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Let us consider bounded and nonperiodic domains such as an interval 
[ ]1 , 1−  on which a nonperiodic function )x(u  is defined.  
 
A suitable basis set is polynomial basis { } )x( nφ , in particular { }nx , 
provided only that )x(u  can be well approximated in the finite dimensional 
subspace 

{ } N,,1,0n   |  x spanB n
N ==  

by the projection operator in the continuous case: 

( ) ∑ =
=

N

0n
n

nN xû)x(uP , 

or by the interpolation operator in the discrete case: 

( ) ∑ =
=

N

0n
n

nN xu~)x(uI  

where the interpolation condition ( ) )x(u)x(uI jjN =  is satisfied at the 

suitably chosen collocation points { }N
0jj x 

=
. 
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• Chebyshev Polynomials 
This is a suitable basis for NB  and a member of the ultraspherical Jacobi polynomial family

( , )
nP α β  with α = β that minimizes the error in the maximum norm, [ ]1 , 1L −∞ , i.e. 







−∑

=

βα

≤≤−
  )x(P û )x(u  max min

N

0n

) ,(
nn1x1ûn

  (minimax problem), 

 

the answer is the Chebyshev polynomials which are derived from the Jacobi polynomials 
with the choice of 21−=β=α . 
 

They appear as eigensolutions to the singular S-L problem 

0)x(T 
x1

n
dx
dTx1

dx
d

n2

2
n2 =

−
+





 −  

where the weight function is 2x11)x(w −= ) and the first few are  

   ,1x2)x(T    ,x)x(T    ,1)x(T 2
210 −===  

with 

 ( )( )xcosncos)x(T 1
n

−= , 
 



Lecture Notes by Hakan I. Tarman

2

Lecture Notes by Hakan I. Tarman 
METU / ME

Polynomial Approximation 3

Continuous versus Discrete expansions 
 

Consider the truncated continuous expansion of functions, [ ]1 , 1L)x(u 2
w −∈ , in ultraspherical 

polynomials of the form 

( ) ∑ =
α=

N

0n
)(

nnN )x(Pû)x(uP  . 

The expansion coefficients are found as 
 

( ) ( )∫
−

ααα −
γ

≡
γ

=
1

1 w(x)

2)(
n

n
w

)(
n

n
n dxx1 )x(P u(x) 1P , u1û   

 

where ( ) 2

w
)(

nw
)(

n
)(

nn PP , P ααα ==γ . 
 

Thus, the application of the ultraspherical polynomials require evaluation of the expansion 
coefficients through the computation of an integral which is clearly not practical for the use 
in connection with computers. 
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Gaussian quadrature integration to the resque. 
 
The numerical integration formula in the form: 

 

b n
i ii 0a

f (x)w(x)dx c f (x )
=

≈∑∫  
 

is called a quadrature formula wrt positive weight w(x) for the coefficients so chosen as 
b

i ia
c L (x)w(x)dx= ∫  

with iL (x) polynomial cardinal functions (Lagrange interpolants) that the formula is exact for f 

polynomial of degree n≤  for given nodes }x,,x,x{ n10   in ]b,a[ .   

 
This formula can be extended to produce exact result for the largest class of polynomials by providing 
freedom in selecting the nodes. Since there will be 2n2 +  parameters to choose, the class of 
polynomials of degree 1n2 +≤  will be the largest class of polynomials for which the formula is exact. 
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An insight to the construction procedure in the previous example is provided by Gauss’ 
remarkable result: 
 

Gaussian Quadrature Theorem: Let q be a nontrivial polynomial of degree 1n +  such that 
 

b k

a
x q(x)w(x)dx 0=∫    for   n,,1,0k = . 

 

Let }x,,x,x{ n10   be the zeros of q. Then the formula 
 

b n
i ii 0a

f (x)w(x)dx c f (x )
=

≈∑∫    where   
b

i ia
c L (x)w(x)dx= ∫  

 

with these ix ’s as nodes will be exact for all polynomials of degree 1n2 +≤ . 
 

Let f be a polynomial of degree 2n 1+  and p be of degree n, then  
f (x) q(x)p(x) r(x)= +  

where the remainder r(x) is also of degree n and i if (x ) r(x )= . Then 
b b n n

i i i ii 0 i 0a a
f (x)w(x)dx r(x)w(x)dx c r(x ) c f (x )

= =
= = =∑ ∑∫ ∫  

due to the fact that the quadrature formula is exact for polynomials of degree n. 
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Gauss-Lobatto Integration: Let 1xxx1 N10 =<<<=−   be the 1N +  roots of the 

polynomial )x(Pb)x(Pa)x(P)x(q )(
1N

)(
N

)(
1N

α
−

αα
+ ++= , where a and b are chosen to produce 

0)1(q)1(q ==− , and let N10 ,,, ωωω   be the solution of the linear system 
 

∫∑
−=

=ω
1

1

N

0j
j

k
j dx)x(wx)x(  k ,    Nk0 ≤≤ . 

 

Then,  

 

∫∑
−=

=ω
1

1

N

0j
jj dx)x(w)x(p)x(p    for all 1N2Bp −∈ . 

 
 
 

There is a more convenient representation of )x(q , through which we obtain the collocation 

points. The collocation points also appear as the roots of the polynomial 
 

)x(P
dx
d)x1()x(q )(

N
2 α−= . 
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Quadrature for Chebyshev Polynomials 
Chebyshev polynomials, besides the fact that they are well suited for approximation in the 
maximum norm, are distinguished for explicit and simple expressions for the quadrature 
points as well as the corresponding weights in the Chebyshev quadrature. 
 
Chebyshev Gauss-Lobatto quadrature points appear as the roots of the polynomial 

)x(T
dx
d)x1(

N
2)x(T)x(T)x(q N

2
1N1N −−=−= −+ , 

yielding 

,N,0,        jj
N
πcosx j =






−= . 

The corresponding weights are given as 





−=π
=π=ω 1N,,1jN

N,0jN2
j  . 
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Discrete Inner product 
 

The quadrature formulas suggest a definition of a discrete version of the inner product. Recall 
that in the continuous case we have 

( ) ∫
−

≡
1

1
w dxw(x)g(x)f(x) f , g  

for [ ]1,1Lg,f 2
w    −∈ . 

 

From the development of the quadrature formulas it is natural to define the discrete inner 
product 

[ ] ∑
=

ω ω≡
N

0j
jjj ) ) g(xf(x f , g  

where jx  can be any of the Gauss quadrature points with the corresponding weights jω  and 

NBg,f ∈ . Note that  
[ ] ( )wg,fg,f     =ω  

in the case of Gauss-Radau and Gauss quadratures, while this is not the case when using the 
Gauss-Lobatto quadrature since N2Bf(x)g(x)∈  for which the quadrature fails to be exact. This 
only affects the computation of the norm  

[ ]
ω

α
ω

αα ≡=γ )(
N

)(
N

)(
NN PP,P     

over the Gauss-Lobatto quadrature points which can be computed by other means. 
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The Discrete Chebyshev Expansion 
 

For the specific case of the Chebyshev polynomials, )x(T)x(P n
)21(

n ≡− , the discrete 
orthogonality relation is given by 
 

[ ] nmn

N

0j
jjmjnmn δγ) (x) T(xT  , TT =ω≡ ∑

=
ω  

 

where the discrete norms are 
 

[ ]






=
=
<

== ω
ss-LobattoN  for Gaunπ

ss-Radauss and GauN  for Gaun2π
Nn2πc

 , TTγ
n

nnn  

 

with 2c0 =  and 1c 0n => . 
  

The development of the quadrature rules and in turn the discrete orthogonality relation 
facilitates now to devise accurate methods for the computation of the expansion coefficients 
in the discrete expansion in Chebyshev polynomials of the form 
 

( ) j

N

0j
jnj

n
n

N

0n
nnN  )(x)Tu(x

γ
1u~ ,       (x)Tu~x)(uI ω== ∑∑

==

 

 

where ( ) )x(uIN  interpolates )x(u  exactly at the quadrature points, i.e. ( ) )x(u)x(uI jjN = . 
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In a different formulation we recover 

( )

∑ ∑

∑ ∑

∑

= =

= =

=









ω=









ω=

=

N

0j

(x)L

N

0n
jnn

n
jj

N

0n
nj

N

0j
jnj

n

N

0n
nnN

j

 )(x(x) T T
γ
1  ) u(x

(x)T )(x)Tu(x
γ
1

(x)Tu~(x)uI

  

 

that follows from Christoffel-Darboux identity. Here we define the polynomial, Nj B)x(L ∈ , 

as the interpolating Lagrange polynomial based on the quadrature nodes { }N
0jjx

=
 such that 

jkkj )x(L δ= . 

 
Another explicit formula for )x(L j  is 

( )
( )∏

≠
= −

−
=

N

jk
0k kj

k
j xx

xx)x(L . 
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Lagrange Interpolation* 

The classical Lagrange form of polynomial interpolation 

∑
=

=
n

0j
jj )x(Lf)x(p ,  ∏∏

≠=≠=

−−=
n

jk,0k
kj

n

jk,0k
kj )xx()xx()x(L  

with jkkj )x(L δ= , has certain shortcomings for practical computations: 

1. Each evaluation of )x(p  requires )n(O 2  additions and multiplications (flops). 

2. Adding a new data pair 1n1n f,x ++  requires a new computation from scratch. 

3. The computation is numerically unstable. 
For this purpose, Newton form is generally recommended which require only )n(O  

flops for each evaluation of p. 
 
The Lagrange formula can be written in such a way that it too can be evaluated and 
updated in )n(O  operations. This is called  barycentric form of Lagrange 

interpolation. 
 

* J.P.Berrut and L.N.Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 2004. 
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Chebyshev Differentiation Matrices 
 

By using the alternative (nodal) formulation of the discrete expansion in interpolating Lagrange 
polynomials, the computation of derivative of )x(u  at the quadrature (collocation) points is 
accomplished in the same way as before 
 

( ) ∑∑
== ==

≡=
N

0j
jkj

N

0j xx

j
j

xx
NN )x(u D 

dx
dL

)x(uuI
dx
dI

kk

 
 

where D denotes the )1N()1N( +×+  differentiation matrix. 
 

For the most popular case of the Gauss-Lobatto quadrature points, ( )Njcosx j π−= , the entries of 
D are given by 
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

 

 
 

which can be obtained using j
j j( 1)ω = − δ  in the Barycentric form of the polynomial differentiation. 
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The Matlab function cheb.m returns a vector, x, the vector of the Gauss-Lobatto points and 
a matrix, D, the Chebyshev differentiation matrix for a given N.   
 

% cheb : compute D, differentiation matrix, x,Chebyshev grid. 
 

  function [D,x] = cheb(N) 

  if N==0, D=0; x=1; return, end 

  x = cos(pi*(0:N)/N)';  

  c = [2; ones(N-1,1); 2].*(-1).^(0:N)'; 

  X = repmat(x,1,N+1); 

  dX = X-X';                   

  D  = (c*(1./c)')./(dX+(eye(N+1)));  % off-diagonal entries 

  D  = D - diag(sum(D'));             % diagonal entries 

 
Matlab Syntax 
 

B = repmat(A,m,n) creates a large matrix B consisting of an m-by-n tiling of copies of A. 
e.g. B = repmat(eye(2),1,3) 





= 101010

010101B . 
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Note : Function cheb features a indirect method of computing the diagonal elements of D 
that is found to produce a matrix with better stability properties in the presence of rounding 
errors and thus yields more accurate results than the direct formulas above. The indirect 
method uses the identity 

∑ ≠=
−=

N

ij,0j ijii DD  

 to obtain the diagonal entries from the off-diagonal entries computed by the use of direct 
formulas. 
 
This identity follows from the observation that the polynomial interpolant to the discrete 

function [ ]T111   is the constant function 1)x)(uI( N =  and since 0)1)(dxd( = , D must 

map [ ]T111   to the zero vector.  
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The computation of higher derivatives directly follows the procedure for the computation 
of the first derivative, namely,  

( ) ∑
=

ν

ν

ν

ν

=
N

0j

j
jN dx

)x(Ld
)x(u)x(uI

dx
d . 

Alternatively, one may compute the ν -th order differentiation matrix by simply 
multiplying the first order differentiation matrix, i.e. 

( )νν = DD )( . 

Although this latter approach is most straightforward, one should always use the exact 
expressions for the entries of the operators, if available, due to better numerical properties, 
i.e. lesser effect of round-off error. 
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Properties of D 
 

1. The Gauss-Lobatto differentiation matrix D of size )1N()1N( +×+  is nilpotent, i.e. 

 kD  is the zero matrix for some positive integer k. In fact, 1ND +  is identically zero. 

2. It is centro-antisymmetric : jN,iNij DD −−−= . 

3. Rank of D is N. Similarly, rank of 2)2( DD =  is 1N −  and further, rank of )(D ν  is  

 )1(N −ν− .  
 

This result implies that the ν-th order Chebyshev differentiation should only be applied 

at )1(N −ν−  grid points, i.e. ν  of )1N( +  grid points should be specified, otherwise the 

resulting discretization matrix will be singular. This actually is in analogy with the 

definition of a well-posed problem that the ν-th order differential equation requires ν

initial or boundary conditions, which provide  ν  equations.  

 


