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Maneuver Illustration
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Maneuvers

Maneuvers are the model mismatch problem in target
tracking.

Using a high order kinematic model that allows versatile
tracking all the time is not a solution in the case where data
origin uncertainty is present.
This can instead make the gates unnecessarily large and
makes the tracker sensitive to clutter.

Hence maneuvers should be detected and compensated.

A maneuver should be detected both when the target switches
to a higher order model than we use in our KF, and when it
switches to a lower order model than we use in the KF.
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Maneuver Detection: Low-Pass → High-Pass

Normalized innovation square again comes into the picture.

εỹk = ỹTk S
−1
k|k−1ỹk

We know that εỹk ∼ χ2
ny .

This is also the gating statistics. So we should check this
quantity in a window to avoid false alarms.

Use a sliding window or a recursive forgetting.

εsk =
k∑

i=k−N+1

εỹi or εrk = αεrk−1 + εỹk

where α < 1.
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Maneuver Detection: Low-Pass → High-Pass

Use one of the statistics

εsk =
k∑

i=k−N+1

εỹi or εrk = αεrk−1 + εỹk

In the case of perfect model match, we have

εsk ∼ χ2
Nny and εrk ∼ χ2

1
1−αny

where the second distribution is an approximation at the
steady state (effective window length ≈ 1

1−α).

A maneuver is declared when the maneuver statistics εk
exceeds a threshold εmax.

The threshold εmax is adjusted such that in the case of no
maneuver

P (εk ≤ εmax) = 1− PmaneuverFA︸ ︷︷ ︸
�1
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Maneuver Detection: Low-Pass → High-Pass

During a low-pass filter to high-pass filter transition detected
from an εk that is obtained by summing εỹi over a window of
length N (or effective window length 1

1−α), there accumulates
considerable amount of error in the estimates.

These should be compensated when such a detection happens.

Generally last estimates in the (effective) window are
recalculated.

For this purpose, some previous history of estimates and
measurements are kept in memory.
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Maneuver Detection: High-Pass → Low-Pass

The decision in the reverse direction (from high-pass to
low-pass) can be given with the same statistics if the statistics
εk gets lower than a threshold εmin.

The threshold εmin is adjusted such that in the case of correct
model

P (εk ≤ εmin) = Pmaneuvermiss � 1
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Detection Based Methods: ALPN

Adjustable level process noise

Kalman filters bandwidth depends on the noise covariances.

Process noise covariance

Small → Low bandwidth
Big → High bandwidth

Measurement noise covariance

Small → High bandwidth
Big → Low bandwidth

The measurement noise covariance is generally selected to
represent the sensor characteristics.

Process noise covariance determines our belief on how smooth
the target trajectory is and hence can be adjusted to account
for maneuvers.
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Detection Based Methods: ALPN

Continuous Process Noise Level Adjustment

Innovation covariance is given in the standard Kalman filter as

Sk|k−1 = C
[
APk−1|k−1A

T + BQBT
]
CT +R

Add a scaling factor ρk to Q.

CALPN algorithm

Time k = 0: Initialize ρ0 = 1.

Time k > 0:

If εk > εmax, increase ρk such that εk ≤ εmax and recalculate
previous estimates in the (effective) detection window.
If εk < εmin, decrease ρk such that εk ≥ εmin.
Otherwise, keep ρk = ρk−1.
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Detection Based Methods: ALPN

Discrete Process Noise Level Adjustment

One can also select a predetermined number of process noise
matrices {Q1, Q2 . . . , QnQ} in increasing order and design a
similar procedure.

DALPN algorithm

Time k = 0: Initialize i0 = n where 1 ≤ n ≤ nQ and Qn
represents a nominal process noise covariance.

Time k > 0:

If εk > εmax, change Qik−1
to Qik = Qik−1+1 (if ik−1 < nQ).

If εk < εmin, change Qik−1
to Qik = Qik−1−1 (if ik−1 > 1).

Otherwise, keep Qik = Qik−1
.
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Detection Based Methods: VSD

Variable State Dimension method: We can use

(nearly) constant velocity (CV) (2nd order in 1D and 4th
order in 2D)
(nearly) constant acceleration models (CA) (3rd order in 1D
and 6th order in 2D)

interchangeably with suitable detection rules.

VSD Main Idea

Use CV model.

Keep always a buffer with the last N measurements, state
estimates, predictions and their covariances.

Check εk ((effective) window size N).

If εk > εmax

Go back to time k −N + 1.
Initialize a CA model.
Recalculate estimates for times k −N + 1, . . . , k.
Continue with a CA model until some other condition is
satisfied.
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Detection Based Methods: VSD

CA Model Initialization:

Suppose we are tracking with a CV model which has

xCVk =
[

pk vk
]T

using the measurements yk = pk + vk.
Suppose εk > εmax, then

Define xCAk =
[

pk vk ak
]T

.
Go back to time k −N + 1 where we have the estimate

x̂CVk−N+1|k−N+1 =
[

p̂CV
k−N+1|k−N+1 v̂CVk−N+1|k−N+1

]T
Set

x̂CAk−N+1|k−N+1 =

 yk−N+1

v̂CVk−N+1|k−N+1 + T âCAk−N+1|k−N+1

âCAk−N+1|k−N+1


where

âCVk−N+1|k−N+1 ,
2

T 2

(
yk−N+1 − ŷCVk−N+1|k−N

)
Initialization of PCA

k−N+1|k−N+1 is complicated and given in

[Bar-Shalom (1982)].
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Detection Based Methods: VSD

VSD algorithm

Time k = 0: Start using CV model.

Time k > 0:
If currently using CV model, calculate εk at each step.

If εk > εmax

-Go back to the beginning of the detection window (which can
have length N or 1

1−α ) depending on whether you use εsk or
εrk respectively.
-Initialize CA model and recalculate the estimates in the
window. Continue using CA model.

If currently using CA model, check acceleration estimate âk
and covariance Pak

.

If âTk P
−1
ak âk < γmin

-Initialize CV model from last position and velocity estimates
of CA model. Continue using CV model.
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Detection Based Methods: IE

Input estimation method: Suppose we consider two different
state equations, one with input the other not.

x1k =Ax1k−1 +Gwk (actual model we use currently)

x2k =Ax2k−1 +Buk +Gwk (hypothetical model with maneuver)

where uk is a deterministic input.

We consider only the case where ui = u for i = k −N + 1, . . . , k
and ui = 0 otherwise. This period will correspond to the
maneuvering period.

Suppose we currently run a KF for the 1st model and would like to
check the hypothesis that actually the second model is true, i.e., that
the target is maneuvering.
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Detection Based Methods: IE

KF Equations for Model 1

Prediction Update

x̂1k|k−1 =Ax̂1k−1|k−1

P 1
k|k−1 =AP 1

k−1|k−1A
T +GQGT

Measurement Update

x̂1k|k =x̂1k|k−1 +K1
k (yk − ŷ1k|k−1)︸ ︷︷ ︸

ỹ1k

P 1
k|k =P 1

k|k−1 −K1
kS

1
k|k−1

(
K1
k

)T
ŷ1k|k−1 =Cx̂1k|k−1

S1
k|k−1 =CP 1

k|k−1C
T +R

K1
k =P 1

k|k−1C
T (S1

k|k−1)
−1

KF Equations for Model 2

Prediction Update

x̂2k|k−1 =Ax̂2k−1|k−1 +Buk

P 2
k|k−1 =AP 2

k−1|k−1A
T +GQGT

Measurement Update

x̂2k|k =x̂2k|k−1 +K2
k (yk − ŷ2k|k−1)︸ ︷︷ ︸

ỹ2k

P 2
k|k =P 2

k|k−1 −K2
kS

2
k|k−1

(
K2
k

)T
ŷ2k|k−1 =Cx̂2k|k−1

S2
k|k−1 =CP 2

k|k−1C
T +R

K2
k =P 2

k|k−1C
T (S2

k|k−1)
−1
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Detection Based Methods: IE

Kalman filter covariances are equal for the two models.

P 1
k|k−1 =P 2

k|k−1 , Pk|k−1 S1
k|k−1 =S2

k|k−1 , Sk|k−1

P 1
k|k =P 2

k|k , Pk|k K1
k =K2

k , Kk

Suppose, x̂1k−N |k−N = x̂2k−N |k−N , then

x̂2k−N+1|k−N =x̂1k−N+1|k−N +Bu

x̂2k−N+1|k−N+1 =x̂1k−N+1|k−N+1 + (I −Kk−N+1C)Bu

x̂2k−N+2|k−N+1 =x̂1k−N+2|k−N+1 +A(I −Kk−N+1C)Bu+Bu

...

x̂2k|k−1 =x̂1k|k−1 +

N−1∑
i=0

i−1∏
j=0

(A(I −Kk−N+1+jC))

B
︸ ︷︷ ︸

,Fk

u
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Detection Based Methods: IE

The innovations ỹ1k and ỹ2k corresponding to the KFs using 1st
and 2nd models with the same measurement model can be
related as

ỹ1k︸︷︷︸
innovations we

currently calculate

= CFku+ ỹ2k︸︷︷︸
hypothetical
innovations

where C is the measurement matrix and Fk can be calculated
using the system model and Kalman filter gains corresponding
to 1st model.

We now stack the last N innovations and Fk matrices

ỹk =
[
ỹTk ỹTk−1 · · · ỹTk−N+1

]T
Fk =

[
F Tk F Tk−1 · · · F Tk−N+1

]T
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Detection Based Methods: IE

We get the model

ỹ1
k = CFku+ ỹ2

k

which can be solved by WLS (or with Maximum Likelihood
Estimation (MLE)) for u with the result

ûk =
(
Fk

TCTSk|k−1
−1CFk

)−1
Fk

TCTSk|k−1
−1ỹ1

k

Puk =
(
Fk

TCTSk|k−1
−1CFk

)−1
where

Sk|k−1 , blkdiag
(
S1
k|k−1, . . . , S

1
k−N+1|k−N

)
is the covariance of ỹ1

k.
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Detection Based Methods: IE

We are going to check whether û is statistically significant.

Input Estimation Method

Make estimation with the first model i.e., calculate x̂1k|k, P 1
k|k.

With the arrival of each measurement yk, calculate ûk and
Puk using the input estimation procedure.

If ûTk P
−1
uk
ûk > γmax,

Declare a maneuver and compensate the estimation errors by
updating the predicted quantities as

x̂1+k|k−1 =x̂1k|k−1 + Fkûk

P̂ 1+
k|k−1 =P 1

k|k−1 + FkPukF
T
k

Calculate x̂1k|k, P
1
k|k from updated quantities x̂1+k|k−1, P

1+
k|k−1

γmax can be calculated from the statistics of χ2
nu .
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Detection Based Methods

ALPN uses only the covariance of the white process noise to
compensate maneuvers.

This might not be sufficient when the maneuvers are long and
persistent.

VSD seems limited to the Constant Acceleration model but the
opposite is claimed in [Bar-Shalom, Li, Kirubarajan (2001)].

How to initialize the maneuvering model in the case of e.g. a
Coordinated Turn Model is not known.

IE assumes a constant acceleration profile during both detection and
compensation procedure.

This can make it unable to compensate the maneuvers well if the
accelerations change fast.

A case study in [Bar-Shalom, Li, Kirubarajan (2001)] shows that

MSEVSD / MSEALPN < MSEIE
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Multiple Model Approaches

Detection based methods are in general too slow to
compensate the maneuvers.

Target motions can generally be classified into a number of
predefined number of modes e.g.

Constant velocity
Coordinated turn (circular motion with constant speed and
angular rate)
Constant acceleration

Using maneuver detection is a type of making a hard decision
between these models i.e., serial use of models (use one model
first then switch to another one etc.).

The soft version uses all the models at the same time (parallel
use of models) and combines their results to the extent that
they suit to the measurements collected probabilistically.
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Multiple Model Approaches: JMLS

Jump Markov linear systems (JMLS): give a useful framework
for using multiple models

xk =A(rk)xk−1 +B(rk)wk

yk =C(rk)xk +D(rk)vk

xk is the state that we would like estimate from yk. This
state is called as base state.

rk ∈ {1, 2, . . . , Nr} represents model number and is called as
mode (or modal) state. Note that rk is also unknown and
must be estimated from measurements yk.

A(·), B(·), C(·) and D(·) are mode dependent parameters.
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Multiple Model Approaches: JMLS

Multiple model approaches can be classified into two broad categories as

Non-switching models

Switching models

Non-Switching case:

The underlying model rk is unknown but fixed for all times, i.e.,
rk = r, k = 1, 2, . . ..

This type of approaches is useful in system identification with finite
number of model alternatives but not very suitable for TT.

Switching case:

The underlying model rk can jump between different values in
{1, 2, . . . , Nr}
The time behavior of rk is generally modeled as first order
homogeneous Markov chain with a fixed transition probability matrix.
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Multiple Model Approaches: Optimal Solution

Suppose we started estimation at time 0 and now we are at time k.

There are a total of Nk
r different model histories r1:k that

might have occurred in this period. We show these by

{ri1:k}
Nk
r

i=1.

When a specific model history ri1:k is given we can calculate
the estimated density of the state xk as

p(xk|y1:k, ri1:k) = N (xk; x̂
i
k|k,Σ

i
k|k)

which is given by a KF that is matched to the model history.

The overall MMSE estimate x̂k|k is then given as

x̂k|k =

Nk
r∑

i=1

µikx̂
i
k|k

where µik , P (ri1:k|y1:k).
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Multiple Model Approaches: Optimal Solution

Case Nr = 2

time

E
st
im

at
es

0 1 2 3

x̂0

x̂11|1

x̂21|1

r1
=
1

r
1 =

2

x̂12|2

x̂22|2

x̂32|2

x̂42|2

r2 = 2

r2
=
1

r2 =
1

r
2 =

2

x̂13|3

x̂23|3

x̂33|3

x̂43|3

x̂53|3

x̂63|3

x̂73|3

x̂83|3

r3
=
1

r3 = 2

r3 =
1

r3 = 2

r3 = 1

r3 = 1

r3 = 2

r
3 =

2

27 / 39



Multiple Model Approaches: Optimal Solution

Storage and computation requirements of the optimal filter
increase exponentially.

The posterior density of the state at time k is given as

p(xk|y1:k) =

Nk
r∑

i=1

µikN (xk; x̂
i
k|k,Σ

i
k|k)

The number of components in the Gaussian mixture should be
decreased.

Some approaches use pruning (discarding low probability
terms).

We here will consider the most popular approach merging.
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Multiple Model Approaches: Mixture Reduction

The Gaussian mixture given by

p(xk) =
N∑
i=1

πiN (xk; x̂
i
k,Σ

i
k)

can be approximated as

p(xk) ≈ N (xk; x̂k,Σk)

where

x̂k ,
N∑
i=1

πix̂
i
k Σk ,

N∑
i=1

πi
[
Σi
k + (x̂ik − x̂k)(x̂ik − x̂k)T

]
This is a moment matching approximation and called as merging.
The second term in the covariance approximation (brackets) is
called as the spread of the means.
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Multiple Model Approaches: GPB1

Generalized pseudo Bayesian algorithms (GPB)

GPB1 Approximation: p(xk|y1:k) ≈ N (xk; x̂k|k,Σk|k)

Storage: 1 mean and covariance

Computation: Nr Kalman filters

Merge with probabilities µik , P (rk = i|y1:k).

Case Nr = 2

time

E
st
im

at
es

0

x̂0

x̂11|1

x̂21|1

r 1
=
1

r
1 =

2

1

x̂1|1Merging

x̂12|2

x̂22|2

r 2
=
1

r
2 =

2

2

x̂2|2Merging
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Multiple Model Approaches: GPB2

Generalized pseudo Bayesian algorithms (GPB)

GPB2 Approximation: p(xk|y1:k) ≈
Nr∑
i=1

µikN (xk; x̂
i
k|k,Σ

i
k|k)︸ ︷︷ ︸

=p(xk|y0:k,rk=i)

Storage: Nr means and covariances

Computation: N2
r Kalman filters
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Multiple Model Approaches: IMM

Interacting Multiple Models

IMM Approximation: p(xk|y1:k) ≈
Nr∑
i=1

µikN (xk; x̂
i
k|k,Σ

i
k|k)︸ ︷︷ ︸

=p(xk|y0:k,rk=i)

Same approximation as GPB2

Storage: Nr means and covariances

Computation: Nr Kalman filters

Case Nr = 2
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Multiple Model Approaches: IMM

One Step of IMM Algorithm

-Suppose we have the previous
summary statistics
{xjk−1|k−1,Σ

j
k−1|k−1, µ

j
k−1}Nrj=1.

-We would like to obtain the new
sufficient statistics
{xjk|k,Σ

j
k|k, µ

j
k}Nrj=1.

Mixing:
Calculate the mixing probabilities {µji

k−1|k−1}
Nr
i,j=1 as

µji
k−1|k−1 =

πjiµ
j
k−1∑Nr

`=1 π`iµ
`
k−1

.

Calculate the mixed estimates {x̂0ik−1|k−1}Nr
i=1 and covariances

{Σ0i
k−1|k−1}Nr

i=1 as

x̂0ik−1|k−1 =

Nr∑
j=1

µji
k−1|k−1x̂

j
k−1|k−1,

Σ0i
k−1|k−1 =

Nr∑
j=1

µji
k−1|k−1

[
Σj

k−1|k−1 + (x̂jk−1|k−1 − x̂0ik−1|k−1)(·)T
]
.
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Mode Matched Prediction Update: For i = 1, . . . , Nr,
calculate x̂ik|k−1 and Σi

k|k−1 from x̂0ik−1|k−1 and Σ0i
k−1|k−1 as

x̂ik|k−1 =A(i)x̂0ik−1|k−1,

Σi
k|k−1 =A(i)Σ0i

k−1|k−1A
T (i) +B(i)QBT (i).

Mode Matched Measurement Update: For i = 1, . . . , Nr,
Calculate x̂ik|k and Σi

k|k from x̂ik|k−1 and Σi
k|k−1 as

x̂ik|k =x̂ik|k−1 +Ki
k(yk − ŷik|k−1), ŷik|k−1 =C(i)x̂ik|k−1,

Σi
k|k =Σi

k|k−1 −Ki
kS

i
kK

iT
k , Si

k|k−1 =C(i)Σi
k|k−1C

T (i) +D(i)RDT (i),

Ki
k =Σi

k|k−1C
T (i)(Si

k|k−1)−1.

Calculate the updated mode probability µi
k as

µi
k =

N (yk; ŷik|k−1, S
i
k)
∑Nr

j=1 πjiµ
j
k−1∑Nr

`=1N (yk; ŷ`k|k−1, S
`
k)
∑Nr

j=1 πj`µ
j
k−1

.
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Multiple Model Approaches: IMM

Output Estimate
Calculation: Calculate the
overall estimate x̂k|k and
covariance as

KF-1

Mixing

x̂01k−1|k−1
Σ01

k−1|k−1

KF-2

KF-N

x̂02k−1|k−1
Σ02

k−1|k−1

x̂0Nk−1|k−1
Σ0N

k−1|k−1

Mixing
Probability
Calculation

x̂1k−1|k−1
Σ1

k−1|k−1

x̂2k−1|k−1
Σ2

k−1|k−1

x̂Nk−1|k−1
ΣN

k−1|k−1

x̂1k|k
Σ1

k|k

x̂2k|k
Σ2

k|k

x̂Nk|k
ΣN

k|k

Mode
Probability
Calculation

Output
Estimate

Calculation

{µik−1}Ni=1
{µik}Ni=1

x̂k|k
Σk|k

yk

x̂k|k =

Nr∑
i=1

µikx̂
i
k|k,

Σk|k =

Nr∑
i=1

µik

[
Σi
k|k + (x̂ik|k − x̂k|k)(x̂ik|k − x̂k|k)T

]
.

-Output estimate is only calculated for output purposes and it is
not in the main IMM recursion.
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Multiple Model Approaches: IMM

Gating and Data Association with IMM

At each step, one can just calculate the following overall predicted
measurement ŷk|k−1 and innovation covariance Sk|k−1

ŷk|k−1 =

Nr∑
i=1

µik|k−1ŷ
i
k|k−1 µik|k−1 ,

Nr∑
j=1

πjiµ
j
k−1

Sk|k−1 =

Nr∑
i=1

µik|k−1

[
Sik|k−1 + (ŷik|k−1 − ŷk|k−1)(·)T

]
We can do the gating and data association with these quantities.

An alternative is to do individual gating for each model and then to take
the union of the gated measurements from all models. In this case, the
overall likelihood for association is formed from individual likelihoods as

p(yk|y1:k−1) =

Nr∑
i=1

µik|k−1 p(yk|y1:k−1, rk = i)︸ ︷︷ ︸
individual likelihood from ith KF

=N (yk;ŷ
i
k|k−1

,Si
k|k−1

)
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IMM Illustration

The same illustration
with now IMM filter.

PD = 1.

PG = 1

PFA = 0

IMM uses two CV
models same except
for

σ1
a = 0.1m/s2.
σ2
a = 10m/s2.
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