
SUPPLEMENTARY PROBLEMS 0 
 

1. We can obtain qualitative information about the solutions to first order differential 

equation by drawing its direction (flow) field. Use the qualitative approach with the 

following equations and plot the given solution over its direction field:  

(a) 1y(0),ey y  ,  20.0t0  , whose exact solution is ))et1(eln()t(y  . 

(b) 1y(1),y
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 ,  2t1  , whose exact solution is t1)t(y  . 

(c) 0y(1),ety
t
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y t2  ,  2t1  , whose exact solution is )ee(t)t(y t2  . 

(d) 0u(0),v2u3u  ;  1)0(v,vu4v  ,  1t0  , whose exact solution is 

)ee()t(u tt5

3
1  , )e2e()t(v tt5

3
1  . 

(e) 0u(0),tsin4tcosv2u4u  ;  1)0(v,tsin3vu3v  ,  2t0  , 

whose exact solution is tsine2e2)t(u t2t   , t2t e2e3)t(v   . 

Note : The following sequence of Matlab commands draws a direction field and the solution for the system:  

 (a) [T, Y] = meshgrid(0:0.02:0.20, 1:0.02:1.8);  

  FY = exp(Y); % direction field 

  L = sqrt(1 + FY.^2); % arrow length 

  t = linspace(0,0.2,100); 

  YE = log(exp(1)./(1-exp(1)*t));  

  quiver(T, Y, 1./L, FY./L, 0.5) 

  axis equal tight, hold on 

  plot(t,YE) 

  xlabel ‘t’ 

  ylabel ‘y’ 

  title ‘Vector field and the solution for the equation (a)’ 

 

(d) [U, V] = meshgrid(0:5:50, 0:5:50);  

  FU = 3*U + 2*V;  

  FV = 4*U + V; 

 t = linspace(0,1,100);  

  UE = (1/3)*(exp(5*t)-exp(-t));  

  VE = (1/3)*(exp(5*t)+2*exp(-t));  

  quiver(U, V, FU, FV, 0.5) 

  axis equal tight, hold on 

  plot(UE,VE) 

  xlabel ‘u’ 

  ylabel ‘v’ 

  title ‘Vector field and the solution for the system (d)’ 

 

2. Classify each of the following equations as to: separable, homogeneous, exact, linear, 

Bernoulli, Ricatti, or Clairaut and solve.  

(a) y 1 (y x)   , (b) y (x y) x   , (c) 2(y ) 2y 2xy   , (d) y 1 x(x y)   ,  



(e) 2 2y (y y) (x x)    , (f) 2y 4 5y y    , (g) 2ydx (y xy )dy  ,  

(h) xy yexp(x y) x   , (i) 2xyy y 2x   , (j) 2 22xyy y 2x   , (k) ydx xdy 0  ,  

(l) 2 2(x 2y x)dx (3 ln(x ))dy   , (m) y (x y) (y x) 1    ,  

(n) 2 3 2(y x )y exp(2x y ) 0    , (o) 2y (y 3) xy    , (p) 2 4y 5y 3x 2xy     

          

3. Solve 2y 1 y , y(0) 0    , by one of the usual methods. Solve the same problem by 

Picard’s method and compare the results. 

Note : The following sequence of Matlab commands may help in Picard’s method:  

syms x y %(once), y=0; %(once), y=int(1+y*y,0,x) %(repeatedly)  

 

4. In calculus, the curvature of a curve whose equation is y f (x)  is defined to be the 

number 2 3 2y (1 (y ) )    . Determine a function for which 1  . 

Note : For simplicity ignore constants of integration.  

   

5. Show that the substitutions 1y y u   and in turn 1w u  reduces the Ricatti’s equation 

2y P(x) Q(x) y R(x) y    , whose a particular solution is 1y , to 1w (Q 2y R)w R     . 

Classify the resulting differential equation and provide a general solution. 

 

6. Show that y cx f (c)  , where c is an arbitrary constant, is a solution of Clairaut’s 

equation y xy f (y )    . Show also that F(y cx,c) 0   is a family of solutions of an 

alternative form of Clairaut’s equation F(y xy , y ) 0   . 

 

7. Construct one-parameter family of solutions to the linear equation 1 0a (x)y a (x)y f (x)     

by the integrating factor method. Can you identify the particular solution in the resulting 

expression?  

 

8. Suppose M(x,y)dx N(x, y)dy 0   is a homogeneous equation. Show that the 

substitutions (i) x uy  and (ii) x r cos( )  , y rsin( )   reduce the equation to one with 

separable variables. 

 

9. Show that to construct an orthogonal family ( 2   ) of curves to a given family of 

curves G(x, y,c) 0 : first construct the differential equation y f (x, y)  whose solution 

curves are the given family G(x, y,c) 0  and then solve y 1 f (x, y)   for the orthogonal 

family of curves. Also show that to construct an isogonal family of curves that intersect at 



a specified constant angle 2   , need to solve y (f (x, y) tan ) (1 f (x, y) tan )     .    

Apply to G(x, y,c) y cexp( x) 0    for (i) 2    and (ii) 4   . 

 

Theorem 1: Existence of a Unique Solution 

Let R be a rectangular region in the xy-plane defined by a x b  , c x d   that contains 

the point 0 0( x , y )  in its interior. If f (x, y)  and f y   are continuous on R, then there 

exists an interval I centered at 
0x  and a unique function y(x)  defined on I satisfying the 

initial-value problem IVP: y f (x, y)  , 
0 0y(x ) y . 

 

10. Determine whether Theorem 1 guarantees that the differential equation 2y y 9    

possesses a unique solution through the given point: 

(a) (1,4) ,            (b) (5,3) ,               (c) (2, 3) ,             (d) ( 1,1)  

 

Theorem 2: Cauchy-Lipschitz 

Let R be a rectangular region in the xy-plane defined by a x b  , c x d   that contains 

the point 0 0( x , y )  in its interior. If f (x, y)  is continuous and satisfy Lipschitz condition 

on R, then there exists an interval I centered at 0x  and a unique function y(x)  defined on 

I satisfying the initial-value problem IVP: y f (x, y)  , 0 0y(x ) y . 

 

Definition: Lipschitz condition 

A function f (x, y)  is said to satisfy Lipschitz condition in R, if there exists a constant 

K 0  such that 2 1 2 1f (x, y ) f (x, y ) K y y    for all 1 2x, y , y  in R. 

 

11. By inspection determine a solution of the IVP: y y 1   , y(0) 1 . State why the 

conditions of Theorem 1 does not hold for this differential equation, however, the solution 

to this IVP is unique. 


