M E T U Department of Mathematics

	Elemen	ntary Number Theory II	
		FINAL	
Code Acad. Year Semester Instructor Date	: Math 366 : 2018-2019 : Spring : Tolga Karayayla : 25.05.2019	Last Name : First Name : Department : Signature :	Student ID :
Time Duration	: 9:30	7 Questions of SHOW DETAIL	0
1 2	3 4 5 6	7	

1. (8+12 pts.) a) Find two solutions of $x^2 - 18y^2 = 25$ in positive integers. (You can use $\sqrt{18} = [4, \overline{4, 8}]$).

b) What is the set of all solutions of $x^2 - 18y^2 = 25$?

2. (10 pts.) Solve the system of equations $x^2 + y^2 = z^2$, x + y + z = 90 in positive integers.

3. (5+10 pts.) a) Fill in the blanks with appropriate Gaussian integers (no explanation is necessary): Let $\alpha \in \mathbb{Z}[i]$ be a Gaussian prime. If $N(\alpha)$ divides a power of 3, then α is an associate of _____.

If $N(\alpha)$ divides a power of 5, then α is an associate of either _____or ____.

If $N(\alpha)$ divides a power of 13, then α is an associate of either _____ or ____.

b) How many distinct Gaussian integers β are there such that $N(\beta) = 3^2 \cdot 5 \cdot 13^2$? (Hint: Consider the factorization of β as a product of Gaussian primes. What can you say about the norms of these prime factors?)

4. (10 pts.) Show that $I_{-21} = \mathbb{Z}[\sqrt{-21}]$ is not a UFD (Hint: Factorize 22 in I_{-21}).

5. $(3 \times 6 \text{ pts.})$ a) Factorize the principal ideal (5) as a product of prime ideals in $I_{10} = \mathbb{Z}[\sqrt{10}]$.

b) Is the ideal $(5,\sqrt{10})$ a principal ideal in I_{10} ?

c) Show that if n is odd, then the equation $x^2 - 10y^2 = 5^n$ has no solution $(x, y) \in \mathbb{Z}^2$.

6. (12 pts.) Show that $I_{-19} = \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is a UFD (Hint: Use the theorem on Minkowski constants).

7. (8+7 pts.) a) Let $p \in \mathbb{Z}$ be a prime. Show that if p does not divide d and d is a squarefree integer, then either the principal ideal (p) is a prime ideal or $(p) = \alpha\beta$ for two (not necessarily distinct) prime ideals α and β in the ring of integers I_d of the quadratic extension $Q(\sqrt{d})$.

b) Assume $(p) = \alpha\beta$ as in part (a) above and suppose $\alpha \neq \beta$ in I_d . How many ideals δ are there in I_d such that $N(\delta) = p^n$ where n is a positive integer, and what are these ideals δ ?