

MATH 594 Theory of Special Functions

Homework 2 (EHT and the Rodrigues formula)

Exercise 1 Verify the formula in (1.22).

Exercise 2 Use *Rodrigues* formula in (1.23) to determine explicitly the polynomials $y_0(z)$, $y_1(z)$, $y_2(z)$ and $y_3(z)$. Write down each EHT having these polynomials as a particular solution.

Exercise 3 Show that the possible forms of $\rho(z)$ in $(1.15)_a$ are

$$\rho(z) = \begin{cases} (b-z)^{\alpha} (z-a)^{\beta} \\ (z-a)^{\alpha} e^{\beta z} \\ e^{\alpha z^2 + \beta z} \end{cases}$$

corresponding to the possible degrees of $\sigma(z)$, i.e.

$$\sigma(z) = \begin{cases} (b-z)(z-a) \\ (z-a) \\ 1 \end{cases}$$

respectively. Show also that $\sigma(z)$ and $\rho(z)$ can be reduced (up to unimportant constant multipliers) to the *canonical* forms

$$\rho(z) = \begin{cases} (1-z)^{\alpha} (1+z)^{\beta} & \text{for } \sigma(z) = 1 - z^2 \\ z^{\alpha} e^{-z} & \text{for } \sigma(z) = z \\ e^{-z^2} & \text{for } \sigma(z) = 1 \end{cases}$$

Find $\tau(z)$ in each case.

<u>Exercise 4</u> Consider the canonical forms of the EHT in Exercise 3. Then determine the condition leading to polynomial solutions in each case.