Math 366 - Quiz 2

Name and Student ID:
Question ($5+2$ pts.): Let C be the elliptic curve given by the equation $y^{2}=$ $x^{3}+2 x^{2}+3 x+3$ and let $P=(1,3)$ and $R=(2,5)$ be two given points on C. a) Find $P+R$ and $2 P=P+P$ where + denotes the group operation on the elliptic curve C.
b) Why are there infinitely many solutions $(x, y) \in \mathbb{Q}^{2}$ of the given cubic equation of C ?

Math 366 - Quiz 2

Name and Student ID:
Question ($5+2$ pts.): Let C be the elliptic curve given by the equation $y^{2}=$ $x^{3}-x^{2}+x+15$ and let $P=(1,4)$ and $R=(3,6)$ be two given points on C.
a) Find $P+R$ and $2 P=P+P$ where + denotes the group operation on the elliptic curve C.
b) Why are there infinitely many solutions $(x, y) \in \mathbb{Q}^{2}$ of the given cubic equation of C ?

Math 366 - Quiz 2

Name and Student ID:
Question ($5+2$ pts.): Let C be the elliptic curve given by the equation $y^{2}=$ $x^{3}+x^{2}-4 x+12$ and let $P=(2,4)$ and $R=(3,6)$ be two given points on C. a) Find $P+R$ and $2 P=P+P$ where + denotes the group operation on the elliptic curve C.
b) Why are there infinitely many solutions $(x, y) \in \mathbb{Q}^{2}$ of the given cubic equation of C ?

Math 366 - Quiz 2

Name and Student ID:
Question ($5+2$ pts.): Let C be the elliptic curve given by the equation $y^{2}=$ $x^{3}-3 x^{2}+5 x+1$ and let $P=(1,2)$ and $R=(3,4)$ be two given points on C. a) Find $P+R$ and $2 P=P+P$ where + denotes the group operation on the elliptic curve C.
b) Why are there infinitely many solutions $(x, y) \in \mathbb{Q}^{2}$ of the given cubic equation of C ?

