Department of Mathematics

	Elementary Number Theory II Midterm 2		
Code Acad. Year Semester Instructor	: Math 366 : 2018-2019 : Spring : Tolga Karayayla	Last Name : First Name : Department : Signature :	:
Date Time Duration	: 24.04.2019 : 17.40 : 120 minutes	6 Questions on 4 Pages SHOW DETAILED WORK!	
${ }^{1} \quad{ }^{2}$	$\left.{ }^{3} \quad\right\|^{4}$		

1. $(10+10$ pts. $)$ a) Calculate $x=[1 ; 3, \overline{5,2}]=[1 ; 3,5,2,5,2,5,2, \ldots]$.
b)Find the infinite continued fraction representation of $x=\frac{13+\sqrt{5}}{4}$.
2. $(10+10$ pts. $)$ a) Using the information $\sqrt{22}=[4 ; \overline{1,2,4,2,1,8}]$ find the fundamental solution of the equation $x^{2}-22 y^{2}=1$.
b) Find 3 solutions $(x, y) \in \mathbb{Z}_{+}^{2}$ of the equation $x^{2}-27 y^{2}=1$ (Hint: $\left.\sqrt{27}=[5 ; \overline{5,10}]\right)$.
3. (15 pts .) Let d be a positive integer which is not a square, and let $k \in \mathbb{Z}$. Show that if $x^{2}-d y^{2}=k$ has a solution $(x, y) \in \mathbb{Z}^{2}$, then there are infinitely many solutions $(x, y) \in \mathbb{Z}^{2}$. (Hint: Use the properties of the norm function $N(x+y \sqrt{d})=(x+y \sqrt{d})(x-y \sqrt{d})$ on $\mathbb{Z}[\sqrt{d}]$. Consider the numbers which have norm 1$)$.
4. (15 pts.) Find $\operatorname{gcd}(10+16 i, 5+i)$ in $\mathbb{Z}[i]$ using the Euclidean algorithm.
5. (15 pts.) Find a prime factorization of $21-27 i$ in Gaussian integers $\mathbb{Z}[i]$.
6. (15 pts.) Show that there are infinitely many odd integers n such that n and $\frac{n-1}{366}$ are both perfect squares.
