M ET U

Department of Mathematics

1. (15 pts.) Find all solutions $(x, y, z) \in \mathbb{Z}^{3}$ of the equation $2 x^{2}+3 y^{2}=8 z^{2}$.
2. (14 pts.) Find all solutions $(x, y, z) \in \mathbb{Z}^{3}$ of the linear Diophantine equation $24 x+14 y+63 z=1$.
3. (2×7 pts.) For each integer n below, express n as a sum of two squares if it is possible. If not, express n as a sum of four squares:
a) $n=2^{3} \cdot 7^{2} \cdot 29 \cdot 73$
b) $n=13 \cdot 43$
4. (14 pts.) Find all $(x, y, z) \in \mathbb{Z}^{3}$ such that $x>0, y>0, z>0, x^{2}+y^{2}=z^{2}$ and $x+z=150$.
5. (14 pts.) Let p and q be two distinct primes such that $p \equiv q \equiv 1(\bmod 4)$. Show that $p q$ can be expressed as a sum of two squares in at least two distinct ways (that is, $p q=x^{2}+y^{2}=s^{2}+t^{2}$ f0r positive integers x, y, s, t such that $(x, y) \neq(s, t)$ and $(x, y) \neq(t, s))$.
6. (14 pts.) For the elliptic curve C given by the equation $y^{2}=x^{3}-2 x+1$, find all rational points of finite order on C (Discriminant of $x^{3}+b x+c$ is $D=-4 b^{3}-27 c^{2}$).
7. $(2 \times 7$ pts. $)$ a) Show that $\frac{1}{x^{4}}+\frac{1}{y^{4}}=\frac{1}{z^{4}}$ has no solution in integers.
b) Show that any $n \in \mathbb{Z}$ can be written as $n=a^{2}+b^{2}-c^{2}$ for some integers a, b and c.
