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Variational Approach to Power Evolution in
Cascaded Fiber Raman Laser

Hakan I. Tarman and Halil Berberoglu

Abstract—A variational approach is formulated and imple-
mented for numerically solving a system of nonlinear two-point
boundary value problem (BVP) with coupled boundary conditions
modeling the power evolution in cascaded fiber Raman laser with
the fiber Bragg gratings at the ends of the cavity. The nonlinearity
is treated by successive linearization and the coupled boundary
conditions are naturally incorporated into the system through
integration in the variational setting. A global approximation of
the dependent variables in terms of Legendre polynomials is used
to provide a stable Lagrangian interpolation representation as
well as the Legendre-Gauss quadrature for accurate numerical
evaluation of integrals in the variational formulation. An initial
approximate solution is constructed for the delicate convergence
to the solution. The approach is validated against an approximate
analytic solution and some exact integrals of the variables. The
numerical experiments show exponential (spectral) accuracy
achieved with much lower resolution in comparison to a widely
available BVP solver. Further numerical experiments are per-
formed to reveal the physical characteristics of the underlying
model.

Index Terms—Boundary-value problems, fiber Raman lasers
(FRL), variational method.

I. INTRODUCTION

IBER RAMAN LASERs (FRLs) have attracted much
F attention for their many applications in optical commu-
nications. They are based on a well-known nonlinear optical
process called stimulated Raman Scattering resulting in fre-
quency down-shifted Stokes light. A typical mathematical
model [1] for the power evolution is in the form of a first-order
system of coupled ordinary differential equations (ODEs)
of two-point boundary value problem (BVP) type. From the
numerical standpoint, it is a challenging problem due to the
nonlinearity and the coupled boundary conditions representing
the reflected laser power at the ends of the cavity by the fiber
Bragg gratings. There have been various numerical approaches
to the governing BVP ranging from local approximation
techniques such as shooting method [2], [3] to global approxi-
mations such as pseudospectral method [4]. A common feature
of these techniques is their pointwise approach to the removal
of the residual resulting from approximating the dependent
variable and subsequently the differential equation. They differ,
however, on the accuracy that a global method can achieve
exponential (spectral) rate of convergence while a local method
is only algebraically convergent.

Manuscript received April 04, 2010; revised June 12, 2010, September 03,
2010; accepted September 04, 2010. Date of publication September 16, 2010;
date of current version October 27, 2010.

H. I. Tarman is with the Department of Engineering Sciences, Middle East
Technical University, Ankara 06531, Turkey (e-mail: tarman @metu.edu.tr).

H. Berberoglu is with the Department of Physics, Middle East Technical Uni-
versity, Ankara 06531, Turkey.

Digital Object Identifier 10.1109/JLT.2010.2076774

Variational approach is a classical tool in numerically
solving BVPs [5]. It is an alternative to the pointwise approach
in which the differential equation is satisfied under an integral
in the distributions sense. This allows flexibility in the way the
residual error is minimized as well as in the incorporation of
the boundary conditions into the resulting system. Furthermore,
it achieves high accuracy by the use of global expansion in
approximating the dependent variable and thus fewer terms
are needed in the expansion to achieve this accuracy. Jacobi
polynomials form convenient bases for this expansion in
providing both numerically stable interpolation and highly
accurate numerical integration rule via Gaussian quadrature
[6]. Legendre polynomials, in particular, are computationally
more efficient for variational (weak) formulation due to natural
selection of unity weighting in the inner products. Selecting
Legendre-Gauss-Lobatto grid points for discretization pro-
vides stable Lagrangian interpolation representation for the
dependent variable as well as the quadrature points for accurate
numerical evaluation of integrals. Furthermore, these points
are heavily clustered near the boundaries to more accurately
resolve the near-boundary behavior.

The nonlinearity of the model BVP is another challenge for
the numerical treatment. It is dealt with repeated linearization
of the equations around increasingly accurate intermediate so-
lutions starting from an initial approximation in a Newton like
approach. Due to the presence of a trivial solution, where the
pump is depleted only by linear attenuation without generating
any Stokes light, the quality of the initial approximation is cru-
cial in steering the iterative approach towards the physical (non-
trivial) solution. This is accomplished by incorporating the ini-
tial approximation technique presented in [4] to the current vari-
ational approach. Moreover, highly accurate evaluation of some
integrals of the solution in the initial approximation process pro-
vides a way of assessing the degree of accuracy in the numerical
results. The underlying use of Legendre polynomials and the as-
sociated Gauss quadrature provide the convenient medium for
the numerical evaluation of these integrals.

II. THEORETICAL MODEL

The numerical solution procedure is developed to simulate
the steady-state power evolution in a Raman gain fiber governed
by the following system of coupled nonlinear ODES [1]

dPOjE + +p+ -
+ 7z = —aoFy" — goFy (P + Pr)
dPE
d; = _Olej - .quj (Pj—il + Pj+1)
+ ;P (P + Pily)
dpP*
t = o PY g PE(PL 4+ Py (D
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where P, P; represent the pump and jth-order Stokes light for
j =1,...,n, respectively. The + stands for the forward/back-
ward propagating wave in the cavity. Here, « denotes the in-
trinsic fiber loss coefficient and g the Raman gain between ad-
jacent waves. The boundary conditions for the forward pumping
configuration are given by the input pump power P, and by the
Bragg gratings that are located at point z = 0 and z = L

P(;i—(o) =P, P7(L)= R;FP;F(L):
+ _ — —
P; (0) = R; P; (0) (2)
fore = 0,...,mand j = 1,...,n. where R is the reflec-

tivity coefficients of Bragg gratings with the superscripts & de-
noting the output side (z = L) and the input side (z = 0),
respectively. R;f = Roc is the reflectivity of coefficient of the
output coupler. L is the length of the fiber cavity. The ampli-
fied spontaneous emission effect and Rayleigh backscattering
are not included.

III. VARIATIONAL FORMULATION

It is convenient to work with the linearized form of the model
BVP (1) by introducing the increment function hji that satisfies

dhg
L4 gohT(PF + PO) + goPE(h +hy)
= Fi(Pi.Pi).
}:I:
+ + - —
+ d— + ajh; + g;h; (P;:H + P, - P;——l -Py)
+g,;P (h fthig - hj_l — h;_l)
_zﬁxpfpfﬁAgiQ
dhf + =Pt 4 Po
z
_gn (hn 1 + hn 1) F:t(Pr:It 17P:|:) (3)
forj =1,...,n — 1, together with
hg (0)=0 h; (L) =Rk (L) hf(0)=R;h;(0)
“)
forv = 0,...,n and for 5 = 1,...,n. This is obtained by

substltutmg P £ + h into the model BVP (1) and collecting the
terms contalmng only the known approximate solution PjE in
FjE Repeated application of this procedure leads to the Newton
1terat10n

The solution to the linearized system is sought in the subspace
of functions

V = {vf € H[0,L]| v (0

in an Hilbert space H [0, L] endowed with an inner product

- / F(2)g(2)dz. ©)

3137

The system (3) is then projected onto the subspace V using
Galerkin procedure to get the variational (weak) form of the
equations

+
s [ifui]y = (1 52 ) + aolh o)
z
+ g0 (hg (P + P),wi) + go(Fy (hi + hi), wiy)

= (F", i),
+

dw?
h:l: :|: h:l: J
£ () < =

> + a1<h;t/w;t>

+gj<hji(Pj—:*1+P_]_+1 Pjtl_Pj_fl)iji)
+9j<leL(hj++1 +hi — };r—l - }LJ—1)7“’§J'E>
= (FF,wy),
ol (1 > wi)
_gn< ( -1 +P w
= gn(P; ( _1+h, ) wt)
= (FE, w¥) (7

after integrating by parts. Here, h, w € V are referred to as trial
and test functions, respectively. The procedure allows natural
inclusion of the boundary conditions (4) in the variational form
by expanding the brackets and using (4) as follows

[ wi 15 = ha (L)wg (L)
[hiwily = REAT (L)ywi (L) = hi (0)w; (0)
[h;rw;r]OL:hj(L)wJ( ) — R hy (O)w;“(O) (8)

fore =0,...,nandj =1,....,n

IV. APPROXIMATION PROCEDURE

The subspace of functions V' is approximated by using or-
thogonal polynomials, namely, Legendre polynomials. They are
computationally efficient for variational formulation due to the
natural selection of unity weighting in the inner products and
availability of highly accurate Gauss-Lobatto-Legendre quadra-
ture to evaluate the inner product integrals. They can be approx-
imated by

“”*:A F(2)g(2)dz =~

which is exact for the integrand being a polynomial of order
2m — 1 or less. Here, w, are the quadrature weights and z, =
z(z,) are the image of the quadrature nodes z, under the map
z(z) = (L/2)(z + 1) from the natural (reference) interval
[—1, 1] to the computational interval [0, L]. The approximation
procedure is completed with a finite nodal expansion

Z h]yp

in terms of Legendre-Lagrangian interpolants L, (x) satisfying
the cardinality property L,(z,) = 6,4 Where hj(z,) = hj,.

L m
b) quf(zq)g(zq) ©)
q=0

(10)
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The homogeneous condition hJ (0) = 0 is satisfied by re-
stricting the index range to 0 < p < m in the expansion for ha'
where zg = 0 is assumed.

The expansion (10) is substituted into (7) resulting in a system
of linear equations

m , L
+ + +
+ [h§ Ls]ﬂ F quho,qu,q + 5“’8%,5(0‘0
q=0
_ L _
+ gO(Pl—i,—s + Pl,s)) + §gowsp(i:s(hi|—,s + hl,s)
L +
= §wsF0,s7

2,977 5,9

i ) L

(W5 Ll "1 F ) wehf, Loy + whi, (0
q=0

+ gj(ij:»l,s + ]:rl,s - Pjtl,s - szl,s))

L j: — —
+ —ngst,s(h;rH,s +hii1s— h;lLs —hiq,)

2
L
= Zw,F* ,
2 Jys
LT S gt L+ Rt
+ [ n 5]71 + qu nqtis,q T 5“’5 nys(a"
q=0
- gn(P;iLS + Pnifl,s»
L -
- §gnwspis(hjz_—l,s + hn—l,s)
L
= —w, F* 11
FnFE, an
for as many unknown nodal values hjig after selecting w =
Ls(x) for s = 0,...,m except for the equation involving hZ
where the index is restricted to s = 1, ..., m due to the consid-

eration of the homogeneous condition. The brackets similarly
follow

[he Lo ™1 = hi pbm
[y Lt = REBF Sam — By gbe0

[} L)T5 = hi, 6em — By B o650 (12)

symbol. The system (11)—(12) can be cast into matrix form

forie =0,...,nandforj = 1,..., n with ¢,; the Kronecker

—{H;}WD + {6;0R; H;} + {6 R} H;}
L
o lwid i i} = {F;}W  (13)

with {F;} = —{P;}DT + (L/2){G;} where the nodal values
are arranged as

Hj=T[hg; hg; - h,

(Hj) = [Ho Hy - Hy)

I (14)
(15)
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and similarly for {P;}. Furthermore, D;; = L;- (z;) is the dif-
ferentiation matrix

W = diag(Jwo w1 Wim)])
wo
w1
= ) (16)
Wi
J; = A + diag(BP;) + diag(P;)B, (17)
Gj = AP; + diag(BP;)P;. (18)
The data of the problem are collected in the block form by
A
Ay
A = blkdiag(A;) = (19)
A,
0 B
B= P 0 (20)
. By,
B, 0
with
o —Qy 0 + ) -1 -1
and the boundary data R* = blkdiag(R:) with
1 0 - 0 —-R-
+ _ _ /
e[k 4wl ] e
fore =0,...,nand forj = 1,...,n with
- -1 0
R; = [ 0 _1]- (23)
Further rearrangement of (13) gives the linear system
Q[-(D"W) ® Iy + Bc — blkdiag(w;J;)]|Q"H
= Quvec({F;}W)  (24)

for the direct evaluation of the restricted (unknown) nodal values

H = Q vec({H,}) where
vec({H;}) = [Hf HJ H T

R-

Bc = 0

(25)

(26)
R

Iy is the N x N identity matrix with N = 2n + 2, ® is the
Kronecker product [7] and Q is the Boolean restriction matrix
[8] comprising columns of the identity matrix with a column of
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TABLE 1
SIMULATION PARAMETERS [1]
Stokes order | Frequency (THz) | Raman Gain (1/W/km) | Absorption (km~!)
0(pump) 281 2.576 0.143
1 268 2.455 0.118
2 255 2.114 0.0969
3 242 1.786 0.0852
4 228 1.474 0.0814
5 215 1.181 0.194
6 202 0912 0.0436
zeros at the location corresponding to nodal point zp = 0 at whose parameters can be obtained by using 3; = —Uj+ and
which A (0) = 0. N
n —S5;U;L
FO=a UTL)(1+ RFeprL) O
V. NUMERICAL IMPLEMENTATION (1 —exp(U;"L))(1 + R exp(Uj"L))
-(0) = pt + +
For the numerical experiments, the simulation parameters P (0)= b (O)Rj exp(2Uj L) (33)
used in [1] corresponding to a sixth-order (n = 6) cascaded with P;7(0) = Pi,. A construction algorithm is then follows.

Raman fiber laser with silica-based fiber are considered as
listed in Table I. In order to stay clear of the trivial solution,
namely

Py (z) =
Fo(2) =

Pinexp(—agpz)
R§ Py exp(—ao(z — 2L)) 27
and PjjE = 0 for 5 > 1, the initial approximation should carry
as much property of the actual (nontrivial) solution as possible.
Such an approximation is already constructed in [4] based on
the observation that the system (1) allows the exact evaluation
of some integrals of the solution. The construction procedure is
summarized below for the particular case of n = 6 for clarity
and completeness.

Assuming PjjE > 0 and integrating the coupled system (1)
from O to L result in the following system of equations

Uy = —ao — goS (28)
g2 —g2 0 ] [S1] (U + as
0 gs —ga| |Ss|=|Us+oy (29)
0 0 Jde ] _55_ _U6++a6
-g1 0 0 ] [S:] (U + a1 — g0So
g3 —g93 O Sy | = Uf + a3
0 g5 —g5] | S| U + s
(30)
where
1
SJ:E/O (P} + P )dz (31)
and
U = 7 (B (L)/ P} (0) (32)
with Ut = —(1)/(2L)In(RfR7),j > 1. These quantities

can be used to construct an approximate solution in the assumed
exponential form

P (z) =

¢ Pi(o) exp(£0,2) (33)

1) Solve (29) for the values of Sy, S3, S5.

2) Solve (28) for U

3) Solve (34) for Sy using U™, Py (0) =

4) Solve (30) for Ss, S4S56.
Finally, the approximate solution (33) can be constructed
using the computed values and (34)—(35). Starting from the
constructed initial approximation, the solution strategy consists
of iterating the variational solution procedure until ||hl|s
attains its smallest value and stagnates. The attenable accuracy
for given m is restricted due to the fact that the solution is
searched within the polynomial space of degree < m. At that
point, the accuracy in the solution is assessed by comparing
So= [S515395] against So= [5’15’35’5] in the maximum norm
ISo — Sol|ec Where

Py,

(P (2) + P (2)): (36)

We have solved the model system (1) using the proposed al-
gorithm for the case with 96.7% reflectivity mirrors and 10%
output mirror. The cavity length is taken as 150 m and the in-
jected pump power 6 W. The resulting computed wave power
profiles (curves) are shown in Fig. 1 in comparison to the an-
alytic solution (symbols) that is also presented in Fig. 2 of [1]
for the same parameter values. The comparison yields a relative
error of around 1% of the computed solution at the resolution
m = 14. The wave patterns are typical as pointed out in [9] in
that the two Stokes light adjacent to the pump and the 5th Stokes
lights are of fundamental standing wave type.

The resulting variation of the error ||Sg — So||eo With m is
shown in Fig. 2. The runs take typically 3—4 successive itera-
tions until the attainable accuracy is obtained for given m. The
efficiency of the solution technique in achieving high accuracy
for very low values of the resolution m is shown. The exponen-
tial accuracy is clearly visible in the decay trend of the error
curve. This should be compared with the error values resulting
from the use of the computed solution obtained by employing
a widely available BVP solver [10]. It should be noted that the
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Fig. 1. Computed Stokes powers inside the cavity obtained using a resolution
m = 14 in comparison to the approximate analytic solution [1].

T
—©— Error in S by Variational Method
—8- Error in S by BVP Solver

s
& 9
107} 1
107° E
10" E
\
107 \ 1
o

m

Fig. 2. Variation of the error ||So — So||~ with the resolution m. The high
resolving power of the underlying Legendre polynomials for given m and the
exponential decay trend of the curve are visible in comparison to the algebraic
convergence in the case of the BVP solver [10].

numerical experiments show that the BVP solver fails to pro-
duce correct solution unless the current initial approximation is
provided. The solver is based on local polynomial approxima-
tion and can only achieve algebraic speed of convergence as it
is clear in Fig. 2 in comparison.

In order to complete the discussion, some numerical exper-
iments are performed on the design parameters (Table I). In
the present analysis, the fiber length and intermediate Bragg
reflectivities are fixed at 150 m. and 96.7%, respectively. The
input power of 6 W is injected from the input end of the cavity.
In Fig. 3, the output power is shown against the reflectivity of
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W)

0

oC

Fig. 3. Oputput power versus reflectivity of OC for each Stokes-order. Solid
curves correspond to the odd number and dash curves to the even number of
Stokes waves in the cavity. Markers on each curve point to the optimum values
of Ro¢ for the input pump power of 6 W. See Table II.

TABLE II
SIMULATION RESULTS

Stokes order | Optimum Ro | Threshold Power (W) | Efficiency (%)

1 0.18 1.3 94
2 0.04 0.4 78
3 0.27 1.5 67
4 0.10 0.8 53
5 0.40 2 42
6 0.30 1.6 31
10 T T T T T T T T T

(W)

out

Fig. 4. Input pump power versus the output pump powers for each Stokes-
order. Solid and dash curves represent the odd and even number of Stokes waves,
respectively. The threshold and efficiency values are listed in Table II.

output coupler (OC) for each Stokes-order separately. Each
curve in Fig. 3 is obtained by successively adding Stokes-orders
into the designed cavity. For instance, second-order Stokes
means that our fiber cavity consists of only the first and the
second Stokes-orders. The square and circle markers on the
curves in Fig. 3 point to the optimum OC reflectivity for the
specified Stokes-orders. These optimum values minimizes the
residual pump power at z = 0. It clearly shows that even- and
odd-orders are interrelated and behave differently as pointed
out in [11] for the undepleted pump case. As the Stokes-order



TARMAN AND BERBEROGLU: VARIATIONAL APPROACH TO POWER EVOLUTION

gets higher for the given fixed input pump power, the optimum
OC reflectivity values gets higher as indicated by the markers
on each curve sliding to the right. It also shows that lower
(higher) OC reflectivity minimizes the residual pump power
when Stokes-order is even (odd) in agreement with [1]. It is
observed that as the input pump power is increased starting
from the corresponding threshold values for each Stokes-order,
the optimum OC values shift to the left towards lower values.

The optimum OC values from Fig. 3 are then used in Fig. 4,
which shows the corresponding output pump powers against the
input powers for each Stokes-order in the cavity. The threshold
and efficiency values are listed in Table II. The efficiency values
gradually decrease as more Stokes-orders are added into the
cavity. They satisfy the maximum achievable slope efficiency
value g,,/go stated in [11], where n is the Stokes-order consid-
ered. For instance, the slope efficiency for a fifth Stokes-order
can not exceed 46% (= 1.181+2.576) which completely agrees
with our simulation results of 42%.

VI. CONCLUSION

The accuracy and the robustness of the approach has been
tested in the numerical experiments involving various parameter
values. Variational approach with the successive linearization
underlying Newton method is demonstrated to be a natural tool
in treating the nonlinearity and the coupled boundary conditions
forming the most challenging features of the model BVP gov-
erning the power evolution in FRLs. The use of the Legendre
polynomials as the approximation medium avails the numeri-
cally stable interpolation property, high resolving power and the
highly accurate Gaussian quadrature for numerical integration.
The quadrature points as roots to Legendre polynomials and the
quadrature weights are not known in closed form and must be
computed numerically. However, various routines are available
in literature for this purpose and more [12].
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