In your solutions, provide details such as formulation, implementation and results together with relevant figures, tables, computer codes written.

1. Solve Poisson equation on the L-shaped rectangular geometry

$$
-\nabla^{2} \mathbf{u}=1 \quad \text { in } \Omega
$$

subject to

$$
\mathrm{u}=0 \text { on } \partial \Omega
$$

using Spectral Element Method with three elements (see p16_sem.m). Assess the accuracy of the resulting solution by comparing it with a higher resolution solution

2. Solve Poisson equation on the quarter annular geometry

$$
-\nabla^{2} \mathrm{u}=\mathrm{f} \quad \text { in } \Omega
$$

subject to

$$
\begin{aligned}
& \mathbf{u}_{\mathrm{y}}=0 \text { on } \partial \Omega_{1} \\
& \mathrm{u}=0 \text { on the rest of } \partial \Omega
\end{aligned}
$$

using Spectral Element Method with single element and compare with the exact solution

$$
u(x, y)=10 x y^{2}\left(1-x^{2}-y^{2}\right)\left(0.25-x^{2}-y^{2}\right)
$$

(see p29_sem.m)

Notes

(1) Determine the forcing function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ so that given $\mathrm{u}(\mathrm{x}, \mathrm{y})$ is the exact solution (may use Matlab Symbolic Math Toolbox).
(2) Generate the map $(\mathrm{x}, \mathrm{y})=\mathrm{F}(\mathrm{s}, \mathrm{t})$ by using Gordon \& Hall procedure

$$
\begin{aligned}
& \mathrm{F}(\mathrm{~s}, \mathrm{t})=\mathrm{F}(\mathrm{~s},-1) \mathrm{L}_{1}(\mathrm{t})+\mathrm{F}(\mathrm{~s}, 1) \mathrm{L}_{2}(\mathrm{t}) \\
& +\mathrm{F}(-1, \mathrm{t}) \mathrm{L}_{1}(\mathrm{~s})+\mathrm{F}(1, \mathrm{t}) \mathrm{L}_{2}(\mathrm{~s}) \\
& \quad-\mathrm{F}(-1,-1) \mathrm{L}_{1}(\mathrm{~s}) \mathrm{L}_{1}(\mathrm{t})-\mathrm{F}(1,-1) \mathrm{L}_{2}(\mathrm{~s}) \mathrm{L}_{1}(\mathrm{t}) \\
& \quad-\mathrm{F}(-1,1) \mathrm{L}_{1}(\mathrm{~s}) \mathrm{L}_{2}(\mathrm{t})-\mathrm{F}(1,1) \mathrm{L}_{2}(\mathrm{~s}) \mathrm{L}_{2}(\mathrm{t})
\end{aligned}
$$

where L_{1}, L_{2} are linear cardinal functions. So, modify map2.m for testing.
3. Bonus Problem: Solve Poisson equation on the unit circular geometry

$$
-\nabla^{2} \mathrm{u}=r^{2} \sin ^{4}(\theta / 2)-\sin (6 \theta) \cos ^{2}(\theta / 2) \quad \text { in } \quad \Omega
$$

subject to

$$
\mathrm{u}=0 \text { on } \partial \Omega
$$

using Spectral Element Method with the five-element configuration given in the figure. Assess the accuracy of the resulting solution by comparing it with $\mathbf{p 2 9}$.

