Department of Mathematics

	Elementary Number Theory II			
FINAL				

1. $\left(8+12\right.$ pts.) a) Find two solutions of $x^{2}-18 y^{2}=25$ in positive integers. (You can use $\sqrt{18}=[4, \overline{4,8}]$).
b) What is the set of all solutions of $x^{2}-18 y^{2}=25$?
2. (10 pts.) Solve the system of equations $x^{2}+y^{2}=z^{2}, x+y+z=90$ in positive integers.
3. ($5+10$ pts.) a) Fill in the blanks with appropriate Gaussian integers (no explanation is necessary): Let $\alpha \in \mathbb{Z}[i]$ be a Gaussian prime. If $N(\alpha)$ divides a power of 3 , then α is an associate of \qquad . If $N(\alpha)$ divides a power of 5 , then α is an associate of either \qquad or \qquad -. If $N(\alpha)$ divides a power of 13 , then α is an associate of either \qquad or \qquad -.
b) How many distinct Gaussian integers β are there such that $N(\beta)=3^{2} \cdot 5 \cdot 13^{2}$? (Hint: Consider the factorization of β as a product of Gaussian primes. What can you say about the norms of these prime factors?)
4. (10 pts.) Show that $I_{-21}=\mathbb{Z}[\sqrt{-21}]$ is not a UFD (Hint: Factorize 22 in I_{-21}).
5. $(3 \times 6$ pts. $)$ a) Factorize the principal ideal (5) as a product of prime ideals in $I_{10}=\mathbb{Z}[\sqrt{10}]$.
b) Is the ideal $(5, \sqrt{10})$ a principal ideal in I_{10} ?
c) Show that if n is odd, then the equation $x^{2}-10 y^{2}=5^{n}$ has no solution $(x, y) \in \mathbb{Z}^{2}$.
6. (12 pts.) Show that $I_{-19}=\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is a UFD (Hint: Use the theorem on Minkowski constants).
7. ($8+7$ pts.) a) Let $p \in \mathbb{Z}$ be a prime. Show that if p does not divide d and d is a squarefree integer, then either the principal ideal (p) is a prime ideal or $(p)=\alpha \beta$ for two (not necessarily distinct) prime ideals α and β in the ring of integers I_{d} of the quadratic extension $Q(\sqrt{d})$.
b) Assume $(p)=\alpha \beta$ as in part (a) above and suppose $\alpha \neq \beta$ in I_{d}. How many ideals δ are there in I_{d} such that $N(\delta)=p^{n}$ where n is a positive integer, and what are these ideals δ ?
