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 The boundary conditions in the Boundary Value Problems 
(BVP) in [ ]b, a  may come in the form of: 
 
• Dirichlet :             ba u)b(u   &   u)a(u ==  
 
• Neumann :         ba u)b(u   &   u)a(u =′=′  
 
• Robin :    b22a11 u)b(u)b(u   &   u)a(u)a(u =′β+α=′β+α . 
  
There are two main approaches in the treatment of boundary 
conditions for spectral collocation methods in practice : 
 
1. Restrict attention to interpolants that satisfy the boundary 

conditions (good for eigenproblems); or 
 

2. Do not restrict the interpolants, but add additional 
equations to enforce the boundary conditions. 

  
 This chapter contains a collection of boundary value 
problems arising in ordinary (ODEs) and partial differential 
equations (PDEs). In each case, a different implementation 
aspects of the pseudospectral methods are demonstrated. 
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 Case 1 : Homogeneous Dirichlet, Linear ODE   (Keywords) 
 
Consider the linear ODE boundary value problem 

[ ] 01)u(        1,x1      ),x4exp(uu xx =±<<−=≡ℑ  
whose exact solution is known to be 

[ ])4cosh()4sinh(x)x4exp()x(u 16
1 −−= . 

 
To solve this problem numerically, we approximate the 
second derivative by a Chebyshev pseudospectral approach 
and impose the boundary conditions 01)u( =±  as follows : 
 

• Let )x(u N  be the unique polynomial of degree N≤
such that  

{ } [ ] U0uu0 )x(u T
1N1

N
0jjN ≡= −=

  
where )x(uu jj ≡  over the grid )Njcos(x j π= . 
 

• Set )x(uw jNj ′′=  at the interior grid for 1N,,1j −=  . 
 

This implies that the resulting discretization matrix )2(
ND~  can 

be made to contain the boundary conditions built in as 
follows : 
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 Thus, we obtained the discretized version of the 
original BVP : 
 

[ ] FU D~           01)u(   and   )x4exp(u (2)
N =⇒=±=ℑ , 

 
where { } 1N

1jj   )x4exp( F −
== . 

 
This is implemented in p13.m in which the discretized 
operator is constructed by the steps 
 
  [D,x] = cheb(N); 
  D2 = D^2; 
  D2 = D2(2:N,2:N);   % boundary conditions 
 
and the resulting is solved at the steps 
 
  u = D2\f;     % Poisson eq. solved here 
  u = [0;u;0]; 
 
The result is accurate to nine digits for the resolution 
of 16N = . 
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 Case 6 : Non-homogeneous Dirichlet, Linear ODE 
 
Consider the linear ODE boundary value problem 

[ ] 11)u(    0,1)u(    1,x1    ),x4exp(uu xx =+=−<<−=≡ℑ  
which we have solved subject to homogeneous Dirichlet 
conditions in Case 1. 
 
To solve this problem numerically, we approximate the 
second derivative by a Chebyshev pseudospectral approach 
and add additional equation to enforce the boundary 
conditions 11)u( =+  as follows : 
 

• Let )x(u N  be the unique polynomial of degree N≤
such that  

{ } [ ] U0uuu )x(u T
1N10

N 
0j jN ≡= −=

  
where )x(uu jj ≡  over the grid )Njcos(x j π= . 
 

• Set )x(uw jNj ′′=  at the interior grid for 1N,,1j −=  . 
 

• Add the additional equation 1u0 = . 
 

This implies that the resulting discretized operator can be 
constructed as follows : 
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 The right-hand side, F, of the discretized version of the 
BVP, FUN =ℑ , is then modified to complete the 
additional equation as follows : 

[ ] T 
1N1 )x4exp()x4exp(1F −=  . 

 
This is implemented in p32.m in which the discretized 
operator is constructed by the steps 
 
  [D,x] = cheb(N); D2 = D^2; 
  D2(1,:) = zeros(1,N); D2(1,1) = 1; % add equation     
  D2 = D2(1:N,1:N);   % boundary conditions 
 
and the resulting linear system is solved at the steps 
 
  F = exp(4*x(2:N)); 
  u = D2\[0;F];     % Poisson eq. solved here 
  u = [u;0]; 
 
The result is shown below for 16N = . 
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 Case 7 : Homogeneous Neumann/Dirichlet, Linear ODE 
 
Now, consider the same equation as in Cases 1 & 6, but with 
a Neumann condition at the left endpoint 

[ ] 01)u(1)(u    1,x1    ),x4exp(uu xxx =+=−<<−=≡ℑ . 
 
This problem will be discretized as before, except that, an 
additional equation will be added to enforce the Neumann 
condition as follows : 
 

• Let )x(u N  be the unique polynomial of degree N≤
such that { } [ ] Uuuu0 )x(u T

N1N1
N 

0j jN ≡= −=
 . 

 
• Set )x(uw jNj ′′=  at the interior grid for 1N,,1j −=  . 

 
• Add 0uDuD)1(u NN,N11,NN =++=−′   where D is the 

first order Chebyshev differentiation matrix. 
 
This can be summarized as follows : 
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 Thus, we obtained the discretized version of the BVP, 
 FUN =ℑ , 

 where 
[ ]T 

1N1 0)x4exp()x4exp(F −=  . 
 
This is implemented in p33.m in which the discretized 
operator is constructed by the steps 
 
  [D,x] = cheb(N); D2 = D^2; 
  D2(N+1,:) = D(N+1,:); % Neumann condition at x = -1   
  D2 = D2(2:N+1,2:N+1);   
 
and the resulting linear system is solved at the steps 
 
  F = exp(4*x(2:N)); 
  u = D2\[F;0];     % Poisson eq. solved here 
  u = [0;u]; 
 
The Neumann condition is successfully implanted into 
the discrete operator as shown by the highly accurate 
result for just 16N = . 
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 Case 10 : Higher-order derivatives 
 
Suppose that we wish to solve the biharmonic problem 

[ ] .0)1(u1)u(    1,x1      ),x(fuu xxxxx =±=±<<−=≡ℑ  
 

 
Physically, )x(u  might represent the tranverse displacement 
of a beam subject to a force )x(f . The conditions at 1x ±=
are known as clamped boundary conditions, corresponding to 
holding both the position and the slope of a beam fixed at the 
ends. 
 
In order to compute spectral approximation to xxxxu , let }u{ j

be the vector of values of u sampled at 1N1 x,,x − . The 
polynomial interpolant, )x(p , satisfying the boundary 
conditions can be constructed as follows : 
 

• Let p be the unique polynomial of degree 2N +≤  with 
0)1(p)1(p x =±=±  and jj u)x(p =  for 1N,,1j −=  . 

 
• Set )x(pw jxxxxj = . 

 
If we set 

)x(q)x1()x(p 2−= , 
from which after four differentiation, we obtain 

)x(q 12)x(q x8)x(q )x1()x(p xxxxxxxxx
2

xxxx −−−= . 
 
Thus, a polynomial q of degree N≤  with 0)1(q =±
corresponds to a polynomial p of degree 2N +≤  with 

0)1(p)1(p x =±=± .   
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 Now, we can carry out the required spectral differentiation as 
follows : 
 

• Let q be the unique polynomial of degree N≤  with 
0)1(q =±  and )x1(u)x(q 2

jjj −=  for 1N,,1j −=  . 
 

• Set )x(q12)x(qx8)x(q)x1(w jxxjxxxjjxxxx
2
jj −−−= . 

 

Then, our spectrally discretized biharmonic operator is 

[ ] 










−
×−−−≡ℑ 2

j

)2(
N

)3(
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)4(
N

2
jN x1

1diagD~12D~)x(diag8D~)x1(diag  

for 1N,,1j −=  , where )2(
ND~ , )3(

ND~ , )4(
ND~  are the higher-order 

differentiation matrices obtained by taking the indicated 
powers 2, 3, and 4 of ND , respectively, and stripping away 
the first and last rows and columns. 
 

Example : Set )xexp()x(f = . The procedure above is 
implemented in p38.m in the following steps : 
% Construct discrete biharmonic operator: 
  [D,x] = cheb(N); 
  S = diag([0; 1 ./(1-x(2:N).^2); 0]); 
  D4 = (diag(1-x.^2)*D^4 - 8*diag(x)*D^3 - 12*D^2)*S; 
  D4 = D4(2:N,2:N); 
 
% Solve boundary-value problem and plot result: 
  f = exp(x(2:N)); u = D4\f; u = [0;u;0]; 
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 Case 11 : Differential eigenvalue problems 
 
Differential eigenvalue problems with high order derivatives 
often arise in hydrodynamic stability calculations. The 
pseudospectral approximation to such eigenvalue problems is 
found to produce spurious (unphysical) eigenvalues if the 
interpolating polynomial is not chosen properly. 
 
Huang & Sloan (1994) suggested a new differentiation 
matrix approach in which two distinct interpolating 
polynomials are used. 
 
This approach is presented below using various eigenvalue 
problems.  
 
Example :  
 
Consider the fourth-order eigenvalue problem 

,0)1(u1)u(     1,x1     ,uRuu xxxxxxxxxx =±=±<<−λ=+  
where R is a real parameter and λ  is the eigenparameter. 
 
In pseudospectral approximation of this problem, two 
interpolation problems are posed :  
 

1. Find the unique polynomial p  of degree 2N +  such that 
0)1(p1)p(   with   1-N,1,j   ,)u(x)x(p xjj =±=±==  . 

 

2. Find the unique polynomial p̂  of degree N such that 
01)(p̂   with   1-N,1,j   ,)u(x)x(p̂ jj =±==  . 

 

In this approach, p̂  is used for spectral approximation to the 
second-order derivative operator, while p is used for the 
higher-order derivative terms in the equation.   
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 The spectral approximation to the problem becomes 

.1N,1,j     ),x(p̂)x(Rp)x(p jxxjxxxjxxxx −=λ=+   
 

These interpolating polynomials are constructed by setting 
q(x),(x)p̂     and     ),x(q)x1()x(p 2 =−=  

where q is a polynomial of degree N≤  with 0)1(q =± , as 
before.  
 

The derivatives are then discretized to get : 
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At the matrix level, by introducing the spectral differentiation 
matrices D4, D3 and 2D̂  in the equation, we obtain the 

)1N()1N( −×−  generalized eigenvalue problem : 
( ) U )2D̂( U 3D R4D λ=+ . 

 

This is implemented in fourth.m for 4R =  in the following 
steps : 
% Construct spectral approximation to the operator: 
[x,D] = chebdif(N,4); D2 = D(:,:,2); D2 = D2(2:N-1,2:N-1); 
S = diag([0; 1 ./(1-x(2:N-1).^2); 0]); 
D3 = (diag(1-x.^2)*D(:,:,3)-6*diag(x)*D(:,:,2)-6*D(:,:,1))*S; 
D3 = D3(2:N-1,2:N-1);  
D4 =(diag(1-x.^2)*D(:,:,4)-8*diag(x)*D(:,:,3)-12*D(:,:,2))*S; 
D4 = D4(2:N-1,2:N-1);   
A = D4 + R*D3; B = D2; 
   
% Find the eigenparameters: 
Lam = eig(A,B); Lam = sort(Lam); 
 

N 1λ  
9 -17.91115029017738 

14 -17.91292187679245 
19 -17.91292180014924 

Exact -17.91292180018440 
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 Example :  
 
Consider the incompressible flow in a straight channel (plane 
Poiseuille flow). The governing equations are 
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The boundary conditions at the impermeable and no-slip 
walls are 

,0)t,1,x(v)t,1,x(u
,0)t,1,x(v)t,1,x(u

=−=−
=+=+

 

where the upper and lower boundaries in the direction normal 
to the walls are normalized to 1y ±= .  
 

 y 

x 

 
 

An equilibrium (time-independent) solution is 

.x2)t,y,x(p
,0)t,y,x(v

,y1)t,y,x(u 2

ν−=
=

−=
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 The stability of this flow is assessed by studying the 
perturbations of the form : 

( )

),t,y,x(px2)t,y,x(p
),t,y,x(v0)t,y,x(v

,)t,y,x(uy1)t,y,x(u 2

′+ν−=

′+=

′+−=
 

where 
[ ] [ ] ).txexp()y( p̂ ,v̂ ,û )t,y,x(p,v,u λ+ισ=′′′  

 
The temporal frequency λ  come from solutions to the Orr-
Sommerfeld eigenvalue problem, 
 

[ ] [ ] [ ]v̂v̂v̂ U)v̂v̂(Uv̂v̂2v̂
R
1 2

yy
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yy
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yy
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yyyy σ−λ=′′−σ−ι+σ+σ−
σ

−   

 
in 1y1 <<−  subject to 

0)1(v̂)1(v̂ y =±=± , 
where R is the Reynolds number and 2y1)y(U −=  is the 
mean flow. 
 
Discretizing as in the previous example, we obtain the 

)1N()1N( −×−  generalized eigenvalue problem BUAU λ=
where 
 

( )( ) ( )
.I)2D̂(B

,I-)2D̂()x1(diag I 2I)2D̂( 24DRA 21

−=

−ι−ι−+−= −
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 It is known that the most sensitive longitudinal structure 
(perturbation) has a dependence on x closer to )x02.1exp( ι , 
i.e. 102.1 ≈=σ .  
 

To test for the instability of this structure, we look for values 
of R, which give eigenvalues λ  with positive real part. In that 
case, the flow is linearly unstable. 
 

p40.m implements these formulas to calculate eigenvalues 
corresponding to 5772R = , the critical Reynolds number 
determined by Orszag (1971) in the following steps : 
 

% 2nd- and 4th-order differentiation matrices: 
    [D,x] = cheb(N); D2 = D^2; D2 = D2(2:N,2:N); 
    S = diag([0; 1 ./(1-x(2:N).^2); 0]); 
    D4 = (diag(1-x.^2)*D^4 - 8*diag(x)*D^3 - 12*D^2)*S; 
    D4 = D4(2:N,2:N); 
 
% Orr-Sommerfeld operators A,B and generalized eigenvalues: 
    I = eye(N-1); 
    A = (D4-2*D2+I)/R - 2i*I - 1i*diag(1-x(2:N).^2)*(D2-I); 
    B = D2-I; Lam = eig(A,B); 
 

As expected, the rightmost eigenvalue is nearly on the 
imaginary axis. 
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