M E T U Department of Mathematics

	Elementary Number Theory II							
	Midterm 1							
Code Acad. Year Semester Instructor	: Math 366 : 2018-2019 : Spring : Tolga Karayayla				Last Na First Na Departn Signatur	me : me : nent : re :	Student ID	:
Time Duration	: 17.40 : 120 minutes				7 Questions on 4 Pages SHOW DETAILED WORK!			
1 2	3	4	5	6	7			

1. (15 pts.) Find all solutions $(x, y, z) \in \mathbb{Z}^3$ of the equation $2x^2 + 3y^2 = 8z^2$.

2. (14 pts.) Find all solutions $(x, y, z) \in \mathbb{Z}^3$ of the linear Diophantine equation 24x + 14y + 63z = 1.

3. $(2 \times 7 \text{ pts.})$ For each integer *n* below, express *n* as a sum of two squares if it is possible. If not, express *n* as a sum of four squares: a) $n = 2^3 \cdot 7^2 \cdot 29 \cdot 73$

b) $n = 13 \cdot 43$

4. (14 pts.) Find all $(x, y, z) \in \mathbb{Z}^3$ such that $x > 0, y > 0, z > 0, x^2 + y^2 = z^2$ and x + z = 150.

5. (14 pts.) Let p and q be two distinct primes such that $p \equiv q \equiv 1 \pmod{4}$. Show that pq can be expressed as a sum of two squares in at least two distinct ways (that is, $pq = x^2 + y^2 = s^2 + t^2$ for positive integers x, y, s, t such that $(x, y) \neq (s, t)$ and $(x, y) \neq (t, s)$).

6. (14 pts.) For the elliptic curve C given by the equation $y^2 = x^3 - 2x + 1$, find all rational points of finite order on C (Discriminant of $x^3 + bx + c$ is $D = -4b^3 - 27c^2$).

7. $(2 \times 7 \text{ pts.})$ a) Show that $\frac{1}{x^4} + \frac{1}{y^4} = \frac{1}{z^4}$ has no solution in integers.

b) Show that any $n \in \mathbb{Z}$ can be written as $n = a^2 + b^2 - c^2$ for some integers a, b and c.