M ET U

Department of Mathematics

NOTE: k is a field in all questions below.

1. $(3 \times 5$ pts. $)$ For a fixed monomial order let G be a Groebner basis for an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$, and let \bar{f}^{G} denote the unique remainder of $f \in k\left[x_{1}, \ldots, x_{n}\right]$ on division by elements of G.
a) Show that $\bar{f}^{G}=\bar{g}^{G}$ if and only if $f-g \in I$.
b) Conclude that $\overline{f+g}^{G}=\bar{f}^{G}+\bar{g}^{G}$.
c) Conclude that $\overline{f \cdot g}^{G}={\overline{\bar{f}^{G} \cdot \bar{g}^{G}}}^{G}$.
2. $(20+5+5$ pts.) a) Use Buchberger's Algorithm to compute a Groebner basis of the ideal $I=$ $\left\langle x^{2} y^{2}+x+1, x y^{3}+y+1\right\rangle$ with respect to lex order where $x>y>z$.
2.b) What is the reduced Groebner basis of I ?
c) How many points are there in $V(I) \subset \mathbb{C}^{2}$?
3. $\left(15+5\right.$ pts.) a) Is $\left\{x^{3} z+x y, x y^{4}-x z\right\}$ a Groebner basis of the ideal $I=\left\langle x^{3} z+x y, x y^{4}-x z\right\rangle$ with respect to grlex order where $x>y>z$?
b) Is $x^{2} y^{3} z^{2}+x y^{4} z$ in $I ?$
4. $(6+4+10$ pts. $)$ Let $x=s t, y=s^{2}, z=t^{2}$ be a parametrization. A Groebner basis for the ideal $I=\left\langle x-s t, y-s^{2}, z-t^{2}\right\rangle \subset \mathbb{C}[s, t, x, y, z]$ for lex order with $s>t>x>y>z$ is given as $G=\left\{s t-x, s^{2}-y, t^{2}-z, x^{2}-y z, s x-t y, s z-t x\right\}$.
a) Write down generators of the elimination ideals I_{1} and I_{2}.
b) What is the smallest affine variety in \mathbb{C}^{3} containing the image of this parametrization.
c) Show that the image of the parametrization equals the variety in part (b) in \mathbb{C}^{3}, but if the parametrization is considered from \mathbb{R}^{2} to \mathbb{R}^{3}, then the image of the parametrization is not equal to this variety in \mathbb{R}^{3}.
5. (15 pts.) Let $I=\left\langle f_{1}, f_{2}, \ldots, f_{r}\right\rangle \subset k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a given ideal. How can you determine whether I is a principal ideal or not? Describe an algorithm for this problem. DO NOT write down a code for the algorithm, only describe the process step by step in words. Explain why this algorithm gives the result.
