EXERCISE SET #4

- 1. Classify the following PDEs defined over $-\infty < x < \infty$, $-\infty < y < \infty$ as elliptic, parabolic or hyperbolic. If the equation is of mixed type, identify the relevant regions and give the classification within each region.
 - (a) $u_{xx} + u_{xy} x^2 u_y = e^{xy}$, (b) $xu_{xx} u_{xy} + yu_{yy} + 3u_y = 1$, (c) $u_{xy} + u_x 4u_y = 6u$,
 - (d) $xu_{xx} (\sin^2 y + 1)u_{yy} = x^2u$, (e) $u_{xx} + u_{xy} + u_{yy} + u_x + u_y + u = 1$, (f) $u_{xx} + (\cos x)u_{yy} = 2xy$,
 - (g) $u_{xx} + u_x + u_y = x^3 u$, (h) $u_{xy} u_{yy} + e^x u = f(x, y)$
- 2. Classify the following PDEs as linear, non-linear, homogeneous and non-homogeneous.
 - (a) $u_{xx} = u_{tt} + u_{t} + u$, (b) $u_{xx} = 3u_{t} + u^{2} + t^{2}x$, (c) $u_{xx}u_{tt} = u_{t} + u_{x}$, (d) $u_{xx} + u_{tt} = u_{t}u_{x}$,
 - (e) $u_{xx} + u_{yy} + u_{zz} = F(x, y, z)u$, (f) $x^2u_x + xu_{yy} = xy$, (g) $2u_t = xtu_{xx} + e^tu_x + t$,
 - (h) $u_{tt} + 2u_{xt} + u_{xx} = u(u_x + u_t)$, (i) $u_{xx} u_{yy} = 0$, (j) $u_{xx} + u_{yy} + u_x u_y = 3u$,
 - (k) $u_t + uu_x + u_{xxx} = 0$, (l) $u_{xx} + u_{yy} = e^u$, (m) $u_{xxxx} + 2u_{xxyy} + u_{yyyy} = 0$.
- 3. State whether the following PDEs admit separable solutions u(x,t) = X(x)T(t). If yes, proceed to construct the associated ODEs.
 - (a) $u_{xx} = u_t + 3u$, (b) $u_{xx} + 2u_x = u_t$, (c) $u_{xx} + 2u_{xt} = u_t$, (d) $u_{xx} + 2u_{xt} = u_{tt}$
- 4. Solve the diffusion problem, $\alpha^2 u_{xx} = u_t$, 0 < x < L, t > 0, using separation of variables subject to the following boundary and initial conditions:
 - (a) u(0,t) = 20, $u_x(\pi,t) = 3$, u(x,0) = 0,
 - (b) u(0,t) = 10, $u_x(2,t) = -5$, u(x,0) = 10,
 - (c) u(0,t) = 0, $u_x(2,t) = 0$, $u(x,0) = 50\sin(\pi x/2)$,
 - (d) u(0,t) = 0, $u_x(2,t) = 0$, $u(x,0) = 5\sin(\pi x/4) 12\sin(5\pi x/4)$,
 - (e) u(0,t) = 25, $u_x(4,t) = 0$, u(x,0) = 25,
 - (f) u(0,t) = 25, $u_x(2,t) = 0$, $u(x,0) = \begin{cases} 0, & 0 < x < 1 \\ 25, & 1 < x < 2 \end{cases}$
 - (g) $u_x(0,t) = 0$, $u_x(\pi,t) = 0$, u(x,0) = 300,
 - (h) $u_x(0,t) = 0$, $u_x(3\pi,t) = 0$, $u(x,0) = \begin{cases} 0, & 0 < x < 2\pi \\ 60, & 2\pi < x < 3\pi \end{cases}$
 - (i) $u_x(0,t) = 5$, $u_x(10,t) = 5$, u(x,0) = 45 + 5x,
 - (j) u(0,t) = 0, u(5,t) = 0, $u(x,0) = \sin(\pi x) 37\sin(\pi x/5) + 6\sin(9\pi x/5)$,
 - (k) u(0,t) = 0, u(10,t) = 100, u(x,0) = 0,
 - (1) $u_x(0,t) = 2$, u(6,t) = 12, u(x,0) = 0,

- (m) $u_x(0,t) = 0$, u(6,t) = 0, $u(x,0) = \sin x$,
- 5. Solve the heat conduction equation $\alpha^2 u_{xx} = u_t$ on a ring, thus, having periodic boundary conditions, u(0,t) = u(L,t) and $u_x(0,t) = u_x(L,t)$ subject to the initial condition u(x,0) = f(x), where f(x) is L-periodic. Hint: Consider periodic Sturm-Liouville problem.
- 6. Consider the diffusion problem with a constant source F, $\alpha^2 u_{xx} = u_t F$ subject to boundary u(0,t) = 0, u(L,t) = 50 and initial u(x,0) = f(x) conditions.
 - (a) Show that the direct separation of variables approach, u(x,t) = X(x)T(t), fails.
 - (b) Devise an indirect approach and solve this problem using separation of variables.
- 7. Solve the Newton cooling problem, $\alpha^2 u_{xx} = u_t + hu$, where h is the convective heat transfer coefficient, subject to boundary u(0,t) = u(L,t) = 50 and initial u(x,0) = f(x) conditions, by separation of variables technique
 - (a) after introducing a steady-state temperature distribution $u_s(x)$ in $u(x,t) = u_s(x) + v(x,t)$.
 - (b) directly by applying u(x,t) = X(x)T(t).
 - (c) after the change of variables $w(x,t) = e^{ht}u(x,t)$.
- 8. Solve the heat conduction in an infinite rod: $\alpha^2 u_{xx} = u_t$, $-\infty < x < \infty$, t > 0 subject to the initial condition u(x,0) = f(x), using
 - (a) Fourier transform,
 - (b) Laplace transform.

<u>Hint</u>: Use transform tables and $F^{-1}[e^{-\alpha^2\omega}] = \frac{1}{2\alpha\sqrt{\pi}}e^{-x^2/4\alpha^2}$, if necessary.

- 9. Solve the problem $\alpha^2 u_{xx} = u_t + V u_x$, $-\infty < x < \infty$, t > 0 where V is a constant, subject to the initial condition u(x,0) = f(x), using an appropriate transform technique. Compare your result with (8) for vanishing V. <u>Hint</u>: Use transform tables, if necessary.
- 10. Solve the problem $\alpha^2 u_{xx} = u_t$, $0 < x < \infty$, t > 0, subject to the initial condition u(x,0) = f(x) and boundary condition u(0,t) = g(t), using an appropriate transform technique. Hint: Use transform tables and $L^{-1}[e^{-\sqrt{s}/\alpha}] = \frac{1}{2\alpha t^{3/2}\sqrt{\pi}}e^{-1/4\alpha^2t}$, if necessary.
- 11. Solve the problem $\alpha^2 u_{xx} = u_t$, $0 < x < \infty$, t > 0, subject to the initial condition u(x,0) = 0, $u_x(0,t) = -Q$, where Q is a prescribed constant, using an appropriate transform technique. <u>Hint</u>: Use transform tables, if necessary.

- 12. Solve the 2D diffusion problem $\alpha^2(u_{xx} + u_{yy}) = u_t$ in a rectangular plate 0 < x < a, 0 < y < b, subject to the boundary u(0,y) = u(a,y) = u(x,0) = u(x,b) = 0 and initial u(x,y,0) = 100 conditions, using separation of variables technique.
- 13. Solve the wave equation, $c^2u_{xx} = u_{tt}$, 0 < x < L, t > 0, using separation of variables subject to the following boundary and initial conditions:

(a)
$$u(0,t) = 0$$
, $u(L,t) = 0$, $u(x,0) =\begin{cases} 2x/L, & 0 < x < L/2 \\ 2(L-x)/L, & L/2 < x < L \end{cases}$, $u_t(x,0) = 0$,

- (b) u(0,t) = 0, u(L,t) = 0, u(x,0) = 0, $u_{t}(x,0) = 50\sin(\pi x/L)$,
- (c) u(0,t) = 0, u(L,t) = 0, u(x,0) = 0, $u_t(x,0) = 3\sin(\pi x/L) 5\sin(4\pi x/L)$,
- (d) u(0,t) = 0, u(L,t) = 0, u(x,0) = 0, $u_t(x,0) = \sin(2\pi x/L) + \sin(3\pi x/L) + 4\sin(8\pi x/L)$,
- (e) u(0,t) = 0, $u_x(L,t) = 0$, u(x,0) = f(x), $u_t(x,0) = 0$,
- (e) $u_x(0,t) = 0$, $u_x(L,t) = 0$, u(x,0) = 0, $u_x(x,0) = V$, where V is a constant,
- (f) $u_x(0,t) = 0$, u(L,t) = 0, u(x,0) = 0, $u_t(x,0) = g(x)$,

Here $u_x(0,t) = 0$ or $u_x(L,t) = 0$ correspond to string being looped around a vertical frictionless wire and moving freely.

- 14. Solve the damped wave equation, $c^2u_{xx} = u_{tt} + au_t$, where the damping force is proportional to the velocity u_t and a is the proportionality constant, subject to the boundary u(0,t) = 0, u(L,t) = 0 and initial u(x,0) = f(x), $u_t(x,0) = 0$ conditions, using separation of variables.
- 15. Solve the modified wave equation, $c^2u_{xx} bu = u_{tt}$, along a string with stiffness b, subject to the boundary u(0,t) = 0, u(L,t) = 0 and initial u(x,0) = f(x), $u_t(x,0) = 0$ conditions, using separation of variables.
- 16. Solve the wave equation, $c^2(u_{xx} + u_{yy}) = u_{tt}$, governing the vibrating rectangular membrane 0 < x < a, 0 < y < b, subject to the boundary u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0 and initial u(x, y, 0) = f(x, y), $u_t(x, y, 0) = g(x, y)$ conditions, using separation of variables technique.
- 17. Solve the wave equation, $c^2(u_{xx}+u_{yy})=u_{tt}$, governing the vibrating rectangular membrane $0 < x < \pi$, $0 < y < 2\pi$, subject to the boundary u(0,y,t)=u(a,y,t)=u(x,0,t)=u(x,b,t)=0 and initial $u(x,y,0)=8\sin 2x\sin 2y$, $u_t(x,y,0)=0$ conditions, using separation of variables technique.

18. Consider the infinite string problem, $c^2u_{xx}=u_{tt}$, $-\infty < x < \infty$, t>0, subject to the initial conditions u(x,0)=f(x), $u_t(x,0)=g(x)$. Show that the change of variables, $\xi=x-ct$, $\eta=x+ct$ reduces the PDE to $u_{\xi\eta}=0$ and leads to the d'Alembert solution

$$u(x,t) = \frac{1}{2} [f(x-ct) + f(x+ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(\tau) d\tau.$$

- 19. Solve Laplace equation, $u_{xx} + u_{yy} = 0$ in the rectangle 0 < x < 3, 0 < y < 2 by separation of variables subject to the given boundary conditions:
 - (a) u(0, y) = u(x, 2) = u(3, y) = 0, $u(x, 0) = 50\sin(\pi x/3)$,
 - (b) u(0, y) = u(x, 0) = u(3, y) = 0, $u(x, 2) = 10\sin(\pi x/3) 4\sin(\pi x)$,
 - (c) u(x,0) = u(3,y) = u(x,2) = 0, $u(0,y) = 5\sin(\pi y) + 4\sin(2\pi y) \sin(3\pi y)$,
 - (d) u(0,y) = u(x,2) = u(3,y) = 0, u(x,0) = 50H(x-2),
 - (e) $u_x(0, y) = u(x, 2) = u(3, y) = 0$, u(x, 0) = 50H(x 2),
 - (f) $u(0,y) = u(x,2) = u_x(3,y) = 0$, u(x,0) = 50H(x-2),
 - (g) $u_x(0,y) = u(x,2) = u_x(3,y) = 0$, u(x,0) = 50H(x-2),
 - (h) $u_y(x,2) = u(3,y) = u(x,0) = 0$, u(0,y) = H(y-1),
 - (i) u(x,2) = u(3,y) = u(x,0) = 0, $u_x(0,y) = 5\sin(3\pi y)$,
 - (j) $u(x,2) = u(3,y) = u_y(x,0) = 0$, $u_y(0,y) = 20$,
 - (k) $u_v(x,2) = u(3,y) = u_v(x,0) = 0$, $u_x(0,y) = 20$,

Here, $H(x-a) = \begin{cases} 0, & x < a \\ 1, & x > a \end{cases}$ is the Heaviside function.

- 20. Solve Laplace equation, $u_{xx} + u_{yy} = 0$ in the rectangle 0 < x < a, 0 < y < b by separation of variables subject to the given boundary conditions:
 - (a) u(0,y) = g(y), $u(x,b) = u_2$, u(a,y) = f(y), $u(x,0) = u_1$,
 - (b) $u(0,y) = u_1$, u(x,b) = g(x), $u(a,y) = u_2$, u(x,0) = f(x),
 - (c) $u_x(0,y) = g(y)$, $u(x,b) = u_2$, u(a,y) = f(y), $u(x,0) = u_1$,
 - (d) $u_x(0,y) = g(y)$, $u(x,b) = u_2$, $u_x(a,y) = f(y)$, $u(x,0) = u_1$,

Here, u_1 and u_2 are constants.

- 21. Solve Laplace equation, $u_{xx} + u_{yy} = 0$ in semi-infinite strip $0 < x < \infty$, 0 < y < 1 by separation of variables subject to the given boundary conditions and the condition that u is bounded as $x \to \infty$:
 - (a) u(0, y) = 0, u(x, 0) = 10, $u_{v}(x, 1) = 0$,
 - (b) u(0,y) = 100, $u_v(x,0) = u_v(x,1) = 0$,

- (c) $u_x(0, y) = 5$, u(x, 0) = u(x, 1) = 0,
- (d) u(0, y) = 0, u(x, 0) = 50, u(x, 1) = 10,
- (e) u(0,y) = 10y, u(x,0) = 20, u(x,1) = 50.
- 22. Devise a method to solve the Poisson problem, $u_{xx} + u_{yy} = f(x,y)$ in the rectangle 0 < x < a, 0 < y < b subject to the boundary conditions u(0,y) = u(x,b) = u(a,y) = u(x,0) = 0 by separation of variables for the case f(x,y) = f is constant.
- 23. Consider the 3D problem, $u_{xx} + u_{yy} + u_{zz} = 0$ in the rectangular prism 0 < x < a, 0 < y < b, 0 < z < c where u = 0 on each of the six except for the face z = c on which u(x, y, c) = f(x, y). Use separation of variables to derive the solution in the form

$$u(x,y,z) = \sum\nolimits_{n = l}^\infty {\sum\nolimits_{m = l}^\infty {{A_{mn}}} } \sin \frac{{m\pi x}}{a} \sin \frac{{n\pi y}}{b} \sinh (\omega _{mn} z) \; . \label{eq:u}$$

- 24. Solve Laplace equation, $u_{xx} + u_{yy} = 0$ in the rectangle 0 < x < 4, 0 < y < 3 by separation of variables subject to the boundary conditions: $u(0,y) = u(x,0) = u(x,3) + 5u_y(x,3) = 0$, u(4,y) = 100.
- 25. Solve the nonhomogeneous diffusion problem, $u_t = \alpha^2 u_{xx} + g(x,t)$, 0 < x < L, t > 0, using separation of variables subject to the following boundary and initial conditions:
 - (a) u(0,t) = 0, u(L,t) = 0, u(x,0) = 10 with $g(x,t) = e^{-at}$, a > 0.
 - (b) $u(0,t) = U_0$, $u_x(L,t) = 0$, $u(x,0) = U_0(1-x/L)$ with g(x,t) = 0 and U_0 , a constant.
 - (c) u(0,t) = 0, $u(L,t) = 100e^{-t}$, u(x,0) = 100 with g(x,t) = 0.
 - $(d) \ u(0,t) = U_0 \,, \ u(L,t) = U_L \,, \ u(x,0) = 0 \ with \ g(x,t) = -hu(x,t) \ and \ U_0, U_L, h \,, constants. \quad .$
 - $(e) \ u_x(0,t) = \begin{cases} q, & t < t_0 \\ 0, & t > t_0 \end{cases}, \ u(L,t) = U_0, \ u(x,0) = U_0 \ with \ g(x,t) = 0 \ and \ U_0, q, constants. \ .$
 - $(f) \ u_x(0,t) = \begin{cases} q, & t < t_0 \\ 0, & t > t_0 \end{cases}, \ u_x(L,t) = 0 \ , \ u(x,0) = U_0 \ with \ g(x,t) = 0 \ and \ U_0, q \ , constants. \ .$
- 26. Solve the nonhomogeneous vibration problem, $u_{tt} = c^2 u_{xx} + g(x,t)$, 0 < x < L, t > 0, using separation of variables subject to the following boundary and initial conditions:
 - (a) u(0,t) = 0, $u_x(L,t) = F$, u(x,0) = 0, $u_t(x,0) = 0$ with g(x,t) = 0 and F, constant.
 - (b) $u_x(0,t) = F$, $u_x(L,t) = 0$, u(x,0) = kx, $u_x(x,0) = 0$ with g(x,t) = 0 and F, k, constants.
 - (c) u(0,t)=0, u(L,t)=0, u(x,0)=0, $u_t(x,0)=0$ with $g(x,t)=F_0\sin\omega t$ and F_0,ω constants. Discuss the resonance.
 - (d) u(0,t) = 0, $u_x(L,t) = F_0 \sin \omega t$, u(x,0) = 0, $u_t(x,0) = 0$ with g(x,t) = 0 and F_0 , ω constants.
 - (e) $u_x(0,t) = 0$, $u_x(L,t) = F_0 \sin \omega t$, u(x,0) = 0, $u_t(x,0) = 0$ with g(x,t) = 0 and F_0, ω constants.

- (f) u(0,t) = 0, $u(L,t) = A_0 \sin \omega t$, u(x,0) = 0, $u_t(x,0) = 0$ with g(x,t) = 0 and A_0, ω constants.
- (g) $u_x(0,t) = 0$, $u(L,t) = A_0 \sin \omega t$, u(x,0) = 0, $u_t(x,0) = 0$ with g(x,t) = 0 and A_0, ω constants.
- (h) $u(0,t) = A_0 \sin \omega t$, $u(L,t) = B_0 \sin \phi t$, u(x,0) = 0, $u_t(x,0) = 0$ with g(x,t) = 0 and A_0 , B_0 , ω , ϕ constants.
- (i) $u_x(0,t) = F_0 \sin \omega t$, $u_x(L,t) = G_0 \sin \phi t$, u(x,0) = 0, $u_t(x,0) = 0$ with g(x,t) = 0 and F_0 , G_0 , ω , ϕ constants.
- (j) u(0,t) = 0, u(L,t) = g(t), u(x,0) = 0, $u_t(x,0) = 0$ with $g(x,t) = -\beta u_t(x,t)$ and β constant.
- 27. Solve the nonhomogeneous problem, $u_{xx} + u_{yy} = g(x, y)$, 0 < x < a, 0 < y < b, using separation of variables subject to the following boundary conditions:
 - (a) u(0, y) = u(a, y) = 0, u(x, 0) = u(x, b) = 0 with $g(x, y) = \sigma$ and σ constant.
 - (b) u(0, y) = u(a, y) = 0, u(x, 0) = u(x, b) = 0 with g(x, y) = x.
 - (c) u(0, y) = u(a, y) = 0, u(x, 0) = u(x, b) = 0 with g(x, y) = xy.

Recall that the Laplacian operator $\Delta \equiv \nabla^2$ is in the form:

- (i) $\Delta u = u_{xx} + u_{yy} + u_{zz}$ in rectangular coordinates (x, y, z),
- (ii) $\Delta u = u_{rr} + \frac{1}{r}u_{r} + \frac{1}{r^{2}}u_{\theta\theta}$ in polar coordinates (r, θ) ,
- (iii) $\Delta u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} + u_{zz}$ in cylindrical coordinates (r, θ, z) ,
- (iv) $\Delta u = u_{rr} + \frac{2}{r} u_r + \frac{1}{r^2 \sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \, u_{\phi} \right) + \frac{1}{r^2 \sin^2 \phi} u_{\theta \theta}$ in spherical coordinates (r, θ, ϕ) .
- 28. Solve the diffusion problem, $u_t = \alpha^2 \nabla^2 u$, 0 < r < a, $0 < \theta < \theta_0$, t > 0, in polar coordinates using separation of variables subject to the following boundary and initial conditions:
 - (a) $u(a, \theta, t) = 0$, $u(r, \theta, 0) = a^2 r^2$ with $\theta_0 = 2\pi$.
 - (b) $u_r(a, \theta, t) = 0$, $u(r, \theta, 0) = a^2 r^2$ with $\theta_0 = 2\pi$.
 - $(c) \ u(r,0,t) = 0 \ , \ u_{_{\theta}}(r,\pi/2,t) = 0 \ , \ u_{_{r}}(a,\theta,t) = 0 \ , \ u(r,\theta,0) = U_{_{0}} \ with \ \theta_{_{0}} = \pi/2 \ and \ U_{_{0}} \ constant.$
 - (d) u(r,0,t) = 0, $u(r,\pi,t) = 0$, $u_r(a,\theta,t) = 0$, $u(r,\theta,0) = U_0$ with $\theta_0 = \pi$ and U_0 constant.
- 29. Solve the diffusion problem, $u_t = \alpha^2 \nabla^2 u$, 0 < r < a, $-\pi < \theta \le \pi$, $0 < \phi < \pi$, in spherical coordinates using separation of variables subject to the following boundary and initial conditions:
 - (a) $u(a, \theta, \phi, t) = 0$, $u(r, \theta, \phi, 0) = U_0$ where U_0 constant.
 - (b) $u_r(a, \theta, \phi, t) = 0$, $u(r, \theta, \phi, 0) = U_0$ where U_0 constant.
- 30. Solve the vibration problem, $u_{tt} = c^2 \nabla^2 u$, 0 < r < a, $-\pi < \theta < \pi$, t > 0, in polar coordinates using separation of variables subject to the following boundary and initial conditions:
 - (a) $u(a, \theta, t) = 0$, $u(r, \theta, 0) = a^2 r^2$, $u_t(r, \theta, 0) = 0$.

- (b) $u(a, \theta, t) = 0$, $u(r, \theta, 0) = 0$, $u_t(r, \theta, 0) = U_0$ where U_0 constant.
- 31. (a) Solve the Helmholtz equation $\nabla^2 u + k^2 u = 0$ in polar coordinates 0 < r < a, $-\pi < \theta < \pi$, subject to the boundary condition $u(a, \theta) = 1$.
 - (b) Solve the Laplace equation $\nabla^2 u=0$ in cylindrical coordinates 0 < r < a, $-\pi < \theta < \pi$, 0 < z < L subject to the boundary conditions $u_r(a,\theta,z) + u(a,\theta,z) = 0$, $u(r,\theta,0) = U_0$. $u(r,\theta,L) = 0$ where U_0 constant.
 - (c) Solve the Laplace equation $\nabla^2 u = 0$ in spherical coordinates 0 < r < a, $-\pi < \theta < \pi$, $0 < \phi < \pi$ subject to the boundary conditions at the top half $u(a,\theta,\phi) = U_0$ for $0 < \phi < \pi/2$, at the bottom half $u(a,\theta,\phi) = U_1$ for $\pi/2 < \phi < \pi$ where U_0,U_1 constants.
- 32. Consider the wave equation, $c^2u_{xx}=u_{tt},\ 0< x< L,\ t>0,\ \text{subject to the following boundary and}$ initial conditions: $u(0,t)=u(L,t)=0,\ u(x,0)=f(x)\equiv \begin{cases} 2ax/L, & 0< x< L/2\\ 2a(L-x)/L, & L/2< x< L \end{cases},\ u_{t}(x,0)=0.$
 - (a) Show that separation of variables technique results in the solution

$$u(x,t) = \sum_{k=1}^{\infty} A_k \sin \frac{k\pi x}{L} \cos \frac{k\pi ct}{L}$$

where $A_k = \frac{8a}{k^2\pi^2} \sin \frac{k\pi}{2}$ such that $u(x,0) = \sum_{k=1}^{\infty} A_k \sin \frac{k\pi x}{L}$.

% Demonstrating the superposition of right- (um) and

(b) Verify using trigonometric identities that u(x,t) can also be written as the superposition of the left-going $u^+(x,t) = f(x+ct)$ and right-going $u^-(x,t) = f(x-ct)$, i.e.

$$u(x,t) = \sum_{k=1}^{\infty} \frac{1}{2} A_k \left\{ \sin \frac{k\pi(x-ct)}{L} + \sin \frac{k\pi(x+ct)}{L} \right\} = \frac{1}{2} \left\{ f(x-ct) + f(x+ct) \right\} \quad (\text{see } \#18).$$

(c) Run the following MATLAB script to demonstrate (b) for c = 0.05, a = 0.5, L = 1:

```
% left-going (up) travelling waves making-up the standing
% wave pattern u as solution to the wave equation
                            t>0, c=0.05,
% c^2*u tt=u xx,
                   0<x<1,
% u(0,t)=u(1,t)=0,
                     t>0
u(x,0)=f(x), u t(x,0)=0,
% where f(x)=x*(0<x<0.5)+(1-x)*(0.5<x<1)
clear all, clf,
N=100; x=linspace(0,1,N); % Actual Domain 0<x<1
M=200; xx=linspace(-.5,1.5,N); % Graph Window -0.5<x<1.5
K=40; c=.05;
set(gca,'NextPlot','replaceChildren');
for t=1:20
xxp=(xx+c*t); xp=(x+c*t);
xxm = (xx-c*t); xm = (x-c*t);
sump=0; summ=0; sum=0;
for k=1:K,
```

```
coeff=4*sin(k*pi/2)/pi/pi/k/k; % Fourier Coefficients a_k of f(x)
    sump=sump+coeff*sin(k*pi*xxp); % Fourier expansion for up=f(x+ct)
    summ=summ+coeff*sin(k*pi*xxm); % Fourier expansion for um=f(x-ct)
    sum=sum+coeff*(sin(k*pi*xp)+sin(k*pi*xm)); % Fourier expansion for u=0.5*(up+um)
end
u=.5*sum;
plot(xx,sump,'--'), hold on
plot(xx,summ,':'),
plot(x,u,'LineWidth',2),
plot(zeros(1,20),linspace(-1,1,20),'--','LineWidth',2),
plot(ones(1,20),linspace(-1,1,20),'--','LineWidth',2)
legend('f(x+c*t)','f(x-c*t)','u(x,t)')
axis([-.5 1.5 -1 1])
F(t) = getframe; hold off,
end
T=1; v=.5; movie(F,T,v) % Play the movie T times with speed v
```