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A Karhunen–Loève (K–L) basis is generated empirically, using a database obtained by

numerical integration of Boussinesq equations representing Rayleigh–Benard convection in

a weakly turbulent state in a periodic convective box with free upper and lower surfaces.

This basis is then used to reduce the governing partial differential equation (PDE) into a

truncated system of amplitude equations under Galerkin projection. In the generation and

implementation of the basis, the symmetries of the PDE and the geometry are fully exploited.

The resulting amplitude equations are integrated numerically and it is shown that, with the

use of the K–L basis in the present formulation, the known dynamics of the flow in the

transition region is completely captured.

INTRODUCTION

The transition to chaos in the case of Rayleigh–Benard (R-B) thermal con-
vection takes the form of discrete steps as the forcing parameter, Rayleigh number
(Ra), is gradually increased. The first step after the conductive static state is the
two-dimensional steady flow in the form of rolls as shown theoretically by Schlüter
et al. [1]. When Ra is increased further, the fluid motions become time-dependent.
The time dependence is shown theoretically by Busse [2] for a convection layer with
stress-free boundaries and a low Prandtl number (Pr) fluid to be oscillatory in the
form of traveling waves propagating along the axis of the rolls. It was shown that the
motion in this oscillatory regime is associated with the generation of the vertical
vorticity and hence is three-dimensional. Further increase in Ra causes appearance
of chaotic time dependence preceded by quasi-periodic regime. Numerical studies by
McLaughlin and Orszag [3] for rigid boundary conditions and by Curry et al. [4] at
high Prandtl number with stress-free boundary conditions have shown that transi-
tion to chaotic regime follows a route consistent with the scenario of Ruelle et al. [5],
namely, that the appearance of a third oscillatory mode in a nonlinearly coupled
system likely leads to broad-band frequency excitations and chaos. Under various
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fluid conditions and geometries, Gollub and Benson [6] experimentally found several
other routes of transition to chaos including a phase-locked regime preceding the
transition. Various explanations were suggested regarding the interpretation and
the causal mechanisms of the oscillatory motions of R–B convection preceeding the
chaotic regime. Willis and Deardorff [7] suggested that the oscillations could be
explained by the theory developed by Howard [8], which is based on a periodic
instability of the thermal boundary layer releasing thermals and yielding an Ra2=3

dependence of the frequency of oscillations. A different explanation associating the
oscillations with circulating spots of relatively warm or cold fluid was invoked by
Krishnamurti [9] through experimental observations. Later, Willis and Deardorff
[10], based on their experimental observations, concluded that the thermal oscilla-
tions are caused by lateral displacements of the updrafts and downdrafts during
oscillations of the wavy rolls.

Karhunen–Loève (K–L) basis is empirical in nature and is computed using
K–L decomposition technique from an experimentally or numerically generated
database representative of the underlying phenomena. Since the basis is specific to
the phenomena under consideration, it provides an optimal parametrization of the
database (data compression) and an optimal representation of the dynamics of the

NOMENCLATURE

a expansion coefficient

A aspect ratio ð=L=HÞ
Ao reference aspect ratio ð¼ 2

ffiffiffi
2

p
Þ

b expansion coefficient for mechanical

component

B coefficient of buoyancy terms in the

momentum equation

B0 coefficient of buoyancy terms in the

thermal equation

c expansion coefficient for thermal

component

D coefficient of diffusive terms in the

momentum equation

D0 coefficient of diffusive terms in the

thermal equation

D4 dihedral group

ez unit vector antiparallel to the direc-

tion of gravity

f frequency

H vertical dimension

k index vector, ðkx ky nÞ
k� conjugate index vector,

ð�kx � ky nÞ
‘ index representing fk ; k�g pair

L horizontal dimension

n vertical quantum number

ðM;NÞ truncation parameter pair

Nu Nusselt number

p pressure

Pr Prandtl number ð¼ n=kÞ

Pro reference Prandtl number (¼ 0.72)

Q coefficient of quadratic terms in the

momentum equation

Q0 coefficient of quadratic terms in the

thermal equation

r normalized Rayleigh number

ð¼ Ra=RacÞ
rt normalized transition Rayleigh

number ð¼ Rat=RacÞ
Ra Rayleigh number ð¼ gbH4a=knÞ
Rac critical Rayleigh number ð¼ 27p4=4Þ
Rao reference Rayleigh number

ð¼ 15�RacÞ
Rat transition Rayleigh number

Rðx; x0Þ two-point correlation tensor

s ¼ p=
ffiffiffi
2

p

t time

T temperature

Tc class of thermal K–L modes

u velocity vector, ðu; v;wÞ
U mechanical K–L bases

Uc class of mechanical K–L modes

v snapshots of realizations

v‘ flowlet

x spatial coordinate, ðx; y; zÞ
d Kronecker delta

Y thermal K–L bases

l K–L eigenvalue

F vertical profile of K–L bases

C K–L bases
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phenomena when used for a low-dimensional dynamical representation. Numerous
prior studies have adopted the K–L procedure in a variety of low-dimensional
dynamical studies [11–15]. In this work, Boussinesq equations (BE) are integrated
numerically at the selected reference parameter values of Rao ¼ 15�Rac, where Rac
is the critical Rayleigh number at which convective motion first sets in, Pro ¼ 0:72;
and the aspect ratio, Ao ¼ 2

ffiffiffi
2

p
, with horizontally periodic and vertically stress-free

boundary conditions. The resulting numerical database is used to generate the K–L
basis, which, in turn, is used to reduce the BE to a system of amplitude equations
through a Galerkin procedure. In the present formulation unlike previous treatments
[16–18], the K–L decomposition technique is applied separately to the mechanical
and thermal components of the numerical solution field, resulting in two
orthonormal K–L basis sets, and the mean field is not subtracted off prior to the
computation of the basis, thus removing the need to include the mean field separately
in the amplitude equations [19]. In the computation of the K–L basis, the symmetries
arising from the BE and the geometry of the spatial domain are fully exploited,
leading to a database enlargement and sharper basis elements. It is observed that the
K–L basis elements each carry a physical character of the underlying flow and that
they gather in distinct symmetry classes which provide the grounds for a rational
truncation scheme. The truncated amplitude equations are then integrated numeri-
cally in time for a range of Ra covering the transition regime. It is shown that the
known dynamics of the flow in the transition regime are completely captured by
these relatively low-dimensional model amplitude equations and, further, the see-
mingly disparate results in the literature are shown to be embodied in the solution of
these model equations. Thus, we conclude that the present K–L formulation leads to
a more robust formulation which is better suited to a parametric study.

We now elaborate further on the essential way in which the present formula-
tion differs from the previous treatments involving low-dimensional modeling. The
Boussinesq equations specify the nature of the coupling mechanical and thermal
effects, but the quantitative degree of this is unknown until the solution is deter-
mined. This quantification is an important factor in a K–L decomposition which
hopes to couple the two forms of energy. (See [16] for a discussion of this point.) In
this article we avoid this issue by utilizing separate K–L decompositions for
mechanical and thermal effects. Although this increases the dimension of the
description, it leads to the robust formulation.

Next, there is no attempt to extract the mean field from the dynamics. Speci-
fically, the mean temperature field is given by

q
qz

hwTi ¼ q2hTi
qz2

ð1Þ

(see below for notation). In view of the dynamical nature of a calculation, the
implicit (infinite) time average, indicated by brackets, is replaced by an average over
space. For practical reasons spatial domains in a simulation cannot be extensive
enough for stationarity to be achieved [13]. For example, in simulations of channel
flow, the bulk flow exhibits time variation, which if the computational domain were
to become unbounded would disappear. In the present instance of low-dimensional
modeling, the lack of time stationarity is exacerbated by the fact that Eq. (1) is
projected onto a lower-dimensional manifold. This in fact leads to relatively rapid
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time variations in violation of the assumption of stationarity [13]. In many instances
this has led to an inconsistent formulation in which quantities taken to be time-
stationary turn out to be quite the opposite. This is avoided in the present treatment
by the simple device of not subtracting off the mean.

This leads to the third departure from standard practice. In the cited references
the practice has been to introduce mean quantities into the equations. As Eq. (1)
illustrates a mean quantity is proportional to the product of two fluctuating quan-
tities. Further, mean quantities appear in the equations of motion multiplied by a
fluctuating quantity. Thus, evolution equations contain cubic terms, although the
Navier–Stokes equations are manifestly quadratic. It then follows that the dynamical
equations which result in the present formulation have quadratic and not cubic
direction fields.

RAYLEIGH–BENARD FLOW

Rayleigh–Benard thermal convection problem is the instability of a Boussinesq
fluid layer on an infinite horizontal plane heated from below and cooled from above
in the presence of gravity and is governed by the Boussinesq equations,

H � u ¼ 0 ð2aÞ

qu
qt

þ u � Hu ¼ �HpþRaPrT ez þ PrDu ð2bÞ

qT
qt

þ u � HT ¼ wþ DT ð2cÞ

All quantities have been made dimensionless by the standard normalization [20], e.g.,
the box height, H, is used to normalize x ¼ ðx; y; zÞ. The two dimensionless para-
meters are Prandtl number, Pr, and Rayleigh number, Ra. The flow takes place in a
box of dimensions L� L�H. The boundary conditions are imposed as the stress-
free flow conditions

w ¼ T ¼ qu
qz

¼ qv
qz

¼ 0 at z ¼ 0; 1 ð2dÞ

in the vertical and periodic in the horizontal x and y variables.
The database generated earlier [17] was obtained by numerically integrating

Eqs. (2) using a Fourier-collocation spectral method [21] on a 20� 20� 20 grid at
Pro ¼ 0:72, Rao ¼ 15�Rac, and Ao ¼ 2

ffiffiffi
2

p
. The aspect ratio corresponds to the

wavelength of maximum linear instability [20].

DYNAMICAL APPROXIMATION

K–L Decomposition

A K–L basis [22–24] can be generated from an ensemble of snapshots of rea-
lizations vðx; tÞ. The elements of the basis set are the eigenfunctions of the integral
equation, Z

O
Rðx; x0ÞCkðx0Þ dx0 ¼ lkCkðxÞ ð3Þ
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the kernel of which is the two-point correlation tensor Rijðx; x0Þ ¼ hviðx; tÞ vjðx0; tÞi:
The angle brackets denote ensemble average. If the process is statistically stationary,
ergodicity permits replacement of the ensemble average by an average over time. In
our case three indices are required to specify a basis set in three spatial dimensions. k
represents these indices (see below).

The existence of orthonormal eigenfunctions spanning the space follows from
the symmetry of Rij. An element of the space can be expressed in the form of a modal
decomposition

vðx; tÞ ¼
X
k

akðtÞCkðxÞ ð4Þ

and the expansion coefficients

ak ¼ Ck; v
� �

�
Z
O

X
i

viðx; tÞ Ck
i ðxÞ

� ��
dx ð5Þ

are statistically orthogonal,

akðtÞ a�l ðtÞ
� �

¼ lk dkl ð6Þ

where � stands for complex conjugation. For v representing the flow, each eigen-
value, lk, represents the mean energy of the flow projected on the direction Ck in the
function space.

Symmetries

The consideration of the symmetries of the governing partial differential
equation (PDE) ([23], part 2) is significant in the later approximation of the PDE by
a K–L-based truncated system of ordinary differential equations (ODEs), see also
[25]. Since each element of the group of symmetries produces an admissible solution,
the ergodicity permits the introduction of the symmetries through the ensemble
average in the generation of the K–L eigensolutions. The governing system of
equations, Eqs. (2), is invariant under a discrete symmetry group in the form of
reflectional and rotational symmetries in the horizontal and reflectional symmetry in
the vertical mid-plane as well as a continuous symmetry group in the form of
translational invariance in the horizontal directions [26].

Homogeneity in the horizontal directions leads to the translational invariance,

Rijðx; x0Þ � Rijðx� x0; y� y0; z; z0Þ ð7Þ

which in turn implies that the eigenfunctions are in the form

CkðxÞ � Cðkx; ky; n; xÞ ¼ FkðzÞexpði kxsxÞ expði kysyÞ

¼
X
kz

bFFkðkzÞexpðpi kzzÞexpði kxsxÞexpði kysyÞ
ð8Þ

where k ¼ ðkx ky nÞ is the index vector, kxs and kys are wave numbers, and n is the
vertical quantum number. Due to the reflectional and rotational symmetries, the
eigensolutions come with a maximum 8-fold degeneracy, i.e.,
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lð�kx �ky nÞ ¼ lð�kx �ky nÞ ¼ lð�ky �kx nÞ ¼ lð�ky �kx nÞ ð9Þ

(Since the planform is a square, the reflectional and rotational symmetries in the
horizontal plane form the dihedral group D4 containing eight elements.) The
reflectional symmetry in the vertical mid-plane z ¼ 1

2 renders the individual functions
either odd or even in z ¼ 1

2, which implies that the summation in Eq. (8) is over only
odd or only even integers kz, respectively.

These lead to a more convenient representation of the flow in terms of flowlets,
v‘,

vðx; tÞ ¼
X
‘

v‘ ¼
X
k

fakðtÞCkðxÞ þ ak� ðtÞCk� ðxÞg ð10Þ

Each flowlet is a real incompressible flow satisfying the boundary conditions. The
summation index ‘ runs through the conjugate pairs of the K–L modes fk ; k�g such
that Ck� ¼ Ck

� ��
and ak� ¼ a�k:

K–L Representation

We use this formalism to create two ensembles, containing separately the
mechanical u and thermal components T of the flow. The two orthonormal K–L
basis sets are denoted by Uk andYk, so that the mechanical motion is represented by,

uðx; tÞ ¼
X
‘

u‘ ¼
X
k

bkðtÞUkðxÞ þ bk� ðtÞUk� ðxÞ
� 	

ð11Þ

and thermal component by

Tðx; tÞ ¼
X
‘

T ‘ ¼
X
k

ckðtÞYkðxÞ þ ck� ðtÞYk� ðxÞ
n o

ð12Þ

where bk and ck are individually statistically orthogonal [Eq. (6)].
The eigenvalues corresponding to the K–L decomposition of the mechanical

and thermal components for the first ten K–L modes are shown in Table 1. For the
reasons presented in the introduction, the mean temperature is not subtracted from
the thermal field, thus the energy content of the thermal K–L mode [0, 0, 1], whose
vertical profile is the most similar to that of the mean temperature, is substantial and
is close in value to the mean. Note that K–L modes belonging to the same degenerate
family are grouped together, however they are ordered based on the individual
eigenvalues rather than the total energy content of each degenerate family. The
justification is that in the absence of the degeneracy, the K–L modes would appear
individually and the corresponding eigenvalues would be an appropriate measure of
the energy content. Figure 1 shows the flowlets u‘ and T ‘ of Eqs. (11) and (12)
associated with some of the K–L modes. They are the building blocks of the
mechanical and thermal components of the total flow, and as basis functions they are
very specific to the underlying phenomena.

Galerkin Projection

Next, Galerkin projection is applied to the Boussinesq equations. To accom-
plish this, we introduce the truncated K–L representations,
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Table 1. Normalized K–L eigenvalues for the first 10 degenerate mechanical and thermal modesa

Index

Mechanical K–L modes Thermal K–L modes

k

Normalized

eigenvalue Degeneracy

Percent

cumulative

energy k

Normalized

eigenvalue Degeneracy

Percent

cumulative

energy

1 [0 1 1] 1.0000 4 51.39 [0 0 1] 1.0000 1 53.86

2 [1 1 1] 0.2639 4 64.95 [0 1 1] 0.1272 4 81.27

3 [0 1 2] 0.1654 4 73.45 [1 1 1] 0.0320 4 88.17

4 [0 0 1] 0.0637 2 75.09 [0 2 1] 0.0048 4 89.19

5 [1 2 1] 0.0435 8 79.57 [1 2 1] 0.0042 8 91.00

6 [0 2 1] 0.0379 4 81.52 [0 2 2] 0.0042 4 91.89

7 [1 1 2] 0.0338 4 83.26 [0 1 2] 0.0037 4 92.70

8 [1 1 3] 0.0181 4 84.19 [0 0 2] 0.0036 1 92.90

9 [0 3 1] 0.0179 4 85.11 [0 3 1] 0.0033 4 93.61

10 [1 2 2] 0.0167 8 86.83 [0 1 3] 0.0025 4 94.15

aThe degeneracy implies for example that ½0 1 1� stands for the degenerate family ½ð0 1 1Þ, ð0� 1 1Þ,
ð1 0 1Þ; ð�1 0 1Þ� as defined by Eq. (9).

Figure 1. The flows associated with some of the K–L modes. The streamline pattern for the flows uf0 1 1g

and uf1 1 1g show two-dimensional roll motion along the x axis and the diagonal, respectively. The flow

associated with uf0 1 2g is pumping motion in and out of the y–z plane as shown by a combined picture of

streamlines and isovelocity contours of the x component of velocity. This flow is characterized by having

nonzero vertical vorticity component. The flow associated with the thermal mode Tf0 1 1g is compatible

with the roll motion as shown by its isothermal contours.
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uðx; tÞ 	
X
‘2Uc

u‘ and Tðx; tÞ 	
X
‘2Tc

T ‘ ð13Þ

where each summation is over a suitable class of flowlets, denoted by Uc and Tc. In
choosing these classes we respect the symmetries carried by the degeneracies shown
in Eq. (9).

Under projection, the resulting amplitude equations have the form

dbk
dt

¼ Ra PrBkp cp þ PrDkpbp þQkpq bp bq ð14Þ

dck
dt

¼ B0
kp bp þD0

kp cp þQ0
kpq bp cq ð15Þ

with the summation convention over repeated indices, and only over the sets Uc and
Tc. The coefficients are defined for p ¼ fpx py npg, q ¼ fqx qy nqg, and
k ¼ fkx ky nkg as follows:

Bkp ¼ Uk ; T p ez
� �

and Dkp ¼ Uk ; Dup
� �

ð16Þ

B0
kp ¼ Yk ; wp

� �
and D0

kp ¼ Yk ; DT p
� �

ð17Þ

with px ¼ kx and py ¼ ky,

Qkpq ¼ � 1

2
Uk ; up � Huq þ uq � Hup
� �

and Q0
kpq ¼ � Yk ; up � HT q

� �
ð18Þ

with px þ qx ¼ kx, py þ qy ¼ ky [19]. Observe that quadratic cross-coupling appears
only in the thermal equation [Eq. (15)], where it is the only nonlinearity.

TRUNCATION SCHEME

In implementing the Galerkin procedure we do not endeavor to minimize the
order of the resulting dynamical system. Although our approach is based on the
choice of the most energetic modes, we will also include modes which carry the full
complement of symmetries that accompany the energetic modes. To illustrate this
point, according to Table 1 the most energetic space dependent thermal mode is
ð0 1 1Þ. As seen in Figure 2E, this mode is an even function in z. Figure 2F shows
ð0 1 2Þ, which is the odd counterpart of ð0 1 1Þ. Although the former is not as
important as the latter from the point of view of energy, we carry it along with
ð0 1 1Þ in order to explore the full symmetries of this grouping. As will be seen, this
desire to always carry a full complement of symmetries will lead to relatively low
energy modes tagging along. This becomes more apparent in the case of the velocity
modes.

The most energetic mechanical mode is ð0 1 1Þ and is shown in Figure 2A, as is
ð0 1 2Þ in Figure 2B. It is clear that these two are unrelated. In fact, as is clear from
Figure 2C, ð0 1 3Þ is the odd counterpart of ð0 1 2Þ, while ð0 1 4Þ in Figure 2D is the
parity counterpart of ð0 1 1Þ. On a more analytical note we observe that ð0 1 2Þ and
ð0 1 3Þ carry vertical vorticity, with ð0 1 2Þ having nonzero mean component inde-
pendent of the vertical coordinate z. (They are also referred to as parasitic, since they
do not involve convective heat transport.) On the other hand, ð0 1 1Þ and ð0 1 4Þ
have zero vertical vorticity. We regard the four such modes as carrying the full
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complement or a cycle of physical symmetries. We observe that ð0 1 4Þ has relative
energy 0:62%, which illustrates our remark about low energy modes tagging along.
It should be noted that the splitting of mechanical modes into those with and
without vertical vorticity occurs naturally in the K–L decomposition and agrees with
the practice adopted in stability theory ([2]) and is discussed in more detail in [27].

Furthermore, an inspection of Table 1 indicates that most energy is captured
by the low wave numbers. In particular, at r ¼ 15 roughly 90% of the energy is
captured by the modes, k, satisfying

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q

 3. Based on these observations, we

will truncate to include modes which satisfy

kx; ky; n
� �

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q

 M and 1 
 n 
 c �N

n o
ð19Þ

where c ¼ 4 for mechanical and 2 for thermal modes, respectively. N denotes the
number of symmetry cycles. The integer parameter pair ðM;NÞ will be used to
specify the truncation in our simulations.

RESULTS

We have performed numerical experiments by integrating the truncated
amplitude equations for some selected truncation parameter pairs ðM;NÞ near the
onset of the convective motion at r ¼ 1. The numerical integration is performed
starting from the initial conditions set as zero for the amplitudes of the mechanical
modes and small random numbers for those of the thermal modes for these runs. In
Table 2, the resulting flow for the selected truncations of ð3; 2Þ and ð3; 3Þ is com-
pared with the asymptotic solution of Schlüter [1]. Note that the flow quantities
compare better for ð3; 3Þ in comparison to those for ð3; 2Þ at r ¼ 1:005 and
r ¼ 1:01. The poor performance of truncation ð3; 2Þ is due to built-in vertical
resolution of the K–L basis elements being too high for this low r values. In case of

Figure 2. The vertical profiles of the mechanical and thermal K–L eigenfunctions for the family of modes

ð0 1 nÞ. This is a typical plot indicating the two cycles [N ¼ 2, see Eq. (19)] of the grouping of the sym-

metries labeled by A, B, C, and D for the mechanical modes and by E and F for the thermal modes.
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truncation ð3; 3Þ, this problem is alleviated by supply of more degrees of freedom for
the flow to adjust the vertical resolution to the low resolution requirement at low r.
As the value of N in the truncation parameter pair ðM;NÞ is increased, more K–L
basis elements are introduced into the flow simulation in a manner of increased
vertical complexity. The comparable values of the flow quantities between ð3; 2Þ and
ð3; 3Þ at r ¼ 1:1 in Table 2 shows that the relatively higher vertical resolution
requirement as r increases is met by the use of ð3; 2Þ. Further, numerical experiments
to determine the intervals in which lie the critical r values for transition to
the periodic and the quasi-periodic stages of the flow are performed for various
truncation parameter pair values. A satisfactory qualitative agreement is observed
among the selected truncations as shown in Table 3. These considerations support
the selection of the truncation parameter pair ð3; 2Þ for the subsequent qualitative
study of the transition. The reduced computational labor also plays a role in this
selection which involves the inclusion of 120þ 60 (mechanicalþ thermal) conjugate
pairs of K–L modes. The partial list (for N ¼ 1 only) of K–L modes involved in the
simulation is shown in Table 4. As initial conditions for the subsequent runs with
increasing r, randomly perturbed amplitudes of the thermal field computed for the
preceding r values are used.

The K–L power spectrum plot at r ¼ 1:9 in Figure 3 shows that the two-
dimensional roll solutions are dominant as shown by the physical manifestation of
this spectrum in Figure 4. The alignment of the rolls is in the y direction which
evolved from randomly selected initial conditions. The K–L modes excited in this
steady-state regime have the common parity that kx þ kz is even. As r is increased
from 1.9 to 2.0, transition to a periodic state is observed numerically. The

Table 2. Comparison of maximum velocity and maximum temperature given by the asymptotic solution

of Schlüter et al. [1] and the numerical solution at truncation parameter pairs (3, 2) and (3, 3)a

r ¼ 1:005 r ¼ 1:01 r ¼ 1:1

vmax Tmax vmax Tmax vmax Tmax

Asymptotic solution 1.088 0.0517 1.539 0.0728 4.867 0.211

Numerical solution (3, 2) 0 0 0.662 0.0300 4.794 0.184

(3, 3) 1.087 0.0501 1.544 0.0700 4.882 0.186

aAt r = 1.1, the comparison is intended between the two truncation parameter pairs since the asymp-

totic solution may not be valid at this r. The zero values signify no motion.

Table 3. Intervals for critical r values in which numerically observed transition to the

indicated states occur for some selected truncation parameter pairs (M, N)

Interval for critical r

(M, N) Periodic state Quasi-periodic state

(3, 2) (1.9, 2.0) (2.9, 3.0)

(3, 3) (1.8, 1.9) (2.7, 2.8)

(4, 2) (2.0, 2.1) (2.7, 2.8)

(5, 2) (1.9, 2.0) (2.8, 2.9)
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Table 4. K–L modes included for the selected truncation parameter pair (3, 2)a

A B C D E F

‘ fkx ky ng ‘ fkx ky ng ‘ fkx ky ng ‘ fkx ky ng ‘ fkx ky ng ‘ fkx ky ng

1 {0 1 1} 3 {0 1 2} 5 {0 1 3} 7 {0 1 4} 61 {0 1 1} 63 {0 1 2}

2 {1 0 1} 4 {1 0 2} 6 {1 0 3} 8 {1 0 4} 62 {1 0 1} 64 {1 0 2}

9 {1 1 1} 11 {1 1 2} 13 {1 1 3} 15 {1 1 4} 65 {1 1 1} 67 {1 1 2}

10 {1 71 1} 12 {1 71 2} 14 {1 71 3} 16 {1 71 4} 66 {1 71 1} 68 {1 71 2}

17 {1 2 1} 21 {1 2 2} 25 {1 2 4} 29 {1 2 3} 69 {1 2 1} 73 {1 2 2}

18 {1 72 1} 22 {1 72 2} 26 {1 72 4} 30 {1 72 3} 70 {1 72 1} 74 {1 72 2}

19 {2 1 1} 23 {2 1 2} 27 {2 1 4} 31 {2 1 3} 71 {2 1 1} 75 {2 1 2}

20 {2 71 1} 24 {2 71 2} 28 {2 71 4} 32 {2 71 3} 72 {2 71 1} 76 {2 71 2}

33 {0 2 1} 35 {0 2 2} 37 {0 2 4} 39 {0 2 3} 77 {0 2 2} 79 {0 2 1}

34 {2 0 1} 36 {2 0 2} 38 {2 0 4} 40 {2 0 3} 78 {0 2 2} 80 {2 0 1}

41 {0 3 1} 43 {0 3 2} 45 {0 3 4} 47 {0 3 3} 81 {0 3 1} 83 {0 3 2}

42 {3 0 1} 44 {3 0 2} 46 {3 0 4} 48 {3 0 3} 82 {3 0 1} 84 {3 0 2}

49 {2 2 1} 51 {2 2 2} 53 {2 2 3} 55 {2 2 4} 85 {2 2 1} 87 {2 2 2}

50 {2 72 1} 52 {2 72 2} 54 {2 72 3} 56 {2 72 4} 86 {2 72 1} 88 {2 72 2}

57 {0 0 1} 59 {0 0 3} 89 {0 0 2} 90 {0 0 1}

58 {0 0 2} 60 {0 0 4}

aFor brevity, only those modes for N¼ 1 are listed. The modes, under the symmetry grouping labels A,

B, C, D for mechanical and E, F for thermal, carry the common symmetry characteristics mentioned in the

text. The index ‘ is used in the identification of the modes in the K–L power spectrum plots (Figure 3) and

is arbitrary otherwise. The curly brackets represent the conjugate pair; for example, { 1 2 1} stands for

{ (1 2 1), (-1 -2 1) }. The {0 0 n} modes appear in conjugate-pair notation for simplicity; they are, of

course, singletons.

Figure 3. The magnitudes (averaged in time) of the complex expansion coefficients of the K–L modes

excited at the indicated r values. The indexing of the modes is based on Table 4.
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appearance of the fundamental oscillation frequency f1 ¼ 2:165 is shown in Figure 5
at r ¼ 2:9. All the newly excited modes as shown in the K–L power spectrum plot in
Figure 3 at r ¼ 2:5 in the periodic state still have the common parity that kx þ kz is
even. The functional dependence of u; v;w;T of these newly excited K–L modes on
the horizontal variable y and time t are of the form cos ½kyðsyþ 2pf1tÞ� or
sin½kyðsyþ 2pf1tÞ�, where the time dependence enters through the phase of the
complex K–L expansion coefficients while their magnitudes are constant in time.
This indicates periodic translation of the modes in the y direction which is parallel to
the roll axis. An example of this is provided by the observation that the amplitudes
of those conjugate pairs of K–L modes with (kx 6¼ 0 and ky 6¼ 0) appear in pairs
having equal magnitudes in the K–L power spectrum plot at r ¼ 2:5 in Figure 3. It is
also observed that the phases of the amplitudes of these modes are related in a
special way, as shown in Figure 6 for two typical cases for the mechanical K–L modes
(f1 1 1g and f1� 1 1g) and (f1 2 1g and f1� 2 1g). These indicate that the wave
patterns associated with the modes (fkx ky ng and fkx � ky ng) combine to produce
the effect of traveling wave along the y axis. Since the modes that formed the two-
dimensional roll solution in the steady-state regime still have no time dependence in
this periodic state, the motion manifests itself as traveling waves superimposed onto
the rolls as shown by the sequence of contour plots of the vertical velocity in the
horizontal mid-plane in Figure 4 for r ¼ 1:5, 2:0, 2:9. After the appearance of the
traveling waves at the critical r value in the interval ð1:9 ; 2:0Þ, the wave pattern
gradually becomes sharper-crested, which was also observed by Lipps [28] in his
numerical simulation. The most energetic mode that contributes to the generation of
vertical vorticity in the periodic state is the mode f0 1 2g, which has nonzero mean
component independent of the vertical coordinate z. This is consistent with the linear

Figure 4. The two-dimensional roll motion with the corresponding temperature distribution in the x–z

plane in the steady-state regime at r ¼ 1:9, and typical contour plots of the vertical velocity in the hor-

izontal mid-plane at r ¼ 1:5, 2.0, 2.9 at a particular time. Here, x and y coordinates are individually

normalized; in fact, 0 
 x; y 
 2
ffiffiffi
2

p
:
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stability analysis of Busse [2], who reported the z-independent component of the
vertical vorticity as a cause of the oscillatory behavior.

Transition to a doubly periodic (quasi-periodic) state is observed numerically
as r is increased from 2.9 to 3.0. This is shown later by a segment of typical time
signal in this state at r ¼ 3:6 in Figure 8. The appearance of the second incom-
mensurate frequency f2 ¼ 0:529 at r ¼ 3:6 is shown in Figure 5. The newly excited
modes, in this regime at r ¼ 3:0, as shown in the K–L power spectrum plot in
Figure 3, have the common parity that kx þ kz is odd, which breaks the spectral even
parity of the previous regime. The two primary frequencies f1 and f2 are shown to

Figure 5. The frequency spectrum corresponding to the time series generated by sampling the vertical

velocity component w at a particular spatial location. These are typical in the periodic, doubly periodic,

and at the start of the nonperiodic regimes.

Figure 6. The time evolution of the magnitudes, the phases, and the polar representation of the complex

K–L amplitudes at r ¼ 2:5 in the periodic state for the mechanical K–L modes ðf1 1 1gandf1� 1 1gÞ and
ðf1 2 1g and {1 � 2 1gÞ. The slopes of the phases are given by �2pkyf1 and the phases are related by

phaseð1 � 1 1Þ ¼ p�phaseð1 1 1Þ and by phaseð1 � 2 1Þ ¼ �phaseð1 2 1Þ.
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increase monotonically with r in Figure 7. The frequency of the traveling waves can
be seen to increase monotonically with r in [29]. The evolution of the ratio f1=f2 with
r as shown in Figure 7 appears to be in a weakly frequency-locked state as the ratio
takes values between 4.67 and 4.73 at selected points in a range of r from 3.0 to 3.7.
As the ratio starts to decrease at r ¼ 3:8, the frequency spectrum develops a marked
change toward nonperiodicity as shown in Figure 5. This transition seems to agree
with route-I transition scenario, as it is termed in [6], based on experimental obser-
vations. Our observation that the transition to the quasi-periodic and then to the
nonperiodic state coincides with the appearance of the modes with opposite spectral
parity may be consistent with the observation in [3] that implicates the symmetry-
breaking modes with the onset of chaos.

As mentioned above, the physical manifestation of the periodic motion is in the
form of waves traveling along the axis of otherwise two-dimensional steady rolls, and
this motion evolves with the frequency of oscillations, f1. Next, we attempt to
identify the physical picture of motion in the quasi-periodic regime by using a simple
sampling technique which helps isolate the motions evolving with the second fre-
quency of oscillations, f2 (f2 < f1Þ. For this purpose, a typical time signal in this
regime at r ¼ 3:6 is sampled at a rate of 1=f1 as marked by 1; 2; 3; . . . in Figure 8 to
obtain a time series. Clearly, the variation in this time series is associated with the
frequency f2. The corresponding evolution of motion is shown in the same figure by
the isothermal contours in a specified region of a y–z slice in the convective box.
These series of frames are ordered with respect to the time series. The physical
picture clearly shows thermals periodically being released from the lower thermal
boundary layer (similar releases are observed to occur from the upper thermal
boundary layer at a different y–z slice). This is in line with Howard’s theory [8] on the
periodic instability of the thermal boundary layer, as mentioned in the introduction.
Further, the computed dependence of the frequency of oscillations is found to follow
very closely Howard’s prediction of r2=3 as shown in Figure 7. When totality of the
motion is considered, these thermals would experience lateral displacements. This
might be the physical picture of oscillations described in [10] based on their
experimental observations, as mentioned in the introduction.

Figure 7. The two primary frequency values and their ratios for a range of r at which the identification of

the primary frequencies was possible. The solid lines represent slope of r2=3 associated with the periodic

instability of the thermal boundary layer due to Howard [8].
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In order to clarify the nature of the apparent transition from doubly periodic to
nonperiodic (chaotic) regime, we have performed a numerical experiment by intro-
ducing oscillation in the form

rðtÞ ¼ rð0Þ 1þ E sin ð2pftÞ½ � ð20Þ

at r � rð0Þ ¼ 3:4 in the middle of the frequency-locked regime (see Figure 7). We
choose E ¼ 0:1 and the oscillation frequency f ¼ 1:0 to be incommensurate with and
between the frequencies of the quasi-periodic regime at r ¼ 3:4 which are f1 ¼ 2:401
and f2 ¼ 0:513. The comparison of the power spectrum plots at r ¼ 3:4 in Figure 9
shows that the introduction of the third incommensurate frequency produces early
broad-band spectral excitations. This is similar to the behavior observed in transition
from quasi-periodic state at r ¼ 3:6 to nonperiodic state at r ¼ 3:8. Furthermore, the
two frequencies at r ¼ 3:4 in its natural evolution are now replaced by f1 ¼ 2:384 and
f2 ¼ 0:521 with the ratio f1=f2 ¼ 4:58 which has dropped from f1=f2 ¼ 4:68 in its
natural evolution. This drop in the ratio was also observed in Figure 7 as the non-
periodic regime sets in. These observations might explain the transition to the
nonperiodic regime as a result of the appearance of a naturally occurring incom-
mensurate third frequency, which breaks the frequency-locked regime and suggests
that the transition to nonperiodic regime occurs as predicted by Ruelle [5]
and observed by McLaughlin and Orszag [3] and Curry [4] as mentioned in the
introduction.

Figure 8. The evolution of the flow in a specified sector of the yz slice in the convective box. The frames of

isothermal contours show a cycle of release of thermals from the lower boundary layer. Each frame is

numbered in accordance with the time series marked on the signal depicting variation of temperature at a

spatial location at r ¼ 3:6. The marked points on the signal are sampled at a rate of 1=f1 to generate a 1=f2
periodic time series ( f1 > f2).
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It is of interest to follow the change in Nusselt number (Nu) with r. The
computed Nu values are marked by the up-triangle symbols in Figure 10. We have
used higher truncation parameter values, namely (4, 2), in computation of these
values due to the known sensitive dependence of Nu on the truncation as well as to
relatively smaller number of runs needed in the computation of Nu compared to the
earlier frequency spectrum computations. The transitions to the periodic and quasi-
periodic regimes appear as kinks in Figure 10. The change of slope is emphasized by
the solid lines representing the best fit where they intersect at r ¼ 1:99 and r ¼ 2:69.
These satisfactorily compare with the critical r values in Table 3 for (4, 2). The
manifestation of the transition as kinks in the dependence of Nu on r was observed

Figure 9. The frequency spectrum at r ¼ 3:4 corresponding to the time series generated by sampling the

vertical velocity component w at a particular spatial location corresponding to (a) the natural quasi-

periodic state and (b) the state after the oscillations in the form of Eq. (20) are introduced. The spectrum in

(b) exhibits broad-band spectral excitation and noise induced by the introduction of the incommensurate

third frequency to the quasi-periodic state in (a).

Figure 10. Nusselt number as a function of r; the solid circle marks the value from the numerical simu-

lation by Deane and Sirovich [30] and the up-triangle symbols mark the values from the current K–L-

based numerical simulation with the truncation parameter pair selected as (4, 2). The solid lines with the

indicated dependence on r represent the best fit and are included to emphasize the change of slope.
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experimentally by Krishnamurti [9]. The emergence of the parasitic modes as r is
increased, such as the energetic mechanical K–L mode f0 1 2g in the transition to
periodic regime and f1 0 2g in the transition to quasi-periodic regime, plays an
important role in the appearance of the kinks, as they draw off energy from the
active heat transfer modes without contributing to the generation of convective heat
flux wTh i. Clever and Busse [29] point out that the onset of traveling waves decreases
the efficiency of the convective heat transport. This can be seen in Figure 10 by the
decrease in the slope of the curve after the appearance of the first kink at the
transition to periodic regime. The efficiency of the convective heat transport seems to
be restored somewhat by the increase in the slope of the curve after the appearance
of the second kink at the transition to quasi-periodic regime as more modes get
excited in this regime. The comparison with the numerical simulation values of
Deane and Sirovich [30] as shown by the solid circle at r ¼ 5:0 shows satisfactory
agreement.

DISCUSSION

The key step in the success of reproducing onset and the transition sequence of
bifurcation behaviors using a truncated system is the mode selection. In the
numerical simulations using K–L basis, the usual strategy has been to base the mode
selection solely on the energy content of the modes, given conveniently by the cor-
responding eigenvalues. This in fact follows from the nature of the K–L decom-
position, which extremizes the modal energy. However, modal energy content alone
does not constitute a sufficient criterion to determine those modes that are not
dynamically significant. This is even more so when the K–L basis is used for a range
of off-reference control parameter values at which the basis is no longer optimal. In
this work, the physical significance attached to the K–L modes together with the
symmetry considerations add new rationale into the mode selection procedure and
determine the success of the approach. Furthermore, the separate treatment of the
mechanical and the thermal parts and the incorporation of the mean into the basis
functions provide the K–L basis with the necessary freedom to adapt to the changing
conditions in different regimes and enable efficient modeling of the dynamics of the
system over a large range of the Rayleigh number.

An important advantage of the K–L basis over other general basis functions,
such as Fourier or Chebyshev, is its empirical nature. This results in a compact
representation of the dynamics in terms of the K–L basis. In this work, our objective
has not been to determine a minimal dynamical system but rather to make all
possible varieties of symmetries in a pool of 120þ 60 conjugate K–L modes available
to the dynamics. In fact, in the steady and periodic-state regimes, the excited few
number of the modes provide a representation for the underlying dynamics (see
Figure 3). Further analysis of the resulting dynamical system may bring down the
necessary number of modes for a satisfactory qualitative representation of the
dynamics in each regime. For example, the dominant excited modes, in the regime as
the convective motion just sets in, form the flow as

u 	 b1U
ð011Þ þ b2U

ð101Þ þ conjugatemodes

T 	 c0 Y
ð001Þ þ c1 Y

ð011Þ þ c2 Y
ð101Þ þ conjugatemodes

: ð21Þ
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corresponding to the case of the truncation parameter pair (3, 1). The dynamics of
the complex coefficients bn; cn is governed by the coupled system of amplitude
equations

b1
�
¼ Ra Pr B1c1 þ Pr D1b1 c1

� ¼ B1b1 þD3c1 �Q1b1c0

b2
�
¼ Ra Pr B1c2 þ Pr D1b2 c2

� ¼ B1b2 þD3c2 �Q1b2c0 ð22Þ

c0
� ¼ D2c0 þQ1½b1c�1 þ b�1c1 þ b2c

�
2 þ b�2c2�

in which the coefficients are B1 ¼ 0:5548 for the buoyancy terms; D1 ¼ �15:37,
D2 ¼ �48:01; D3 ¼ �23:58 for the diffusive terms; and Q1 ¼ 1:89 for the quadratic
terms. The steady-state solution to Eq. (22) is found to be

b21 þ b22 ¼
Ra B1

D1


 �2

c21 þ c22
� �

¼ D2

2D1Q
2
1

Ra�Ratð ÞB2
1

c0 ¼
B1

Q1


 �
Ra�Rat

Ra
ð23Þ

where Rat ¼ D1D2=B
2
1. Hence, transition to the convective motion occurs at

rt ¼ 1:79. This can be improved significantly in the case of (3, 2), in which case the
additional modes Uð016Þ, Uð106Þ,Yð013Þ,Yð103Þ are included in the representation of the
flow in Eq. (21) and the transition occurs at rt ¼ 1:009: Even though the repre-
sentation in Eq. (21) is not as accurate as in the case of (3, 2), we can still infer from
Eq. (23) some qualitative properties of the flow as the convection sets in. The
solution, Eq. (23), suggests that the rolls can be aligned along any horizontal
direction, dictated only by the relative magnitudes of b1, b2 in b21 þ b22 since U

ð011Þ and
Uð101Þ represent two-dimensional rolls aligned in the x and y directions, respectively.
Orientational degeneracy of rolls appears in the linear theory of onset of convection
[31]. A further well-known result follows from Eq. (23), that Rat is independent of Pr
[20]. Since Nu is proportional to the heat flux at the boundary, it follows that

Nu� 1 ¼ � dT

dz

� 
z¼0

/ c0 since T ¼ c0Y
ð001Þ ð24Þ

where the overbar indicates averaging over the horizontal layer, and thus

Nu� 1 / Ra�Rat
Ra

ð25Þ

which is known to hold in the case of stress-free boundary conditions ([31], p. 108).
While the stress-free case is used as the test database in this work due to its

computational ease in direct numerical simulation and our objective being to develop
and to demonstrate a robust K–L procedure, the present work can easily be extended
to the physically more realistic case of no-slip boundary conditions. The robustness
of the K–L basis in its present formulation together with its current implementation
opens the way for further similar studies of transition in other phenomena.
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