EXERCISE SET #1

- 1. Consider two complex numbers z_1 and z_2 in the first quadrant of the complex plane and corresponding vectors \mathbf{u} and \mathbf{v} in the x-y plane:
 - (a) Show that the area of the parallelogram defined by sides z_1 and z_2 is $A = |Im(\overline{z}_1 z_2)|$
 - (b) Express the dot ($\mathbf{u} \cdot \mathbf{v}$) and the cross ($\mathbf{u} \times \mathbf{v}$) products in terms of z_1 and z_2 .
- 2. Describe graphically the sets of points in the complex plane defined by the following equations or inequalities:
 - (a) Re $z \ge 0$, (b) Im z < 0, (c) |z| = 2, (d) |z 1| < 1, (e) z = 3 + (1 + i)t, $t \in \mathbb{R}$,
 - (f) z = (1-t)i+t, $0 \le t \le 1$, (g) $(z-i)(\overline{z}+i) = 4$, (h) $z+1 = 3e^{it}$, $0 \le t \le 2\pi$,
 - (i) $\operatorname{Arg} z = \frac{\pi}{4}$, (j) $\operatorname{Im} \frac{(z-2)}{i} > 0$, (k) $\left\{ z : |z| > 1, |\operatorname{Arg} z| \le \frac{\pi}{4} \right\}$, (l) $\operatorname{Re} \left(\frac{1}{z} \right) = 2$,
 - (m) |z+1| = |z-2|, (n) a < Re z < b, $a, b \in \mathbf{R}$, (o) $2 \le |z-i| \le 3$, (p) $|z-1| \le |z+1|$,
 - (q) $|z-1| \le 2|z+1|$, (r) $|z| \text{Re } z \le \frac{1}{2}$, (s) $\text{Im} \frac{(z+1)}{3i} = 0$, (t) $|z^2-1| = 1$,
 - (u) Arg $(z-z_0) = \alpha$, const., (v) Im $z^2 = 1$, (w) |z-1| + |z+1| = 4, (x) Im $(\frac{1}{2}) > \frac{1}{2}$,
 - $(y) -\frac{\pi}{2} < \text{Arg } z < \frac{\pi}{4}, \ (z) \ 0 < \text{Arg } z < \frac{3\pi}{4}.$
- 3. Write down in the form $z \rightarrow Az + B$ the following transformations of the complex plane: (a) translation in the direction 2-3i. (b) rotation about i through $\pi/4$.
- 4. If B lies on the circle with centre C and radius r, show that the equation of the tangent at B is $(\overline{B} - \overline{C})Z + (B - C)\overline{Z} = B\overline{B} - C\overline{C} + r^2$.
- 5. Show that the points 1, i+2, $\frac{1}{5}(7+4i)$, all lie on a circle.
- 6. Show that the triangle with vertices at 0, z and w is equilateral if and only if $|z|^2 = |w|^2 = 2 \text{Re}(z\bar{w}).$
- 7. Find the value of each complex number below on the principal sheet of a multi-sheeted complex plane when the principal branch is defined by:
 - (i) $-\pi < \theta \le \pi$
- (ii) $-\pi/2 < \theta \le 3\pi/2$
- (iii) $0 \le \theta < 2\pi$

- (a) $\ln(3-4i)$, (b) $\ln(-3-4i)$, (c) $\ln(ie^{i})$, (d) $(3+4i)^{1/3}$, (e) $(i-1)^{1/4}$,
- (f) $(-ie^{-i})^{2/5}$

- 8. Determine the position(s) of the branch point(s) of each function below:

 - (a) $(z-1)^{5/4}$, (b) $(z+2)^3/(z-2)^{4/5}$, (c) $((z+3)/(z-3))^{5/2}$, (d) $(z-1)^{3/2}(z+1)^2$,

- (e) $(z-1)^{1/2}(z-2)^{2/3}$, (f) $\ln(1/(4z+3))$, (e) $\ln((z^2-4z-5)/(z^3+z^2-z-1))$,
- (f) $(z^2-4)^{3/2} \ln(z)$
- 9. For each function below, determine the position(s) of the branch point(s) and the number of Riemann sheets required to make the function single-valued:

- (a) $(z-2)^3/(z+2)^{4/7}$, (b) $(z^2-4)^{3/7}$, (c) $(z+i)^{\pi}$, (d) $((z+4)/(z-4))^{5/3}$,
- (e) $(z+1)^2(z-1)^{3/2}$, (f) $(z^2-4)^{3/2}\ln(z)$, (g) $z^{1/2}+z^2$, (h) $z^{1/6}+z^{2/3}$,

- (f) $(z^2-1)^3 \ln(z)$
- 10. Each function below has one or more branch points at just one value of z. For each function:
 - Identify that value of z.
 - Determine how many sheets are needed for the function to be single valued.
 - Extend the cuts from the branch point to $+\infty$ along the real axis and determine the values of the function along the two sides of the cut.
 - Extend the cuts from the branch point to $-\infty$ along the real axis and determine the values of the function along the two sides of the cut.

- (a) $(z-1)^{5/4}$, (b) $z^{1/2}z^{2/3}$, (c) $z^{3/5}\ln(z)$, (d) $(z-1)^{1/6}+(z-1)^{2/3}$, (e) $(z+2)^2+(z+2)^{2/3}$,
- (f) $z^{1/2} + \ln(z)$
- 11. Show that $(\sqrt{3}+i)^n + (\sqrt{3}-i)^n$ is real for any positive integer n.
- 12. Show (i) algebraically and (ii) geometrically that the equation $Az\overline{z} + \overline{B}z + B\overline{z} + C = 0$, for real numbers A & C and complex number B represents a circline. The collective name circline stands for a circle or straight line in the complex plane.
- 13. Prove the identity $1+z+z^2+...+z^n = (1-z^{n+1})/(1-z)$ valis for all z, $z \ne 1$.
- 14. Let z_k be kth root of unity, i.e. kth root of $z^n = 1$, for k = 1, 2, ..., n. Show that $\sum_{k=1}^n z_k = 0$.
- 15. Evaluate $(1+i\sqrt{3})^{(2-5i)}$.

16. Derive the formulas:

(a)
$$w = \sin^{-1} z = -i \log \left(iz + \sqrt{1 - z^2} \right)$$
, where $z = \sin w = \frac{1}{2i} (e^{iw} - e^{-iw})$

(b)
$$w = \cos^{-1} z = -i \log(z + \sqrt{z^2 - 1})$$
, where $z = \cos w = \frac{1}{2}(e^{iw} + e^{-iw})$

(c)
$$w = tan^{-1}z = -\frac{i}{2}log((i-z)/(i+z))$$
, where $z = tan w \equiv sin w/cos w$

(d)
$$w = \cot^{-1} z = -\frac{i}{2} \log((z+i)/(z-i))$$
, where $z = \cot w \equiv \cos w/\sin w$

(e)
$$w = \sinh^{-1} z = \log(z + \sqrt{1 + z^2})$$
, where $z = \sinh w = \frac{1}{2}(e^w - e^{-w})$

(f)
$$w = \cosh^{-1} z = \log(z + \sqrt{z^2 - 1})$$
, where $z = \cosh w = \frac{1}{2}(e^w + e^{-w})$

17. Complex velocity of the plane irrotational incompressible flow of a downward free stream U over a flat plate that extends from x = -2a to x = 2a is given by

$$u - iv = \frac{iUz}{\sqrt{z^2 - 4a^2}}.$$

The multivaluedness dictates using a branch cut extending from -2a to -2a along the real axis where the mathematical barrier presented by the cut corresponds to the physical barrier presented by the plate. Find the velocity components $u(x,0\pm)$ and $v(x,0\pm)$ on the top and bottom of the plate.

18. Determine the complex function w = f(z) = u(x, y) + iv(x, y) from its components:

(a)
$$u(x,y) = x^3 - 3xy^2$$
, $v(x,y) = 3x^2y - y^3$,

(b)
$$u(x, y) = x^2 + y^2$$
, $v(x, y) = xy$,

(c)
$$u(x,y) = x^2 - y^2$$
, $v(x,y) = 2xy$.