
EXERCISE SET #1 
 

1. (a) Show that axe  and axxe  are solutions of the differential equation 2(D a) y 0   where 

D denotes differentiation operator, i.e. Dy y , 2D y y . Is the sum of these functions a 

solution? Justify. 

(b) Show that 31
9
x  and 3 2 21

9
(x 1)  are solutions of the differential equation 

2(Dy) xy 0  . Is the sum of these functions a solution? Justify. 

 

2. Given the nonhomogeneous differential equation: 2 2(1 x )D 2xD y 2x, 1 x 1          

(a) Show that  1 x
h 1 2 1 x

y c c ln 


   is the general solution of the associated homogeneous 

equation. 

(b) Construct Green’s function for the given linear differential operator:  2 2(1 x )D 2xD  . 

(c) Find a particular solution using the Green’s function. 

 

3. Consider the second-order normal homogeneous linear differential equation: 

2 1 0a (x)y a (x)y a (x)y 0     

(a) Identify p and q so that it can be written in the self-adjoint form 

 p(x)y q(x)y 0    

(b) Show that if 1y  and 2y  are solutions to the differential equation, then  1 2 1 2p y y y y   

is a constant. 

(c) Use (b) to construct the formula to determine the second solution: 

 

 

1 2a (x) a (x) dx

2 1 2

1

e
y (x) y (x) dx

y (x)


   

(d) Verify that 2(1 x )y 2xy 2y 0      has y x  as a solution. Find the second solution 

in the interval 1 x 1    in which the equation is normal.  

 

4. The functions f (x)  and g(x)  are linearly independent on some interval I, whenever their 

Wronskian  W f(x),g(x) fg f g    is not identically zero on I. Show that the Wronskian 

of 3f (x) x  and 
3

g(x) x  is identically zero on x  , yet they are clearly 

linearly independent (not constant multiple of each other) in x  . Why? 

 

5. Obtain a general solution. The x interval is x   unless specified otherwise.  

(a) 2y 2y y 6x    , (b) y y secx   , 2 x 2    , (c) y 2y 3cosh x   ,  



(d) 2x 2y 4y 4y e x    , x 0 , (e) 2 2x y 2y 3x   , x 0 , (f) 3xy 4y 36x 30x    , 

x 0 , (g) (cosx)y (sin x)y sinx   , 1y (x) 1 , 2y (x) sin x , 2 x 2    ,  

(h) 2(x 1)y xy y 2x 2 x       , 1y (x) x , x

2y (x) e , x 1 , (i) xy (x 1)y y 0     , 

1y (x) 1 x  , x 0 , (j) 2(1 x )y 2xy 2y 0     , 1y (x) x , 1 x 1   ,  

(k) y 4y 3y 60sin3x    , (l) 2 3x y 2xy 10y 20x    , x 0 . 

 

6. Show that  
t

0

F(s)
L f (u)du

s
   where  L f (t) F(s)  is the Laplace Transform of f (t) . 

 

7. Show that 
s

f (t)
L F(u)du

t

 
 

 
  provided that t 0

f (t)
lim

t
  exists where  L f (t) F(s) . 

 

8. Show that   asL g(t) e F(s)  for 
f (t a) t a

g(t)
0 t a

 
 


 where  L f (t) F(s) . 

 

9. Show that   s1
a a

L f (at) F( )  where  L f (t) F(s) . 

 

10. Show that  
n

n

n n d

ds
L t f (t) ( 1) F(s)   for n 1,2,3,...  where  L f (t) F(s) . 

 

11. If f is periodic with period T on 0 t   and piecewise continuous on one period,  

(a) Show that   sT

T
st1

1 e 0
L f (t) f (t)e dt




   for s 0 . 

(b) Apply Laplace transform to solve the IVP: y y f (t), y(0) 0     for periodic f (t)  

defined over one period as 1 on 0 t 2  , 0 on 2 t 3  .       

 

12. Use Laplace transform to solve the equation  

t

0

t, t 1

y 2y y( )d 2 t, 1 t 2

0, t 2




        
 

  

subject to the initial condition y(0) 1 . 

 

13. Show that sin t
t 20

dt


  by Laplace Transform. Hint: Consider  sin t
t s 0

L


.         

 



14. The Gamma function is defined by p 1 u

0
(p) u e du


     for p 0 . Use integration by parts 

to show that (p 1) p (p)     for all p 0  and in particular (n 1) n!    for positive 

integer n. 

 

15. Show that   p 1

p 1

s
L t (p 1)    for all p 1   and s 0 .  

 

16. **Suppose one takes a dose of a certain drug, either orally or intravenously. As the blood 

circulates, the concentration c(t)  of the drug will tend to become uniform throughout the 

circulatory system. That will probably happen so quickly, compared to the time T between 

doses, that we can idealize the situation and model the drug inputs as delta functions. 

Studies show that following a dose the concentration diminishes with time approximately 

according to the equation dc dt kc  , where k is a positive experimentally known 

constant. Thus, the complete problem can be modelled as follows: 

c kc f (t), c(0) 0     

where  1f (t) C (t) (t T) (t 2T) ...        and where 1C  is the increase in 

concentration due to one dose. 

(a) Derive the solution kt k(t T) k(t 2T)

1c(t) C e e u(t T) e u(t 2T) ...            . 

(b) Generate a computer plot of  c(t)  on 0 t 3.5   using 1k T C 1   . 

Hint: In Matlab, type 

t = linspace(0,3.5,30);  

c = exp(-t)+exp(-(t-1)).*(t>=1)+exp(-(t-2)).*(t>=2)+exp(-(t-3)).*(t>=3); 

    plot(t,c) 

 (c) Show that c(t)  approaches to a periodic function as t   with period T. 

Hint: Show that kt

1 nc(t) C e s  for nT t (n 1)T    where kT 2kT nkT (n 1)kT kT

ns 1 e e ... e (1 e ) (1 e )         and then 

show that  c c(t T) c(t) 0      as t  .      

(d) Show that as t   the maxima and minima approach to these values:    

max 1 kT

1
c C

1 e



,             

kT

min 1 kT

e
c C

1 e







. 

Hint: Show that as t  : maxc(t) c  as t nT  and minc(t) c  as t (n 1)T  . 

 

17. **Consider an harmonic oscillator forced periodically by hammer blows with period T. 

Specifically, consider the initial value problem (IVP) 

x x (t) (t T) (t 2T) ..., with x(0) x (0) 0           . 

Construct the solution and show whether or not the response x(t)  will be resonant if 

T 2  , that is, if the hammer blows occur at the natural frequency. 

Hint: Show that x(t) sin(t) sin(t T)u(t T) sin(t 2T)u(t 2T) ...         and set T 2  . 

  



18. Find the impulse response function and construct the Green’s function for  

x 2x 2x f (t)    . 

Use the Green’s function to obtain the solution for f (t) sin t . Do you observe resonance? 

 

19. **Consider a flexible string stretched by a tension  , tied at its two ends, and subjected to 

a point force F at x A . Neglecting the weight of the string (compared to F), and 

restricting F to be small enough so that the deflection at x A  is small compared to L, it 

can be shown that the deflection y(x)  is governed by the boundary value problem (BVP) 

y F (x A), with y(0) y(L) 0      . 

Construct the solution by: 

(a) Considering the problem in two separate domains, namely, (i) 0 t A   and (ii) 

A t L  , and then matching the two solutions at x A  (Note the jump discontinuity 

A

A
y F



   at x A ). 

Hint: Solve y 0  , y(0) 0 , 
0y(A) y  in 0 t A   and y 0  , 

0y(A) y , y(L) 0  in A t L   and match. 

(b) Using Laplace transform. Note that this is a BVP, so how can one use Laplace 

transform for a BVP?  

Hint: Set y (0) c   where unknown constant c may, somehow, be determined by the boundary condition at x L .         

 

20. Note that Laplace transform is particularly convenient if the initial conditions are 

specified at t 0 . How can you apply Laplace transform if the conditions are not 

specified at t 0 ? Try on the problem:  y 4y 8t, y( ) y ( ) 0       .  

Hint: Set y(0) a  and y (0) b   where unknown constants a and b are to be determined as suggested above.         

 

21. What about the finiteness of the interval in a BVP, such as, 2y 3 x x    on 0 x 2   

with the boundary conditions y(0) 1  and y(2) 7 . Besides compensating for the 

missing initial condition at x 0  as suggested above, one can extend the interval 

0 x  . This automatically implies extending the forcing function to the whole interval 

0 x  . Justify that the extended definition of the forcing function is immaterial on the 

BVP, say, 2y y 3 x x      with the boundary conditions y(0) 1  and y(2) 7 .   

  

22. Consider the motion of coupled two-mass mechanical oscillator modelled by 

1 1 2 1 1

2 1 2 2 2

y 2y y 50, y (0) y (0) 0,

y y 2y 50, y (0) y (0) 0.

     

     
 

Solve for 1y (t)  and 2y (t)  using the Laplace transform.  



 

23. **The integral  T f (t) f (t)K(t,s)dt F(s)



   is called an integral transform; the input is 

f (t)  and the output is its transform F(s) . For the Laplace transform the kernel K(t,s)  is 

ste , the limits are 0   and     so that the generic transform T becomes 

   T f (t) L f (t) . 

The key property of the Laplace transform is that the transform of the derivative f (t)  be 

linear in F(s) , i.e.  T f (t) a(s)F(s) b(s)   , so that it converts linear constant-coefficient 

differential equations to linear algebraic equations. 

(a) Show that the above form of  T f (t)  leads to the choice stK(t,s) e  and hence to the 

Laplace transform. 

(b) Now design a “Cauchy-Euler” transform for Cauchy-Euler equations, 

2at x btx cx g(t)     on the interval 1 t  , i.e. choose the kernel K(t,s)  in 

 
1

C f (t) f (t)K(t,s)dt


   so that  C tf (t) a(s)F(s) b(s)   . Show that the suitable kernel 

is sK(t,s) t . 

(c) Drive necessary “Cauchy-Euler”  transform formulas, and apply them to solve                 

2 3t x 2tx 2x 2t , x(1) x (1) 0.        

 

**Challenging Problems 


