M ET U

Department of Mathematics

	Ideals, Varieties and Algorithms Midterm 1		
Code Acad. Year Semester Instructor	: Math 473 : 2019-2020 : Fall : Tolga Karayayla	Last Name : First Name : Department : Signature :	
Time Duration	: 17.40 : 120 minutes	6 Questions on 4 Pages SHOW DETAILED WORK!	
	$\left.{ }^{3} \quad\right\|^{4}$		

NOTE: k is a field in all questions below.

1. (15 pts.) Use lex order with $x>y$ and perform the Division Algorithm to divide $f=x^{2} y+2 y^{3}+3 x^{4} y^{5}$ by $\left(f_{1}, f_{2}, f_{3}\right)$ in $\mathbb{Q}[x, y]$ where $f_{1}=x^{3} y^{2}+x+2, f_{2}=x y^{3}+2 y$ and $f_{3}=y^{2}+3$.
2. (15 pts.) Fact: $\left\{g_{1}, g_{2}, \ldots, g_{r}\right\} \subset I$ is a Groebner basis of an ideal $I \subset k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ if and only if for every $f \in I$ there is at least one g_{i} such that $L T\left(g_{i}\right)$ divides $L T(f)$.
Use this fact to show that $\left\{g_{1}, g_{2}, g_{3}\right\}$ is not a Groebner basis of $I=\left\langle g_{1}, g_{2}, g_{3}\right\rangle \subset \mathbb{R}[x, y, z]$ in grlex order with $x>y>z$ where $g_{1}=x^{2} y+y^{2} z^{2}+z, g_{2}=x^{4}+2 x y^{4} z+1$ and $g_{3}=x^{2} y^{2}+y z+2$.
3. $(10+10$ pts.) a) For any monomial order $>$ show that $L T(f \cdot g)=L T(f) \cdot L T(g)$ for any nonzero polynomials f and g in $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
b) Let $I=\langle g\rangle \subset k\left[x_{1}, \ldots, x_{n}\right]$ where $g \neq 0$ be a principal ideal. Show that if G is a finite subset of I containing $c g$ for some $c \in k-\{0\}$, then G is a Groebner basis of I.
4. $\left(3 \times 9\right.$ pts.) a) Let $W=\left\{\left(t^{5}, t^{3}, t^{2}\right) \in k^{3} \mid t \in k\right\}$. Show that $W=V\left(x^{3}-y^{5}, x^{2}-z^{5}, y^{2}-z^{3}\right)$. (Hint: it may help to write $s=\frac{y}{z}$ when $\left.z \neq 0\right)$.
b) Show that $x y-z^{4} \in I(W)-\left\langle x^{3}-y^{5}, x^{2}-z^{5}, y^{2}-z^{3}\right\rangle$.
c) Show that if $f=x^{4} y^{3} z^{2}+y^{5} z^{3}+x^{6}$, then $f \notin\left\langle x^{3}-y^{5}, x^{2}-z^{5}, y^{2}-z^{3}\right\rangle$.
5. (15 pts.) Let $S \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an infinite set of polynomials (S can be countable or uncountable) and let $I=\langle S\rangle$ be the ideal generated by elements of S in $k\left[x_{1}, \ldots, x_{n}\right]$ (I consists of elements of the form $h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{r} f_{r}$ where $f_{i} \in S, h_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$ and $\left.r \in \mathbb{N}\right)$.
Show that there is a finite subset $\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$ of S such that $I=\left\langle g_{1}, g_{2}, \ldots, g_{m}\right\rangle$.
6. $(2 \times 4$ pts. $)$ Let $W=V\left(f_{1}, f_{2}\right), Y=V\left(g_{1}, g_{2}\right)$ and $Z=V\left(h_{1}, h_{2}\right)$ be affine varieties in k^{n} where f_{i}, g_{i} and h_{i} are in $k\left[x_{1}, \ldots, x_{n}\right]$. In part (a) and (b) below, write a system of polynomial equations whose solution set is the given set. No explanation is necessary.
a) $W \cap(Y \cup Z)$
b) $W \cup Y \cup Z$
