Chemical Reaction Engineering-Beyond the Fundamentals
L.K. Doraiswamy and D. Uner
MODULE 2.1
COMPLEX REACTION ANALYSIS

#### **OBJECTIVE**

After the completion of this module, you will be able to

- Differentiate between multiple and multistep complex reactions
- Articulate the selectivity and yield concepts
- Select the type of ideal reactor to run complex reactions with improved selectivity

### **READING ASSIGNMENT**

Read pages 33-59 of Chapter 2 D&U.

## **DERIVE**

All of the equations in the assigned section.

### COMPUTE

- 1. Methane partial oxidation reaction is a widely investigated industrial reaction. In the table below you will find a set of reactions taking place in a catalytic reactor(Enger, B.C., Lodeng, R., Holmen, A., Appl. Catal. A.- Gen. 346 (2008) 1-27).
  - a. Set up a reaction matrix and determine if all the reactions are independent.
  - b. In the article, short contact time reactors are particularly emphasized. Discuss the benefits of keeping the contact time short for the methane partial oxidation reaction.
  - c. Write down the expressions for the hydrogen and CO selectivity.
  - d. Write down an expression for carbon selectivity. Discuss the relevance of the carbon deposition on this catalyst and coke formation in a FCC (fluidized catalytic cracking) catalyst.
  - e. List all of the products. For each one, discuss whether a CSTR, a PFR or a combination would be beneficial for improved selectivity. What particular information do you need to decide?


| $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$      | (1)  |
|---------------------------------------------|------|
| $CH_4 + 0.5O_2 \to CO + 2H_2$               | (2)  |
| $CH_4 + O_2 \rightarrow CO_2 + 2H_2$        | (3)  |
| $CO + H_2O \rightleftharpoons CO_2 + H_2$   | (4)  |
| $CH_4 + H_2O \rightleftharpoons CO + 3H_2$  | (5)  |
| $CH_4 + CO_2 \rightleftharpoons 2CO + 2H_2$ | (6)  |
| $CO + H_2 \rightleftharpoons C + H_2O$      | (7)  |
| $CH_4 \rightleftharpoons C + 4H_2$          | (8)  |
| $2CO \rightleftharpoons CO_2 + C$           | (9)  |
| $CO + 0.5O_2 \rightarrow CO_2$              | (10) |
| $H_2 + 0.5O_2 \rightarrow H_2O$             | (11) |

2. Catani et al. (Catani, R.; Centi, G.; Trifiro, F.; Graselli, R.K., Ind. Eng. Chem.Res. 31 (1992)107) Have reported a reaction network for the ammoxidation of propane over V-Sb-Al mixed oxides. The reaction network and the individual steps are given below. Determine if all the reactions in this network are independent.

direct formation of products from propane

$$\begin{array}{c} C_3H_8 + \frac{1}{2}O_2 \rightarrow C_3H_6 + H_2O & (2) \\ C_3H_8 + 2O_2 + NH_3 \rightarrow C_3H_3N + 4H_2O & (3) \\ C_3H_8 + 4O_2 \rightarrow 2CO + CO_2 + 4H_2O & (4) \\ C_3H_8 + 3O_2 + NH_3 \rightarrow C_2H_3N + 4H_2O + CO_2 & (5) \\ C_3H_8 + \frac{1}{2}O_2 + 3NH_3 \rightarrow 3HCN + 7H_2O & (6) \\ C_3H_8 \rightarrow C_2H_4 + CH_4 & (7) \\ \end{array}$$
 secondary reaction products from intermediates 
$$\begin{array}{c} C_3H_6 + \frac{3}{2}O_2 + NH_3 \rightarrow C_3H_3N + 3H_2O & (8) \\ C_3H_6 + \frac{3}{2}O_2 + NH_3 \rightarrow C_2H_3N + 3H_2O + CO_2 & (9) \\ C_3H_6 + 3O_2 + 3NH_3 \rightarrow 3HCN + 6H_2O & (10) \\ C_3H_6 + \frac{1}{2}O_2 \rightarrow 2CO + CO_2 + 3H_2O & (11) \\ C_3H_3N + \frac{1}{2}O_2 + NH_3 \rightarrow 2CO + CO_2 + 3H_2O + N_2 & (12) \\ C_2H_3N + 3O_2 + NH_3 \rightarrow CO + CO_2 + 3H_2O + N_2 & (12) \\ C_2H_3N + 3O_2 + NH_3 \rightarrow CO + CO_2 + 3H_2O + N_2 & (13) \\ HCN + 2O_2 + NH_3 \rightarrow CO_2 + 3H_2O + N_2 & (14) \\ C_2H_4 + \frac{5}{2}O_2 \rightarrow CO + CO_2 + 2H_2O & (15) \\ \frac{3}{2}O_2 + 2NH_3 \rightarrow N_2 + 3H_2O & (16) \\ \end{array}$$

Scheme I. Kinetic Reaction Network in Propane Ammoxidation on V-Sb-Al Based Catalysts: (a) Reaction Pattern of Propane Depletion; (b) Reaction Pattern of Ammonia Depletion





- 3. Attempt this problem if you feel comfortable with the surface reactions and surface reaction mechanisms. A thorough study of chapter 5 would be beneficial otherwise.
  Hickmann and Schmidt (AIChE 39 (1993) 1164) have published a detailed surface mechanism for the methane partial oxidation reaction. Go over the reaction mechanism and the derivations.
  Reproduce the results presented in the article.
- 4. Selectivity of chemical reactions depends also on reactor operational parameters such as mixing. Find and review the article by Bourne (Org. Proc. Res. Dev. 7 (2003) 471-508) for a nice selection of liquid phase complex reactions whose selectivity are influenced by the rate and sequence of mixing. The concepts introduced in this article will prepare you for Chapter 3.

# **BRAINSTORMING**

| Find at least 3 industrially relevant complex multiple reaction schemes | <ul> <li>Find at least 3 industrially relevant<br/>complex multistep reaction schemes</li> </ul> |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
|                                                                         | · · ·                                                                                            |  |  |
|                                                                         |                                                                                                  |  |  |
|                                                                         |                                                                                                  |  |  |
|                                                                         |                                                                                                  |  |  |
|                                                                         |                                                                                                  |  |  |
|                                                                         |                                                                                                  |  |  |
|                                                                         | -                                                                                                |  |  |
|                                                                         |                                                                                                  |  |  |