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Several methods are examined for determining the eigenvalues of a system of equations in 
which the parameter appears nonlinearly. The equations are the result of the discretization of 
differential eigenvalue problems using a finite Chebyshev series. Two global methods are 
considered which determine the spectrum of eigenvalues without an initial estimate. A local 
iteration scheme with cubic convergence is presented. Calculations are performed for a model 
second order differential problem and the Orr-Sommerfeld problem for plane Poiseuille flow. 

1. INTRODUCTION 

This paper is concerned with the approximate solution of eigenvalue problems for 
ordinary differential equations of the type 

P 
\’ ap-‘I/jj = 0, 

i=O 
(1) 

where Li are linear differential operators, 4 is a complex variable and the parameter a 
is an eigenvalue. Such equations frequently arise in many fields of application. The 
Orr-Sommerfeld problem of hydrodynamic stability theory, which is considered in 
this paper, is of this type. 

The approximate solution of (1) for p = 1 has been studied extensively and many 
solution techniques have been developed. Two matrices may be formed from the 
discretization of the operators Lo and L,. This results in a generalized eigenvalue 
problem for which many globally convergent solution algorithms have been 
constructed [ 1, 21. When p is greater than one the problem is said to be nonlinear in 
the parameter a. Such a case arises in the study of the linear spatial stability of 
laminar flows. The Orr-Sommerfeld equation is obtained as a first order perturbation 
of the Navier-Stokes equations. This equation contains the parameter a to the power 
four. For spatial stability calculations, the sign of the imaginary part of a determines 
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whether the perturbations will grow or decay in space. Exact solutions to the 
Orr-Sommerfeld problem exist only in special cases. In general, an approximate 
solution is sought. 

Most previous solution techniques for the Orr-Sommerfeld problem have used 
local iterations to determine an eigenvalue. A commonly used method is the use of 
shooting with orthonormalization [3], in which a first guess is made for the eigen- 
value and then integration is performed over the domain. This is repeated until the 
boundary conditions at the end of the domain match the computed solution. The 
difficulties with such methods are that a good first guess is required to assure 
convergence and the determination of eigensolutions other than the least stable may 
be difficult. 

This paper develops a globally convergent method of solution to the nonlinear 
eigenvalue problem. An accurate discretization is used to convert the operators to 
matrices. Then, with no initial approximation, all the eigenvalues of a particular 
discretization or a specified subset of the eigenvalue spectrum may be determined. 

In Section 2 the method of solution is described. To develop the methodologies the 
technique is applied to a simple model problem with a known exact solution. In 
Section 3 the techniques are applied directly to the Orr-Sommerfeld problem for 
plane Poiseuille flow. The advantages of a cubically convergent local method are also 
described. In Section 4 some particular problems, which arise in practice, such as 
infinite eigenvalues, singular matrices and spurious eigenvalues are discussed. The 
application of Newton’s method for determining the root matrices of matrix 
polynomials is also described. 

2. OUTLINE OF THE METHOD 

The approximate solution of (1) requires two steps. First the operators Lj are 
converted to matrices. Clearly a discretization is desired which yields the most 
accurate solution for the minimum order of the matrix. In the present method the 
discretization of (1) involves the expansion of 4 in a finite Chebyshev series. If the 
coefficients in the linear operators are infinitely differentiable then a finite Chebyshev 
series for 4 is significantly more accurate than either a finite-difference approximation 
or an expansion in other orthogonal polynomials [4]. In the second step the resulting 
nonlinear eigenvalue problem is solved. Some recent developments in linear algebra 
[S], particularly the general properties of matrix polynomials, are used. Both 
linearization and factorization are used in solving the nonlinear eigenvalue problem. 

In describing the solution techniques it is helpful to consider a simple model 
problem. Consider the following differential problem in the interval x E [ -1, I] 

(2) 
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For given values of o the eigenvalues a, and eigenfunctions #(a), are to be deter- 
mined. The exact solution is given by 

4a2(1 -co’) = n27r2, n = 1, 2,.... 

\ Aewax cos(nrrx/2): n odd 
‘(x) = /A ewe.’ sin(nnx/2): n even. 

(4) 

(5) 

An approximate solution is obtained by expanding 4 in a finite Chebyshev series, 

f)(x) =2+ 2 a,T,(x), 
L n=1 

where T,(x) denotes an nth order Chebyshev polynomial of the first kind. The 
integral of a Chebyshev series takes a more convenient form than its derivative. Thus. 
(2) is integrated to obtain, 

4(x)-2awj”#+a*/j’$+b,x+b,=O. (7) 

The series (6) is substituted into (7) and the integrations performed making use of the 
Chebyshev integral relation, 

Tn+ ,(x1 T,- ,(x> 
2(n+ 1)-2(n- 1)’ 

n>2 

+ [ T,,(x) + T*(x)], n=l 

T, (~1, n = 0. 

(8) 

Equating coefficients of the Chebyshev polynomials of equal order leads to a system 
of linear equations. To obtain a solution to the finite system of equations the Lanczos 
tau method [5] is used. This involves the addition of a term to the right hand side of 
(7) of the form 

E,(x) = ~1 Tv+ I(x) + 727’,+2@>. (9) 

The resulting solution is the exact solution to (7) perturbed by (9). This analysis 
leads to N + 3 equations and two boundary conditions for the N + 5 unknowns b,, 
b,, a,, a,,...,a,, rI, r2. The equations involving the coefficients of T,(x) and T,(x) 
only serve to determine the constants of integration b, and b, and will be discarded. 
The tau terms need not be calculated explicitly either. The remaining N - 1 equations 
are, for n = 2, 3 ,..., N, 

a,-= (a,-, --a n+,)+&(+$%+k) =o. (10) n n+l 
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The remaining two equations for the N + 1 unknowns a,,, a, ,..., a, are obtained from 
the boundary conditions, 

$(*l)=?+ i 
L II=, 

The equation involving the coefficients of 
ensure a nontrivial solution by setting, 

(*l)“a,=O. (11) 

7;,+,(x) and T,+,(x) may be used to 

awa,v -- 
“=4N(N+ 1) Nf 1’ (‘AI 

and 

a2aN 
52 = 4(N + l)(N + 2) ’ 

Thus, the tau terms need not be evaluated although they do provide some estimate of 
the error in the approximate solution. It is interesting to note that in this example the 
error is largely dependent on a/N. Thus, a large number of terms would be necessary 
for the accurate calculation of those eigenvalues with large amplitudes, which are 
usually termed the higher modes. This is not to be confused with the order of 
accuracy of the solution. The order of accuracy of the Chebyshev polynomial 
solutions, f(N) = O(Nep), carries with it the implication; as N+ 03. In this paper, 
the solutions are infinitely differentiable, therefore, the convergence is faster than any 
finite power of p. Therefore, they are referred to as “infinite order accurate.” 
However, this yields no estimate of the error at particular values of N. In the above, 
we note the dependence of this particular error on a/N. 

The resulting homogeneous system of equations is an eigenvalue problem, 
nonlinear in the parameter a, in which the Chebyshev series coefficients form the 
eigenvector. 

D2(a) a = 0. (14) 

The matrix D2(a) is a lambda matrix of degree two [7], which may be expressed as a 
scalar polynomial with matrix coefficients, 

D*(a) = C,a* + C,a + C,, (15) 

where the matrices C,, C, and C, are square matrices of order N + 1 with, in general 
complex elements. Since, in this problem, the boundary conditions are independent of 
the parameter a, the matrices C, and C, will have a rank less than or equal to N - 1. 

The eigenvalues of (14) are the roots of the latent equation det D2(a) = 0. This is a 
scalar polynomial equation with degree that does not exceed 2(N + 1). When C, is 
singular the latent equation has degree less than 2(N + 1) so that the problem has 
fewer than 2(N + 1) eigenvalues. If C, is non-singular the missing eigenvalues 
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correspond to zero eigenvalues of the reciprocal problem: det D2@) = 0, with 
D,(J) = C,pu2 + C,p + C,, and p = l/o. Thus, the missing eigenvalues are referred to 
as “infinite eigenvalues.” Similarly, if C, is nearly singular, some very large eigen- 
values will appear. However, if the other eigenvalues are well-conditioned, they are 
not affected by these large eigenvalues. This is discussed further in Section 4. 

The matrices C,, C, and C, are constructed by setting Eqs. (10) in the first N - 1 
rows and the boundary conditions (11) in the last two rows. Then C,, C, and C, will 
be upper triangular with the lowest two rows of C, containing the boundary condition 
entries. The elements in the lowest two rows of C, are eliminated except for the (N, 
N), (N, N + 1) and (N + 1, N + 1) entries with column operations. This preserves the 
zeroes in the lowest two rows of C, and C, . If the (N, N) and (N + 1, N + 1) entries 
are non-zero (which will always be the case for linearly independent boundary 
conditions) the problem is clearly reduced to an (N - 1) by (N - 1) nonlinear eigen- 
value problem. In most cases, this elimination of the boundary conditions is sufficient 
to rid the problem of infinite eigenvalues and make C, non-singular. However, this is 
not always the case and in Section 4 such a situation is described. 

To find the eigenvalues of the nonlinear matrix eigenvalue problem two methods 
are considered which are globally convergent. The first determines the entire eigen- 
value spectrum without an initial guess. The second method determines a specified 
subset of the eigenvalue spectrum, also without an initial guess. 

2.1 The Linear Companion Matrix Method 

A companion matrix for the lambda matrix may be formed in the same manner as 
for a scalar polynomial. The companion matrix is a linerarization of the lambda 
matrix and has a larger order. In subsequent discussion the order of the lambda 
matrix will be taken as m. After the column operations of the previous section 
m = N - 1. For a lambda matrix of degree 1 the order of the companion matrix is Zm. 
Using the transformation a, = aa one such companion matrix may be constructed for 
Eq. (1% 

(16) 

This is a generalized eigenvalue problem and many globally convergent algorithms 
exist for its solution [I, 21. However, if C, is non-singular it is more efficient to 
convert (16) to the algebraic eigenvalue problem of finding the eigenvalues of the 
matrix A, given by 

A= 
-C,‘C, -c,‘c, 

I 1 0 . (17) 

These eigenvalues may be obtained very efficiently and accurately using the QR 
algorithm. 
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In the model problem (15) the matrix A is of order 2N - 2. Calculations have been 
performed for w = 1 + i and various values of N. The error in the first three eigen- 
values is shown in Table I. The errors given in Table I are the magnitudes of the 
differences between the computed eigenvalues and the exact solutions given by (4) 
with n= 1, 2, 3 and w= 1 +i. 

2.2 Factorization of the Lambda Matrix 

The increase in the order of the matrix eigenvalue problem that occurred in the 
previous section may be avoided by factorizing the polynomial. If the lambda matrix 
is of order two, this factorization results in two linear problems. The matrix analogue 
of synthetic division is known as the Generalized Bezout Theorem [8, p. 811. In the 
matrix case the division must be defined as either left or right division, since matrices 
are generally non-commutative. Using the Bezout theorem, the lambda matrix of 
degree two, Eq. (14), has the factorization 

D,(a)=[C,a+C,Y+C,][Ia-Y]+C,Y’+C,Y+C,. (18) 

Y is referred to as the right solvent. An equivalent left solvent could also be derived. 
From the factorization of D*(a), it is clear that if a root matrix of the matrix 
polynomial, 

COY2 + c, Y + c, = 0, (19) 

is found it will contain m eigenvalues of D,(o). Similarly, the right eigenvectors of Y 
coincide with the right latent vectors of D*(a). However, given the latent roots of a 
lambda matrix, m of these cannot be arbitrarily assigned to the eigenvalues of a 
solvent matrix, since the associated latent vectors must also be eigenvectors of the 
solvent matrix. The eigenvectors of a matrix associated with unequal eigenvalues are 
independent. This is not necessarily true for the latent vectors of a lambda matrix 
with degree greater than one. Thus, the unequal latent roots, which are also eigen- 
values of some solvent matrix, must have associated linearly independent latent 
vectors. Although examples may be contrived which do not meet this requirement no 

TABLE I 

Effect of the Order of the Chebyshev Polynomials, N, on the Eigenvalues Obtained 
Using the Companion Matrix Method: o = 1 + i 

Polynomial Order 
N+l a, error a3 error a, error 

8 1.32(-4) 2.47(-2) 6.83(-01) 
10 1.39(-06) 1.61(-3) 8.15(42) 
16 3.28(-09) 7.26(-07) 3.53(-04) 
20 6.24(-15) 9.00(-09) 5.01(-07) 
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unequal eigenvalues with linearly dependent eigenvectors have been encountered in 
the present computations. 

The matrix polynomial (19) may be solved in an manner analogous to the scalar 
equivalent. Though, in general, direct application of scalar methods is hampered by 
the noncommutivity of the matrices. For example, the quadratic formula fails unless 
C, and Y commute, which is unlikely. An iterative method, developed by Bernoulli, 
for finding the dominant root of a scalar polynomial, can be generalized to find the 
root matrices of a matrix polynomial [.5, p. 1261. The matrix Bernoulli method may 
be used to compute a dominant solvent or a minimal’ solvent. A solvent is said to be 
minimal (dominant) if every eigenvalue in it has an absolute value less (greater) than 
all eigenvalues of D,(a) not in the minimal (dominant) solvent. 

As in the scalar case, a matrix difference equation is constructed for the sequence 
u II, 

c,u,+c,u,+,+c,u,+,=o, (20) 

with initial conditions U, = 0, U, = I. Then 

lim U,U;:,=Y, (21) n+m 

where Y is the minimal solvent, under the conditions that (a) the eigenvalues of the 
lambda matrix can be divided into two non-intersecting groups such that, 

(22) 

and (b) independent eigenvectors of D,(a) exist for the first m eigenvalues 
aI, a2,..., a,. The equivalent difference equation for the dominant solvent may also 
be derived [S, p. 1261. Considering the form of (21) the sequence Y, is obtained from 
the relation 

(COY, + Cl) yn+l = -c,, (23) 

with Y, = 0. This may be extended to any order of matrix polynomial, mutatis 
mutandis. In the next section a fourth order matrix polynomial is considered. The 
subroutine for Bernoulli iteration is quite easy to implement, requiring about twenty 
lines of code, including a matrix multiply and inverse routine. On convergence, the 
eigenvalues of Y are computed using the QR algorithm. For the present calculations, 
the number of iterations has been fixed but the process could be automated by 
defining a residual matrix, 

R, = IC,Y, + C,] y, + c,, (24) 
’ There appears to be no term in general use for this solvent. The adjective minimal means the “least 

possible” or “smallest; very small.” 
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and iterating until the norm of R, is less than some specified tolerance. The first three 
eigenvalues of the model problem have been computed for w = 1 + i. The results are 
given in Table II and may be compared with the results in Table I which were 
obtained using the linear companion matrix method. 

2.3 Local Iteration and Eigenvectors 

Once a sufficiently good guess is available for a single eigenvalue the root may be 
calculated using a locally convergent algorithm. The very efficient methods of 
Lancaster [9] may be used for final refinement of selected eigenvalues and 
computation of the associated eigenvectors. 

Newton’s method may be applied to find the zeroes of det D(o). However, the 
determinant and its derivative with respect to a need not be determined explicity if 
the trace theorem of Davidenko [ 101 is used. The iterative formula may be written 

where 

a k+ I = uk - l/f(ak), k = 0, 1. 2,.. . , (254 

f(‘k) = Tr(D ‘(‘k) D”‘@k) 1. Wb) 

T,.(A} denotes the trace of A, D ~’ is the inverse of D and D”’ denotes the derivative 
of D with respect to a. This algorithm (25) is quadratically convergent. However, a 
refinement of this method, derived by Lancaster 191, is cubically convergent. The 
iterative formula is 

a kt I = ak - 2f(ak)/~[f(ak)12 -f(%kh k = 0. 1, 2 ,..., (26) 

wheref(a,) is given by (25) and 

f”’ = Tr(D-‘D’2’ - [D-‘D”‘j2}. (27) 

It should be noted that in computingf”‘(a,) the inversion required to calculatef(a,) 
may be used. Further effort is required to compute the entire product D ‘D’“. 

TABLE II 

Effect of the Order of the Chebyshev Polynomials, N, on the Eigenvalues Obtained 
Using Matrix Factorization: w = 1 + i 

Polynomial Order 
N+l CL~ error cfi error a, error 

Number of 
Iterations 

8 1.32(-04) 2.47(-02) 6.81(-01) 10 
10 3.58(-06) 3.74(-03) 1.23(-01) 10 
16 4.76(-08) 7.58(-07) 3.58(-04) 10 
20 1.40(-10) 7.05(-08) 3.40(-06) 10 
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To compute single eigenvectors the inverse interation is used 

D(a) xk+’ = uxk, (28) 

where D is a scaling factor. Even when D(a) is nearly singular this procedure is very 
effective. Convergence is usually obtained in two iterations using an initial guess, 
x0= [l, l)...) 117. 

Since the inverse of D(a) has been computed in the local iteration for the eigen- 
value the eigenvector calculation may be coupled to this procedure. Once the eigen- 
value has been computed to sufficient accuracy usually only two matrix-vector 
multiplies, about N* operations, are needed to compute the corresponding eigen- 
vector. For single eigenvalues, it has been found to be efficient to determine a first 
guess using the Bernoulli method, Section 2.2, using a low order polynomial and then 
refining the value using the local method with a higher order polynomial. 

For example, with w = 1 + i in the model problem and N= 7, 5 iterations with the 
Bernoulli method give the first eigenvalue as 

with 

01~ = (0.893805,0.552098), 

a, (abs. error) = 2.83(-04). 

Using this as the first guess, and with N = 15, after 2 iterations the refined eigenvalue 
obtained using the local iteration is 

a, = (0.89357024,0.55225678) 

a, (abs. error) = 8.3 (-12). 

3. THE ORR-SOMMERFELD EQUATION 

The Orr-Sommerfeld equation is obtained as a linearization of the incompressible 
Navier-Stokes equations in which the perturbations in velocity and pressure are 
assumed to take the form (for two-dimensional disturbances) 

Q(x, Y, f> = 4(y) exp[i(ax - 41. (29) 

a is a wavenumber and o is a radian frequency. The basic velocity profile, given by 
U(y), is assumed to be known and for a given Reynolds number R the Orr-Som- 
merfeld equation may be written 

[($-a*)*- iR i(aU-m)($--a2j -alJf’[] #=O. (30) 
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The case of plane channel flow will be considered for which U = (1 - y’) and the side 
walls are at y = f 1. The boundary conditions are then 

f!(Y) = 03 4’(Y) = 0 at y=fl (31) 

for a given real value of Reynolds number only certain combinations of values of a 
and cc) will permit 4 to satisfy the boundary conditions. In general (r and w are 
complex, however, two special cases are of interest. If (r is fixed and real and o is the 
complex eigenvalue, the disturbances are periodic in x and grow or decay with time 
depending on the sign of the imaginary part of o. This is referred to as temporal 
stability. In this case, the parameter w appears linearly in the equation. Calculations 
for this case, using Chebyshev polynomials, have been performed by Orszag [ 111. In 
most real flows, the disturbances are periodic in time (real w) and grow or decay 
exponentially with distance x (complex CI). Calculations of this type are termed 
spatial stability calculations. In this case, the parameter a appears nonlinearly in the 
equation to the fourth power. Approximate transformations do exist [ 121 between the 
temporal and spatial eigenvalues. However, this section is concerned with the direct 
calculation of the spectrum of spatial eigenvalues using the techniques described in 
Section 2. 

Equation (30) is integrated indefinitely four times, giving 

+ (a4 - ia2wR) jil!’ 4 + ia3R \j’li U# + y + !g + b, y + b, = 0. (32) . _. 

The calculations may be performed for either symmetric or antisymmetric 
eigenmodes since they are uncoupled [ 131. The symmetric modes, which are less 
stable, will be considered. d(y) is approximated by a finite, even Chebyshev series, 

p(y)=2+ c a, 3”2,W. n-1 (33) 

The basic flow, U(y), may be written in terms of Chebyshev polynomials as 

U(Y) = 31 - j”*(Y)l. (34) 

The Chebyshev product formula 

27,A.Y) T,(Y) = T,+,(Y) + T,-,(Y) (35) 

is used, as well as (8), and (33) and (34) are substituted into (32) and integrated. The 
tau method is used to close the system of equations by adding a term to the right 
hand side of (32) of the form 

E3(y) = Tl T2N+2(Y) + 52T2,N+4(y) + ‘3 T2N+6(y). (36) 
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The exact solution may then be found to this perturbed equation. The coefficients of 
the various T,,(y) are equated to zero to form a system of linear equations. In the 
present case, the constants of integration b, and b, are zero and the T,(y) and T,(y) 
equations are discarded since there is no need to calculate b, and b,. The tau terms 
need not be calculated explicity so that a system of N - 1 equations for the (N + 1) 
unknowns a,, a, ,..., a,,,, results. For n = 2, 3 ,..., N these equations have the form 

a4B, + ia3R(B, - &)/2 - a2(2X, + icoR&) 

- iaR(B, - d, + 8(?,)/2 + (a, + iwRA,) = 0. (37) 

The coefficients x,, fi,,, etc., are given in the Appendix. These coefficients need not 
be derived for each velocity profile. In general, if 

U(y)=++ ?- b,?“,(y), 
ni, 

and 

then 

where 
bnaO 1 .‘. 

d, = - 2 tT & h-n, +b,+,)s,, 
m-1 

(38) 

(39) 

(40) 

n > 0. (41) 

Equation (40) may then be truncated as desired and integrated using (8). Since an 
even solution is sought, two of the boundary conditions are unnecessary. The 
remaining boundary conditions give 

and 
.2 

L’ n2a,=0. 
nell 

(43) 

Equations (37), (42) and (43) give a system of N + 1 homogeneous equations in 
which the parameter a appears to the fourth power 

D,(a) a = 0, (44) 
where 

D,(a)=C,a4+C,a3+C2a2+C,a+C, (45) 
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and Ci, i = 0, l,..., 4 are matrices of order N + 1 with complex elements. The lowest 
two rows of C,, C, , C, and C, are zero since the boundary conditions are 
independent of a. As before, the lowest two rows of C, may be eliminated using 
column operations except for a 2 x 2 submatrix which is upper triangular. Since (42) 
and (43) are linearly independent this submatrix is nonsingular and the problem is 
reduced to a quartic eigenvalue problem of order N - 1. 

From (37) it can be seen that all the coefficient matrices Ci, except C,, depend on 
the Reynolds number which may give their elements large magnitude. However, the 
elements of C, all have a magnitude less than one. For this reason, C, has a small 
determinant though it may still be inverted. The consequences of this are discussed in 
Section 4. 

The eigenvalues of the quartic eigenvalue problem (44) may be obtained using the 
methods developed in Section 2. 

3.1 The Companion Matrix Method 
One companion matrix that may be formed to give a linear generalized eigenvalue 

problem is 

i i 

-c, -c, 

i/ i/ 

-c, -c, -c, -c, -c, -c, 
I I 0 0 0 0 0 0 

0 0 I I 

0 0 

0 0 0 0 0 0 I I 0 0 1 1 -a 

CO 
1 

0 

0 

0 

0 a’a 

0 a2a = 

0 
1 

1 ji 
1 

aa 

a 

Ij (46) 

where a is the right latent vector of D4(a). The large order of the system makes this 
form quite inefficient. Since C, is nonsingular (45) may be made manic and the 
Fobenius companion matrix may be formed instead, 

-c,‘c, 
0 

I 

0 

-c,‘c, 

0 

0 

I 

-c,‘c, 
0 

0 * 

0 1 

(47) 

Matrix A is of order 4m, where m is the order of DIZ(a). The linear companion 
matrices are not unique. A new companion matrix may be formed by any row and 
column permutation. For example, 

-C,‘C, -C,‘C, -c,‘c, -c,‘c, 

0 0 I 0 
A, = (48) 

I 0 0 0 

0 I 0 0 1 
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is also a companion matrix to D4(a). A, is also a companion matrix to a lambda 
matrix of degree two. 

In either form (47) or (48) the companion matrix may be balanced and the QR 
algorithm used to compute all the eigenvalues. Since the QR algorithm requires 
computation times of order (4m)3 the solution of the block companion matrix will 
require significantly more computer time than a linear problem of order m. However, 
this method is globally convergent and for matrices of reasonable order the eigen- 
values may be computed efficiently and accurately with no initial guess. 

The linear eigenvalue problem (temporal stability) has been solved by Orszag Ill 1. 
The critical neutral point (a and w both real for minimum R) was found to be at 
R = 5772, a = 1.02056 with an eigenvalue w N 0.26943. In the present calculations 
the values of R and w are set at 5772 and 0.26943 and the value of CI is calculated. 
Table III shows the results for several values of polynomial order. 

In a related paper, Bramley and Dennis (14) have used the companion matrix 
method to solve a nonlinear eigenvalue problem. The differential equation they 
address is the limiting case of the Orr-Sommerfeld equation where the frequency is 
zero. The advantage of this equation is that the coefficients are real. Therefore, the 
resulting generalized eigenvalue problem is real, and the widely available QZ 
algorithm can be used. We consider here the more general case where the equation 
and resulting eigenvalue problem are complex. 

3.2 Factorization of the Lambda Matrix 

The lambda matrix D,(a) may also be factorized using the Bezout theorem giving, 

D4(a) = QdaUa - Y> + D4(Y), 

where Ql(a) is a lambda matrix of degree three and Y is a right solvent. The 
factorization is clearly equivalent to solving the fourth order matrix polynomial 

D,(Y)=C,Y4+C,Y3+C2Y2+C3Y+C4=0. (50) 

TABLE III 

Effect of Order of the Chebyshev Polynomials, N, on the Solution of the Orr-Sommerfeld Equation 
Using the Companion Matrix Method: R = 5772, w = 0.26943 

Polynomial Order (+l) 
A’+1 a 

12 1.019519 + i7.83(-03) 
16 1.020723 + i8.03(-04) 
24 1.020556 + i4.61(-06) 
32 1.020556 + i9.74(-07) 
36 1.020556 + i9.74(-07) 
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A solvent Y may be calculated such that it is the minimal solvent using the Bernoulli 
matrix difference equation 

Gun-2 +c,U,~,+C*Un+C~U”+,+C4Un+Z=0 (51) 

with initial values U -z = U, = U, = 0, U, = I. The sequence U,, U, ,..., may then 
be calculated. If it is assumed that (a) the eigenvalues of D,(a) can be divided into 
two non-intersecting groups such that 

IaIl < laxI < -.d IsI < /a,+,l< a.. < /a4ml (52) 

and (b) linearly independent eigenvectors exist for the first m eigenvalues aI, a,,..., 
a ,,,, then 

lim U,U;l, = Y. (53) n-m 
The sequence Y, = U, U;! , may be computed from the iterative formula 

[[[COY,-2 +C,l y,-I + %I y, + Gl Yntl =-Cd (54) 

with initial values Y _ 2 = Y-, = Y, = 0. Note that C, need not be nonsingular. As in 
Section 2 the implementation of (54) is straightforward requiring only matrix 
multiply and inverse routines. 

The results of the present calculations will be compared with the numerical study 
of the linear spatial stability of plane Poiseuille flow by Itoh [ 151. Nishioka et al. 
[ 161 showed that Itoh’s calculations compared favorably with their experimental 
results. Itoh used a power series discretization and a local iteration to determine the 
eigenvalues. The present calculations for the first two modes for a Reynolds number 
of 6000 are shown in Figs. 1 and 2. The first mode corresponds exactly with the 
calculations of Itoh. The second mode, which is always decaying, was not selected 
in Itoh’s calculations. However, at low and high frequencies this mode is the least 
stable. The second mode has a phase velocity, w/a,, nearly equal to unity and is thus 

FIG. 1. Real part of eigenvalue for first two modes for R = 6000; comparison with Itoh. 
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FIG. 2. Imaginary part of eigenvalue for first two modes for R = 6000; comparison with Itoh. 

travelling at the centerline velocity whereas the first mode has a phase velocity which 
is much lower. Since only the first mode is unstable it is not surprising that this mode 
was identified in the experiments of Nishioka et al. [ 161. In the range of frequencies 
considered in the experiments, the first mode was the least stable. However, it is 
important to note that with the globally covergent Bernoulli method the first m eigen- 
values may be obtained without the initial guess required in local iteration methods. 

At R = 6000, the least stable eigenvalue occurs at o - 0.26. For this set of 
parameters, the first ten members of the eigenvalue spectrum are shown plotted in 
alpha space in Fig. 3. This subset of the spectrum is also shown plotted in C-space in 
Fig. 4. C is defined as C = oa*/]c[~*, where the asterisk denotes complex conjugation. 
The numerical values for these eigenvalues are listed in Table IV. They were obtained 
using the Bernoulli method, and verified using the companion matrix method and the 
local method. 

The cubically convergent local method described in Section 2.3 may also be used 
in stability calculations. An approximate root may be obtained using the Bernoulli 
method for a low order matrix and then refined using the local method on a higher 
order matrix. If the right eigenvector ai is defined as coresponding to the eigenvalue 
ai such that 

D,(a!) ai = 0 (55) 

FIG. 3. The first ten members of the eigenvalue spectrum plotted in alpha space for o = 0.26 and 
R = 6000. 
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FIG. 4. The first ten members of the eigenvalue spectrum plotted in C-space for w = 0.26 and 
R = 6000. 

then an inverse iteration (28) may be used to determine ai. As the inverse of D,(a,) is 
available, from the local eigenvalue iteration, the eigenvector iteration is accom- 
plished in O(N*) operations. 

As an example of the application of these techniques the critical neutral point is 
considered again. With R = 5772 and w = 0.26943 the initial guess is taken from 
Table III for N = 11. After 3 iterations using the local method with N = 40, the eigen- 
value is given by, a = (1.020556, 9.742(-07)). The associated eigenvector is plotted 
in Fig. 5 and its derivative is given in Fig. 6. The magnitude of the derivative gives 
the distribution across the channel of the axial velocity perturbations. These results 
agree with those of Itoh [ 15, Fig. 5 1 though Itoh found the critical Reynolds number 
to be 5771 with u = 0.270. 

At a given Reynolds number, the frequency for the most unstable mode is deter- 
mined precisely by the frequency for which the imaginary part of &/a~ is zero. The 
value of &X/&J may be determined by first defining the left eigenvector bi such that 

bYD,(ai) = 0, (56) 

TABLE IV 

The First Ten Members of the Eigenvalue Spectrum for Spatial Stability of Plane Poiseuille Flow 
Obtained Using the Bernoulli Method: R = 6000 and w = 0.26 

Number Eigenvalue 

2 
3 
4 
5 
6 
1 
8 
9 

10 

1.00047 - iO.00086 
0.28323 + iO.02538 
0.30165 + iO.04886 
0.31976 + iO.07532 
0.33745 + iO.10492 
0.35456 + iO.13782 
0.37090 + iO.17425 
0.38629 + iO.21480 
0.40156 + iO.26063 
0.42050 + i0.3 1175 
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FIG. 5. Eigenfunction for w = 0.26943 and R = 5772: real and imaginary parts. 

0.6 -  

0 o.rl - 

0.0 

where H denotes the complex conjugate transpose. However, bi also satisfies 

D&) bi = 0 (57) 

and (AH)-’ = (A-‘)“. Thus, the complex conjugate transpose of the available 
inverse D; ’ (a,), may be used in the inverse iteration (28) to compute bi in O(N*) 
operations. Now the derivative of (55) with respect to o is 

8D‘l -a;+D,s=O. 
a0.l (58) 

Multiplying (58) by bj’ causes the second term to vanish from (56). Then if the 
expression (45) is used for D,(a), and noting that only C, and C, depend on w, the 
following result in obtained 

aai - bY{(ac,/ao) a; + (ac,/ao)j a, 
a/ bf’D:“(a,) ai ’ (59) 

The derivative Di”(ai) is available from the local iteration method of Section 2.3. 
The expression (59) may be evaluated in O(N*) operations. 

As an example of the evaluation of (59) Fig. 7 shows the real and imaginary parts 
of da/am as a function of frequency for R = 6000. This corresponds to the conditions 
shown in Figs. 1 and 2. The frequency for which the imaginary part of da/h is zero 
gives the most unstable frequency for this mode. Fig. 8 shows this frequency, for the 

1.25 

1.00 

0.75 

0' 0.50 
4 

0.25 

0.00 

La 

4 

-0.25 
0.0 0.2 0.9 0.6 0.8 I.0 

X 
FIG. 6. Derivative of eigenfunction for w = 0.26943 and R = 5772: real and imaginary parts 
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most unstable mode, at various values of Reynolds number R. &/aw is also useful 
for determining points on the curve of neutral stability. For example, if we seek the 
values of cc) and ar, at a particular value of R, which results in ai + 0, the following 
algorithm can be used. Given an initial estimate for o and a,, a correction can be 
found from 

w K+,=~K+A~ (60) 

(a,>, + 1 = (a,), + do Re 
I I 

2 
K 

Au = - (a,),/Im $ . 
I I K 

(61) 

4. DISCUSSION 

We have not done a detailed comparison of computer times, but some estimates 
can be given. For purposes of discussion, we take the degree of the lambda matrix to 
be four, since this is the case of most interest. Since the QR algorithm, has an 
operation count which is of O(N3), we can expect the companion matrix method to 
require about 64 times more computer time because of its enlarged size. The 
Bernoulli method requires 3 or 4 matrix multiplies and 1 matrix inversion per 
iteration. Therefore, its operation count is O(N3) per iteration. Using a regular dense 
matrix multiply and a fully pivoted Gauss-Jordon inversion routine, we found that 25 
Bernoulli iterations is about equivalent to the companion matrix method, when the 
companion matrix has been pre-conditioned by inverting C, and multiplying through. 
The Bernoulli method is clearly faster. It also has the potential for significant 
increases in efficiency with the aid of currently available fast matrix inversion and 
multiply routines. 

Regarding the convergence of the Bernoulli method for solvents of matrix 
polynomials, a proof is given in Ref. [5, p. 1261 for a particular case. A Bernoulli 

w 

FIG. 7. Variation of &X/&J versus frequency for R = 6000; real and imaginary parts. 
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0.4 

0.3 

UJ 

0.2 

FIG. 8. Variation of values of o as a function of R for which the imaginary part of &/%J = 0. 

sequence is derived for a manic matrix polynomial which converges to the dominant 
solvent. A manic matrix polynomial is one in which the leading coefficient matrix is 
the identity matrix. It appears that this proof can be extended to the case of the 
minimal solvent, and the numerical evidence seems to support this. However, there is 
a further question regarding convergence for the case where the matrix polynomial is 
non-manic and also the case where it is non-manic and the leading coefficient matrix 
is singular. We are currently studying this and hope to report in the furture. 

For the model equation and the Orr-Sommerfeld equation considered in the 
previous sections it was only necessary to remove the boundary conditions to make 
the leading coefficient matrix nonsingular. This matrix could then be inverted and a 
manic lambda matrix could be formed. However, this is not the case in general. For 
example, consider the model problem, which is a slight modification of (2), 

~-2az~+aw+0, (63) 

#(*l)=O, (64) 

for which the exact eigenvalue relationship is 

a4 - aw + (m/2)2 = 0, n = 1, 2,.... (65) 

Following the procedures developed above (63) is integrated twice, solutions of the 
form (6) are sought, and the tau method is used. This leads to N - 1 equations 

2 

n,-Q(a,~,-a,+,)+~ 
n 4n 

2nan a,+, 
(n’-l)+(n+ 1) =O, n=2Y, 1 N, (66) 

and the two boundary conditions (11). This results in a lambda matrix of degree two 

D2(a) = C,a* + C,a + C,. (67) 
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The lowest two rows of C, and C, are zero and the lowest two rows of C, contain 
the boundary conditions. The lowest two rows of C, are eliminated using column 
operations and the 2 x 2 submatrix is formed. As before the problem is reduced to 
order N- 1. However, in this case, the matrix C, is still singular. Thus, the system 
contains an “infinite” eigenvalue, since det C,, is the leading coefficent of the charac- 
teristic equation formed from (67). An alternative is to convert to the generalized 
eigenvalue problem (16). However, this requires considerably more computation time 
than the ordinary eigenvalue problem. For quartic or higher order nonlinear eigen- 
value problems, the penalty would be even greater. In practice, the solution of the 
generalized eigenvalue problem (46), using the rank iteration scheme of Gary and 
Helgason 121, was found to require about thirty times more computer time than 
inverting C, and solving (47). Thus, there is a tremendous saving if the lambda 
matrix can be made manic. It should be noted that this is not a requirement for the 
Bernoulli method of matrix factorization. 

To make the leading coefficient matrix nonsingular the following transformation 
may be used: 

2 = (z, + a)/@* - a). (68) 

This results in a new lambda matrix 

where 

d,(l) = A,$* + A,2 + A,, (69) 

A,, = C,z; + C,z, + C, 

A, = -2C,z,z, + C,(z, -z,) + 2C, (70) 

A, = C,z; - C,z, + C,. 

If z2 is not an eigenvalue A,, may now be inverted. For example, consider the 
calculations for N= 10, w = 1 and z, = z2 = 1. The results are shown in Table V. 
The exact values are given by (65). Since the “infinite” eigenvalue is only concealed 

TABLE V 

Eigenvalues for Problem (64) in Which C, is Singular Obtained Using (65) 
with z, =z?= 1, w= 1, N= 10 

Eigenvalue Numbers Eigenvalue 
i ai Error 

1 (0.893 180,0.7 19632) 5.26(-07) 
3 (-0.893180, 1.038110) 2.37(-06) 
5 (1.254089, 1.172177) 5.65(-04) 

18 (1.926(+15):2.019(+14)) 1.94(+15) 
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by the transformation (68), it still appears as the very large eigenvalue in the table. 
This large eigenvalue appears to have no effect on the other smaller eigenvalues. 

The use of the companion matrix method for the Orr-Sommerfeld discretization 
leads to the appearance of “spurious” eigenvalues. A “spurious” eigenvalue is one 
which is not an eigenvalue of the Orr-Sommerfeld operator. It may be attributed to 
either the Chebyshev-tau method [ 17, p. 1141 or the linear algebraic method of 
solution of the matrix problem. These eigenvalues may be either unstable (Im(a) < 0) 
or stable (Im(a) > 0). Spurious stable modes can be tolerated since even true stable 
eigenvalues are usually of little physical importance. However, unstable eigen- 
solutions are of considerable importance. For the present calculations of channel flow 
both the stable and unstable spurious eigenvalues have such large magnitudes that 
they are easily distinguished from the true eigenvalues. However, this may not be the 
case in all problems. 

Some of the spurious modes may be attributed to the disparity in the norms of the 
coefficient matrices at high Reynolds numbers. In the Orr-Sommerfeld problem all 
the elements of C, are less than unity while the elements of C, through C, are of the 
order of the Reynolds number. At high Reynolds numbers the matrix C, becomes 
negligible. The elements of C, form the coefficients of the terms proportional to the 
highest powers of a in the scalar characteristic equation for (45). Thus, m very large 
eigenvalues should be expected where m is the order of (45). Since C, is negligibly 
small the eigenvalue problem could be reduced to a cubic nonlinear eigenvalue 
problem. The spectrum of eigenvalues in this case is found to be the same as the 
spectrum for the fourth-order problem without the m largest eigenvalues. For low- 
order matrices the eigenvalues contributed by C, are all stable but for larger matrices 
some are unstable. The use of the Bernoulli method filters out the spurious eigen- 
values when solving for the minimal solvent. Since the spurious eigenvalues should 
have, as a rule, large magnitude, the method of matrix factorization offers a 
convenient method for their elimination. 

As in the scalar case, the matrix Bernoulli method has less than quadratic 
convergence. For improving convergence Newton’s method might be considered. 
However, in the case of matrix polynomials, its implementation is not 
straightforward. Consider the quadratic matrix polynomial 

D,(Y) = Y2 + C,Y + C, = 0. (71) 

An improved estimate is sought of the form 

Yi+,=Yi+Ai. (72) 

This results in a linearized equation for A, of the form 

(Yi + C,) Ai + AiYi = -D,(Y,). (73) 

This reduces to the more common form of Newton’s method if Ai and Yi commute. 
Matrix equations of the form (73) are common in control theory and algorithms for 
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their solution are available [ 181. However, the QR algorithm is used to triangularize 
the known coefficient matrices and the solution is obtained by back substitution. This 
results in a high operation count per iteration. Thus, it is not clear that there are any 
benefits to be gained from this implementation of Newton’s method over the simpler 
implementation of Bernoulli’s method. The use of Newton’s method for quadratic 
matrix polynomials is discussed by Lancaster and Rakne [ 19 1 and an algorithm has 
been developed by Davis [20, 2 11. Attempts at extending Newton’s method to cubic 
and higher degree matrix polynomials have not been fruitful. For example, if 
Newton’s method is applied to a manic cubic matrix polynomial a solution is 
required to 

(Y; + CiYi + C,) A; + A; Y; + (Yi + C,) AiYi + AiYi + A;YiA; = -D,(Y,). (74) 

It is not clear whether AiY,Ai may be neglected. Even if it is, the method for the 
solution of the remaining matrix equation for Ai is also unclear. Obviously, further 
complications arise for problems of higher degree. 

It has been suggested that the method of Gary and Helgason for the generalized 
eigenvalue problem has been made obsolete by the introduction of the Q.Z algorithm 
of Moler and Stewart. This is only partially true. Although this algorithm is widely 
available through the IMSL package, it is for matrices with real entries only, 
although it can still determine complex eigenvalues. Since the Orr-Sommerfeld 
equation has complex coefficients except in the limiting case of zero frequency, we 
require a method which handles complex matrices. To avoid modifying the QZ 
algorithm, we used the Gary/Helgason algorithm which is publicly available through 
NCAR. However, a complex version of QZ has recently been developed by George 
Davis and is now publicly available [20], and IMSL version 9, put out in the summer 
of 1982, also contains a complex version of QZ called EIGZC. It is likely that this 
will now become the algorithm of choice for the complex generalized eigenvalue 
problem. 

The authors’ original interest in these nonlinear eigenvalue problems grew from an 
interest in the applications of linear hydrodynamic stability theory. Extensions of the 
present analysis to consider the stability of unbounded shear flows and the influence 
of nonparallel mean flows are being examined. 

APPENDIX 

The coefficients in Eq. (37) are defined as 

Al,= an-l a, a 
8n(2n - 1) - 2(2n - 1)(2n + 1) + 8n(2;+-; 1)’ 

B, = 
a n-2 a n-1 

- 32n(2n - 1)(2n - 2)(2n - 3) 8n(2n - 3)(2n - 1)(2n + 1) 
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3% a 
+ 8(2n - 2)(2n - 1)(2n + 1)(2n + 2) - 

ntl 
8n(2n + 3)(2n + 1)(2n - 1) 

a 

+ 32n(2n + l)(;,:: 2)(2n + 3) ’ 

c, = 
a n-2 a n-1 

- 32n(2n - 1)(2n - 2) 16n(2n - 1)(2n + 1) 

an a 
8(2n - 1)(2n - 2)(2n + 1)(2n + 2) + 

fl+l 
16n(2n - 1)(2n + 1) 

a ni2 

32n(2n + 1)(2n + 2) ’ 

fin= an-2 ant2 
16n(2n - 1) - 

(a,-, -a, +a,+,) + 
4(2n - 1)(2n + 1) 16n(2n + 1)’ 

El, = 
a n-3 a n-2 

- 64n(2n - 3)(2n - 2)(2n - 1) 16n(2n - 1)(2n - 3)(2n + 2) 

(14n - 1) 6 
+ 64n(2n-3)(2n-1)(2n+ 1)(2n+2) ++? i i a n-l 

a” 
4(2n - 1)(2n + 1)(2n - 3)(2n + 3) + 

(14n + l)%t I 
64n(2n - 2)(2n - 1)(2n + 1)(2n + 3) 

a nt2 a - 
16n(2n - 1)(2n + 1)(2n + 3) + 64n(2n + 1)(2”n+; 2)(2n + 3) ’ 

aii is the kronecker delta function defined such that 

n=2 
otherwise. 
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