M E T U

Department of Mathematics

NOTE: k is a field in all questions below.

1. (3×7 pts.) a) Show that $f \in \mathbb{C}[x]$ has a multiple root (a root with multiplicity greater than 1 , a repeated root) if and only if $\operatorname{Res}\left(f, f^{\prime}, x\right)=0$.
b) Let $f(x, y)=x^{3} y+x^{2} y^{2}+x^{2}+x y+2 y+1$ and $g(x, y)=x^{2} y+2 x+y+1$ in $k[x, y]$. Write down $\operatorname{Res}(f, g, x)$ and $\operatorname{Res}(f, g, y)$ as determinants (do not expand/calculate the determinants).
c) When two polynomials $p(x, y)$ and $q(x, y) \in k[x, y]$ are given, can you determine whether p and q are relatively prime or not by using resultants without factorizing p and q and without calculating their greatest common divisor? If yes, how and why? If no, why not?
2. $(2 \times 7$ pts. $)$ a) Let k be an infinite field. Let $f, g \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ such that f is a nonzero polynomial satisfy $g\left(x_{1}, \ldots, x_{n}\right)=0$ for all $\left(x_{1}, \ldots, x_{n}\right) \in k^{n}-V(f)$. Show that g is the zero polynomial. (Hint: consider $f g$).
b) Let k be an infinite field and $W \subset k^{n}$ where $W \neq k^{n}$ be an affine variety. Show that if $g \in k\left[x_{1}, \ldots, x_{n}\right]$ vanishes on all points of $k^{n}-W$, then g is the zero polynomial (you can use the fact given in part (a) above even if you did not answer part (a)).
3. (13 pts.) For $J=\langle x y,(x-y) x\rangle \subset k[x, y]$, show that $\sqrt{J}=\langle x\rangle$. (Note that k here can be any field, k is not necessarily algebraically closed.)
4. $(2 \times 8$ pts. $)$ a) Let $J=\left\langle x^{2}+y^{2}-1, y-1\right\rangle \subset k[x, y]$. Find an $f \in I(V(J))$ such that $f \notin J$.
b) If k is \mathbb{C}, is J a radical ideal?
5. (12 pts.) For the rational parametrization $x=\frac{s t^{2}}{1+s^{2} t^{3}}, y=\frac{s+t}{s t}, z=\frac{s^{2}+t^{2}}{s t+t^{4}}$ in \mathbb{R}^{3}, how can you find the smallest affine variety in \mathbb{R}^{3} which contains the image of this parametrization? Explain the process step by step, do not carry out the computations.
6. (3×8 pts.) For each problem below, explain its solution method/procedure step by step. Do not prove why this procedure solves the problem, only list what to do in order to solve the problem.
a) When an ideal $I=\left\langle f_{1}, f_{2}, \ldots, f_{s}\right\rangle$ and a polynomial f is given in $k\left[x_{1}, \ldots, x_{n}\right]$, how do you determine whether $f \in \sqrt{I}$ or not?
b) For two ideals $I=\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ and $J=\left\langle g_{1}, g_{2}\right\rangle$ in $k[x, y]$, how do you find generators of the ideal $I \cap J$?
c) For two polynomials $f, g \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, how do you calculate a greatest common divisor of f and g without using factorization of f and g into a product of irreducibles? (Note that $n \geq 2$ here. Even if you did not answer part (b) above, here you can use part (b) directly without explaining how it is solved)
