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Lecture Outline

@ Maneuver Detection

@ Detection Based Methods
o Adjustable level process noise
e Variable state dimension
e Input estimation

@ Multiple Model Approaches
e Non-switching multiple models
e Switching multiple models

o Generalized pseudo Bayesian (GPB) methods
o Interacting multiple model (IMM) algorithm
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Maneuver lllustration
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Maneuvers

@ Maneuvers are the model mismatch problem in target
tracking.

@ Using a high order kinematic model that allows versatile
tracking all the time is not a solution in the case where data
origin uncertainty is present.

This can instead make the gates unnecessarily large and
makes the tracker sensitive to clutter.

@ Hence maneuvers should be detected and compensated.

@ A maneuver should be detected both when the target switches
to a higher order model than we use in our KF, and when it
switches to a lower order model than we use in the KF.
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Maneuver Detection: Low-Pass — High-Pass

@ Normalized innovation square again comes into the picture.
_ ~Tao-1 -~
€ = Yk Pk—1Yk

@ We know that €5, ~ Xiy-

@ This is also the gating statistics. So we should check this
quantity in a window to avoid false alarms.

@ Use a sliding window or a recursive forgetting.

k

S __ - T o__ T -
€ = E €y, O € =€ T+ €y
i=k—N+1

where o < 1.




Maneuver Detection: Low-Pass — High-Pass

@ Use one of the statistics
k

€ = g € or

i=k—N+1

€ = Qe + €,

@ In the case of perfect model match, we have

€ ~ X?Vny and

r 2
€.~ X 1
k 170¢ny

where the second distribution is an approximation at the
1

steady state (effective window length ~ =—).

@ A maneuver is declared when the maneuver statistics ¢
exceeds a threshold €. .

@ The threshold €.« is adjusted such that in the case of no
maneuver

P(Ek S Emax> — 1 _ P}T;’LXTLEUU@T
—_—

<1

Maneuver Detection: High-Pass — Low-Pass

@ The decision in the reverse direction (from high-pass to
low-pass) can be given with the same statistics if the statistics
€ gets lower than a threshold epiy.

@ The threshold €,,;, is adjusted such that in the case of correct
model

P(Gk S Emin) — maneuver << 1

miss

Maneuver Detection: Low-Pass — High-Pass

@ During a low-pass filter to high-pass filter transition detected
from an ¢, that is obtained by summing €3 over a window of
length IV (or effective window length 1), there accumulates
considerable amount of error in the estimates.

@ These should be compensated when such a detection happens.

o Generally last estimates in the (effective) window are
recalculated.

@ For this purpose, some previous history of estimates and
measurements are kept in memory.

Maneuver Detection: High-Pass — Low-Pass
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@ The decision in the reverse direction (from high-pass to
low-pass) can be given with the same statistics if the statistics
€ gets lower than a threshold epiy.

@ The threshold €,,;, is adjusted such that in the case of correct
model
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Detection Based Methods: ALPN

Adjustable level process noise

@ Kalman filters bandwidth depends on the noise covariances.
@ Process noise covariance
e Small — Low bandwidth
e Big — High bandwidth
@ Measurement noise covariance
e Small — High bandwidth
e Big — Low bandwidth
@ The measurement noise covariance is generally selected to
represent the sensor characteristics.

@ Process noise covariance determines our belief on how smooth
the target trajectory is and hence can be adjusted to account
for maneuvers.
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Detection Based Methods: ALPN

Continuous Process Noise Level Adjustment

@ Innovation covariance is given in the standard Kalman filter as
Siig—1 = C [APy_13—1 A" + pyBQBT] CT + R

@ Add a scaling factor p; to Q.
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Detection Based Methods: ALPN

Continuous Process Noise Level Adjustment

@ Innovation covariance is given in the standard Kalman filter as
Sik—1 = C [APy_1—1 A"+ BQBT]CT"+R

@ Add a scaling factor p; to Q.
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Detection Based Methods: ALPN

Continuous Process Noise Level Adjustment

@ Innovation covariance is given in the standard Kalman filter as
Siik—1 = C [APy_1 -1 AT + pyBQBT] CT + R

@ Add a scaling factor p; to Q.

CALPN algorithm

@ Time k£ = 0: Initialize pg = 1.
@ Time k > 0:
o If €4 > €max, increase pi such that €, < enax and recalculate
previous estimates in the (effective) detection window.
o If €5 < €min, decrease py such that € > €pin.
o Otherwise, keep pr = pr—1.
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Detection Based Methods: ALPN

Discrete Process Noise Level Adjustment

@ One can also select a predetermined number of process noise
matrices {Q1, Q2. .., Qny} in increasing order and design a
similar procedure.

DALPN algorithm

@ Time k = 0: Initialize ig = n where 1 <n < ng and @,
represents a nominal process noise covariance.
@ Time k > O:

o If €5 > €max, change Q;, , to Qi = Qi ,+1 (if ik—1 < ng).
o If €5 < €min, change Q;,_, to @i, = Qi _,—1 (if ixg—1 > 1).
o Otherwise, keep @, = Qi,_,-
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Detection Based Methods: VSD

CA Model Initialization:
@ Suppose we are tracking with a CV model which has
mgv = [ Pr Vk ]T using the measurements y; = p;, + vk.
@ Suppose €, > €max, then
o Define x%A = [ Pr Vi ak ]T
o Go back to time k — N + 1 where we have the estimate

T
'{E\g\i]\/:#llkaJr] = [ Isg\—/N+1|k—N+1 \A/g\—/N+1|k—N+1
o Set
Yk—N+1
igéNHw,NH = Qg\iNJrl\kaJrl + TégéN+1\ka+1
égéN+1\k—N+1
where

ACV a 2 pYaY,
AL—N+1|k—N+1 — 72 \Yk=N+1 = Yk-N+41jk-N

o Initialization of PIcC—AN+1\k—N+1 is complicated and given in
[Bar-Shalom (1982)].
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Detection Based Methods: VSD

Variable State Dimension method: We can use
@ (nearly) constant velocity (CV) (2nd order in 1D and 4th

order in 2D)
@ (nearly) constant acceleration models (CA) (3rd order in 1D

and 6th order in 2D)
interchangeably with suitable detection rules.
VSD Main Idea
@ Use CV model.

o Keep always a buffer with the last N measurements, state
estimates, predictions and their covariances.

@ Check ¢, ((effective) window size IV).

o If €4 > €max

Go back to time k — N + 1.
Initialize a CA model.

o
o Recalculate estimates for times k — N +1,... k.
o Continue with a CA model until some other condition is
satisfied. U

Detection Based Methods: VSD

@ Time k = 0: Start using CV model.

@ Time k > 0:
e If currently using CV model, calculate ¢; at each step.
o If €4 > €max
-Go back to the beginning of the detection window (which can
have length N or ﬁ) depending on whether you use €, or
€, respectively.
-Initialize CA model and recalculate the estimates in the
window. Continue using CA model.
e If currently using CA model, check acceleration estimate aj
and covariance P, .
o If &} P 'ak < Ymin
-Initialize CV model from last position and velocity estimates
of CA model. Continue using CV model.
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Detection Based Methods: IE

Input estimation method: Suppose we consider two different
state equations, one with input the other not.

x) =Arj_; + Gwy  (actual model we use currently)

x3 =Ax? | + Bug + Gwy  (hypothetical model with maneuver)

where uy is a deterministic input.

o We consider only the case where u; =ufori=k—N+1,...,k
and u; = 0 otherwise. This period will correspond to the
maneuvering period.

@ Suppose we currently run a KF for the 1st model and would like to
check the hypothesis that actually the second model is true, i.e., that
the target is maneuvering.
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Detection Based Methods: |IE

@ Kalman filter covariances are equal for the two models.
1 _p2 N
Prie—1 =Pgp—1 = Prjr—1

1 _p2 &
P =Pije = Prjk

1 _ a2 N
Sk:\k—l _Sklk—l = Sklk—1
1 _ 72 48
K =K = Ky,

A1 _ a2
@ Suppose, Ty Nlk—N = Tk Njg—N then

~2 _ Al
T Np1k—N =Tp-Ni1k—n T Bu

3 Al
T N1 p—N+1 =Th—Ni1k—n+1 T (L = Ke-n1C)Bu

- Nrah-N+1 =EhoNioh-n+1 T AT = Kp-n1C)Bu+ Bu

N—-11i-1

Prkr =2hpa + | O, [ (AT = Ki-n414,C)) | Bu
i=0 j=0

L7
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Detection Based Methods: IE

@ Prediction Update

~1 ~1
Thlk—1 :Axkflwcfl

1 1 gp 77
P11 =AP;_p1 A" +GQG

@ Measurement Update

~1 A1 1 ~1
Tk =Zrjp—1 + Ki Wk — Jgp—1)
)3

1 1 1ql nT
Pk\k :Pk|k—1 - Kk5k|k—1 (Kk)

1 1
Ye|k—1 :ka|k71
Sip  =CPL. CT+R
klk—1 klk—1
Ky :Pk1|k71CT(Sli|kf1)71

KF Equations for Model 1 KF Equations for Model 2

@ Prediction Update

R .2
Tigp—1 =ATj_1)p—1 + Bug

2 2 T T
Pryp—1 =AP_ 1A +GQG

@ Measurement Update
B =ERje—1 + K7t (yk — 0ij—1)
Uk
Pk2\k :P13|k—1 - K13513|k—1 (Klg)T
gk|k71 :Ciiwq

Sie—1 =CPix_1CT + R
K} :P13|k710T(Slz|k71)71

<
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Detection Based Methods: IE

related as

~—

innovations we
currently calculate

to 1st model.

S’k = [ Zjiz Z};{_l

Fk:[ FkT Fk:T—l

@ The innovations gj,i and gji corresponding to the KFs using 1st
and 2nd models with the same measurement model can be

g =CFRu+ }

hypothetical
innovations

where C' is the measurement matrix and F}, can be calculated
using the system model and Kalman filter gains corresponding

@ We now stack the last IV innovations and Fj, matrices

T |
Fl?—N—&—l ] ’
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Detection Based Methods: IE

We get the model
Vi = CFyu + 3¢
which can be solved by WLS (or with Maximum Likelihood
Estimation (MLE)) for u with the result
_ ~1 1=
k= (Fk CTSyi-1"'CFx)  Fi'C"Syp17'¥i

U
P, (FkTOTSk|k—1_1CFk)71

k

where
S £ plkdia Sl Sl
klk—1 1ag { Oklk—1> 1 Pk—N+1|k—N

is the covariance of yi.
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Detection Based Methods

ALPN uses only the covariance of the white process noise to
compensate maneuvers.
o This might not be sufficient when the maneuvers are long and
persistent.
@ VSD seems limited to the Constant Acceleration model but the
opposite is claimed in [Bar-Shalom, Li, Kirubarajan (2001)].

o How to initialize the maneuvering model in the case of e.g. a
Coordinated Turn Model is not known.

IE assumes a constant acceleration profile during both detection and
compensation procedure.
o This can make it unable to compensate the maneuvers well if the
accelerations change fast.

A case study in [Bar-Shalom, Li, Kirubarajan (2001)] shows that

MSEvysp é MSEaLpn < MSE e
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Detection Based Methods: IE

We are going to check whether 4 is statistically significant.

Input Estimation Method

@ Make estimation with the first model i.e., calculate ﬁ:}ﬂk, Pk1|k'
@ With the arrival of each measurement y;, calculate 4 and
P,, using the input estimation procedure.
o If a;{P;klak > Ao
@ Declare a maneuver and compensate the estimation errors by
updating the predicted quantities as
i”;lc\tcfl =£11c|k—1 + Friig

15,};71 =Phk_1 + FuPu, F{

o Calculate ii‘k, Pkl|k from updated quantities i}cﬁ_l, Pklﬁ;_l

Ymax €an be calculated from the statistics of X%u-
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@ Detection based methods are in general too slow to
compensate the maneuvers.
@ Target motions can generally be classified into a number of
predefined number of modes e.g.
e Constant velocity
o Coordinated turn (circular motion with constant speed and
angular rate)
o Constant acceleration
@ Using maneuver detection is a type of making a hard decision
between these models i.e., serial use of models (use one model
first then switch to another one etc.).
@ The soft version uses all the models at the same time (parallel

use of models) and combines their results to the extent that
they suit to the measurements collected probabilistically.

Multiple Model Approaches
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Multiple Model Approaches: JMLS

Jump Markov linear systems (JMLS): give a useful framework
for using multiple models

xy, =A(ry)rr—1 + B(ry)wy
yr =C(ri)xr + D(rg)vk

@ xj is the state that we would like estimate from y;. This
state is called as base state.

o 1, €{1,2,...,N,} represents model number and is called as
mode (or modal) state. Note that 7y is also unknown and
must be estimated from measurements yy.

e A(-), B(:), C(-) and D(-) are mode dependent parameters.
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Multiple Model Approaches: Optimal Solution

Suppose we started estimation at time 0 and now we are at time k.

@ There are a total of N,’? different model histories 7.5 that
might have occurred in this period. We show these by

{riwticr-
@ When a specific model history 7., is given we can calculate
the estimated density of the state x; as

p(zk |y, Ti:k) = N(wk@m? 2Zuc)

which is given by a KF that is matched to the model history.
@ The overall MMSE estimate iy is then given as

Nf
- _ Y
Tk = E HEL |k
=1

where pf, £ P(rl |y1)-

Multiple Model Approaches: JMLS

Multiple model approaches can be classified into two broad categories as
@ Non-switching models
@ Switching models
Non-Switching case:
@ The underlying model 7 is unknown but fixed for all times, i.e.,
re=7r,k=12,...
@ This type of approaches is useful in system identification with finite
number of model alternatives but not very suitable for TT.
Switching case:
@ The underlying model r; can jump between different values in
{1,2,...,N;}
@ The time behavior of r; is generally modeled as first order
homogeneous Markov chain with a fixed transition probability matrix.
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Multiple Model Approaches: Optimal Solution

Case N, =2

Estimates
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Multiple Model Approaches: Optimal Solution Multiple Model Approaches: Mixture Reduction

The Gaussian mixture given by

Storage and computation requirements of the optimal filter N o
increase exponentially. p(xg) = Zm/\f(:ck; zy, X},)
i=1

The posterior density of the state at time k is given as

Nk can be approximated as

— i Y i
p(wrlyik) = z;uk-/\/(xk’v Thjrer Shjr) p(rg) = N (wg; T, B)
=

@ The number of components in the Gaussian mixture should be where

decreased. N N
@ Some approaches use pruning (discarding low probability By = Zﬂ-l'r§c By 2 Z”i [ g+ (& — 2k)(2), — 2k) ]

terms). =1 =1
@ We here will consider the most popular approach merging. This is a moment matching approximation and called as merging.

The second term in the covariance approximation (brackets) is
called as the spread of the means.
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Multiple Model Approaches: GPB1 Multiple Model Approaches: GPB2

Generalized pseudo Bayesian algorithms (GPB)

Generalized pseudo Bayesian algorithms (GPB)

Ny
GPB1 Approximation: p(zk|y1) & N (zk; Zkjk, k) GPB2 Approximation: p(zy|y1.x) ~ ZM%N(@“M%WZZW
i=1

=p(Tr|Yo:k,Tk=1)

@ Storage: 1 mean and covariance

o Computation: N, Kalman filters @ Storage: N, means and covariances

: e . e Computation: N? Kalman filters
o Merge with probabilities 1, = P(ry = i|y1.x). mputation: [V, man filter

Case N, =2

Estimates
Estimates

| |
! ! ! time
2
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Multiple Model Approaches: GPB2 vs. IMM

time
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Multiple Model Approaches: IMM

Interacting Multiple Models

N,
IMM Approximation: p(x|y1.x) ~ ZM%N(%%M%/{)
i=1

=p(zk|Yo:k,mk=1)

@ Same approximation as GPB2
@ Storage: N, means and covariances

e Computation: N, Kalman filters

Case N, =2

Estimates
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Multiple Model Approaches: GPB2 vs. IMM

time
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Multiple Model Approaches: IMM

One Step of IMM Algorithm
-We would like to obtain the new

sufficient statistics
J J J\Nr
{5 g0 i M 21

-Suppose we have the previous
summary statistics

J J J Ny
{xk71|k71’ 2 Alk-1 M1 Y-

e Mixing: -
o Calculate the mixing probabilities {Miz—1|k—1}zl'\,[f:1 as

o
uji . Tjilly 1
k—1lk—1 — N, Y
22:1 Teilbg 1

o Calculate the mixed estimates {i'gi_l‘k_l}fvz”'l and covariances

0i N,
{Ek71|k71}i:1 as
N,
~0% _ i ~7
T 1|k—1 = § ::uk—1|kflxk71\k71’
=1

N,
0i g , » o
Yk 1lk—1 :Z/’L?j—nk—l {Zi—w«q + (Zi_ukq — B 1e-1)() }

=1
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Multiple Model Approaches: IMM

@ Mode Matched Prediction Update: Fori =1,..., N,,
calculate &}, , and X, | from 502[1“671 and Egﬁukfl as
~i . N ~0i
932|k—1 _A(Z>Ikz—1|k—1’
i w0 T/ . T/
k1 =A@, A (D) + BB (0).
@ Mode Matched Measurement Update: Fori=1,..., N,,
o Calculate &}, and ¥, from &}, , and X}, | as
ﬁ?ﬂk :552%4 + K (y — :g]ic|k71)> ylic|k71 :C(i)‘%?c\kfh
Wk =Zhipo1 — KiSLKL Skp—1 =C(i)},_1C" (i) + D(i)RD™ (i),
K =% 1 CT (@) (Shye—n)
o Calculate the updated mode probability pi as
g i N j
N Y D1 Sk) 22521 ikt
N, - N, e
Zé:l N(yk, yi‘k_p Sll;) Zj:l ngﬂgc_l

p =
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Multiple Model Approaches: IMM

Gating and Data Association with IMM

@ At each step, one can just calculate the following overall predicted
measurement g ;1 and innovation covariance Sy;_1

N Ny

- _ i ni i A yd

Yklk—1 = Fokek—1Yk|k—1 Hglk—1 = Tjilg 1
i=1 j=1

N,
Sklk—1 =Y M1 {S}C\kq + (kg1 — lek—l)(')T}
=1

We can do the gating and data association with these quantities.

@ An alternative is to do individual gating for each model and then to take
the union of the gated measurements from all models. In this case, the
overall likelihood for association is formed from individual likelihoods as

Ny
Pklyre—1) =Y et PWklYLE-1, 78 = 1)
=1

individual likelihood. from ith KE
:N(yk;yhk—ﬂsllﬂkfl) 37 /39

Multiple Model Approaches: IMM
“’Hﬂ s w

Mode ) {pi Y,
Probability
@ Output Estimate Calcultion Caleulation
Calculation: Calculate the o o ﬂ“
overall estimate Zy;, and RaL e KF-1 | M
covariance as e 2 &,
by ST i L“”u| 4@2{\*
Mixing \ J
N7‘ fl\;mq j‘ffmf\ J}:\;k
2, _ 1 a1 Ef;mﬂ Z?ilwl KF-N| 2tk
Tklk = E HETk ks _
i=1
Al Shoe
_ % 7 ~0 A A A T Calculation
Sik =Y _ Hh [Ekz\kz + @k — Bajr) @y — Tepr) } -

i=1

-Output estimate is only calculated for output purposes and it is
not in the main IMM recursion.
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IMM Illustration
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o PFA =0 glzoo—
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