EXERCISE SET #3
Definition: (Regular) Sturm-Liouville (S-L) problem is a linear homogeneous 2nd order boundary
value problem (BVP):

[p(x)y’]r+q(x)y+kw(x)y:0, a<x<b,
with homogeneous (separated) boundary conditions

ay(@)+py'(@)=0,  vy(b)+dy'(b)=0,

where a, b are finite, where p,p’,q,w are continuous on [a,b], and where p(x) >0 and w(x)>0 on
[a,b]. Further, o, are not both zero, y,5 are not both zero, and a,b, p(x),q(x), w(x), o, 7,5 are

all real.

Theorem: (S-L Theorem) Let A, and ¢,(X) denote any eigenvalue and corresponding eigenfunction

of the S-L eigenvalue problem L[y]=Ay where L is the (S-L) differential operator

(a) The eigenvalues are real,
(b) To each eigenvalue there corresponds only one linearly independent eigenfunction. Further there
are an oo-number of eigenvalues and they can be ordered so that A, <A, <A, <... where A, —> o as

n—o0.

(c) Eigenfunction corresponding to distinct eigenvalues are orthogonal, that is, if &;=2,, then
<¢j,¢k>w =0, where the weighted “inner” product is defined by <¢j,¢k>w Ejab¢j(x)$k(x) w(x)dx .
(d) Let f and f' be piecewise continuous on [a,b]. If a =(f,¢,) /(4,.,), . then the series

z::lanq)n (x) converges to f(x) if fis continuous at X, and to the mean value [f (x*)+f(x*)]/2 if f

is discontinuous at x, for each point x in a<x<b.

Definition: (Periodic) S-L problem has the nonseparated (periodic) boundary conditions
y@=yb), y@=y(b).

Definition: (Singular) S-L problem arises when p(x) (and possibly w(x)) vanishes at one or both
endpoints, so that p(x) >0 and w(x) >0 holds on open (a,b). Further, the boundary conditions are

modified as follows:

(@) p(a)=0 (and p(b) = 0): Then the boundary conditions are: y bounded at a, yy(b)+3dy'(b) =0.
(b) p(b) =0 (and p(a) = 0): Then the boundary conditions are: ay(a)+py'(a) =0, y bounded at b.
(c) p(a) =p(b) =0: Then the boundary conditions are: y bounded at a, y bounded at b.



Theorem: (Periodic and Singular S-L Theorem) Let &, and ¢, (X) denote any eigenvalue and

corresponding eigenfunction of a periodic or a singular S-L problem.
(a) The eigenvalues are real,

(b) q(x)<0 on [a,b] and [p(x)d, (X)), (x)]: <0 for the eigenfunction ¢, (x), then not only is X,
real, it is also nonnegative: A, >0.

(c) Eigenfunction corresponding to distinct eigenvalues are orthogonal, that is, if &;=2,, then

<¢J"|’k>W=O'

Bessel Functions
They arise when solving PDEs in polar and cylindrical coordinates as eigenfunctions of the singular
S-L problem (case (a))

(fR) +(Ar—£)R=0, 0<r<a,
subject to the boundary conditions: R =R(r) boundedas r >0 & yR’(a)+6R(a)=0.
The change of variables x = JAr and thus d/dr = \/Xd/dx yields
X’R"+xR'+(x*-v*)R =0,
the Bessel’s differential equation of order v>0. For x =0 being a RSP, we seek a Frobenius
solution y(x)=x">"" a,x*. This results in the indicial equation r*—v? =0 with roots r=+v.
The solution for root r, = v is the Bessel function of the first kind of order v:
3,09 =(2) X omm(3)”
when v is a positive integer. This can be generalized to
100=(3) Ll smaen($)”

for v>0. Here, I'(v) is the Gamma function defined by

r(v)= jo X" Yo *dx .
as a generalization of the factorial operation to noninteger values. It can be shown by integration-by-
parts that I'(v+1) =vI'(v) and thus for v a positive integer, I'(v+1) =v! while I'(1) =1.
The second independent solution for root r, = —v requires separate considerations for v (1) not an

integer, (2) zero, (3) positive integer.
(1) When v is not an integer, the second solution can be written as

_(x\"V *© (-~ x \2K
J—v (X) = (?) Zkzom(f)
because v — —v leaves the differential equation invariant. It is independent of J (x), because

J,(0) =0 while IirQva(x) =o0. Thus, a general solution is R(x) =AJ, (x)+BJ_ (X).



Note also that the roots r, —r, =v—(—v) =2v differ by an integer when v is one-half an odd integer

(1/2,3/2,5/2,...). It can be shown, for example, that
J,(X)=Zsinx and J_(X)=.Z:cCOSX.

These are called spherical Bessel functions.

(2) When v is zero, the indicial roots are equal: r, =r, =0. By Frobenius theorem, the second

independent solution is sought in the form
R(X)=J,()In(x)+> " ax“ where J;(x)= zw - 1)
After some scaling, the Bessel Function of the second kind of order zero results

Vo0 =2{3,0[In) +1]+ 21, E 000 (£)”

where, y= i|<im (d)(k) —In k) is the Euler’s constant and ¢(K) =1+3+1+...++.
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(3) When v is a positive integer, the indicial roots differ by an integer. By Frobenius theorem, the
second independent solution is sought in the form

R(X) =xJ,()In(Xx)+> " ax<”
After some scaling, the Bessel Function of the second kind of order v results
X <\~ V=1 (v—k-1)! [ x \2K x \V 0 +o(k+v)] { x
YV(X) :%{JV(X)[In(E)"‘Y]_%(E) Zk:o( l|<(! - (5) _%(5) Zk 0%(5) }

Graphs of some Bessel functions are shown below:

that can be constructed by the Matlab commands:

>> Jnu = bessel] (nu, x); % First kind Bessel fn. of order nu.

>> Ynu = bessely(nu, x); % Second kind Bessel fn. of order nu.

Due to the boundedness requirement as r — 0, the general solution to the singular Bessel S-L
problem is

R(r;A) = AJV(ﬁr), O<r<a,
where the eigenvalue(s) are determined by the boundary conditions yR'(a; 1) +06R(a;A) =0. The

eigenfunctions {R(r; M)}::l form a basis set of orthogonal functions
(R(r;2,),R(r;2,)) = I: R(r;A)R(GA, ) rdr=p.5, .

This allows Fourier-Bessel representation of piecewise-smooth functions f(r) in terms of the Bessel

S-L eigenfunctions as follows:



L(Fr)+F(r))=>"" c,R(r;A,) where c, Eﬂ;f(r) R(r;A,)rdr.
The norm p, :||R(r;7bn)||2 can be obtained from the Bessel DE as follows:
e Multiply the DE by 2rR’ and rearrange: 0= (rR")* +(Ar* —v*) £ (R)’
e Integrate to get: xj: r* &(R)’dr =| v(R)’ —(rR’)ZJZ

e The norm follows: p, = Ioa R?rdr = ﬁ[(rR’)2 -v’R? +xnr2R2}:.

Recurrence Relations may be used to evaluate Bessel functions of higher orders by using the series
representations. Some are:

(X)) +J,,,(x)=22] (x) for v>1,
2J,(x) =3,,() =y
J(X)=—2J,(X)+J,,(x) for v>1,
J(0)=33,()-J

(x) for v>1,

(x) for v>0.

v+l
Further, multiplication of the last two equations by x* and x™ yields

° %(XVJV(X))szJH(x) for v>1,
. %(X_VJV(X)) =-x"J,,,(x) for v>0.

These results are also valid for Y, (X) .

1. Solve for the eigenvalues and eigenfunctions, and work out the eigenfunction expansion of the
given function f.
(@ y"+iy=0, y(0)=0, y'(L)=0, f(x) =100
(b) y"+2y=0, y'(0)=0, y(L)=0, f(x)=1

1, 0<x<L/2

(© y'+1y=0, y(0 =0, y(L) =0, f(x)z{o Lj2<x<L

How can you verify: >~ GU°= =27
(d) y"+1y=0, y'(0)=0, y(L)+Yy'(L)=0, f(x) =50
(&) y'+2y=0, y(0)+y'(0)=0, y(n) =0, f(x) =10
0, -1<x<0
50, O0<x<1
(@) y'+ry=0, y(0)-2y'(0)=0, y'(2) =0, f(x) =100
(h) xX*y"+xy'+Ay=0, y(1) =0, y(a) =0, f(x)

Ans.: Let &, =o?. (a) {a, = (2n —Dr/2L;sin(a,x)}, (b) {o, =(2n—D)m/2L; cos(ax, X))} , () {a, =nm/L; cos(o,X)} ",

() y'+2y=0, Y(-D =0, y(1) =0, f(x):{



(d) {tan(e, L) =1/, ; cos(er, X)) , (€) {cot(r,m) =Yar, ; sinat, (m—x)) /sin(er, )}, (F) see (c),

(@) {tan(2a:,) = 2/cx, ; c0s(ar, (2~ X)) /c0s(2ax,)} . (h) {ex, = nr/In(a); sin(er, IN(X))} -,

. Recast each of the following differential equations in the S-L form.

(@) xy"+5y +Axy =0, (b) Y +2y' +xy+Ax’y=0,(C) Y'+y +Ay=0,(d) y'—y +Axy =0,

(e) X°y"+xy' +Ax’y=0, (f) y’+(cotx)y’ +Ay=0

. Find the adjoint L™ of the given operator L, i.e. (L[u],v)= <u, L*[v]> , and state whether the given

operator is self-adjoint (L = L) relative to the inner product chosen. If it is not, state why it is not.

In each case, use the inner product <f,g> zjlf(x)g(x)dx .
(@ L=%,u0)=0(b) L=2, u®)=0,(c) L=<, u@©)=u(0)=0,
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(d) L=%, u'(0)=u'(®)=0, (e) L=%+3, u(0)=u'@®)=0, (f) L=S5+Z, u(0)=u(@) =0,

(@) L=%5-L 424 u0)=u'(0)=u@)=0, (h) L==<;-1, u(0)+u'(0)=u'(1) =0,
(i) L=%, u'(0)=u@®)+5u'®) =0, () L=<, u(0)—u@®) =u'(0)-u'@) =0,
(k)Lz—F,Zu(O) u@+4u'(l) =u(0)+2u'@) =0,

(I)L——d—z,u(O) u@=u(O)+u'@=0

. Show that the 4™ order Sturm-Liouville differential operator

1 [ d d
3 w(x){dx {() } d—x{p(x)d—X}rQ(X)}

is self-adjoint if the boundary conditions are homogeneous. State the boundary conditions.

. Find the eigenvalues and eigenfunctions, and work out the eigenfunction expansion of the given
function f.
@ y"+ry=0, y(0O)=y4), y(0)=y'(4), f(x)=H(x-2), unit step function.

(b) y'+ay =0, y(-D) =y(5), y(-D) =y (5), f(x)=x+2,

©) Xy +xy'+2y =0, y1) =y(2), Y1) =y'(2), f(x) =6,

(d) A-x*)y"—2xy'+Ay =0, y(0)=0, y(1) bounded, f(x)=4,

(&) A—x?)y"—2xy' +Ay=0, y'(0)=0, y(1) bounded, f(x)=x,

(f) @—x*)y"—2xy'+1y =0, y(-1) bounded, y'(0)=0, f(x)=5x>,

(9) (4—x°)y"—2xy' +ry =0, y(=2) bounded, y(2) bounded, f(x)=5-2x

Hint: {1, =n(n+1); P,(x)}"_: (d) n:odd & 0<x <1, (¢) n:even & 0<x <1, (f) n:even & ~1<x <0, (g) Transform to[-1,1].

. Put the power series solution about the ordinary point x=0, y= Zfzoakxk into the Legendre’s

equation (1—x?)y”—2xy'+Ay =0 and derive the recursion formula a,,, = q%2%a, , k=0,1,.



10.

11.

12.

13.

14.

15.

Show that the series terminates for A =n(n+1), n=0,1,2,... and construct the first five Legendre
polynomials, P, (x) scaled with P, (1) =1.

Use Rodrigues’s formula P, (x)=2-<[(x*~1)"| to reproduce the first five Legendre

2"n! dx"

polynomials, P, (X).

Expand the left-hand side of the Generating function: (1—2xr +r?)™?2 =z: P.(x)r"in a Taylor

3

series in r, about r=0, up to r®, to verify that the coefficients of r°,...,r° are indeed

P, (X),..., P;(X) .

Show by changing x to —xin the Generating function that P,(—x) = (-1)"P,(x) . What can you
deduce about the values of P (0) and P’ (0)?

Show by taking o/or of the Generating function that one obtains the recursion formula
NP, (X) =(2n-xP, ,(X)—(n-DP, ,(X), n=2,3,...

Show by taking 6/ox of the Generating function that one obtains the recursion formula
P'(X)—2xP' ,(X)+P' ,(xX)=P ,(X), n=2,3,...

Recast the Legendre’s equation (1—x%)y”—2xy’ +Ay =0 in the S-L form and reason to verify the
orthogonality relation J:lan (X)P,(x)dx =0 for n=m.

By squaring and integrating the Generating function from -1 to 1, and using the orthogonality to
obtain

[La-2a ey ia= 3 P00 o,

show that .[jl[Pn ()] dx=52;, n=0,12,...
What can you say about the integral of the Legendre polynomials on the half interval, i.e.
;P ()P, () dx?
Associated Legendre functions are soln’s to the DE
(@=x*)y"Y +(n(n+1) - =)y =0.

where m is a nonnegative integer. It reduces to the Legendre DE when m=0.

m/2 d"y

o is a sol’n to the Associated

Show that when y(x) is a sol’n to the Legendre DE, (1—Xx?%)

Legendre DE. Thus, P,, (x)=(1—x2)m/2% is called the Associated Legendre functions of

m

degree n and order m. Show also that P, (x) is nonvanishing only when n>m.

An alternative representation of associated Legendre functions is obtained by setting x =cos©0
for 0<0<m where they take the form of trigonometric polynomials. Generate few of these
functions using



16.

17.

18.

19.

20.

21.

— {1\ cin™ n d"P, (cos6)
P.,(cos®)=(-1)"sin e—d(mse)m ,

and establish the orthogonality relations of P, (cos6) for m-fixed and n-fixed cases.

Hint: Re-write the associated Legendre DE in 0 and identify the inner-product weight functions for each case.

Put the power series solution about the regular singular point x=0, y=Z:f:0akxk+r into the

Bessel’s equation X°y" + Xy’ + (x> —v*)y =0 and derive the recursion relation

ZLO{[(k +1)? —v2]ak + ak_z}xk+r =0.

Show using the recursion relation for the case v =1/2 that the Bessel functions of the first kind

are obtained as J,,(X) :«/2/(nx)sinx and J,,(x) =,/2/(nx) COSX .

It can be shown that the Generating function for the Bessel function of the first kind, of order n,

o0

3,(x) is exp(s(t-—1) =37 3, 00t"

n=—oo N

(a) Show by taking /ot of the Generating function that one obtains the recursion formula
311 () = 2525 [, () +3,,,(x)], n=01,...

(b) Show by taking 6/0x of the Generating function that one obtains the recursion formula
I ) =%[3,.()-3,..x)], n=12,...
Show that equations in the form [tau’]r+bt°u=0 where a, b, ¢ are real numbers, can be

transformed to a Bessel equation x*y”+xy’'+(x*—v*)y=0 by transforming both independent

and dependent variables by the change of variables x= a~/bt¥* and y=t""u where
a=2/(c-a+2) and v=(1-a)/(c—a+2). Apply this result to the following equations:

(@) y"+4x’y=0, (b) xy"—2y' +xy=0, (c) 4y"+9xy =0, (d) y”+§/§y:0, (e) 4xy"+y=0,
() 4xy"+2y'+xy=0, (9) y"+xy=0, (h) y"+4y=0 (compare with the known elementary
solution).

Show that Bessel’s equation of order zero has a solution J, which is analytic on the entire x-axis

and satisfies the condition J,(0) =1.

Show that the Fourier-Bessel representation of the function f(r) =a*—r? in the form:

f(N=>.6J(nr) where ckzij‘:f(r)Jo(kkr)rdr

yields c, :m when the eigenvalue relation is J, (A, a) =0.

Hint: Use the relation (x™J,(X))’'=—x"J,,,(x), v=0 and integration-by-parts.



