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Variational Calculus 1

Variational Calculus deals with functionals, i.e. functions of functions, 
in the form of a definite integral whose integrand contains a function 
u(x) that is yet to be determined, such as: 

[ ] [ ]1

0

x

x
I u(x) F x,u(x),u (x) dx′= ∫  

and it is utilized when searching for the function u(x) for which the 
functional is an extremum. 
  
e.g. Fermat’s principle of optics states that the path of light y(x)
between two points is the one requires the minimum travel time:   

[ ] 1 1 1

0 0 0

t x x 2ds 1
v(x,y) v(x,y)t x x

ds

T y(x) dt 1 (y ) dx′= = = +∫ ∫ ∫   

where v(x, y) is the speed of light in the medium.    
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As a typical variational calculus problem, consider the functional 

[ ] [ ]1

0

x

x
I u(x) F x,u(x),u (x) dx′= ∫  

where u(x) is smooth (diffrentible) family of curves passing through the 
specified end points 0 0u(x ) u=  and 1 1u(x ) u=  which are classified as 
Dirichlet or essential boundary conditions.   
  

Among these functions (curves) we search for the function u(x) for 
which the functional [ ]I u(x)  is an extremum or u(x) is a stationary 

function for [ ]I u(x) .      
 

For this purpose, let us introduce neighborhood functions û(x) that is 
“close” to the actual, yet unknown, stationary function u(x) defined as 

2u
0

û(x) u(x) O( )∂
∂ε ε=

= + ε + ε  

where ε is a small parameter. 
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The two functions u(x)  and û (x)  are close in the sense of some norm, 
the u

0
O( ) ∂

∂ε ε=
ε ≡ ε  term is called the “variation of u” 

u
0

ˆu u(x) u(x) (x)∂
∂ε ε=

δ ≡ − = ε ≡ εη  

where (x)η  denote suitable functions with 0 1(x ) (x ) 0η = η = . 
The functional (Frechet) derivative of [ ]I u(x)  is then defined by   

[ ] [ ]

[ ] [ ]{ }

{ } { }
[ ] { }

1

0

1 1

0 0

11

0 0

I u I udI
d 0 0

x
1

x0

x x2dF F F F1
u dx u u x ux x0

xxF F d F
u u dx ux x

0

lim

lim F x, u ,u F x, u, u dx

lim O( ) dx dx

dx

+εη −
ε εε= ε→

εε→

η ∂η∂ ∂ ∂ ∂
′ ′ε ∂ ∂ ∂ ∂ ∂ε→

∂ ∂ ∂
′ ′∂ ∂ ∂

=

′ ′ ′= + εη + εη −

= εη + ε + ε = η +

= η + η −

∫

∫ ∫

∫

 

Stationarity condition results in the Euler-Lagrange equations,  
dI F d F
d u dx u0

0 0∂ ∂
′ε ∂ ∂ε=

= ⇒ − =  

as a necessary condition for an extremum by the Fundamental Lemma.   
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Fundamental Lemma of the Calculus of Variations 
If g(x) is a continuous function in 0 1x x x≤ ≤  and if 

1

0

x

x
g(x)h(x) dx 0=∫  

where h(x) is an arbitrary function in the same interval with 

0 1h(x ) h(x ) 0= = , then g(x) 0=  at every point in the interval. 
 

Euler-Lagrange equation may be regarded as an equivalent differential 
form of the variational form [ ]I u(x) . An equivalent form is 

( ) ( ) ( )2 2 2 2

2 2
F d u F du F F

u u dx u x uu dx
0∂ ∂ ∂ ∂

′ ′∂ ∂ ∂ ∂ ∂′∂
+ + − =  

the 2nd order ODE for u(x). It may be linear or nonlinear depending on 
the nature of the integrand [ ]F F x,u,u′= . 
 

e.g. Verify that the stationary function u(x) for the functional   

[ ]
1 2 2

0
I u (xu ) 2u dx′ = + ∫   subject to  u(0) 0=   and   u(1) 2=  

satisfies the ODE: 2x u 2xu 2u 0′′ ′+ − = . Find u(x).    
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e.g. Verify that the problem of finding a plane curve u u(x)=  with the shortest 
length connecting the two points 0 0(x ,u ) and 1 1(x ,u ) is formulated as the
functional   

[ ] 1 1

0 0

x x 2

x x
I u ds 1 (u ) dx′= = +∫ ∫  

and leads to the Euler-Lagrange equation: u constant′ = . Find u(x).    
 
e.g. Verify that the problem of finding a minimum surface area by revolving the 
plane curve u u(x)=  around the x-axis can be formulated as the functional   

[ ] 2 1

1 0

x x 2

A x x
I u dA 2 u(x)ds 2 u(x) 1 (u ) dx′= = π = π +∫∫ ∫ ∫  

and leads to the Euler-Lagrange equation: 2uu (u ) 1′′ ′− = . Find u(x) by change of 
variables from (x,u) to (u,p) using u p′ =  and thus dp

duu p′′ = .    
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Natural Boundary Conditions arise when the values of the stationary function 
u u(x)=  are not specified at the endpoints 0x  and 1x . Consider the total variation 
of [ ]F x,u,u′  by ( ) ( ) ( )F F F

x u uF x u u∂ ∂ ∂
′∂ ∂ ∂ ′δ = δ + δ + δ  where ˆu u(x) u(x) (x)δ = − ≡ εη .  

 

Since x is an independent variable and so it does not change, x 0δ = , and since  
( ) ( )du d

dx dxu u′δ = δ = δ     or    ( ) ( )d d
dx dxu (x) u′ ′δ = εη = εη = δ , 

we have ( ) ( )F F
u uF u ( u)∂ ∂

′∂ ∂ ′δ = δ + δ . Now, the extremization of the functional  

[ ] [ ]1

0

x

x
I u F x,u,u dx′= ∫  

leads to  

( ) ( ){ } ( ) ( ){ }1 11

00 0

x xxF F F F d F
u u u u dx uxx x

0 I u ( u) dx u u dx∂ ∂ ∂ ∂ ∂
′ ′ ′∂ ∂ ∂ ∂ ∂′  = δ = δ + δ = δ + − δ ∫ ∫ . 

 

Now, for u specified at the boundaries 
0 1x x

u u 0δ = δ = , otherwise 
0 1

F F
u ux x

0∂ ∂
′ ′∂ ∂= =

required for the vanishing boundary terms to have left with Euler-Lagrange eqn. 
These later conditions which are not dictated externally (essentially) are called 
natural (or Neumann or nonessential) boundary conditions.   
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e.g. Verify that the extremization of the functional   

[ ] { }2 2 21
2 0

I u (u ) u 2xu dx
π

′= − + +∫  

where u(0) and 2u( )π  are not specified leads to the natural b.c. u (0)′  and 2u ( )π′ .
Find u(x).    
 

In addition to having b.c. not specified at the boundaries, the b.c. may be added 
to the functional to be included in the extremum problem. This is called dual 
functional problem. 
 

e.g. Verify that the extremization of the functional   

[ ] [ ] { }12 21 1
2 2 0

I u u(1) (u ) dx′= + ∫  

where u(0) 1=  and u(1) is not specified but to be minimized along with the 
definite integral, leads to  

{ }
1

x 1 0
0 I u(1) u u u dx

=
′ ′= δ = δ + δ∫  

with the natural b.c. u (1) u(1) 0′ + =  and the ODE u 0′′ = . Find u(x).    
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Variable Endpoints arise when the functional 

[ ] [ ]1

0

x

x
I u F x,u,u dx′= ∫  

is to be extremalized when the endpoints 0x  and 1x  vary along some functions 
f (x) and g(x), thus 0 0 0u u(x ) f (x )= =  and 1 1 1u u(x ) g(x )= = . Now 

[ ] [ ]I I u u I uδ = + δ −  
becomes 

[ ] [ ]

[ ] [ ]

[ ] [ ]

1 1 1

0 0 0

1 1

0 0

1 1 0 0

1 0

x x x

x x x

x x

x x

x x x x

x x

I F x,u u,u u dx F x,u,u dx

F x,u u,u u dx F x,u,u dx

F x,u u,u u dx F x,u u,u u dx

+δ

+δ

+δ +δ

′ ′ ′δ = + δ + δ −

′ ′ ′= + δ + δ −

′ ′ ′ ′+ + δ + δ − + δ + δ

∫ ∫

∫ ∫

∫ ∫

. 

 

and further 

( ) ( ){ } [ ]11 1

00 0

xx xF F d F
u u dx u xx x

I u u dx F x∂ ∂ ∂
′ ′∂ ∂ ∂ δ = δ + − δ + δ  ∫ . 
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The typical argument used is that 

[ ] [ ] ( ) ( ){ }
[ ] ( ) ( ) [ ]

1 1 1 1

1 1

11

x x x x
F F
u ux x

F F
1 1u u xx

F x,u u,u u dx F x,u,u u u dx

F x,u,u u u x F x

+δ +δ
∂ ∂

′∂ ∂

∂ ∂
′∂ ∂

′ ′ ′ ′+ δ + δ + δ + δ

′ ′ + δ + δ δ δ 

∫ ∫
 

. 

where quadratic terms, such as u xδ δ  and u x′δ δ , are ignored.  
 
Also at a typical boundary, say, at 0x  where 0 0u(x ) f (x )= , the variation is 

0 0 0 0 0 0u(x x ) (x x ) f (x x )+ δ + εη + δ = + δ . 
It can also be written as 

0 0 0 0 0 0 0 0u(x x ) u(x ) (x x ) f (x x ) f (x )+ δ − + εη + δ = + δ −  
that becomes 

0 0 0 0 0
0 0 0 0x x x x x

u x f x u (f u ) x′ ′ ′ ′δ + εη = δ ⇒ δ ≡ εη = − δ  

where again quadratic terms, such as xεδ , are ignored.  
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These arguments lead to 

( ){ } ( ) ( )1

1 00

x
F d F F F

1 0u dx u u ux xx
I u dx (g u ) F x (f u ) F x∂ ∂ ∂ ∂

′ ′ ′∂ ∂ ∂ ∂′ ′ ′ ′   δ = − δ + − + δ − − + δ   ∫ . 

For extremum, we have the Euler-Lagrange eqn. ( )F d F
u dx u 0∂ ∂

′∂ ∂− =  and the 
transversality conditions 

( )
0

F
u x

(f u ) F 0∂
′∂ ′ ′ − + =     and   ( )

1

F
u x

(g u ) F 0∂
′∂ ′ ′ − + =  . 

 

e.g. Recall previously that the shortest distance problem [ ] 2F x,u,u 1 (u )′ ′= +

led to u constant′ = . Now let the endpoints vary along f (x) x 3= −  and 
g(x) exp(x)= , respectively. Write down the transversality conditions and find 
u(x).    
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Higher-Order Dervatives can also be handled similarly as follows: Consider 

[ ] [ ]1

0

x

x
I u F x,u,u ,u dx′ ′′= ∫ . 

It leads to  

( ) ( ) ( ){ }1

0

x
F F F
u u ux

0 I u ( u) ( u) dx∂ ∂ ∂
′ ′′∂ ∂ ∂′ ′′= δ = δ + δ + δ∫  

 

and further to the Euler-Lagrange equation 
( ) ( )2

2
F d F d F
u dx u udx

0∂ ∂ ∂
′ ′′∂ ∂ ∂− + = . 

The essential boundary conditions 
ix

u 0δ =  and 
ix

u 0′δ =  and/or the natural 

boundary conditions ( )
i

d F F
dx u u x

0∂ ∂
′′ ′∂ ∂− =  and 

i

F
u x

0∂
′′∂ =  may be required for i 0,1= . 

 
e.g. Verify the derivations above. 
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Two Independent Variables may also arise in variational formulations: 
[ ] x yA

I u F x, y,u,u ,u dxdy =  ∫∫ . 

It leads to  

( ) ( ) ( ){ }x y

F F F
x yu u uA

0 I u u u dxdy∂ ∂ ∂
∂ ∂ ∂= δ = δ + δ + δ∫∫  

where ˆu u(x, y) u(x, y) (x, y)δ ≡ − = εη . In particular, using the argument 

( ) ( ) ( ) ( )x x x x x

F F u F F F
xu u x u x x u x uu u u u∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂δ = δ = δ = δ − δ  

and similarly for yuδ  term, it reduces to  

( ) ( )( ){ }
( ) ( )( ){ }

x y x y

x y x y

F F F F F
u x u y u u uA

F F F F F
u x u y u u uA C

0 u u u dxdy

u dxdy u u ds

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

 = − − δ +∇ ⋅ δ δ 

 = − − δ + ⋅ δ δ 

∫∫

∫∫ ∫ n
 

using planar divergence theorem     

A C
dA ds∇ ⋅ = ⋅∫∫ ∫v n v  

where n denotes the outward normal vector on curve C bounding the planar 
region A and s denotes the arclength parameter. 
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For given parametric representation of C: [ ](s) x(s) y(s)=R , the normal vector is 

[ ](s) y (s) x (s)′ ′= −n , while tangent vector is [ ](s) x (s) y (s)′ ′=t , so that 0⋅ =n t , the 
boundary term becomes 

x y x y

dyF F F F dx
u u u s u sC C

u u ds u ds∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
   ⋅ δ δ = − δ   ∫ ∫n  . 

The extremum of I is then obtained when Euler-Lagrange equation 

( ) ( )x y

F F F
u x u y u 0∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂− − =  

is satisfied subject to the essential boundary conditions such as 0u(x, y) u (x, y)=  on C 
implying u 0δ = , or natural boundary conditions 

x y

dyF F dx
u s u s 0∂ ∂
∂ ∂ ∂ ∂− =    on   C. 

 

e.g. Construct the Euler-Lagrange equation together with the complete set of boundary 
coditions for the extremization of the functional   

[ ] 2 21
x x y2A

I u u u u u 2xu dxdy = + + + ∫∫  

subject to u(0,y) 3y=  and u(x,0) 2x=  for the unit square region { }A (x,y) 0 x,y 1= ≤ ≤ .   
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Constrained Functionals arises when a stationary function is to be determined 
in the presence of a constraint. This constraint may be an integral, a differential 
or an algebraic expression. Consider the functional 

[ ] [ ]1

0

x

x
I u F x,u,u dx′= ∫ . 

subject to a constraint expressed as a definite integral 

[ ]1

0

x

x
G x,u,u dx K′ =∫  

where K is a specified constant. Lagrange multiplier approach may be utilized as 
follows: Let λ  be an arbitrary constant so that the constraint can be attached to 
the functional and extremalized  

[ ] [ ]( ){ } [ ]{ }1 1 1

0 0 0

x x x

x x x
0 F x,u,u dx G x,u,u dx K F x,u,u dx′ ′ ′= δ + λ − = δ∫ ∫ ∫   

where [ ] [ ] [ ]F ,x,u,u F x,u,u G x,u,u′ ′ ′λ = + λ . This leads to  

( )F d F
u dx u 0∂ ∂

′∂ ∂− =   

that together with the essential boundary conditions, say, 0 0u(x ) u=  and 

1 1u(x ) u=  determines λ  and the stationary function u(x).      
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e.g. Consider the problem of constructing the curve u(x) passing through u( 1) u(1) 0− = =
that has minimum length and encloses an area 2A π=  with the x-axis. Thus, 

[ ] ( )
1 1 2

1 1
I u ds 1 u dx

− −
′= = +∫ ∫   subject to  

1

21
u(x) dx π

−
=∫ . 

Show that it leads to “circular arc” as the stationary function. 
 
 

e.g. Consider now the functional 

[ ] ( )1

0

x 22

x
I u q(x)u p(x) u dx ′= − ∫   subject to  1

0

x 2

x
(x)u dx 1ω =∫  

where p,q,ω are known functions. Show that the extremalization of I leads to 
( ) ( )d du

dx dxp(x) q(x) (x) u 0+ + λω = . 
Thus the functional has the stationary function as solution to the Sturm-Liouville equation 
and the Lagrange multiplier λ  is an eigenvalue. The constraint is interpreted as the weighted 
norm of u(x) be equal to unity. The natural boundary conditions for this problem are 

ii

F
u xx

0 p(x)u 0∂
′∂ ′= ⇒ =  

for i 0,1= , where [ ] ( )22 2F ,x,u,u q(x)u p(x) u (x)u′ ′λ = − + λω . 

Lecture Notes by Hakan I. Tarman 
METU / ME540

Variational Calculus 16

When the constraint is algebraic (u,v) 0φ =  or differential (u,v,u ,v ) 0′ ′φ =  in, say, two 
dependent variable case, the augmented functional is formed as 

[ ]F F x,u,v,u ,v (x)′ ′= + λ φ . 
The Lagrange multiplier is now a function of the independent variable x and apply at 
each point x in the domain. 
  

This is justified because the algebraic or differential constraints applies locally at each 
point in contrast to global integral consraints that apply over the entire domain as a 
whole. 
 

The extremalization now leads to  

( ) ( ){ }1

0

x
F d F F d F
u dx u v dx vx

0 u v dx∂ ∂ ∂ ∂
′ ′∂ ∂ ∂ ∂

   = − δ + − δ   ∫      

and the Euler-Lagrange equations. 
 

e.g. Find the stationary function extremalizing the functional, 

[ ] ( ) ( )( ){ }1 2 21
20

I u u v uv dx′ ′= + +∫    

subject to  v u 0′φ = − =  and u(0) u(1) v(0) 0= = = , v(1) 1= .  
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Variational Form of a known differential equation (as Euler-Lagrange equation) may 
be obtained by reversing the procedure of variational calculus. 
 

Consider, for example, the Laplace equation (Dirichlet problem)  
[ ] 2 2

2 2
2 u u

x y
u u 0∂ ∂

∂ ∂
ℑ ≡∇ = + =    in D subject to   0u u=    on   D∂ . 

In order to obtain a variational formulation, let 

[ ] { }2 2

2 2
u u

x yD D
0 u u dD u dD∂ ∂

∂ ∂
= ℑ δ = + δ∫∫ ∫∫ . 

Consider a rectangular domain { }0 1 0 1D (x, y) x x x , y y y= ≤ ≤ ≤ ≤  for convenience 

and integrate by parts, first in x,  

{ } [ ]{ } ( ){ }1 12 1
2

00 0

x x 2xu u u1
x xx 2 xxxx x D

u dx dy u u u dx dy dxdy∂ ∂ ∂
∂ ∂∂

δ = δ − δ = − δ∫ ∫ ∫ ∫ ∫∫  

then in y, to get the variational form corresponding to the Dirichlet problem 

[ ] ( ) ( ){ }22u u
x yD

0 I u dD∂ ∂
∂ ∂

 = δ = δ +  ∫∫ . 
 

It indicates that the diffusion process [ ]2u
t c u∂
∂ = ℑ  as modelled by the Dirichlet problem 

is a smoothing process in which overall magnitudes of the gradients are minimized. 
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This procedure, in the language of Finite Element Method, for example, is called 
converting the strong (differential) form to the weak (integral – variational) form. 
 
The inverse problem of determining the variational form from the differential equation 
is always possible for linear, self-adjoint differential operators. The resulting equivalent 
variational form often provides valuable insight into the physical processes that the 
differential equation models as in the Dirichlet problem modeling the diffusion process. 
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Approximate Solution methods may be sought when resulting Euler-Lagrange 
differential equations do not allow a closed form solution. The approach may be 
summarized as follows: 
 

1. Solve the Euler-Lagrange differential equations using numerical methods, such as 
spectral, or finite-element methods, where they are based on weighted residual methods 
(Galerkin approach). 
 

2. Solve the integral variational form approximately using the Rayleigh-Ritz method. 
 

Rayleigh-Ritz method directly applies to the variational form rather than the resulting 
differential form. Consider the variational problem 

[ ]1

0

x

x
0 I F x,u,u ,... dx′= δ = δ∫  

where the stationary function u(x)  is to be determined. It is approximated by a linear 

combination of known basis (trial) functions { }n

j j 0
(x)

=
φ  as follows: 

n
j jj 0

u(x) u(x) c (x)
=

≈ = φ∑  
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If the endpoints are specified as 0 0u(x ) u=  and 1 1u(x ) u= , the first basis function 0(x)φ

is designed to satisfy the boundary conditions while the remaining basis functions are to 
satisfy the homogeneous boundary conditions, such that 

0 i i(x ) uφ =    and   1 i 2 i n i(x ) (x ) ... (x ) 0φ = φ = = φ = . 
Substituting the trial function into the functional produces the variational problem 

[ ]1

0

x

1 2 nx
F x,c ,c ,...,c dx 0δ =∫   

where the constants jc ’s ( 0c 1= ) vary to render the functional stationary. 
 

e.g. Apply Rayleigh-Ritz method to the DE: u u x′′ − = −  with u(0) u(L) 0= =  to get:  

{ } { } { }L L L 2 2

0 0 0
0 u u x udx u u u u x u dx   (u ) u 2xu dx 0′′ ′ ′ ′ = − + δ = − δ − δ + δ ⇒ δ + − = ∫ ∫ ∫ .  

Let 0(x) 0φ =  and 1(x) x(L x)φ = − , 2
2 (x) x (L x)φ = − ,..., n

n (x) x (L x)φ = − .  
• One-term approximation 1 1u(x) c (x)= φ  yields 

{ } { }2 511 1 11 1
1 1 1 1 130 6 15 6 22c c 0 c c 0 cδ − = ⇒ − δ = ⇒ = . 

• Show that two-term approximation 1 1 2 2u(x) c (x) c (x)= φ + φ  yields 69
1 473c = , 7

2 43c = . 
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Recall that for self-adjoint DE, i.e. DE in the Sturm-Liouville form 
[ ] ( )d du

dx dxu p(x) q(x)u f (x)ℑ ≡ + =  
proper variational formulation exists.  
 

In other words, 

[ ]( ) { }1 1

0 0

x x

x x
u f udx 0 Fdx 0ℑ − δ = ⇔ δ =∫ ∫  

the two forms are equivalent. Now introducing the approximate solution before 
converting into variational form leads to 

[ ]( ) [ ]( )1 1

i
0 0

x x
u

i icx x
u f c dx 0 u f dx 0∂

∂ℑ − δ = ⇒ ℑ − φ =∫ ∫   

for i 1,2,...,n= .  
 

This is the projection of the residual [ ]( )u fℑ −  onto the space of admissible (test) 

functions known as Galerkin method. In fact, Galerkin method is more general and it 
does not require the DE to be able to be written in a proper variational form.  
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Consider now the differential eigenvalue problem [ ]u (x)u(x)ℑ = −λω  where [ ]ℑ ⋅  is of 
Sturm-Liouville form. The variational form  

[ ] [ ] [ ]1 1 1 1

0 0 0 0

x x x x

x x x x
u udx (x)u(x) udx u u udx (x)u(x) udxℑ δ = −λ ω δ ⇔ λ = − ℑ δ ω δ∫ ∫ ∫ ∫  

leads to the egenvalue as a functional, therefore, minimizing the functional [ ]uλ  will reult 
in the smallest eigenvalue. 
 

e.g. Consider the Sturm-Liouville problem: u u 0′′ + λ =  with u(0) u(1) 0= = .  

[ ] 1 1

0 1
u u udx u(x) udx′′λ = − δ δ∫ ∫ .   

Let 1u(x) c x(1 x)= −  so that 1u (x) 2c′′ = −  and 1u x(1 x) cδ = − δ . Then 

( )1 1 2 2 2 2 2
1 1 1 1 n0 1

2c x(1 x) c dx c x (1 x) c dx 10 9.8696... nλ = − − δ − δ = ≈ π = λ = π∫ ∫ . 
 

e.g. Consider vibrating square membrane problem: 2
1

xx yy ttc
u u u+ = , 0 x,y 1< < . Consider 

harmonic moion that u(x, y, t) exp(i t) (x,y)= ω φ , then   

[ ] [ ] [ ]2

2xx yy c D D
dD dDωφ + φ = − φ ⇒ ℑ φ = −λφ ⇒ λ φ = − ℑ φ δφ φδφ∫∫ ∫∫ .   

where 2 2cλ = ω . Consider clamped boundaries and so 1(x,y) c x(1 x)y(1 y)φ = − − .  
Show that 21 1

45 9001 1 1 1c c c c 20 2λ = δ δ = ≈ π . 

Lecture Notes by Hakan I. Tarman 
METU / ME540

Variational Calculus 23

Appendix A The point 0x  is a stationary (or critical point) of f (x) if 
df
dx 0=    at   0x x=    or   df

dxdf dx 0= =  
where df  is called total differential of f (x). The following possibilities exist 
1. If 2

2
d f
dx

0<  at 0x , then f has a local maximum at 0x . 

2. If 2

2
d f
dx

0>  at 0x , then f has a local minimum at 0x . 

3. If 2

2
d f
dx

0=  at 0x , then it is inconclusive, e.g. 3f (x) x= . 

 
In 2D, for an extremum of f (x, y) to occur at 0 0(x , y ) it is necessary that 

df df df df
dx dy dx dydf dx dy 0 0= + = ⇒ = =    at   0 0(x , y ) 

and the sufficiency comes from 
1. 2

xx yy xyf f f 0− >  and  xxf 0<  for a local maximum at 0 0(x , y ). 

2. 2
xx yy xyf f f 0− >  and  xxf 0>  for a local minimum at 0 0(x , y ) . 

3. 2
xx yy xyf f f 0− = , for a saddle point at 0 0(x , y ). 

4. 2
xx yy xyf f f 0− = , inconclusive. 
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Appendix B For an extremum of a function f (x, y,z) at 0 0 0(x , y ,z )  it is necessary that 

x y z x y zdf f dx f dy f dz 0 f f f 0= + + = ⇒ = = =    at   0 0 0(x , y ,z )  
because the differentials dx,dy,dz vary independently.  
 
If the extremum of f (x, y,z)  is sought subject to a constraint g(x, y,z) c= , then they
are no longer independent 

( )x y z x y zdg g dx g dy g dz 0 dz g dx g dy g= + + = ⇒ = − +   (say) 

provided that zg 0≠ . This then implies 

( ) ( )z z

z z

f f
x x y y x x y yg gdf f g dx f g dy 0 f g f g 0= − + − = ⇒ + λ = + λ =  

where z

z

f
gλ = −  and thus z zf g 0+ λ = .   

 
This can also be obtained by defining f f (g c)= + λ −  so that extremalization yields  

( ) ( ) ( )x y z x x y y z zdf f dx f dy f dz 0 f g f g f g 0= + + = ⇒ +λ = + λ = +λ =     

together with g c= . Here, λ  is called Lagrange Multiplier.  
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Appendix C  
 

Integration by parts plays an important part in the calculus of variations. 

In 1D:                                  [ ]1 11

00 0

x xx

xx x
pdq pq qdp= −∫ ∫  

that follows from d(pq) pdq qdp= + .  
 
In 2D or higher:      ( )2

A A A
dA dS dA

∂
ψ∇ φ = ψ ∇φ⋅ − ∇ψ ⋅∇φ∫∫ ∫ ∫∫n  

that follows from the divergence theorem.  
( )

A A
dA dS

∂
∇ ⋅ = ⋅∫∫ ∫v v n  

where n is the outward normal vector to the boundary A∂  of A, that is a closed curve 
(2D) or a closed surface (3D) and from the vector differential calculus identity 

2∇⋅ = ∇ψ⋅∇φ+ψ∇ φv  
when = ψ∇φv  where ψ and φ are arbitrary scalar functions.  

Lecture Notes by Hakan I. Tarman 
METU / ME540

Variational Calculus 26

Appendix D The adjoint *ℑ  of a differential operator ℑ satisfies 
[ ]( ) [ ]( )*v, u v ,u

ω ω
ℑ = ℑ  

where u and v are arbitrary functions and ( ), : H H
ω

⋅ ⋅ × →ℜ denotes weighted inner 

product in a function space H, such as 

( )
b

a
u,v u(x)v(x) (x)dx

ω
= ω∫ . 

Consider a 2nd order linear differential operator  
[ ] ( )1

2 1 0(x)u a (x)u a (x)u a (x)uω ′′ ′ℑ = + +    for   a x b< < . 
The construction of the adjoint operator yields 

[ ]( ) ( ) ( ) ( )( )
[ ]*

b b
1 1

2 1 0 2 1 0a a

v

v, u a u a u a u v dx a v a v a v u dxω ωω

ℑ

′′ ′′′ ′ℑ = + + ω = − + ω∫ ∫


. 

after integration by parts for homogeneous boundary conditions. 

It can be shown that for ℑ to be self-adjoint *ℑ= ℑ , it is required that 1 2a a ′=  , thus 

( )( )d d1
2 0(x ) dx dxa aωℑ = +  

is the form of a self-adjoint differential operator called Sturm-Liouville operator. 


