EXERCISE SET #4

1. Classify the following PDEs defined over —co<Xx <o, —0o<y<oo as elliptic, parabolic or

hyperbolic. If the equation is of mixed type, identify the relevant regions and give the
classification within each region.

2 X
@) u,, +u,, —xu, =e?, (b) xu, -u, +yu, +3u, =1, (c) u,, +u,—4u =6u,
Ho) 2
(d) xu, —(sin“y+hu, =x°u, (e) u,, +u, +u, +u, +u, +u=1,(f) u, +(cosx)u, =2xy,

(9) Uy +u,+u, =x%u, (h) uy, —u, +e*u=~f(x,y)

2. Classify the following PDEs as linear, non-linear, homogeneous and non-homogeneous.
@@ u, =u,+u,+u, (b) u, =3u, +u’+tx, (c) u,u, =u,+u_, (d) u, +u,=uu,,
() U, +u, +u, =F(x,y,2)u, (f) x°U, +Xu,, =Xy, (9) 2u, =Xtu,, +e'u, +t,
(h) u, +2u,, +u,, =u(u,+u,), (i) u,, —u, =0, () u,+u, +u, —u, =3u,

(K) u +uu, +u,, =0,(I) u, +u, =e", (M) u,, +2u,, +u, =0.

3. State whether the following PDEs admit separable solutions u(x,t) = X(x)T(t). If yes, proceed
to construct the associated ODEs.
@ u, =u,+3u, (b) u,+2u, =u,(c) u,+2u,=u,(d) u, +2u,=u,

4. Solve the diffusion problem, a®u,, =u,, 0<x <L, t>0, using separation of variables subject
to the following boundary and initial conditions:
(@) u(0,t)=20, u,(m,t)=3, u(x,0)=0,
(b) u(0,t) =10, u,(2,t)=-5, u(x,0) =10,
(c) u(0,t)=0, u, (2,t)=0, u(x,0) =50sin(nx/2),
(d) u(0,t)=0, u,(2,t)=0, u(x,0) =5sin(rmx/4) —12sin(57nx/4),
(e) u(0,t)=25, u,(4,t)=0, u(x,0) =25,

0, O<x«<1
25 1l<x<2'

(@) u,(0,t)=0, u,(m,t)=0, u(x,0) =300,

() U =25, u (2, =0, u(x,O):{

0, 0O<x<2rn
60, 2n<X<3n'

(i) u (0,t)=5, u,(10,t)=5, u(x,0) =45+5x,

() u(0,t)=0, u(5,t) =0, u(x,0)=sin(rx)—37sin(nx/5) + 6sin(9nx/5) ,
(k) u(0,t)=0, u(10,t) =100, u(x,0)=0,

() u,(0,t)=2, u(6,t) =12, u(x,0)=0,

(h) u (0,t)=0, u (3n,1t)=0, u(x,O):{



10.

11.

(m) u,(0,t)=0, u(6,t) =0, u(x,0)=sinx,

Solve the heat conduction equation o’u, =u, on a ring, thus, having periodic boundary
conditions, u(0,t) =u(L,t) and u,(0,t) =u,(L,t) subject to the initial condition u(x,0)=f(x),
where f(x) is L-periodic. Hint: Consider periodic Sturm-Liouville problem.

Consider the diffusion problem with a constant source F, a’u, =u, —F subject to boundary
u(0,t) =0, u(L,t) =50 and initial u(x,0) =f(x) conditions.

(a) Show that the direct separation of variables approach, u(x,t) = X(x)T(t), fails.

(b) Devise an indirect approach and solve this problem using separation of variables.

Solve the Newton cooling problem, a’u, =u,+hu, where h is the convective heat transfer
coefficient, subject to boundary u(0,t)=u(L,t)=50 and initial u(x,0)=f(x) conditions, by
separation of variables technique

(a) after introducing a steady-state temperature distribution u (x) in u(X,t) =u,(x)+Vv(x,t).

(b) directly by applying u(x,t) = X(X)T(t).

(c) after the change of variables w(x,t) =e™u(x,t).

Solve the heat conduction in an infinite rod: a®u, =u,, —o<X<oo, t>0 subject to the initial
condition u(x,0) =f(x), using

(@) Fourier transform,

(b) Laplace transform.

Hint: Use transform tables and F[e "] = —1-e /%

oF , If necessary.

Solve the problem a’u,, =u, +Vu, , —o<Xx<oo, t>0 where V is a constant, subject to the
initial condition u(x,0) =f(x), using an appropriate transform technique. Compare your result
with (8) for vanishing V. Hint: Use transform tables, if necessary.

Solve the problem a’u,, =u,, 0<Xx<oo, t>0, subject to the initial condition u(x,0) =f(x)

and boundary condition u(0,t) =g(t) , using an appropriate transform technique. Hint: Use

transform tables and L [e /] = —4 ﬁe’]/““zt, if necessary.

Solve the problem a’u, =u,, O<x<o, t>0, subject to the initial condition u(x,0)=0,
u,(0,t) =—Q, where Q is a prescribed constant, using an appropriate transform technique. Hint:

Use transform tables, if necessary.
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16.

17.

Solve the 2D diffusion problem o(u,, +u,)=u, in a rectangular plate 0<x<a, O<y<b,
subject to the boundary u(0,y)=u(a,y)=u(x,0)=u(x,b)=0 and initial u(x,y,0)=100
conditions, using separation of variables technique.

Solve the wave equation, c’u, =u,, 0<x<L, t>0, using separation of variables subject to

the following boundary and initial conditions:
2x/L, O<x<L/2
2(L-x)/L, L/2<x<L’

(b) u(0,t)=0,u(L,t)=0,u(x,0)=0, u,(x,0) =50sin(rmx/L),

(c) u(0,t)=0,u(L,t)=0,u(x,0) =0, u,(x,0) =3sin(nx/L) —5sin(4nx/L) ,

(d) u(0,t)=0,u(L,t)=0,u(x,0)=0, u,(x,0) =sin(2nx/L)+sin(3nx/L) + 4sin(8mnx/L) ,
(e) u(0,t)=0,u,(L,t)=0,u(x,0)=f(x), u,(x,0)=0,

e) u,0,t)=0,u,(L,t)=0,u(x,0)=0, u,(x,0) =V, where V is a constant,

(f) u,(0,t)=0,u(L,t)=0,u(x,0)=0, u,(x,0)=g(x),

Here u,(0,t) =0 or u,(L,t) =0 correspond to string being looped around a vertical frictionless

@) u(O,t)=0,u(L,t)=O,u(x,O)={ u,(x,0)=0,

wire and moving freely.

Solve the damped wave equation, c’u,, =u, +au,, where the damping force is proportional to
the velocity u, and a is the proportionality constant, subject to the boundary u(0,t)=0,

u(L,t) =0 and initial u(x,0)=f(x), u,(x,0) =0 conditions, using separation of variables.

Solve the modified wave equation, c’u, —bu=u,, along a string with stiffness b, subject to the
boundary u(0,t)=0, u(L,t)=0 and initial u(x,0)=f(x) , u,(x,0)=0 conditions, using

separation of variables.

Solve the wave equation, cz(uxx+uyy)=un, governing the vibrating rectangular membrane
O<x<a, O0<y<b, subject to the boundary u(0,y,t)=u(a,y,t) =u(x,0,t) =u(x,b,t) =0 and

initial u(x,y,0)=f(x,y), u,(X,y,0) =9(X,y) conditions, using separation of variables technique.

Solve the wave equation, cz(uxx+uyy)=uﬁ, governing the vibrating rectangular membrane
O<x<m, 0<y<2m, subject to the boundary u(0,y,t) =u(a,y,t) =u(x,0,t) =u(x,b,t) =0 and
initial u(x,y,0)=8sin2xsin2y , u,(X,y,0)=0 conditions, using separation of variables

technique.
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Consider the infinite string problem, c’u, =u,, —o<X<oo, t>0, subject to the initial
conditions u(x,0)=f(x) , u,(x,0)=g(x) . Show that the change of variables, £=x-ct ,

n=X+ct reduces the PDE to u,, =0 and leads to the d’Alembert solution

u(x,t) = 3[f (x—ct) +f(x +Ct)]+2icj.:_+:g(r)dr.

Solve Laplace equation, u,, +u, =0 in the rectangle 0<x<3, 0<y<2 by separation of
variables subject to the given boundary conditions:

(@) u(0,y)=u(x,2) =u(3,y) =0, u(x,0)=50sin(nx/3),

(b) u(0,y) =u(x,0)=u(3,y) =0, u(x,2) =10sin(nx/3) —4sin(nx),

(©) u(x,0)=u(3,y)=u(x,2)=0, u(0,y) =5sin(ry) + 4sin(2ry) —sin(3ny),
(d) u(0,y)=u(x,2)=u(3,y)=0, u(x,0)=50H(x-2),

) u,(0,y)=u(x,2)=u(3,y)=0, u(x,0)=50H(x-2),

(f) u0,y)=u(x,2)=u,(3,y)=0, u(x,0)=50H(x-2),

(9) u,(0,y)=u(x,2) =u,(3,y)=0, u(x,0) =50H(x-2),

(h) u,(x,2)=u@@,y)=u(x,0)=0, u(0,y) =H(y-1),

(i) u(x,2)=u(B,y)=u(x,0)=0, u,(0,y) =5sin(3ry),

0) u(x,2)=u@@,y)=u,(x,0)=0, u,(0,y) =20,

(k) u,(x,2)=u(@,y)=u,(x,0)=0, u,(0,y) =20,

0 <a . . .
Here, H(x—a) :{1 is the Heaviside function.
a

Solve Laplace equation, u, +u, =0 in the rectangle O<x<a, O0<y<b by separation of
variables subject to the given boundary conditions:

(@) u(0,y) =9(y), u(x,b) =u,, ua,y) =f(y), u(x,0)=u,,

(b) u(0,y)=uy, u(x,b)=9(x), u(ay)=u,, u(x,0) =f(x),

(©) u,(0,y)=9(y), u(x,b)=u,, u(ay)=F(y), u(x,0)=u;,

(d) u,(0,y)=9(y), u(x,b)=u,, u,(@y)=f(y), u(x,0)=u,,

Here, u, and u, are constants.

Solve Laplace equation, u,, +u, =0 in semi-infinite strip 0 <x <o, 0<y<1 by separation of

variables subject to the given boundary conditions and the condition that u is bounded as X — oo
(@ u(,y)=0, u(x,0)=10, u,(x,2) =0,

(b) u(0,y) =100, u,(x,0)=u,(x,1) =0,
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(€) u,(0,y)=5, u(x,0)=u(x,)=0,
(d) u(0,y)=0, u(x,0)=50, u(x,1)=10,
(e) u(0,y) =10y, u(x,0)=20, u(x,1)=50.

Devise a method to solve the Poisson problem, u, +u, =f(x,y) in the rectangle O<x<a,

0 <y < b subject to the boundary conditions u(0,y) =u(x,b) =u(a,y) =u(x,0) =0 by separation
of variables for the case f(x,y)=f is constant.

Consider the 3D problem, u, +u, +u, =0 in the rectangular prism O<x<a, O<y<b,
0<z<c where u=0 on each of the six except for the face z=c on which u(x,y,c) =f(x,y).

Use separation of variables to derive the solution in the form
u(x,y,2)=>." > " A, sin=sinZsinh(c,,2) .

Solve Laplace equation, u,, +u, =0 in the rectangle 0<x<4, 0<y<3 by separation of
variables subject to the boundary conditions: u(0,y)=u(x,0)=u(x,3)+5u,(x,3)=0 ,
u(4,y) =100.

Solve the nonhomogeneous diffusion problem, u, =a’u,  +g(x,t), O<x<L, t>0, using
separation of variables subject to the following boundary and initial conditions:

(@) u(0,t) =0, u(L,t) =0, u(x,0) =10 with g(x,t)=e™, a>0.

(b) u(0,t)=U,, u,(L,t)=0, u(x,0)=U,(@—-x/L) with g(x,t)=0 and U,, a constant.

(c) u(0,t)=0, u(L,t)=100e™", u(x,0) =100 with g(x,t) =0.

(d) u(0,t)=U,, u(L,t)=U,_, u(x,0)=0 with g(x,t) =—hu(x,t) and U,,U_,h, constants.

, t .
9 t=< °, u(L,t)=U,, u(x,0)= U, with g(x,t) =0 and U,,q, constants.

(€) UX(O,t)={0 (st

, t<t .
i ° u (L,t)=0, u(x,0)=U, with g(x,t)=0 and U,,q, constants.

(" ux(o,t)z{o o

Solve the nonhomogeneous vibration problem, u, =c’u_+g(x,t), 0<x<L, t>0, using
separation of variables subject to the following boundary and initial conditions:

(@ u(0,t)=0, u,(L,t)=F, u(x,0)=0, u,(x,0)=0 with g(x,t) =0 and F, constant.

() u, (O,t)=F, u, (L, t)=0, u(x,0)=kx, u,(x,0)=0 with g(x,t) =0 and F, k, constants.

() u(0,t)=0, u(L,t)=0, u(x,0)=0, u,(x,0)=0 with g(x,t) =F,sinet and F,,® constants.
Discuss the resonance.

(d) u(0,t)=0, u,(L,t)=Fsinmt, u(x,0)=0, u,(x,0)=0 with g(x,t)=0 and F,,» constants.
e) u,(0,t)=0, u (L, t)=Fsinot, u(x,0)=0, u,(x,0)=0 with g(x,t)=0 and F,,» constants.
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(f) u(0,t) =0, u(L,t)=A,sinot, u(x,0)=0, u,(x,0)=0 with g(x,t) =0 and A,,® constants.
@) u,(0,t)=0, u(L,t)=A,sinewt, u(x,0)=0, u,(x,0)=0 with g(x,t) =0 and A,,® constants.
(h) u(0,t)=A,sinwt, u(L,t)=B,sin¢t, u(x,0)=0, u,(x,0)=0 with g(x,t)=0 and A,, B,,
®, ¢ constants.

() u (0t)=Fsinot, u, (L t)=G,sinét, u(x,0)=0, u,(x,0)=0 with g(x,t)=0 and F,, G,,
o, ¢ constants.

() u(0,t)=0, u(L,t)=9(t), u(x,0)=0, u,(x,0) =0 with g(x,t) =—Bu,(x,t) and B constant.

Solve the nonhomogeneous problem, u, +u, =g(x,y), 0<x<a, 0<y<b, using separation

of variables subject to the following boundary conditions:

(@ u(0,y)=u(a,y)=0, u(x,0) =u(x,b) =0 with g(x,y)=c and o constant.
(b) u(0,y)=u(a,y)=0, u(x,0)=u(x,b) =0 with g(x,y) =x.

() u(0,y)=u(a,y)=0, u(x,0)=u(x,b) =0 with g(x,y) =xy.

Recall that the Laplacian operator A = V?is in the form:
(i) Au=u, +u, +u,, inrectangular coordinates (X,y,z),

(i) Au=u, +1U, +- Uy, in polar coordinates (r,0),

(i) Au=u, +7u +%Uy +U, incylindrical coordinates (r,6,2),

(iv) Au=U, +2U, +=2-5(singu, )+ =5 Uy, in spherical coordinates (r,6,9).

Solve the diffusion problem, u, =a*V?u, O<r<a, 0<0<9,, t>0, in polar coordinates using
separation of variables subject to the following boundary and initial conditions:

(@) u(a,6,t)=0, u(r,6,0)=a’—r* with 0, =2x.

(b) u, (a,0,t) =0, u(r,6,0)=a’—r* with 0, = 2.

(¢) u(r,0,t) =0, uy(r,7/2,t)=0, u,(a,6,t)=0, u(r,6,0)=U, with 6, =n/2 and U, constant.
(d) u(r,0,t) =0, u(r,m,t)=0, u,(a,6,t)=0, u(r,6,0)=U, with 6, == and U, constant.

Solve the diffusion problem, u,=a*V?u, O<r<a, -n<0<n, O<d<m , in spherical
coordinates using separation of variables subject to the following boundary and initial conditions:
(@) u(a,6,¢,t)=0, u(r,6,4,0)=U, where U, constant.
(b) u,(a,6,4,t)=0, u(r,6,4,0) =U, where U, constant.

Solve the vibration problem, u, =c*V?u, O<r<a, —-n<0<m, t>0, in polar coordinates using
separation of variables subject to the following boundary and initial conditions:
(@) u(a,6,t)=0, u(r,6,0)=a*-r?*, u,(r,0,0)=0.
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(b) u(a,6,t)=0, u(r,6,0)=0, u,(r,6,0)=U, where U, constant.

(a) Solve the Helmholtz equation V?u+k’u=0 in polar coordinates O<r<a, —-t<0<m,
subject to the boundary condition u(a,0) =1.

(b) Solve the Laplace equation V?u=0 in cylindrical coordinates O<r<a, —-t<0<m,
O<z<L subject to the boundary conditions u.(a,6,z)+u(a6,z)=0 , u(r,06,0)=U, .

u(r,6,L) =0 where U, constant.

(c) Solve the Laplace equation V?u=0 in spherical coordinates O<r<a , —-m<0<m,
0 < ¢ < msubject to the boundary conditions at the top half u(a,0,¢) =U, for 0<$<m/2, at the

bottom half u(a,6,¢$) = U, for n/2 <¢ <n where U,, U, constants.

Consider the wave equation, c’u, =u,, 0<x<L, t>0, subject to the following boundary and

2ax/L, O<x<L/2
2a(L-x)/L, L/2<x<L’
(a) Show that separation of variables technique results in the solution

u(x,t)=>"" A,sin k= cos ket

initial conditions: u(0,t) =u(L,t) =0, u(x,0) =f(x) E{ u,(x,0)=0.

where A, =-2sini such that u(x,0)=> "~ A, sinkx,

K2m?

(b) Verify using trigonometric identities that u(x,t) can also be written as the superposition of

the left-going u™(x,t) =f(x+ct) and right-going u(x,t) =f(x—ct), i.e.

U, ) =" 1A, {sin <G o sin Lot — L0 (x —ct) +f(x +Ct)} (see #18).
(c) Run the following MATLAB script to demonstrate (b) for c=0.05, a=0.5, L=1:

% Demonstrating the superposition of right- (um) and

% left-going (up) travelling waves making-up the standing
% wave pattern u as solution to the wave equation

% c”2*u_tt=u_xx, 0<x<1, t>0, ¢=0.05,

% u(0,t)=u(l,t)=0, t>0

$ u(x,0)=£f(x), u_t(x,0)=0, 0<x<1

%

where f (x)=x* (0<x<0.5)+(1-x)*(0.5<x<1)

clear all, clf,

N=100; x=linspace(0,1,N); % Actual Domain 0<x<1

M=200; xx=linspace(-.5,1.5,N); % Graph Window -0.5<x<1.5
K=40; c=.05;

set (gca, 'NextPlot', 'replaceChildren');

for t=1:20

XXp=(xxtc*t); xp=(xtc*t);
xxm= (xX-c*t); xm=(x-c*t);
sump=0; summ=0; sum=0;
for k=1:K,



coeff=4*sin(k*pi/2) /pi/pi/k/k; % Fourier Coefficients a_k of f(x)
sump=sump+coeff*sin (k*pi*xxp); % Fourier expansion for up=f (x+ct)
summ=summ+coeff*sin (k*pi*xxm); % Fourier expansion for um=f (x-ct)
sum=sum+coeff* (sin (k*pi*xp)+sin (k*pi*xm)); % Fourier expansion for u=0.5* (up+um)
end
u=.5*sum;
plot (xx, sump, '--'), hold on
plot(xx,summ, ':"),
plot(x,u, 'LineWidth',2),
(
(

plot (zeros(1,20),linspace(-1,1,20),"'--", 'LineWidth', 2),
plot (ones(1,20),linspace(-1,1,20),"'--", 'LineWidth', 2)
legend ('f (x+c*t) ', "f(x-c*t) ', 'u(x,t)")

axis([-.5 1.5 -1 17)

F(t) = getframe; hold off,

end

T=1; v=.5; movie(F,T,v) % Play the movie T times with speed v



