= Bounded-Input, Bounded-Output Stability
(Zero state response) : A linear time
invariant system is said to be stable if it
produces a bounded response to a
bounded input.

Zero Input and Asymptotic Stability (Zero
input response) : A system is stable, if
the zero input response due to finite
initial conditions returns to zero
asymptotically as time goes to infinity.
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DEFINITIONS OF STABILITY

= Thus for an unstable system, the response
will increase without bounds or will never
return to the equilibrium state.
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TRANSFER FUNCTION

General form of the transfer function :

X(s) b,s™ +bm_1sm'1 +..+bs+by  N(s)

-ly  +as+a; D)

a,s" +a,_1S
n : order of the system (n =2 m ),
D(s) : characteristic polynomial.

Characteristic equation : D(s)=0

1

D(s)=a,s" +a,_¢8" ~+..+a;S+ag =0
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X(s) bps™ +bm_1sm‘1 +..+bis+bg  N(s)

0= Sl TRANSFER
FUNCTION

= The roots of the humerator polynomial, i.e.

n n—

N(S) =bps™ +by_15S™t + ..+ bis+by =0

are called the zeroes of the system.

= The roots of the denominator polynomial

1

D(s)=a,s" +a,_1S" ~+..+a;S+ag =0

are called the poles of the system.
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STABILITY and Poles

= Stability of a LTI system is a property
of the system and is independent of
the inputs.

It can be shown that the positions of
the roots of the characteristic equation
(poles of the transfer function) in the

complex plane determine the stability
of the system.
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STABILITY and Poles

= If all the roots of the characteristic
equation are on the left hand side of
the complex plane, i.e. all the roots
have negative real parts, then the
system is stable.
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STABILITY and Poles

= If there is at least one root on the right
hand side of the complex plane, then
the system is unstable and the
response will increase without bounds

with time.
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STABILITY and Poles

= If there is at least one root with zero real part,
i.e. on the imaginary axis, then the response will
contain undamped sinusoidal oscillations or a
nondecaying response.

If there are no unstable roots, the response
neither decreases to zero, nor increases without
bounds. The system is called marginally stable.

0 !

Im
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STABILITY and Poles

= The direct approach to the determination of
the stability of a system would therefore be
the calculation of the roots of the
characteristic equation.

The calculation of the roots of the
characteristic equation is not possible or
practical, however, if parameter values are
not yet available, and conditions on these

parameters for a stable system are to be
obtained.
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ROUTH'S STABILITY CRITERION

Nise 6.2, Dorf & Bishop 6.2, Ogata pp. 275-281

= Routh’s stability criterion allows the
determination of

e whether there are any roots of the
characteristic equation with positive
real parts

and, if there are,

e the number of these roots

without actually finding the roots.
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ROUTH’S STABILITY CRITERION

= The first step in checking the stability of a
system using Routh’s stability criterion is
the application of an initial test called the
Hurwitz test.

Hurwitz Test :

The necessary but not sufficient condition
for a characteristic equation

D(s)=a,s"+a,_.;s" 1+...+a;s+ay= 0

to have all its roots with negative real parts
Is that all of the coefficients a; must exist
and have the same sign.
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ROUTH’S STABILITY CRITERION

= If the characteristic equation fails to meet
the above condition, then the system is not
stable.

D(s)=3s%+s3+4s2+5

D(s)=s+4s3+3s2+24s-12

= If, however, the condition is satisfied, then
no conclusion on the stability of the system
can be reached'!

D(s)=3s>+2s%+s3+6s%+7s+2
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ROUTH’S STABILITY CRITERION

= If Hurwitz condition is satisfied, then
Routh’s stability criterion must be used
to determine the stability of the system.

= To be able to apply Routh’s criterion,
Routh’s array must be constructed.

= For a real polynomial

D(s)=a,s"+a,.;s" 1+...+a;s+3a,

the Routh’s array is a special
arrangement of the coefficients in a
certain pattern.
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ROUTH’S STABILITY CRITERION

» Routh’s array : D(s)=a,s"+a,_;s" 1+...+a;s+a,

by = An-19n-2 “Apnanp-3
dn-1

b, = 2n-19n-4 “an9n-5
2 —
An-1
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ROUTH’S STABILITY CRITERION

« Example : D(s)=s3+20s2+9s+100

Passes Hurwitz test !
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ROUTH’S STABILITY CRITERION

= Routh’s Stability Criterion :

The necessary and sufficient condition for a
characteristic equation to have all its roots
with negative real parts is that the elements of
the first column of the Routh’s array to have

the same sign.

If the elements of the first column have
different signs, then the number of sign
changes is equal to the number of roots with
positive real parts.
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ROUTH’S STABILITY CRITERION

s; =-3.0000

D(s)=s3+s%+2s+24 _
s, = 1.0000 + 2.6458i

Passes Hurwitz test ! PSRRI EPXFLT]

Sigh changes in the 1st column : Unstable system.

2 sigh changes : two roots with positive real parts.
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ROUTH’S STABILITY CRITERION

= Special Cases :

There are some cases in which
problems appear in completing the
Routh’s array.

They are encountered in the case of
systems that are not stable, and means
are devised to allow the completion of
the Routh’s array.
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ROUTH'S STABILITY CRITERION

Nise 6.3

= Special Case 1 :

When a first column term in a row
becomes zero with all other terms
being nonzero, the calculation of the
rest of the terms becomes impossible

due to division by zero.

In such a case the system is unstable
and the procedure is continued just to
determine the number of roots with
positive real parts.
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ROUTH’S STABILITY CRITERION

= Example: D(s)=s>+2s%+2s3+4s2+11s+10
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ROUTH’S STABILITY CRITERION

Example : D(s)=s>+2s%+2s3+4s%+11s+10

11 In such a case,
10 replace zero term

ME 304 CONTROL SYSTEMS

0 by a very small
and positive

number &E.
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ROUTH’S STABILITY CRITERION

= Example : D(s)=s>+2s%+2s3+4s2+11s+10
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ROUTH’S STABILITY CRITERION

= Special Case 1: D(s)=s+2s%+2s3+4s2+11s+10

1 2
2 4

11
10

2 sign changes :
2 roots with

@0—%}6
g o
Cs

10

ME 304 CONTROL SYSTEMS

0 positive real part.

0.8950 + 1.4561i
0.8950 - 1.4561i
-1.2407 +1.0375i

sS4 = -1.2407-1.0375i
-1.3087
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ROUTH’S STABILITY CRITERION

= Special Case 2 :

If all the terms on a derived row are zero,
this means that the characteristic equation
has roots which are symmetric with
respect to the origin,

. Two real roots with equal magnitudes
but opposite signs, and/or

. Two conjugate imaginary roots, and/or

. Two complex roots with equal real and
imaginary parts of opposite signs.
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ROUTH’S STABILITY CRITERION

x Special Case 2 :

In such a case the system is not stable and
the procedure is continued to determine if
it is marginally stable or unstable, and in
the second case to determine the number
of roots with positive real parts.

t Im
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ROUTH’S STABILITY CRITERION

= Special Case 2 :

To proceed, an auxiliary polynomial Q(s) is
formed by using the terms of the row just
before the row of zeros. The auxiliary
polynomial Q(s) is always even (i.e. all
powers of s are even !).

The roots of Q(s)=0 will give the symmetric
roots of the characteristic polynomial.

To complete the Routh’s array, simply
replace the row of zeroes with the
coefficients of dQ(s)/ds=0.
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ROUTH’S STABILITY CRITERION

« Example : D(s)=s3>+2s2+s+2 Passes Hurwitz test !

2| — Q(s)=(2)s? +(2)s
Replace

row of
5 zeroes |anAC)I (4)s +(0)s®

with ds
dQ/ds

™0

No sigh changes in the 1st column:
No roots with positive real parts.
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ROUTH’S STABILITY CRITERION

« Example: D(s)=s>+2s?+s+2 Passes Hurwitz

Q(s)=2s? +2=0MS1,2 = j

3 2

s°+2s“+s+2 s

2 T2 T2 =241 m
2

test !

252 +2

®-)
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STABILITY - OBJECTIVES

In this chapter:
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STABILITY BOUNDARIES

= One of the steps in the design
and optimization of control
systems is the selection of
controller parameters.

The limiting values of these
parameters leading to
instability must be determined
first, so that best values in the
stable range can be chosen.
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= Determine the range of values for the controller
parameter K, for which the system will be
stable.

10— -

‘ Controller

= First determine the characteristic polynomial.
Kp
C(s)_ G(s)  s(s+1)(s+3) _ Kp _ Kp

R(s) 1+G(s) .. Ky s(s+1)(s+3)+Kp 53 +4s? +3s+K,
s(s+1)(s+3)

i > D(s)=s3+4s*+3s+K,
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EXAMPLE 1b

» D(s)=s3+4s%+3s+K,

For stability :

KP
3-—P>0 and K, >0
a4

0<Kp <12
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EXAMPLE 1c

» D(s)=53+4s%+3s+K, ialiiais
s(s+1)(s+3)=0
s1=0,s>,=-1,s3=-3
Marginally stable!
Non-oscillatory response.

For Kp =12:

(s+4)(s2+3)=o

s1 =-4, sy =+/3j, s3 =-V3j
Marginally stable!
Oscillatory response,
Undamped oscillations.

What is the frequency of undamped oscillations ?
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STABILITY BOUNDARIES - Example 2a

= For the control system represented by
the block diagram shown, determine and
sketch the regions of stability with
respect to the controller parameters K,

and T;.

Proportional+Integral (PI)
Controller

R(s) C(s
Tﬂ)‘
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STABILITY BOUNDARIES - Example 2b

= Determine the characteristic polynomial first.

Kp(
G1(5)Go(s) _

S 146,06,

1+Kp( + _
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STABILITY BOUNDARIES - Example 2c

= Determine the characteristic polynomial first.

R(s) :Tj C(S_>
+

G;(s) P16)

Ky (Tis+1)

GE) =y
Tis®(s+1)(s+3)+ K, (Tjs+1)

s D) = Tis* +4T;s® +3Ts? + K Tis + K,
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STABILITY BOUNDARIES - Example 2d

» D(s)=T,;s%+4T;s>+3T,;s*+K T, s+K,
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STABILITY BOUNDARIES — Example 2e

s D(s)=T,s*+4T,s3+3T, s+ K,T;s+K,

Regions of stability in the parameter plane.

T;
0<Kp<12

Check if a \
selection
K,=10, T;=2
is acceptable !

Wb

2
Z
A
=
A
A
A

7 ///////////45// Kp

N
NN
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STABILITY - OBJECTIVES

In this chapter:
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RELATIVE STABILITY & STABILITY MARGIN
Dorf & Bishop 6.3

= Absolute stability is related to the
determination of whether a given
system is stable or not.

Relative stability is related to the
distance, from the origin of the complex

plane, of the real part of the root of the
characteristic equation nearest to the
imaginary axis of the complex plane.

= The absolute magnitude of the real part
of the root closest to the origin of the
complex plane is called the stability
margin.
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A
Y

= In many practical applications,
determination of absolute
stability is not sufficient.

= Information related to relative

stability is also required.

= The Routh’s stability criterion can
also be used to check if a system
satisfies the requirement of a
specified stability margin.
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STABILITY MARGIN — Example 3a

= Determine if the system with the
characteristic polynomial

D(s)=s>+12s2+46s+52

can provide a stability margin of 2.1.

The approach in this problem is to shift the
origin of the complex plane towards the left
by 2.1.

= If the system is still stable, then the system

has a stability margin greater than 2.1. If
the system becomes unstable, then it has a

stability margin of less than 2.1.
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STABILITY MARGIN — Example 3b

s Positions of the roots :

A

Original Im After
shifting by 2
O
Re

>

3 -2 -1 0
@)

s; =-5.0000 + 1.0000i s; =-3.0000 + 1.0000i
s, =-5.0000 - 1.0000i s, =-3.0000 - 1.0000i
s3 =-2.0000 s3=0
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STABILITY MARGIN — Example 3c

= To shift the imaginary axis by 2.1 to the
left, define a hew complex variable

z=s+2.1

so that point -2.1 becomes the origin.

= Hence introduce s=z-2.1 in the
characteristic equation.

D(z)=(z-2.1)3+12(z-2.1)%2+46(z-2.1)+52
D(z)=2z3+5.7z%+8.832-0.941
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STABILITY MARGIN — Example 3d

D(z)=z3+5.7z%+8.832-0.941

ﬂ

It is immediately obvious that the
system has become unstable!

Thus the stability margin of the system
Is less than 2.1.

Now, we can check the number of roots
causing this instability using the Routh’s
stability criterion.
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STABILITY MARGIN — Example 3e

D(z)=z3+5.72z2+8.832-0.941

1 8.83 Polynomial

5.7 -0.941 fails Hurwitz

8.995 0) test !
-0.941

Since there is only one sign change,
there is one root with a positive real part
in the range from 0 to 2.1.
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