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Efficient Numerical Algorithm for Cascaded Raman
Fiber Lasers Using a Spectral Method

Hakan I. Tarman and Halil Berberoğlu

Abstract—Over recent decades, fiber Raman lasers (FRLs) have
received much attention from researchers and have become a chal-
lenge for them both numerically and experimentally. The equa-
tions governing the FRLs are in the form of a first-order system
of nonlinear two-point boundary-value ordinary differential equa-
tions. In this paper, an algorithm for solving this system of differ-
ential equations using a spectral method, namely Chebyshev pseu-
dospectral method, is presented in detail and then numerical simu-
lations are performed. The main advantage of the spectral methods
is in their optimality in achieving high accuracy by using fewer
degrees of freedom under suitable conditions. It is shown that the
proposed spectral method in combination with the Newton method
results in a considerable reduction in the size of the discretized
problem and in the computational effort to achieve high accuracy.
In this paper, a new approach for constructing an initial approxi-
mate solution for the Newton iteration is also presented.

Index Terms—Boundary-value problems (BVPs), fiber Raman
lasers (FRLs), spectral method.

I. INTRODUCTION

A LTHOUGH the nonlinearity may not always be desired
in photonic applications, it becomes useful in some fields

such as multiwavelength fiber Raman lasers (FRLs). Much of
the interest in FRLs stem from their ability to be compatible with
optical fiber communication systems and their becoming a key
technology in versatile applications such as pump sources for
Raman and rare-earth fiber amplifiers, spectroscopy, etc. FRLs
are based on a well-known nonlinear optical process called stim-
ulated Raman scattering (SRS) [1], [2] where the incident pump
photon generates the next Stokes light, thus resulting in a fre-
quency down-shifted Stokes light in cascading processes. The
first classical description of the theory of cw Raman oscillation
in optical fibers were presented in [3].

The processes are described by a first-order system of non-
linear two-point boundary-value ordinary differential equations
with boundary conditions relating to the reflection coefficients
of the mirrors at each end of the fiber laser. The model equa-
tions govern the power distributions along the fiber. They have
been tested with experiments [4], [5] and the agreement be-
tween theory and experiment is shown to be very good. Be-
sides prediction, optimization of the output power of the laser
to achieve maximum efficiency is shown to be an important de-
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sign problem [6], [7]. For this purpose the model equations are
to be solved to determine the effects of different parameters of
the laser on the efficiency. Due to the nonlinearity, coupled with
the boundary conditions representing the reflected laser power
by Bragg gratings, the general approach to this system is numer-
ical and it is quite a challenging one. Only with varying degree
of simplifying approximations, an analytical solution may be
possible [8]–[10]. For prediction purposes or for the task of op-
timization that requires repeated computations, an efficient and
robust numerical solution method is particularly important.

Most numerical approaches in literature employ local ap-
proximations for the dependent variables with their derivatives
to reduce the model differential equations to a system of
nonlinear algebraic equations. These approximations may be
in the form of finite differences or spline interpolation over
a collocation grid [11], [6]. Some of these are applied within
boundary-value problem (BVP) solver package programs, such
as COLSYS [12] or bvp4c [13]. Initial value problem (IVP)
solvers, such as Runge–Kutta methods are also widely em-
ployed together with a shooting approach [14]–[16]. However,
the local approximations yield only algebraic accuracy. This
requires a fine grid and thus increased computational resources
when high accuracy is in demand. In solving BVPs by using
initial value solvers, on the other hand, a well-known drawback
is that the associated IVP may not be stable [17].

In this work, we propose and implement a spectral colloca-
tion (pseudospectral) method for solving the model equations.
Spectral methods are based on the global approximations and
achieve exponential (spectral) accuracy when the solutions are
sufficiently smooth [18]–[20]. Under the proposed pseudospec-
tral method, a global polynomial representation of the depen-
dent variables in terms of Chebyshev polynomials is introduced
into the model equations and the resulting residual is forced to
vanish at the collocation points yielding a system of nonlinear
algebraic equations. The collocation points are the Gauss–Lo-
batto–Chebyshev (GLC) quadrature points and form a grid for
optimal and stable representation of the dependent variables.
The representation is optimal in the sense that it allows the use
of a coarser grid and therefore fewer computational resources.
The stability of the representation, on the other hand, allows the
evaluation of the solution anywhere in the computational do-
main by global polynomial interpolation.

Eventually, the model differential equations are reduced to a
system of nonlinear algebraic equations which is subsequently
solved using the conventional Newton method. The well-known
criterion for the convergence of the Newton iterates is to start
the iteration with a sufficiently close initial approximation [21].
The crude initial approximations such as straight lines through
the boundary values may not be sufficient to produce conver-
gence and hence more sophisticated approaches such as param-
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TABLE I
SIMULATION PARAMETERS [9]

eter continuation techniques need to be employed [11]. In the
absence of a Rayleigh backscattering term, the availability of a
good initial approximation is especially crucial in order to stay
clear of the trivial solution where the pump is depleted only by
linear attenuation without generating any Stokes light. For this
purpose, we present a new approach for constructing an initial
approximate solution based on an integral of the dependent vari-
ables. It is tested in various numerical experiments that the ap-
proach produces robust initial approximations. Moreover, this
approach allows highly accurate evaluation of certain integral
quantities providing a way of assessing the degree of accuracy in
the numerical results. The proposed Chebyshev pseudospectral
method in combination with the Newton method and the initial
approximation algorithm will be referred to as pseudospectral
algorithm.

II. THEORETICAL MODEL

The numerical algorithm presented here is developed for the
simulation of the steady-state FRLs. The evolution of the powers
in a Raman gain fiber is governed by the following system of
coupled nonlinear ordinary differential equations [9]:

(1)

where and represent the powers of the input pump light
and the desired jth-order Stokes light for , respec-
tively. The superscript stands for the forward/backward
propagating wave in the cavity. Here, denotes the intrinsic
fiber loss coefficient and the Raman gain between adjacent
waves. The boundary conditions for the forward pumping con-
figuration are given by the input pump power and by the
Bragg gratings which are located at points and

(2)

for and . Here, denotes the reflec-
tivity coefficients of Bragg gratings with the positive and nega-
tive superscripts denoting the output side and the input
side , respectively. is the reflectivity coef-
ficient of the output coupler. is the length of the fiber cavity.
For the sake of numerical demonstration, we ignore splicing and
insert loss. We did not include the amplified spontaneous emis-
sion effect and Rayleigh backscattering.

It can be shown that the model equations possess the trivial
solution

(3)

and for . This is the case where the pump is de-
pleted only by linear attenuation without generating any Stokes
light. However, only the nontrivial (physical) solution shaped
by the nonlinear interactions is of interest and it is characterized
by for .

As a numerical prototype, we consider a sixth-order cascaded
Raman fiber laser with silica-based fiber in accordance with the
simulation parameters used in [9] and listed in Table I.

III. NUMERICAL FORMULATION

In order to present the numerical formulation, we consider the
model BVP (1) in the following form:

(4)

subject to the boundary conditions

(5)

where and are N-vectors and is the
diagonal matrix with the N-vector as its diagonal. The data
of the problem are given in the block form by

. . .

. . .
. . .

. . .
(6)
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and by

. . .

. . .
(7)

with

(8)

and

(9)

where and . Here, we are assuming that the
elements of the vector stand for

(10)

with . Thus, .

A. Newton Formulation

The model two-point BVP (4) can be treated as a nonlinear
system of equations

(11)

The most popular method for solving nonlinear equations is the
Newton method. It is based on the repeated quasilinearization
of the system around increasingly improved estimate of the so-
lution. It leads to the iteration scheme

(12)

for with linear equation

(13)

to be solved for and subject to the homogeneous boundary
conditions

(14)

assuming that the initial approximate solution satisfies
the boundary conditions (5). Here, with

and , and

(15)

Fig. 1. The distribution of GLC grid points in ���� ��.

B. Pseudospectral Formulation

The final step of the formulation is the introduction of a pseu-
dospectral discretization so that the dependent variables and the
differential operator are approximated over the grid . In
this paper, we have used GLC points as the underlying grid

for (16)

These points are associated with Gauss quadrature [19]. For
BVPs GLC appears as the natural choice as it contains the
boundary nodes and and exhibits the grid
distribution that is denser near the boundaries as shown in
Fig. 1. The natural interval in which GLC points are
located may be adapted to the interval at hand by a linear
transformation .

In Chebyshev pseudospectral method, we seek polynomial
solutions for a variable in the modal form

(17)

where are the Chebyshev polyno-
mials and are discrete expansion coefficients [19] or, equiv-
alently, in the nodal form

(18)

where and is the jth-order Lagrange polyno-
mial based on the grid satisfying the cardinality prop-
erty . The later form is more convenient in approx-
imating the derivative of at any point by differentiating
the Lagrange polynomial

(19)

where D is the differentiation matrix. The reader is referred to
[18] and [22] for Matlab implementation.

Before discretizing the model equations, we introduce the fol-
lowing notation for the discretized form of the variable as

...
(20)
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with

...
...

. . .
...

(21)

and for the vectorization operation as

(22)

Now introducing the pseudospectral discretization to (13) yields
the matrix form

(23)

where is the identity matrix, is the Kronecker
product [23], and

. . .

(24)

The resulting matrix form (23) is modified to accommodate the
boundary conditions as follows:

...
...

...
...

...
...

...

...

(25)

C. Initial Approximation Algorithm

The local convergence theory for the Newton method requires
that the initial approximate solution be near the solution
[21]. This can be achieved by constructing an initial approxi-
mation that carries as much property of the actual solution as
possible. Our strategy consists of solving the system (1) for an
integral of the solution and then constructing an assumed expo-
nential form of the solution that has the same integral values. It
turns out that some of these integrals are the solution to a linear
system and can be computed with high accuracy, thus providing
a way of assessing the accuracy of the computed solution.

In order to facilitate the construction of such an initial ap-
proximation, the coupled system of differential equations (1)
are integrated with respect to z from 0 to L to get the system
of equations

(26)

where

(27)

and

(28)

By using the coupled boundary conditions (2) and the known
relation , where is a constant, one can show that

(29)

It should be noted that in the case of the assumed exponential
solution

(30)

we have

(31)

and

(32)

together with

(33)

It is convenient to consider the problem separately for the cases
of odd and even.

For odd, we define

(34)

and

(35)

We then have

... (36)

and
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... (37)

We propose the following scheme:
1) Solve the linear system (36) for the values of .
2) Assume with .

This gives

(38)

to be solved for , and thus .
3) Now, solve the linear system (37) for .

For even, we define

(39)

and

(40)

We then have

... (41)

and

... (42)

We now propose the following scheme:
1) Solve the linear system (41) for the values of .
2) Solve for . This gives

and subsequently

(43)

when the form of the solution is assumed as
.

3) Now, solve the linear system (42) for .
The approximation for is constructed in the exponential
form (30) with and obtained from (32) and
(33) using the computed values.

IV. RESULTS AND DISCUSSION

The performance of the initial approximation for is
numerically tested under various problem parameters such as,

using the data in Table I. The above
outlined procedure for generating initial approximate solution
is observed to produce robust estimates facilitating fast conver-
gence of subsequent Newton iterations. Throughout the com-
putations, the convergence of the Newton iterates is monitored
using the relative error estimate satisfying

(44)

It is known that for superlinearly convergent methods the theory
supports the approach of exploiting the fast convergence to es-
timate the error in terms of the step size ,
hence the use of the step size as a basis for termination [21].

A validation of the computed solution is performed in com-
parison to the analytic solution reported in [9] obtained from
the coupled (1) using some approximations. The approxima-
tion procedure is detailed in [9] and shown to lead to a satisfac-
tory analytic solution for high reflectivities. We have solved the
model system (1) using the proposed pseudospectral algorithm
for the case with 96.7% reflectivity mirrors and 10% output
mirror. The cavity length is taken as 150 m and the injected
pump power 6 W. The resulting computed wave power profiles
(curves) are shown in Fig. 2(b) in comparison to the analytic
solution (symbols) that is also presented in Fig. 2 of [9] for the
same parameter values. The comparison yields a relative error of
around 1% of the computed solution. This is in agreement with
the results reported in [9] where a standard shooting method
with an adaptive step-size Runge–Kutta integrator is used to ob-
tain the computed solution. The patterns appearing in Fig. 2(b)
for the two Stokes light adjacent to the pump and the th Stokes
lights are of fundamental standing wave type as pointed out in
[11]. The converged solution in Fig. 2(b) is obtained starting
from the generated initial approximation shown in Fig. 2(a). It
took only four Newton iterations to satisfy the convergence cri-
teria in maximum norm. This shows the quality
of the initial estimate in that the subsequent iterations readily
enter the zone of quadratic speed of convergence where the
number of significant digits in the iterates roughly doubles with
each iteration.

In order to demonstrate the optimal and stable global rep-
resentation provided by the pseudospectral method based on
the GLC grid, we have compared against the numerical solu-
tion obtained using a widely available collocation BVP solver
[13]. It uses a local cubic polynomial approximation within each
subinterval of the mesh and collocates the differential equation
at both ends and the midpoint of each subinterval. It is based
on residual control and provides the numerical solution over an
adaptive grid whose size is determined by the user supplied ab-
solute and relative tolerances on the residual. The BVP
solver is used to solve the system (1) for successively reduced
tolerance values and the size of the resulting grid
is recorded for the subsequent comparison. In using the BVP
solver, we have supplied the exact Jacobian and the initial ap-
proximation constructed by our algorithm.

In Fig. 3, the comparison is presented against the values of
(for the even case ) obtained by solving the linear
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Fig. 2. (a) The initial approximate solution and (b) the comparison between computed and analytic [9] Stokes powers inside the cavity for the data in Table I.

system (41) and deemed to be highly accurate. The computed
values corresponding to the numerical methods are obtained

by numerically evaluating the integral

(45)

using Legendre Gauss quadrature formula with quadrature
weights and the computed values interpolated at the
quadrature nodes . It should be noted that the quadrature
formula is exact for polynomials of degree [19]. The
proposed pseudospectral method has the added advantage at
this point in providing a global polynomial representation of
the solution as well as enabling the evaluation of the values
at the nongrid quadrature nodes by stable global polynomial
interpolation. The smallest size Q of the quadrature to produce
the most attainable accuracy for the level of accuracy carried by
the computed solution can be determined. However, we simply
use the size of the grid underlying the computed solution as Q.

The exponential (spectral) accuracy as well as the optimal
representation achieved under the pseudospectral method is
clearly visible in Fig. 3 (solid squares) producing results in
near-machine precision with a resolution of just . The
error decreases algebraically like (hollow squares)
for the case of the BVP solver [13]. In generating the cor-
responding error curve the tolerance is gradually varied
in the range to and the resulting grid sizes are
recorded. This convergence rate is typical of local methods,
requiring high-order discretization for high accuracy and thus

Fig. 3. The maximum error �� ��� � computed using the solution obtained
by the pseudospectral method and by the BVP solver [13]. Also shown is the
maximum error in the solution � computed using the pseudospectral method
in comparison to a reference solution obtained by the BVP solver.

resulting in large systems. Another comparison is performed
directly between values computed using the proposed
pseudospectral method with varying resolution parameter M
and a reference solution computed using the BVP solver by
setting resulting in a mesh of size 784. The error
exhibits similar exponential decay trend (hollow circles) with
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some orders of magnitude higher in comparison to the error
in the integral values (solid squares) in Fig. 3. This shows
the high accuracy in the integral values computed by directly
solving the linear system (41), which resulted as a byproduct
of our initial approximation algorithm.

In the computations, the tolerance on the Newton step size
in the pseudospectral algorithm is fixed at that
is close to the machine accuracy in order to attain the max-
imum possible accuracy for given M. It should be noted that
even though the Newton iterates satisfy the stopping criteria set
by the fixed tolerance, the estimated error (solid squares) in the
resulting solution varies with varying resolution in Fig. 3. This
is because the solution in the proposed pseudospectral formu-
lation is searched within the polynomial space of degree .
Thus, the size of the resolution parameter M restricts the size of
the solution space and in turn restricts the attainable accuracy in
the resulting solution.

V. CONCLUSION

In this study, the focus was mainly on the implementation of
a pseudospectral method for solving FRL model equations. A
detailed formulation of the algorithm was presented using the
modular and compact language of matrices. The reader may
easily implement the pseudospectral procedure by the Matlab
routines provided in [18] and [22]. As demonstrated by the nu-
merical experiments, the proposed pseudospectral method used
much coarser grid compared to the local method for given accu-
racy and reached to the goal of the efficient and robust numerical
technique for the model equations. This is a typical character of
spectral methods that belong to the class of high-order computa-
tional methods. The pseudospectral method implemented is just
a particular example of the spectral methods, and there are other
types to explore along the way to increase the efficiency of the
solver. It is hoped that this work will generate an interest and
capture the attention of the optics community toward a wider
use of spectral methods in computational optics.

In the process a procedure was developed to construct a good
quality initial approximation for the subsequent Newton itera-
tion. The natural appearance of the need for separately treating
the cases of even and odd number of Stokes waves in the con-
struction procedure is shown in [9] to have fundamental effects
on the laser behavior. As a result of the efforts to construct an
initial approximate solution that carries as much property of the
actual solution, this procedure is closely linked to the character
of the problem. It may further be developed in order to con-
struct problem specific numerical techniques for highly efficient
solvers by working out the correspondence between the point-
wise values of the dependent variable and its integral.

Other issues such as efficient solution techniques for the
Newton iterates are subject for another study. As the size
of the system increases, the direct method of solution loses
its efficiency and should be replaced by iterative methods.
Coupling the Newton iteration (outer iteration) with a popular
Krylov subspace based iterative method of solving Newton
linear equations (inner iterations) results in an efficient solution
technique referred to as Newton–Krylov iterations [21].
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