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Chapter 1

Elementary Concepts

1.1 Introduction

Applied probability is an extremely useful tool in engineering as well

as other fields. Specific examples from our field, electrical engineering,

where probability is heavily used are communication theory, networking,

detection and estimation. Examples from other disciplines that rely on

probabilistic models are statistics, operations research, finance, genetics,

games of chance, etc. A working knowledge of applied probability is useful

in understanding and interpreting many phenomena in everyday life.

In applied probability, we learn to construct and analyze probabilistic

models, using which we can solve interesting problems. It is important to

distinguish probability from statistics: probabilistic models that we con-

struct do not belong to the “real world”. Rather, they live inside a prob-

ability space, which is a mathematical construction. Probability Theory is

a mathematical theory, based on axioms. Generally, the three axioms we

will introduce in Section 1.3 are used to define probability theory (due to

Kolmogorov in his 1933 book). Probability theory is heavily based on the

1
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theory of sets, so we will start by reviewing them.

1.2 Set Theory

Definition 1 A set is a collection of objects, which are called the elements

of the set.

Ex: A = {1, 2, 3, . . . , }, B = {Monday, Wednesday, Friday}, C = {real
numbers (x, y) : min(x, y) ≤ 2}. (Finite, Countably Infinite, Uncountably

Infinite)

Null set=empty set=∅={}.

The universal set (Ω): The set which contains all the elements under

investigation

Some relations

• A is a subset of B (A ⊂ B) if every element of A is also an element

of B.

• A and B are equal (A = B) if they have exactly the same elements.
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1.2.1 Set Operations

1. UNION

2. INTERSECTION

3. COMPLEMENT of a set

4. DIFFERENCE

Two sets are called disjoint or mutually exclusive if A ∩B = ∅.

A collection of sets is said to be a partition of a set S if the sets in the

collection are disjoint and their union is S.
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1.2.2 Properties of Sets and Operations

• Commutative: A ∪ B = B ∪ A

• Associative: A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∩ C) = (A ∩B) ∩ C

• Distributive: A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

• A ∩ ∅ = A ∪ ∅ = ∅c = Ωc =

• A ∪ Ac = A ∩ Ac = A ∪ Ω = A ∩ Ω =

• De Morgan’s Laws

– (A ∪ B)c = Ac ∩Bc

– (A ∩ B)c = Ac ∪Bc

The cartesian product of two sets A and B is the set of all ordered pairs

such that A× B = {(a, b)|a ∈ A, b ∈ B}.

Ex:

|A|= Cardinality of set A (The number of elements in A)

The power set P(A) of a set A: the set of all subsets of A |P(A)| =?
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1.3 Probabilistic Models

A probabilistic model is a mathematical description of an uncertain

situation. A probability model consists of an experiment, a sample space,

and a probability law.

1.3.1 Experiment

Every probabilistic model involves an underlying process called the ex-

periment.

Ex: Consider the underlying experiments in the two classic probability

puzzles: The girl’s sibling, and the 3-door problem.

1.3.2 Sample Space

The set of all possible results (OUTCOMES) of an experiment is called

the SAMPLE SPACE (Ω) of the experiment.
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Ex: List the sample spaces corresponding to the following experiments:

• Experiment 1: Toss a coin and look at the outcome.

Ω =

• Experiment 2: Toss a coin until you get “Heads”.

Ω =

• Experiment 3: Throw a dart into a circular region of radius r, and

check how far it fell from the center.

• Experiment 4: Pick a point (x, y) on the unit square.

• Experiment 5: A family has two children.

• Experiment 6: I select a door, one of the three doors is concealing a

prize.
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Definition 2 An event is a subset of the sample space Ω.

• Ω: certain event, ∅: impossible event

• TRIAL: single performance of an experiment

• An event A is said to have OCCURRED if the outcome of the trial is

in A.

• A given physical situation may be modeled in many different ways.

The sample space should be chosen appropriately with regard to the

intended goal of modeling.

• Sequential models: tree-based sequental description

Ex: Consider two rounds of the double-and-quarter game and list

all possible outcomes. Consider three tosses of a coin and write all

possible outcomes.

1.3.3 Probability Law

The probability law assigns to every event A a nonnegative number

P (A) called the probability of event A.

P (A) reflects our knowledge or belief about A. It is often intended as
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a model for the frequency with which the experiment produces a value in

A when repeated many times independently.

Ex:

Probability Axioms

1. (Nonnegativity) P (A) ≥ 0 for every event A

2. (Additivity) If A and B are two disjoint events, then

P (A ∪B) = P (A) + P (B).

More generally, if the sample space has an infinite number of elements

and A1, A2, . . . is a sequence of disjoint events, then

P (A1 ∪ A2 ∪ . . .) = P (A1) + P (A2) + . . . .

3. (Normalization) P (Ω) = 1

1.3.4 Properties of Probability Laws

(a) P (∅) = 0

(b) P (Ac) = 1− P (A)
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(c) P (A ∪B) = P (A) + P (B)− P (A ∩B)

(d) A ⊂ B ⇒ P (A) ≤ P (B)

(e) P (A ∪B) ≤ P (A) + P (B) (P (
⋃n

i=1Ai) ≤
∑n

i=1 P (Ai))

(f) P (A ∪B ∪ C) = P (A) + P (Ac ∩B) + P (Ac ∩Bc ∩ C)
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1.3.5 Discrete Probability Models

The sample space is a countable (finite or infinite) set in discrete models.

Ex: An experiment involving a single coin toss. We say that the coin

is “fair”, equal probabilities are assigned to the possible outcomes. That

is, P (H) = P (T ) = 1/2.

In a discrete probability model,

• The probability of any event {s1, s2, . . . , sk} is the sum of the proba-

bilities of its elements. (Recall “additivity”.)

P ({s1, s2, . . . , sk}) = P ({s1}) + P ({s2}) + . . .+ P ({sk})
= P (s1) + P (s2) + . . .+ P (sk)

Ex: Throw a 6-sided die. Express the probability that the outcome

is 1 or 6.

• Discrete uniform probability law: If the sample space consists of n

possible outcomes which are equally likely, then

P (A) =
|A|
n

.

Ex: Throw a fair 6-sided die. Find the probability that the outcome is

1 or 6.

Ex: A fair coin is tossed until a tails is observed. Determine the prob-

abilities of each outcome in the sample space.
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Ex: A file contains 1Kbytes. The probability that there exists at least

one corrupted byte is 0.01. The probability that at least two bytes are

corrupted is 0.005. Let the outcome of the experiment be the number of

bytes in error.

(a) Define the sample space.

(b) Find P (no errors).

(c) P (exactly one byte in error)=?

(d) P (at most one byte is in error)=?

1.3.6 Continuous Models

The sample space is an uncountable set in continuous models. We com-

pute the probability by measuring the probability “weight” of the desired

event relative to the sample space.

Ex: I start driving to work in the morning at some time uniformly

chosen in the interval [8 : 30, 9 : 00].

• What is the probability that I start driving before 8 : 45?
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• My favorite radio program comes on at 8 : 30, and may last any-

where between 5 to 15 minutes, with equal probability. What is the

probability that I catch at least part of the program?

1.4 Conditional Probability

P (A|B) = probability of A, given that B occurred

Definition 3 Let A and B two events with P (B) 6= 0. The conditional probability

P (A|B) of A given B is defined as

P (A|B) =
P (A ∩B)

P (B)
.

Example: Consider two rolls of a tetrahedral die. Let B be the event

that the minimum of the two rolls is 2. Let M be the maximum of the

rolls.
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• P(M = 1|B) =

• P(M = 2|B) =

1.4.1 Properties of Conditional Probability

Conditional probability is a probability law, where B is the new uni-

verse.

Theorem 1 For a fixed event B with P (B) > 0, the conditional probabil-

ities P (A|B) form a probability law satisfying all three axioms.

Proof 1

• If A and B are disjoint, P (A|B) = .

• If B ⊂ A, P (A|B) = .

• When all outcomes are equally likely,

P (A|B) =
| |
| | .

Ex: A girl I met told me she has 1 sibling. What is the probability that

her sibling is a boy? (Assumption: each birth results in a boy or girl with

equal probability.)
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1.4.2 Chain (Multiplication) Rule

Assuming that all of the conditioning events have positive probability,

the following expression holds

P (
n
⋂

i=1

Ai) = P (A1)P (A2|A1)P (A3|A1 ∩ A2) . . . P (An|
n−1
⋂

i=1

Ai).

Ex: There are two balls in an urn numbered with 0 and 1. A ball

is drawn. If it is 0, the ball is simply put back. If it is 1, another ball

numbered with 1 is put in the urn along with the drawn ball. The same

operation is performed once more. A ball is drawn in the third time. What

is the probability that the drawn balls are all labeled 1?

1.4.3 Total Probability Theorem

• This is the “divide and conquer” idea. Very useful in modelling and

solving problems.

• Partition set B into A1, A2, . . . , An. The Ai’s should be disjoint inside

B. That is, Ai ∩ Aj ∩B = ∅ for all i, j.
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• One way of computing P(B):

P(B) = P(A1)P (B|A1) + P(A2)P(B|A2) + . . .P(An)P(B|An)

• An often used partition is A and Ac, where A is any event in the

sample space, not disjoint with B.

Ex: The “Monty Hall Problem” (Example 1.12 in textbook.) There is

a prize behind one of three identical doors. You are told to pick a door.

The game show host then opens one of the remaining doors with no prize

behind it. At this point, you have the option to switch to the unopened

door, or stick to your original choice. What is the better strategy- to stick

or to switch? (Hint: Examine each strategy separately. In each, let B be

the event of winning, and A the event that the initially chosen door has

the prize behind it.) Show that, when you adopt a randomized strategy

(you decide whether to switch or not by tossing a fair coin) the probability

of winning is 1/2.

1.4.4 Bayes’s Rule

This is a rule for combining “evidence”.
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P(A|B) =
P(A ∩ B)

P(B)

=
P(B|A)P(A)

P(B)
Note how A and B changed places

Ex: Criminal X and Criminal Y are both 20 percent likely to commit

a certain crime, and they are both 50 percent likely to be near the site of

the crime at a given time. As a result of the investigation, it is revealed

that Criminal X was near the site at the time of the crime, but Y was not.

What are the posterior probabilities of committing the crime for X and Y?

Bayes’s rule is often applied to events Ai that form a partition of the

given event B.

P(Ai|B) =
P(Ai ∩B)

P(B)

=
P(B|Ai)P(Ai)

P(B)

=
P(Ai)P(B|Ai)

∑

j P(Aj)P(B|Aj)

Where, going from the second line to the third, we applied the Total Prob-

ability Theorem.
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Ex: Let B be the event that the sum of the numbers obtained on two

tosses of a die is seven. Given that B happened, find the probability that

the first toss resulted in a 3.

1.5 Modelling using conditional probability

Ex: If an aircraft is present in a certain area, a radar detects it and

generates and alarm signal with probability 0.99. If an aircraft is not

present, the radar generates a (false) alarm with probability 0.10. We

assume that an aircraft is present with probability 0.05.

Event A: Airplane is flying above

Event B: Something registers on the radar screen

(a) P(A ∩B) =

(b) P(B) =

(c) P(A|B) =? (Discuss how to improve this probability.)
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Ex: The “false positive puzzle” (Example 1.18 in textbook.): A test

for a certain disease is assumed to be correct 95% of the time: if a person

has the disease, the test results are positive with probability 0.95, and if

the person is not sick, the test results are negative with probability 0.95.

A person randomly drawn from the population has the disease with prob-

ability 0.01. Given that a person is tested positive, what is the probability

that the person is actually sick?
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1.6 Independence

Definition: P(A ∩B) = P(A)P(B)

• If P(A) > 0, independence implies P(B|A) = P(B).

• Symmetrically, if P(B) > 0, independence implies P(A|B) = P(A).

• Show that, if A and B are independent, so are A and Bc. (If A is

independent of B, the occurrence (or non-occurrence) of B does not

convey any information about A.)

• Show that, if A and B are disjoint, they are always dependent .

Ex: Consider two independent rolls of a tetrahedral die.

(a) Let Ai = {the first outcome is i}. Let Bj = {the second outcome is

j}. ”Independent rolls” implies Ai and Bj are independent for any i

and j. Find P (Ai, Bj).

(b) Let A = {the max of the two rolls is 2}. Let B = {the min of the two

rolls is 2}. Are A and B independent?
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(c) Note that independence can be counter-intuitive. For example, let

A2 = {the first roll is 2}. Let S5 = {the sum of the two rolls is 5}.
Show thatA2, S5 are independent, although the sum of the two rolls and

the first roll are dependent in general (try A2, S6 as a counterexample.)

1.6.1 Conditional Independence

Recall that conditional probabilities form a legitimate probability law.

So, A and B are independent, conditional on C, if

P(A ∩B|C) = P(A|C)P(B|C)

Show that this implies

P(A|B ∩ C) = P(A|C)

(assuming P(B|C) 6= 0, P(C) 6= 0.)
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Conditioning may affect independence.

Ex: Assume A and B are independent, but A ∩ B ∩ C = ∅. If we are

told that C occurred, are A and B independent? (draw Venn Diagram

exhibiting a counterexample.)

Ex: Two unfair coins, A and B.

P(H|coinA) = 0.9, P(H|coinB) = 0.1

Choose either coin with equal probability.

• Once we know it is coin A, are future tosses independent.

• If we don’t know which coin it is, are future tosses independent?

• Compare

P(5th toss is a T)

and P(5th toss is a T|first 4 tosses are T).

Independence of a collection of events: Information on some of the

events tells us nothing about the occurrence of the others.
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• Events Ai, i = 1, 2, . . . , n are independent iff P(∩i∈SAi) = πi∈SP(Ai)

for any S ⊂ {1, 2, . . . , n}

• Note that

P(A5 ∪ A2 ∩ (A1 ∪ A4)
c|A3 ∪ Ac

6) = P(A5 ∪ A2 ∩ (A1 ∪ A4)
c)

• Pairwise independence does not imply independence! (Checking P(Ai∩
Aj) = P(Ai)P(Aj) for all i and j is not sufficient for confirming inde-

pendence.)

• For three events, checking P(A1∩A2∩A3) = P(A1)P(A2)P(A3) is not

enough for confirming independence.

Ex: Consider two independent tosses of a fair coin. A = First toss is

H.

B = Second toss is H.

C = First and second toss have the same outcome.

Are these events pairwise independent?

P(C) =

P(C ∩ A) =

P(C ∩ A ∩B) =

P(C|B ∩ A) =
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Ex: Network Connectivity: In the electrical network in Fig. 1.2, each

circuit element is “on” with probability p, independently of all others.

What is the probability that there is a connection between points A and

B?

A B

Figure 1.1: Electrical network with randomly operational elements.
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1.6.2 Independent Trials and Binomial Probabilities

Consider n tosses of a coin with bias p. P(k H’s in an n-toss sequence) =
(

n
k

)

pk(1− p)n−k

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

k

p X
(k

)

n=7, p=0.25

−5 0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

k

p X
(k

)

n=40, p=0.25

Figure 1.2: Binomial probability law.

Ex: Binary symmetric channel: Fig. 1.3 depicts a binary symmetric

channel, where each symbol (“0” or “1”) sent is inverted (turned to “1” or

“0”, respectively)with probability po, independently of all other symbols.

(First consider the case where 1s and 0s are equiprobable, then the case

when they are not.)

(a) What is the probability that a string of length n is received correctly?

(b) Given that a “110” is received, what is the probability that actually a

“100” was sent?
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(c) In an effort to improve reliability, each symbol is repeated 3 times and

the received string is decoded by majority rule. What is the probability

that a transmitted “1” is correctly decoded?

(d) Can you think about a better coding scheme than the one in (c)?

0

1

0

1

p
0

p
0

Figure 1.3: Binary symmetric channel.

1.7 Counting

A special case: all outcomes are equally likely.

Ω = {s1, s2, . . . , sn}
P({sj}) =

1

n
, for all j

A = {sj1, sj2, . . . , sjk}, jk ∈ {1, 2, . . . , n}
P(A) =

The problem of finding P(A) reduces to counting its elements.

Ex: 6 balls in an urn, Ω = {1, 2, . . . , 6}.
A = {the number on the ball drawn is divisible by 3}.

Ex: A. (Permutations) The number of different ways of picking an

ordered set of k out of n distinct objects
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Ex: B. (Combinations) The number of different ways of choosing a

group of k out of n distinct objects

Ex: C. (Partitions) How many different ways can a set of size n be

partitioned into r disjoint subsets, with the ith subset having size ni? For

example, pick a captain, a goalie and five players from among 7 friends.

Ex: D. (Distributing n identical objects into to r boxes) Consider n

identical balls, to be colored red, black or white. How many possible

configurations for the numbers of red, black and white balls? (Think about

putting dividers between objects and shuffling objects and dividers.)

Ex: Categorize the following examples with respect to the following

two criteria: Is the sampling with or without replacement? Does ordering

matter or not?
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(a) How many distinct words can you form by shuffling the letters of

PROBABILITY?

(b) As a result of a race with 100 entrants, how many possibilities for the

gold, silver and bronze medalists?

(c) Choose a captain, goalie and 5 players from a group of 9 friends.

(d) Choose a team of 7 from among 9 friends.

(e) How many possible car plate numbers are there in Ankara (assume two

or three letters, and two or three digits are used on a car plate, chosen

out of 23 letters and 9 numerals)?

(f) I can use the numbers 0, 1, and 9 arbitrarily many times to form a

sequence of length 8. How many possibilities are there for the total

weight of my sequence (sum of all numbers in the sequence)?

(g) Find the number of solutions of the equation x1 + x2 + . . . + xr = n,

where n ≥ 1 and xi ≥ 0’s are integers. (Hint: note that this is an

example of “type-D” as well. Also think of the case where xi > 0. In

that case, there has to be at least one ball in each bin.)



Chapter 2

Discrete Random Variables

2.1 Preliminaries

Definition 4 A random variable is a mapping (a function) from the sam-

ple space into real numbers.

• We can define an arbitrary number of different random variables on

the same sample space.

Ex: Toss a fair 6-sided die. Let the random variableX take on the value

1 if the outcome is 6, and 0 otherwise. Let the random variable Y be equal

to the outcome of the die. Illustrate the mappings from the sample space

associated with X and Y . (Note that {X = 1} = {outcome is 6} = A,

and {X = 0} = Ac.)

28
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Definition 5 A discrete random variable takes a discrete set of values.

The Probability Mass Function (PMF) of a discrete random variable is

defined as

pX(x) = P(X = x)

Ex: Find and plot the PMFs of X and Y defined in the previous

example.

• A discrete random variable is completely characterized by its PMF.

Ex: Let M be the maximum of the two rolls of a fair die. Find pM(m)

for all m. (Think of the sample space description and the sets of outcomes

where M takes on the value m.)
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2.2 Some Discrete Random Variables

2.2.1 The Bernoulli Random Variable

In the rest of this course, we shall define the Bernoulli random variable

with parameter p as the following:

X =







1 with probability p

0 with probability 1− p

In shorthand we say X ∼Ber(p).

Ex: Express and sketch the PMF of a Bernoulli(p) random variable.

Despite its simplicity, the Bernoulli r.v. is very important since it can

model generic probabilistic situations with just two outcomes (often re-

ferred to as binary r.v.).

Examples:

• Indicator function: Consider the random variable X defined previ-

ously. X(w) = 1 if outcome w ∈ A, and X(w) = 0 otherwise. So,

X indicates whether the outcome is in set A or Ac. X, a Bernoulli

random variable, is sometimes called the “indicator function” of the
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event A. This is sometimes denoted as X(w) = IA(w).

• Consider n tosses of a coin. Let Xi = 1 if the ith roll comes up H, and

Xi = 0 if it comes up T. Each of the Xi’s are independent Bernoulli

random variables. The Xi’s, i = 1, 2, . . . are a sequence of independent

“Bernoulli Trials”.

• Let Z be the total number of successes in n independent Bernoulli tri-

als. Express Z in terms of n independent Bernoulli random variables.

2.2.2 The Geometric Random Variable

Consider a sequence of independent Bernoulli trials where the probabil-

ity of success in each trial is p (We will later call this a “Bernoulli Process”.)

Let Y be the number of trials up to and including the first success. Y is a

Geometric random variable with parameter p.

P(Y = k) = for k =
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Sketch pY (k) for all k.

Check that this is a legitimate PMF.

Ex: Let Z be the number of trials up to (but not including) the first

success. Find and sketch pZ(z).

2.2.3 The Binomial Random Variable

Consider n independent Bernoulli Trials each with probability of success

p, and let B be the number of successes in the n trials. B is Binomial with

parameters (n, p).
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P(B = k) = for k =

Ex: Let R be the number of Heads in n independent tosses of a coin

with bias p.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

k

p X
(k

)

n=7, p=0.25
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0
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p X
(k
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n=40, p=0.25
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2.2.4 The Poisson Random Variable

A Poisson random variable X with parameter λ has the PMF

pX(k) =
λke−λ

k!
, k = 0, 1, 2, . . .

Ex: Show that
∑

k pX(k) = 1 (Hint: use the Taylor series expansion of

eλ.

• The Binomial is a good approximation for the Poisson with λ = np

when n is very large and p is small, for small values of k. That is, if

k ≪ n
λke−λ

k!
≈ n!

k!(n− k)!
pk(1− p)(n−k)

2.2.5 The Discrete Uniform R.V.

The discrete uniform random variable takes consecutive integer values

within a finite range with equal probability. That is, X is Discrete Uniform

in [a, b], b > a if and only if

pX(k) = 1/(b− a+ 1) for k = a, a+ 1, a+ 2, . . . , b

Ex: A four-sided die is rolled. Let X be equal to the outcome, Y be

equal to the outcome divided by three, and Z be equal to the square of the

outcome.
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(Note that Y and Z both take four equally likely values, however they do

not have the discrete uniform distribution.)

2.3 Functions of Random Variables

Y = f(X)

Ex: Let X be the temperature in Celsius, and Y be the temperature

in Fahrenheit. Clearly, Y can be obtained if you know X.

Y = 1.8X + 32

Ex: P(Y ≥ 14) = P(X ≥?)

Ex: A uniform r.v. X whose range is the integers in [−2, 2]. It is passed

through a transformation Y = |X|.

To obtain pY (y) for any y, we add the probabilities of the values x that

results in g(x) = y:

pY (y) =
∑

x:g(x)=y

pX(x).

Ex: A uniform r.v. whose range is the integers in [−3, 3]. It is passed

through a transformation Y = u(X) where u(·) is the discrete unit step

function.
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2.4 Expectation and Variance

We are sometimes interested in a summary of certain properties of a

random variable.

Ex: Instead of comparing your grade with each of the other grades in

class, as a first approximation you could compare it with the class average.

Ex: A fair die is thrown in a casino. If 1 or 2 shows, the casino will pay

you a net amount of 30, 000 TL (so they will give you your money back

plus 30,000), if 3, 4, 5 or 6 shows you they will take the money you put

down. Up to how much would you pay to play this game?

Ex: Alternatively, suppose they give you a total of 30, 000 if you win

(regardless of how much you put down), and nothing if you lose. How

much would you pay to play this game?

(Answer: the value of the first game (the break-even point) is 15,000,

and for the second game, it is 10,000. In the second game, you expect to

get 30,000 with probability 1/3, so you expect to get 10,000 on average.)

Definition 6 The expected value ormean of a discrete r.v. X is defined

as

E[X] =
∑

x

xP (X = x) =
∑

x

xpX(x).

The intuition for the definition is a weighted some of the values the r.v.

takes, where the weights are the probability masses of these values.
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The mean of X is a representative value, which lies somewhere in the

middle of its range. The definition above tells us that the mean corresponds

to the center of gravity of the PMF.

Ex: Let X be your net earnings in the (first) Casino problem above,

where you put down 12, 000 TL to play the game. Find E(X).

Answer: E(X) = 2000 (You expect to make money, and the Casino

expects to lose money. A more realistic Casino would charge you something

strictly more than 15,000, so that they can expect to make a profit.)

2.4.1 Variance, Moments, and the Expected Value Rule

A very important quantity that provides a measure of the spread of X

around its mean is variance.

var(X) = E[(X − E[X])2] (2.1)

The variance is always nonnegative. One way to calculate var(X) is to

use the PMF of (X − E[X])2.

Ex: Find the variance of the random variables X with the following

PMFs.

(a) pX(15) = pX(20) = pX(25) = 1/3.

(b) pX(15) = pX(25) = 1/2.
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The standard deviation of X is also a measure of the spread of X around

its mean: σX =
√

var(X). It is usually simpler to interpret since it has

the same units as X.

Another way to evaluate var(X) is by using the following result.

Theorem 2 Let X be a r.v. with PMF pX(x) and g(X) be a function of

X. Then,

E[g(X)] =
∑

x

g(x)pX(x).

Proof: Exercise.

Note: Unless g(x) is a linear function, E[g(X)] is in general not equal

to g(E[X]).

Ex: When I listen to Radyo ODTU in the morning, I drive at a speed

of 50 km per hour, and otherwise I drive at 70 km per hour. Suppose I

listen to Radyo ODTU with probability 0.3 on any given day. What is the

average duration of my 5 km trip to work?

Answer: 4.8 minutes.

Notes: The trip duration T is a nonlinear function T = D/V of the speed

V . In fact it is a convex function, which means E[g(X)] > g(E[X]). So it

would bewrong to calculate the expected speed, which is 0.3*50+0.7*70=64

km/hour, and find the expected duration as 5/64*60=4.68 min.
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2.4.2 Properties of Expectation and Variance

Expectation is always linear: E(aX + b) = aE(X) + b, which follows

from the definition (note that the definition is a linear sum.)

Evaluating variance in terms of moments is sometimes more convenient.

var(X) = E[X2]− (E[X])2 (2.2)

Proof:

Variance is NOT linear: var(aX + b) = a2var(X).

Proof:

Consequently,

• adding a constant to a random variable does not change its variance,

• scaling a random variable by a scales the variance by a2,

• the variance of a constant is 0 (and conversely, a random variable with



METU EE230 Spring 2012 E. Uysal-Biyikoglu 40

zero variance is a deterministic constant.)

Ex: As exercise, derive the mean and variance of the

• Bernoulli(p) random variable

• Discrete Uniform[a,b] random variable.

• Poisson(λ) random variable.

2.5 Joint PMFs of multiple random variables

Often, we need to be able to think about more than one random variable

defined on the same probability space. They may or may not contain

information about each other. Consider:

• two signals received as a result of two radar measurements

• the current workload at each of a group of network routers

• your grades received from three consecutive exams

Let X and Y be random variables defined on the same probability space.

Their joint PMF is defined as the following.

pX,Y (x, y) = P (X = x, Y = y)
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More precise notations for P(X = x, Y = y): P(X = x and Y = y),

P({X = x} ∩ {Y = y}), P({X = x, Y = y}).

P((X, Y ) ∈ A) =

The term marginal PMF is used for pX(x) and pY (y) to distinguish

them from the joint PMF. Can one find marginal PMFs from the joint

PMF?

Note that the event {X = x} is the union of the disjoint sets {X = x, Y = y}
as y ranges over all the different values of Y . Then,

pX(x) = P(X = x)

= P({X = x}) = P(
⋃

y

{X = x, Y = y})

=
∑

y

P({X = x, Y = y}) =
∑

y

P(X = x, Y = y)

=
∑

y

pX,Y (x, y).

Similarly, pY (y) =
∑

x pX,Y (x, y).

The tabular method can be utilized to obtain the marginal PMFs from

the joint PMF.

Ex: Two r.v.s X and Y have the joint PMF given in the 2-D table.

x=1 2 3
y=1 0 1/10 2/10
2 1/10 1/15 1/30
3 2/10 2/10 1/10
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Ex: For the joint PMF in the previous example, please compute the

following:

1. P(X < Y ) =

2. pX(x) =

Ex: Consider the joint PMF of random variables X and Y which take

positive integer values:

pX,Y (x, y) =







c 1 < x+ y ≤ 3

0 otherwise

1. c =?

2. Find the marginals.

2.6 Functions of Multiple Random Variables

Let Z = g(X, Y ).

pZ(z) =
∑

{(x,y)|g(x,y)=z}
pX,Y (x, y)
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The expected value rule naturally extends to functions of more than one

random variable:

E[g(X, Y )] =
∑

x

∑

y

g(x, y)pX,Y (x, y)

Special case when g is linear: g(X, Y ) = aX + bY + c

E[aX + bY + c] =

Ex: Expectation of the Binomial r.v.

Ex: The hat problem: The hats of n people are shuffled and randomly

redistributed to them. What is the expected number of people getting their

own hat? (Alternatively, consider a string of length n randomly formed by
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shuffling the string 123..n without any regard to the integers. Note that

the probability of integer i occuring in the ith location is 1/n for each i,

by symmetry. Now, compute the expected number of integers staying in

their original locations.)

Ex: Multi-sensor laser communication: On/off signaling can be used to

transmit bits in laser communication. In an on period of 1µsec, the number

of photons detected at a sensor is a Poisson with parameter λ = 100. In a

high-quality system, five such sensors are used to enhance communication.

Find the expected value of the total number of photons detected in the

system in 1µsec.
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2.7 Conditioning

The conditional PMF of the random variable X, conditioned on the

event A with P(A) > 0 is defined by:

pX |A(x|A) = P(X = x|A) = P({x = X} ∩ A)

P(A)

Show that pX |A is a legitimate PMF. (Expand P(A) using the total prob-

ability theorem)

Ex: Let X be the outcome of one roll of a tetrahedral die, and A be

the event that we did not get 1.

Ex: Ali will take the motorcycle test again and again until he passes;

however, he is only allowed n chances to take the test. Suppose each

time Ali takes the test, his probability of passing is p, irrespective of what

happened in the previous attempts. What is the PMF of the number of

attempts, given that he passes?
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Ex: Consider an optical communications receiver that uses a photode-

tector that counts the number of photons received within a constant time

unit. The sender conveys information to the receiver by transmitting or

not transmitting photons. There is shot noise at the receiver, and conse-

quently even if nothing is transmitted during that time unit, there may be

a positive count of photons. If the sender transmits (which happens with

probability 1/2), the number of photons counted (including the noise) is

Poisson with parameter a + n. If nothing is transmitted, the number of

photons counted by the detector is again Poisson with parameter n. Given

that the detector counted k photons, what is the probability that a signal

was sent? Examine the behavior of this probability with a, n and k.

2.7.1 Conditioning one random variable on another

pX |Y (x|y) = P(X = x|Y = y)
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Show that

pX |Y (x|y) =
pX,Y (x, y)

pY (y)

The function pX |Y (x|y) has the same shape as pX,Y (x, y) (a slice through

the joint pmf at a fixed value of y), and because of the normalization (di-

vision by pY (y)), it is a legitimate PMF.

Ex: The joint PMF of two r.v.s X and Y that share the same range of

values {0, 1, 2, 3} is given by

pX,Y (x, y) =







1/7 1 < x+ y ≤ 3

0 otherwise
.

Find pX |Y (x|y) and pY |X(y|x).
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One can obtain the following sequential expressions directly from the

definition:

pX,Y (x, y) = pX(x)pY |X(y|x)
= pY (y)pX |Y (x|y).

Ex: A die is tossed and the number on the face is denoted by X. A fair

coin is tossed X times and the total number of heads is recorded as Y .

(a) Find pY |X(y|x).

(b) Find pY (y).

2.7.2 Conditional Expectation

Let X and Y be random variables defined in the same probability space,

and let A be an event such that P(A) > 0.

E(X|A) =
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E(g(X)|A) =

E(X|Y = y) =

Furthermore, let Ai, i = 1, . . . , n be a disjoint partition of the sample

space. Then,

E(X) =
∑

iE(X|Ai)P (Ai)

E(X|B) =
∑

iE(X|B ∩ Ai)P (Ai|B)

E(X) =
∑

y pY (y)E(X|Y = y)

The above three are statements of the “Total Expectation Theorem”.

Ex: Data flows entering a router are low rate with probability 0.7, and

high rate with probability 0.3. Low rate sessions have a mean rate of 10

Kbps, and high rate ones have a rate of 200 Kbps. What is the mean rate

of flow entering the router?

Ex: Find the mean and variance of the Geometric random variable

(with parameter p) using the Total Expectation Theorem. (Hint: condition

on the events {X = 1} and {X > 1}.
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Ex: X and Y have the following joint distribution:

pXY (x, y) =







1/27 x ∈ {4, 5, 6}, y ∈ {4, 5, 6}
2/27 x ∈ {1, 2, 3}, y ∈ {1, 2, 3}

Find E(X) using the total expectation theorem.

Ex: Consider three rolls of a fair die. Let X be the total number of

6’s, and Y be the total number of 1’s. Find the joint PMF of X and Y ,

E(X|Y ) and E(X).

Reading assignment: Example 2.18: The two envelopes paradox, and

Problem 2.34: The spider and the fly problem.
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2.7.3 Iterated expectation

Using the total expectation theorem lets us compute the expectation of

a random variable iteratively: To compute E(X), first determine E(X|Y ),

then use:

E(X) = E[E(X|Y )]

The outer expectation is over the marginal distribution of Y . This follows

from the total expectation theorem, because it is simply a restatement of:

E(X) =
∑

y

E(X|Y = y)pY (y) == E[E(X|Y )]

(recall that E(X|Y ) is a random variable, taking values E(X|Y = y) with

probability pY (y).)

Ex: The joint PMF of the random variables X and Y takes the values

[3/12, 1/12, 1/6, 1/6, 1/6, 1/6] at the points [(−1, 2), (1, 2), (1, 1), (2, 1), (−1,−1), (1,−1)] ,

respectively. Compute E(X) using iterated expectations.

Ex: Consider three rolls of a fair die. Let X be the total number of 6’s,

and Y be the total number of 1’s. Note that E(X) = 1/2. Confirm this

result by computing E(X|Y ) and then E(X) using iterated expectations.
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2.8 Independence

The results developed here will be based on the independence of events

we covered in before. Two events A and B are independent if P(A∩B) =

P(A,B) = P(A)P(B).

2.9 Independence of a R.V. from an Event

Definition 7 The random variable X is independent of the event A if

P({X = x} ∩ A) = P(X = x)P(A) = pX(x)P(A)

for all x.

Ex: Consider two tosses of a coin. Let X be the number of heads and

let A be the event that the number of heads is even. Show that X is NOT

independent of A.
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2.10 Independence of Random Variables

Consider two events {X = x} and {Y = y}.

Definition 8 Two random variables X and Y are independent if

P({X = x} ∩ {Y = y}) = P({X = x})P({Y = y})

for all x, y.

Intuitively speaking, knowledge on Y conveys no information on X, and

vice versa.

Independence of two random variables conditioned on an eventA: pX,Y |A(x, y) =

pX |A(x)pY |A(y) for all x, y.

When X and Y are independent, E[XY ] = E[X]E[Y ].

If X and Y are independent, so are g(X) and h(Y ).

The independence definition given above can be extended to multiple

random variables in a straightforward way. For example, three random

variables X, Y, Z are independent if:
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2.10.1 Variance of the Sum of Independent Random Variables

Let us calculate the variance of the sum X + Y of two independent

random variables X, Y .

If one repetitively uses the above result, the general formula for the sum

of independent random variables is obtained:

Ex: During April in Ankara, it rains with probability p each day, in-

dependently of every other day. Compute the variance of the number of

rainy days in the month. Consider how the variance changes with p.

Ex: Show that, when E(XY ) = E(X)E(Y ) is satisfied, then the vari-

ance of the sum X + Y is equal to the sum of the variances, that is:

E(XY ) = E(X)E(Y ) → var(X + Y ) = varX + varY
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• Note that E(XY ) = E(X)E(Y ) always holds when X and Y are

independent. In general, when E(XY ) = E(X)E(Y ) holds, the ran-

dom variables are said to be “uncorrelated”, they are not necessarily

independent.

• Also note that in contrast, expectation is always linear, expectation

of the sum is equal to the sum of expectations:

E[X + Y ] = E[X] + E[Y ]

This is true whether the random variables are dependent or not.

Ex: The number of e-mail messages I get every day is Poisson dis-

tributed with mean 10. Let L be the total number of e-mail messages I

receive in a week. Compute the mean and variance of R.

Ex: (Mean and variance of the sample mean) An opinion poll is con-

ducted to determine the average public opinion on an issue. It is modelled

that a person randomly selected from the society will vote in favour of the

issue with probability p, and against it with probability 1 − p, indepen-

dently of everyone else. The goal of the survey is to estimate p. To keep the

cost of the poll at a minimum, we are interested in surveying the smallest

number of people such that the variance of the result is below 0.001. (Hint:

Note that an upperbound on the variance of a Bernoulli random variable

is 1/4.)



Chapter 3

General Random Variables

3.1 Continuous Random Variables

Definition 9 A random variable X is continuous if there is a nonnegative

function fX, called the probability density function (PDF) such that

P (X ∈ B) =

∫

x∈B
fX(x)dx

for every subset B of the real line.

The probability that the value of X falls within an interval is

P(a ≤ X ≤ b) =

∫ b

a

fX(x)dx,

which can be interpreted as the area under the graph of the PDF.

56
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3.1.1 Properties of PDF

If fX(x) is a PDF , the following hold.

1. Nonnegativity: fX(x) ≥ 0

2. Normalization property:

3. (for small δ) P(x < X ≤ x+ δ) =
∫ x+δ

x fX(a)da ≈

By the last item, fX(x) can be viewed as the “probability mass per unit

length near x”. Although it is used to evaluate probabilities of some events,

fX(x) is not itself an event’s probability. It tells us the relative concentra-

tion of probability around the point x.

Ex: (fX(x) may be larger than 1)

fX(x) =

{

cx2 , 0 ≤ x ≤ 1

0 , o.w.

1. Find c.

2. Find P (|X|2 ≤ 0.5).

Ex: (A PDF can take arbitrarily large values) Sketch the following

PDF.

fX(x) =

{

c/(
√
x) , |x| ≤ 2

0 , o.w.
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3.1.2 Some Continuous Random Variables and Their PDFs

Continuous Uniform R.V.

We sometimes have information only about the interval of a random

variable and nothing else. A PDF used very commonly in such a case is

fX(x) =

{

1
b−a , a < x < b

0 , o.w.
.
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Figure 3.1: Uniform PDF

Gaussian R.V.

fX(x) =
1√
2πσ2

e−
(x−µ)2

2σ2
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Figure 3.2: Gaussian (normal) PDF

Exponential R.V.

An exponential r.v. has the following PDF

fX(x) =







λe−λx if x ≥ 0

0, o.w.
,

where λ is a positive parameter.
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Figure 3.3: Exponential PDF
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3.2 Expectation

The expected value (or the mean) of a continuous random variable X

with PDF fX(x) is defined as

E[X] =

∫ ∞

−∞
xfX(x)dx

whenever the integral converges1.

The following results can be show similarly as in the discrete case:

• Note that E[X] is the center of gravity of the PDF.

• E[g(X)] = . . .

• varX = . . .

• If Y = aX + b, E[Y ] = . . . varY = . . .

Ex: Compute expectations and variances for Uniform and Exponential

random variables.
1If the integral is not finite, X is said to “not have a well-defined expectation”.
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3.3 Cumulative Distribution Functions

Definition 10 The cumulative distribution function (CDF) of a random

variable X is defined as

FX(x) = P(X ≤ x).

In particular,

FX(x) =







∑

k≤x pX(k) if X is discrete
∫ x

−∞ fX(τ)dτ, if X is continuous
.

The CDF FX(x) accumulates probability “up to (and including)” the

value x.

3.3.1 Properties of Cumulative Distribution Functions (CDFs)

(a) 0 ≤ FX(x) ≤ 1

(b) FX(−∞) = limx→−∞ FX(x) = , FX(∞) =

(c) P(X > x) = 1− FX(x)

(d) FX(x) is a monotonically nondecreasing function: if x ≤ y, then

FX(x) ≤ FX(y).

Proof:
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(e) If X is discrete, CDF is a piecewise constant function of x.

(f) If X is continuous, CDF is a continuous function of x. (The definition

of a continuous r.v. is based on this.)

(g) P(a < X ≤ b) = FX(b)− FX(a).

Proof:

(h) FX(x) is continuous from the right. That is, for δ > 0

lim
δ→0

FX(x+ δ) = FX(x
+) = FX(x).

Proof:

(i) P(X = x) = FX(x)− FX(x
−), where FX(x

−) = limδ→0 FX(x− δ).

Proof:
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(j) When X is discrete with integer values,

FX(x) =
∑

k≤x

pX(k),

pX(x) = P(X = x) = FX(x)− FX(x
−) = FX(x)− FX(x− 1).

(k) If X is continuous,

FX(x) =

∫ x

−∞
fX(τ)dτ,

fX(x) =
dFX(x)

dx
.

The second equality is valid for values of x where FX(x) is differentiable.

Ex: Let X be exponentially distributed with parameter λ. Derive and

sketch FX(x), the CDF of X.

3.3.2 CDFs of Discrete Random Variables

Discrete random variables have piecewise constant CDFs.

Ex: Find and sketch the CDF of a geometric random variable with

parameter p. Compare and contrast this with the CDF of an exponential

random variable with rate λ, when p is selected as 1 − e−λδ, as δ > 0

becomes arbitrarily small.
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Ex: You are allowed to take a certain exam n times, and let X1, X2,

. . ., Xn be the grades you get from each of these trials. Assume that the

grades are independent and identically distributed. The maximum will be

your final score. Find the CDF of your final score, in terms of the CDF of

one exam grade. What happens to the CDF as n increases?

Ex: CDF of a r.v. which is neither continuous nor discrete
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3.3.3 The Gaussian CDF

The random variable X is Gaussian, in other words, Normal, with pa-

rameters (µ, σ2) if it has the PDF:

fX(x) =
1√
2πσ2

e−
(x−µ)2

2σ2
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Figure 3.4: Gaussian (normal) PDF

X is said to be a Standard Normal if it’s Normal (i.e. Gaussian) with

mean 0 and variance 1. That is,

fX(x) =
1√
2π

e−
x2

2

The CDF of the standard Gaussian is defined as follows:

Φ(x) =

∫ x

−∞

1√
2π

e−
x2

2 dx

Note that this is the area under the standard Gaussian curve, up to point

x. We often use the function Φ(x) to make calculation involving general

Gaussian random variables.
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Normality is preserved by linear transformations: If X is Normal(µ, σ2)

and Y = aX + b, then Y is Normal(aµ+ b, a2σ2) (We can prove this after

we learn about Transforms of PDFs.) So, we can obtain any Gaussian by

making a linear transformation on a standard Gaussian. That is, letting

X be a standard Gaussian, if we let Y = σX + µ, then Y is Normal with

mean µ and variance σ2.

fY (y) =
1√
2πσ2

e−
(y−µ)2

2σ2

Then we have:

P (Y ≤ y) = P ((Y −µ)/σ ≤ (y−µ)/σ) = P (X ≤ (y−µ)/σ) = Φ((y−µ)/σ)

Ex: (Adapted from Ex 3.7 from the textbook.) The annual snowfall at

Elmadag̃ is modeled as a normal random variable with a mean of µ = 150

cm and a standard deviation of 50 cm. What is the probability that next

year’s snowfall will be at least 200 cm? (Note that from the standard

normal table, Φ(1) = 0.8413.)

Ex: Signal Detection (Adapted from Ex 3.7 from the textbook.) A

binary message is transmitted as a signal S, which is either +1 or −1 with

equal probability. The communication channel corrupts the transmission

with additive Gaussian noise with mean µ = 0 and variance σ2. The

receiver concludes that the signal +1 (or −1) was transmitted if the value

received is not negative (or negative, respectively). Find the probability of

error in terms of σ and study its behaviour with increasing σ.
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3.4 Conditional PDFs

The conditional PDF of a continuous random variableX, given an event

{X = A}, with P({X = A}) > 0 is defined by

fX |A(x) =







fX(x)
P({X=A}, if x ∈ A

0, otherwise.

Consequently, for any set B,

P (X ∈ B|X ∈ A) =

∫

B

fX |A(x)dx

Ex: The exponential random variable is memoryless: Let X be the life-

time of a lightbulb, exponential with parameter λ. Given X > t, find

P(X > t+ x).)

Conditional Expectation:

E(X|A) =

E(g(X)|A) =
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Ex: The voltage across the terminals of a power source is known to be

between 4.8 to 5.2 Volts, uniformly distributed. The DC current supplied

to the system is nonzero only when the source branch voltage exceeds 5 V,

and then, it is linearly proportional to the voltage with a constant of pro-

portionality a . Given that the system is working, compute the expected

value of the power generated by the source.

Divide and Conquer Principle: Let A1, A2, . . . An be disjoint partition

of the sample space, with P({X = Ai}) > 0 for each i. We can find fX(x)

by

fX(x) =

and

E(X) =

as well as

E(g(X)) =
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Ex: The metro train arrives at the station near your home every quar-

ter hour starting at 6:00 a.m. You walk into the station every morning

between 7:10 and 7:30, with your arrival time being random and uniformly

distributed in this interval. What is the PDF of the time that you have to

wait for the first train to arrive? Also find the expectation and variance of

your waiting time.

3.5 Multiple Continuous Random Variables

Two random variables defined for the same sample space are said to

be jointly continuous if there is a joint probability density function

fXY (x, y) such that for any subset B of the two-dimensional plane,

P((X, Y ) ∈ B) =

∫ ∫

(x,y)∈B
fXY (x, y)dxdy

When B is a rectangle:

When B is the entire real plane:
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The joint pdf at a point can be approximately interpreted as the “prob-

ability per unit area” near the vicinity of that point. Just like the joint

PMF, the joint PDF contains all possible information about the individual

random variables in consideration, and their dependencies. For example,

the marginals are found as:

fX(x) =

and

fY (y) =

Ex: Finding marginals from given two dimensional PDF: The joint

PDF of the random variables X and Y is equal to a constant on the set S

sketched on the board. Find the value of the constant c and the marginals

of X and Y . Also compute the expectation of X + 2Y .
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Ex: X and Y are “jointly uniform” in a circular region of radius r

centered at the origin. Compute the marginal PDFs of X and Y , their

expectations, and the expectation of the product XY .

3.5.1 Conditioning One R.V. on Another

Let X, Y be two r.v.s with joint PDF fX,Y (x, y). For any y with fY (y) >

0, the conditional PDF of X given that Y = y is defined by

fX |Y (x|y) =
fX,Y (x, y)

fY (y)
.

It is best to view y as a fixed number and consider the conditional CDF

fX |Y (x|y) as a function of the single variable x.

It may seem that the conditioning is on an event with zero probability

which would contradict the definition of conditional probability. However,

the PDF is not a probability. The conditional PDF fX |Y (a|b) describes the
concentration of probability when X is within a small neighbourhood of a,
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given that Y is within a small neighbourhood of b.

P(a ≤ X ≤ a+ δ1|b ≤Y ≤ b+ δ2)

=
P(a ≤ X ≤ a+ δ1, b ≤ Y ≤ b+ δ2)

P(b ≤ Y ≤ b+ δ2)

≈

=

Ex: In the example above where X and Y are jointly uniform on a

circular region, compute the conditional PDF fX |Y (x|y).

Ex: The speed of Iron-Man flying past an air traffic radar is modelled

as an exponentially distributed random variable with mean 200 km per

hour. The radar sensor will measure the speed of any target with an addi-

tive error. The error is modelled as a zero-mean normal with a standard

deviation equal to one tenth of the speed of the target. What is the joint

PDF of the actual speed and the error?
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Ex: Harry’s magic wand breaks at a random point (location of the point

is uniform along the length of the stick, which is 40 cm long). Suppose the

piece of the stick that Harry is left with is X cm long. Unfortunately, the

next day part of the stick is accidentally burnt while casting a spell. After

this accident, the length of the stick is reduced to D, where D is uniformly

distributed between [0, X]. Find fD(d).
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3.5.2 Computing Conditional Expectation with PDFs

The conditional expectation of a continuous r.v. X is defined similar to

its expectation. The only difference is that the conditional PDFs are used.

E[X|A] =
∫

E[X|Y = y] =

∫

E[g(X)|A] =
∫

E[g(X)|Y = y] =

∫

Ex: Consider a r.v. U which is uniform in [0, 100]. Find E[U |B] where

B = {U > 60}. Compare it to E[U ].

Total expectation theorem: the divide-and-conquer principle

E[X] =

E[g(X)] =

Ex: A coin is tossed 5 times. Knowing that the probability of heads is

a r.v. P uniformly distributed in [0.4, 0.7], find the expected value of the

number of heads to be observed.
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Independence for Continuous Random Variables

Definition 11 In general, two random variables X and Y are called inde-

pendent if for any events A and B,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B), (3.1)

where A and B are two arbitrary subsets real numbers.

• Suppose X and Y are continuous random variables, with fXY (x, y) =

fX(x)fY (y). Show that this condition implies the independence of X

and Y .

Sometimes, observing that random variables are NOT independent is

obvious from the region in which the joint PDF exists (recall the earlier

joint PMF example.) However, proving that they ARE independent usu-

ally requires analytical operation (again, recall the discrete examples.)

Example:

fXY (x, y) =

{

c , 0 < x ≤ 1, 0 < y ≤ x

0 , o.w.
(3.2)
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Ex: Show that each of the following conditions are equivalent to the

definition of independence for continuous random variables X and Y :

fX |Y (x|y) = fX(x)

fY |X(y|x) = fY (y)

Ex: If two random variables X and Y are independent, then

E(g(X)h(Y )) = E(g(X))E(h(Y )) for any two functions g(·) and h(·).

Ex: As a consequence of the property above, var(X + Y )= var(X)+

var(Y ) when X and Y are independent. (Proof is identical to the proof of

the discrete version, which we did before.)
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Inference and Continuous Bayes’s Rule

fX |Y (x|y) =
fX(x)fY |X(y|x)

fY (y)

Ex: Consider the lightbulb with exponential lifetime Y , with parameter

λ (failures per day). However, this time, λ is also random, and known to

be uniformly distributed in [1/4, 1] . Having recorded the actual lifetime

of a particular bulb as 4 days, what can we say about the distribution of

λ?

Now, consider inference of the probability of an event based on the

observation of the value of a random variable:

P(A|Y = y) =

= . . .

=
P(A)fY |A(y)

fY (y)
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where the denominator can be expressed as

fY (y) = P(A)fY |A(y) + P(Ac)fY |Ac(y)

Ex: Antipodal signaling under additive zero-mean unit-variance Gaus-

sian noise. Suppose that probabilities of sending a “1” or “−1” are p and

1− p, respectively. What is the posterior probability that a “1” was sent,

given that the noisy signal is measured as y. (Also consider the usual case

where p = 1/2).



Chapter 4

Further Topics on Random Variables

4.1 Derived Distributions

Let Y = g(X) be a function of a continuous random variable X. The

general procedure for deriving the distribution of Y is as follows:

1. Calculate the CDF of Y :

FY (y) = P(g(x) ≤ y) =

∫

{x:g(x)≤y}
fX(x)dx

2. Differentiate to obtain the PDF of Y :

fY (y) =
dFY

dy
(y)

Ex: Find the distribution of g(X) = 180
X

when X ∼ U [30, 60].

79
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Ex: Find the PDF of Y = g(X) = X2 in terms of the PDF of X, fX(x).

Ex: Show that, if Y = aX + b, where X has PDF fX(x), and a 6= 0

and b are scalars, fY (y) = 1
|a|fX(

y−b
a
). Note the following special case:

f−X(x) = fX(−x).

Ex: Show that a linear function of a Normal random variable is Normal.

(exercise.)
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4.1.1 Functions of Two Random Variables

Ex: Let X and Y be both uniformly distributed in [0, 1] and indepen-

dent. Let Z = XY . Find the PDF of Z.

Ex: Let X and Y be two independent discrete random variables. Ex-

press the PMF of Z = X +Y in terms of the PMFs pX(x) and pY (y) of X

and Y . Do you recognize this expression?

Ex: Let X and Y be two independent continuous random variables.

Show that, similarly to the discrete case, the PDF of Z = X + Y is given

by the “convolution” of the PDFs fX(x) and fY (y) of X and Y .
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Ex: Let X1, X2, X3, . . ., be a sequence of IID (independent, identically

distributed) random variables, whose distribution is uniform in [0, 1]. Using

convolution, compute and sketch the PDF of X1 + X2. As exercise, also

compute and sketch the PDF of X1 + X2 + . . . + Xn for n = 3, 4, and

observe the trend. As we add more and more random variables, the pdf of

the sum is getting smoother and smoother. It turns out that, in the limit

the shape of the density around the center will be converge to the Gaussian

PDF. (It turns out that the Gaussian PDF is a fixed point for convolution:

convolving two Gaussian PDFs results in another Gaussian PDF.)
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4.2 Covariance and Correlation

Covariance of two random variables, X and Y , is defined as:

cov(X, Y ) = E[(X − E(X))(Y − E(Y ))]

It is a quantitative measure of the relationship between the two random

variables: the magnitude reflects the strength of the relationship, the sign

conveys the direction of the relationship. When cov(X, Y ) = 0, the two

random variables are said to be “uncorrelated”. A positive correlation

implies, roughly speaking, that they tend to increase or decrease together.

A negative correlation, on the other hand, implies that when X increases,

Y tends to decrease, and vice versa.

Ex: Show that cov(X, Y ) = E(XY )− E(X)E(Y ) (as exercise.)

It follows from the alternative definition proven in the above exercise

that independence implies uncorrelatedness.

Ex: Exhibit a counterexample showing that uncorrelatedness does not

necessarily imply independence. (Consider X and Y uniformly distributed

in an area shaped like a rhombus.)

The correlation coefficient is a normalized form of covariance:

ρ(X, Y ) =
cov(X, Y )

√

var(X)var(Y )

What is the possible range of values for ρ(X, Y )? The positive and neg-

ative extremes of this range correspond to full positive and full negative

correlation, respectively. They are only attained when X = aY , where a
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is a positive, or negative scalar, respectively.

Ex: Show that, for any two random variables X and Y

var(X + Y ) = varX + varY + 2cov(X, Y )
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Ex: Variance in the hat problem.

Ex: Let X1, X2, X3, . . ., be a sequence of IID Bernoulli(p) random

variables (this “random sequence” is also called a “Bernoulli Process”).

For concreteness, suppose that Xi stands for the result of the ith trial in a

sequence of independent trials, such that Xi = 1 if the trial is a success,

and Xi = 0 if the trial does not result in a success.

1. Find cov(Xi, Xj) for any i and j.

2. For every i = 1, 2, . . . if trial i is successful, we toss fair a coin. If the

coin comes up H, we let Yi = 1. Otherwise, the value of Yi is set to

zero. Find cov(Yi, Yj) and cov(Xi, Yj) for all i and j.

3. Now, let Zi = 1 whenever Xi = 1 and the coin toss comes up T. Find

cov(Yi, Zi). What is sign of the correlation coefficient for Y and Z?
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4.3 Transforms

Transforms often provide us convenient ways with regard to certain

mathematical manipulations.

The transform, in other words, the moment generating function

(MGF), of a r.v. X is defined as

MX(s) = E[esX ].

Discrete case MGF: MX(s) =
∑

x e
sxpX(x)

Continuous case MGF: MX(s) =
∫∞
−∞ esxfX(x)dx

Ex: MGF of a Poisson r.v.

Ex: MGF of an exponential r.v.

Ex: MGF of a linear function of a r.v.
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Ex: MGF of a Gaussian random variable with mean µ and variance σ2

Ex: Using the MGF of the Gaussian, and the property we just proved

about the transform of a linear function of a random variable, show that

a linear function of a Gaussian r.v. is also Gaussian.

4.3.1 Computation of Moments from Transforms

The name moment generating function follows from the following prop-

erty.

E[Xn] =
dn

dsn
MX(s) |s=0

Proof:
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Ex: Mean and variance of an exponential r.v.

Note: The transform MX(s) of a r.v. X uniquely determines the PDF

of X. That is, one can always find fX(x) from MX(s).

4.3.2 Mixture of two distributions

Ex: The length in KBytes of IP packets received at a switch are, with

80 % probability, exponentially distributed with mean 10, and with 20 %

probability, exponentially distributed with mean 100. Determine the MGF

of the length of a randomly (uniformly) selected packet.



METU EE230 Spring 2012 E. Uysal-Biyikoglu 89

4.3.3 Sums of Independent R.V.s

When X1, X2, . . . , Xk are independent r.v.s, the MGF of their sum

Y =
∑k

i=1Xi has a simple form. In deriving it, one may interpret esXi

as a function of Xi.

Ex: Sum of independent Poisson r.v.s

Ex: The sum of two independent Gaussian random variables is Gaus-

sian. Let X ∼ N (µ1, σ
2
1), and Y ∼ N (µ2, σ

2
2).



Chapter 5

Limit Theorems

5.1 Markov and Chebychev Inequalities

Markov Inequality is a -typically loose- bound on the value of a non-

negative random variable X with a known mean E(X).

Markov Inequality: If a random variableX can take only non-negative

values, then

P(X ≥ a) ≤ E(X)

a

Proof:

90
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Ex: Let X be uniform in [5, 10]. Compute probabilities that X exceeds

certain values and compare them with the bound given by Markov Inequal-

ity.

To be able to bound probabilities for general random variables (not

necessarily positive), and to get a tighter bound, we can apply Markov

Inequality to (X − E(X))2 and obtain:

Chebychev Inequality: For random variable X with mean E(X) and

variance σ2, and any real number a > 0,

P(|X − E(X)| ≥ a) ≤ σ2

a2

Proof: Bound P((X − E(X))2 ≥ a2 using Markov Inequality.



METU EE230 Spring 2012 E. Uysal-Biyikoglu 92

Note that Chebychev’s Inequality uses more information about X in

order to provide a tighter bound about the probabilities related to X. In

addition to the mean (a first-order statistic), it also uses the variance,

which is a second-order statistic. You can easily imagine two very different

random variables with the same mean: for example, a zero-mean Gaussian

with variance 2, and a discrete random variable that takes on the values

+0.1, and -0.1 equally probably. Markov Inequality does not distinguish

between these distributions, where as Chebychev Inequality does.

It is possible to get better bounds that use more information- such as

the Chernoff bound (but those are beyond the scope of this course.)

Ex: Use Chebychev’s Inequality to lower-bound the probability that a

Gaussian within two standard deviations of its mean.
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5.2 Probabilistic Convergence

Let us remember the definition of convergence for a deterministic se-

quence of numbers from basic Calculus. Let {an} be a sequence of num-

bers, indexed by n. limn→∞ an = a means, for every ǫ > 0, there exists an

no such that for all n > no, |an − a| < ǫ.

5.2.1 Convergence “In Probability”

Now, instead of a sequence of numbers, consider a sequence of random

variables {Yn}, indexed by n. Yn converges in probability to a number a if

for every ǫ > 0, limn→∞ P (|Yn − a| > ǫ) = 0. The notation is: Yn
i.p→ a.

Ex: Suppose for each n, Yn takes the value n with probability 1/n, and

the value zero with probability 1− 1/n. Does {Yn} converge, and if so, to

what?
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In proving “convergence in probability” we often use Chebychev’s In-

equality, as in the following example.

Ex: Flip a fair coin n times, independently. Let Yn be equal to the

number of heads minus n/2. Does Yn

n converge?

The following result is a generalization of the previous example.

5.3 The Weak Law of Large Numbers

The Weak Law of Large Numbers (WLLN) is an important special case

of convergence in probability. Consider X1, X2, . . . IID, with E(Xi) =

µ, and varXi = σ2 < ∞ for all i. The sample mean sequence Mn =
X1+X2+...+Xn

n converges to µ in probability.

Proof: (Use the Chebychev Inequality on Mn.)
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Ex: Polling: We want to estimate the fraction of the population that

will vote for XYZ. Let Xi be equal to 1 if the ith person votes in favor of

XYZ, and 0 otherwise. How many people should we poll, to make sure

our error will be less than 0.01 with 95% probability? (Answer: with

Chebychev Inequality, we get n=50,000. However, this is too conservative.

Using the Central Limit Theorem, we will get that a poll over a much

smaller number of people will suffice.)
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5.4 The Central Limit Theorem

Let X1, X2, . . . be a sequence of IID random variables with E(Xi) = µ,

and varXi = σ2 < ∞, and define

Zn =
X1 +X2 + . . .+Xn − nµ

σ
√
n

Then, the CDF of Zn converges to the standard normal CDF

Φ(z) =
1√
2π

∫ z

−∞
e−x2/2dx

in the sense that

lim
n→∞

P(Zn ≤ z) = Φ(z)

for every z.

Let’s see a very simple application of this that illustrates many of the

issues.

Ex: Toss a fair coin 100 times. Find an approximation for the number

of H’s being between 45 and 55 (inclusive).
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Simple Proof of the Central Limit Theorem: We will use Trans-

forms. For simplicity, assume E(X) = 0, σ = 1. Consider the transform

of Zn, ΦZn
(s).

ΦZn
(s) = E[es

X1+X2+...+Xn
√

n ]

= E[es
X1
√

nes
X2
√

n . . . es
Xn
√

n ]

=
n
∏

i=1

E[es
Xi√

n ]

= (E[es
Xi
√

n ])n

= (E[1 +
sXi√
n
+

(sXi)
2

2n
. . .])n( using Taylor Series expansion)

= (E[1 +
(sXi)

2

2n
. . .])n( zero mean)

→ es
2/2

Since the transform of ΦZn
converges to that of a standard Gaussian,

and there is a one-to-one mapping between transforms and distributions,

we conclude that ΦZn
converges to a standard Gaussian.

There are other versions of the central limit theorem (CLT), but this

basic version assumes that the random variables are independent, identi-

cally distributed, with finite mean and variance. Aside from these, there is

no requirement on the distribution of X, it can be continuous, discrete, or

mixed. One thing to be careful about while using the CLT is that this is a

“central” property, i.e. it works well around the mean of the distribution,

but not necessarily at the tails (consider, for example, Xi being strictly

positive and discrete- then Zn has absolutely no probability mass below

zero, whereas the Gaussian distribution does.)
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We shall end this topic with an application of the CLT to the polling

problem.

Ex: Revisit the polling problem. Find approximately how large n

should be such that the probability that the poll result differs from the

true voter fraction in absolute value by more than 0.01 is less than 5 per-

cent. (Answer: n ≥ 10, 000 will suffice.)



Chapter 6

The Bernoulli and Poisson Processes

6.1 The Bernoulli Process

By this time in the course, we have actually covered all the background

for the Bernoulli Process under the disguise of “Bernoulli trials”. All that

remains is to introduce it as a random process (in other words, a stochastic

process).

A discrete stochastic process is a sequence of random variables, {Xi},
indexed by i. Typically, i = 1, 2, . . ..

The Bernoulli process with rate p is a sequence of IID Bernoulli random

variables with parameter p:

Xi =

{

1 ,with probability p

0 ,with probability 1− p

You can think of this as the result of a sequence of independent tosses of

a coin with bias p. Thus it is easy to see that it has the following properties.

100
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6.1.1 Properties

1. Binomial sums: Let S be the number of 1’s among X1, X2, . . . , Xn

is Binomial(n, p) (number of successes in n trials). In other words,

S =
∑n

i=1Xi. Then, E(S) = np, var(S) = np(1 − p) and pS(k) =,

k = 0, 1, . . . , n.

2. Geometric first arrival time: Let T be the time of the first success,

T ≥ 1. Then, E(T ) = 1
p , var(T ) = 1−p

p2 and pT (t) = (1 − p)t−1p,

t = 1, 2, . . ..

3. Fresh-start: For any given time i, the sequence of random variables

Xi+1, Xi+2, . . . (the future of the process) is also a Bernoulli process,

and is independent of X1, X2, . . . , Xn (the past.)

4. Memorylessness and Geometric Inter-arrivals: Let i + T be the time

of the first success after time i, T ≥ 1. Then, E(T ) = 1
p , var(T ) =

1−p
p2

and pT (t) = (1− p)t−1p, t = 1, 2, . . ..

Ex: Ayse and Burak are playing a computer game. In each round of

the game, Ayse wins with probability p, and otherwise, Burak wins. Find

the PMF of the number of games won by Ayse between any two games

won by Burak.
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Ex: Let Yk be the total number of games played up to and including

the kth game won by Ayse. Find the mean, variance and the PMF of Yk.

(This is called the Pascal PMF of order k with parameter p.)

6.1.2 Splitting and Merging the Bernoulli Process

Ex: Show that when we split each arrival of a Bernoulli(p) process

independently with probability r, the resulting subprocesses are Bernoulli

with rates rp and (1− r)p. Are the resulting processes independent?
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Ex: Show that when we merge two INDEPENDENT Bernoulli pro-

cesses of rates p1 and p2, the resulting process is Bernoulli with rate

p1 + p2 − p1p2.
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6.2 The Poisson Process

Consider arrivals (of busses, customers, photons, e-mails, etc) occurring

at random points in time. We say that the arrival process is a Poisson Pro-

cess if the times between arrivals are IID, Exponential random variables.

x x
1

2
x3

More precisely, let X1, X2, X3, be the sequence of inter-arrival times as

shown in the figure. The process is a Poisson process of rate λ if the {Xi},
i ≥ 1 are independent and Exponential with rate λ. Note that the mean

time between two arrivals is 1
λ.

Ex: I am waiting for the bus, and bus arrivals are known to be a Poisson

process at rate 1 bus per 10 minutes. Starting at time t = 0, what is the

expected arrival time of the third bus?
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Distribution of residual time: At an arbitrary time t > 0, let R

be the duration until the next arrival. This is called the “residual time”

because it is only part of the inter-arrival time that t falls into. It is easy to

show that R has the same distribution as a regular inter-arrival time. This

is a consequence of the Exponential being “memoryless”. It also implies

that the Poisson process has the “fresh-start” property.

Ex: Given that I arrive at the bus-stop at t = 19 and learn that I have

missed the second bus by two minutes, how much do I expect to wait?
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Equivalent Definition of the Poisson Process:

An arrival process that satisfies the following is a Poisson process.

1. The probability P(k, τ) that there are k arrivals in any time interval

of size τ is given by:

P (k, τ) =
(λτ)ke−λτ

k!
.

Note that this is the Poisson PMF, with mean λτ .

2. The numbers of arrivals in disjoint intervals are independent.

Ex: I get email according to a Poisson process at rate λ = 0.1 arrivals

per minute. If I check my email every hour, what is the expected number

of new messages I find in my inbox when I check my email? What is the

probability that I find no messages? One message? Repeat for an e-mail

checking period of two hours.
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The time-reversed process is also Poisson: We can show that

the reverse residual time distribution is the same as the inter-arrival time

distribution.

Ex: In the bus problem, what is the expected number of people on

the bus that I get on? (Hint: Consider the people that arrived in the

two minutes before I arrived, as well as the people that arrive while I am

waiting.)

The random incidence “paradox”: When I arrive at random, the in-

terval of time I arrive in has twice the expectation of a regular inter-arrival

time. Recall the difference of interviewing bus drivers versus passengers,

to understand how crowded a bus is on average.
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Relationship to the Bernoulli process: Take a Poisson process at

rate λ and discretize time finely, in chunks of size δ. Show that as δ → 0,

the Poisson process can be approximated by a Bernoulli process.

The “Baby Bernoulli” definition of the Poisson process: We can

equivalently define a Poisson process as a process where the probability of

arrival in any time interval of size δ is λδ + o(δ), the probability of more

than one arrival is, o(δ), and arrivals in disjoint intervals are independent.



METU EE230 Spring 2012 E. Uysal-Biyikoglu 109

6.2.1 Splitting and Merging Poisson Processes

Ex: Show that, when we send each arrival of a Poisson process at rate λ

to a process A with probability p, and process B with probability 1−p, the

resulting processes A and B are Poisson with rates pλ and (1− p)λ. Note

also that processes A and B are independent of each other (this is unlike

the Bernoulli case, where we can easily show that the split processes are

not independent.) (Hint: Express the transform of the interarrival time as

a geometric sum of exponentials.)

Ex: Show that when we merge two INDEPENDENT Poisson processes

at rates λa and λb, we get a Poisson process at rate λa+λb. (Hint: consider

two lightbulbs with exponential lifetimes running side by side. Find the

distribution of the time that the first one burns out.)


