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ABSTRACT 

The one-dimensional nonlinear shallow-water wave equations over a physical domain of 
linearly sloping beach are numerically integrated using a Chebyshev collocation spectral 
method. A domain decomposition technique is employed in order to facilitate the numerical 
implementation of the method. Interface conditions and open-water transparent boundary 
conditions are imposed. The moving boundary due to the shoreline motion is treated exactly 
by a front-fixing technique. The performance of the numerical method in prediction of the 
long wave propagation and runup on a sloping beach is successfully tested against 
analytic/semi-analytic results available in literature. 
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1. INTRODUCTION 
The runup of tidal waves or tsunamis generated by impulsive geophysical events are known 
to cause extensive inundation and loss of life. Faced with such catastropic events, the 
prediction of runup heights and understanding the mechanisms of inundation have been an 
important research area. The nonlinear inviscid shallow-water wave equations have been 
widely used in modeling of the propagation of long waves such as an incoming tsunami. 
Long waves of various profiles are used both experimentally and numerically as models for 
the far-field tsunamis in literature. Their evolution and runup on a sloping beach under the 
shallow-water equations are studied numerically and analytically to provide insight into the 
mechanisms of tsunami inundation [1, 2, 3, 4, 5, 6].  
 
The main difficulty of the numerical simulation of this problem is due to the moving 
boundary associated with the shoreline motion. This issue of the moving boundary is 
addressed in literature [1, 3, 6] by employing various techniques, such as stepwise 
approximation of sloping beach in which the shoreline is located between wet and dry finite 
difference cells. We treated the moving boundary by a front-fixing technique [7] in which 
the moving boundary of the computational domain is replaced by a stationary boundary 
using a transformation. 
 
In this work, we use a Chebyshev collocation spectral method as the numerical solver. 
Unlike finite difference methods, the spectral methods are global methods which uses 
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expansion of the unknown function in terms of basis functions globally defined in the 
computational domain and under suitable conditions achieve very high (spectral) accuracy 
[8, 9]. The absence of smoothness in the data and/or the solution adversely effects the 
accuracy of the method. A domain decomposition technique is implemented in order to 
achive piecewise smoothness in each subdomains as well as to keep the size of the individual 
subdomains small. Interface conditions are imposed at the interfaces to allow information 
transfer between the subdomains. The open-water boundary is made transparent to outgoing 
disturbances. 
 
The performance of the numerical method in the prediction of the long wave propagation 
and runup on a linearly sloping beach is tested against two analytic/semi-analytic studies [4, 
5]. Synolakis [5] analytically solved the linear shallow-water wave equation for solitary 
wave propagation over the canonical bathymetry, i.e. a linearly sloping beach connected 
with a constant-depth segment and provided analytical expression for the maximum runup. 
Carrier et al. [5] performed a semi-analytic study of long wave propagation and runup under 
the nonlinear shallow-water wave equations on a uniformly sloping beach and provided the 
four cases of initial waveforms having Gaussian and leading-depression N-wave shapes as 
examples.  
 

2. FORMULATION 
 
2.1 THE GOVERNING EQUATIONS 
We consider one-dimensional nonlinear shallow-water equations in differential conservation 
form [10] 
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where )t,x(u , )t,x(H , )x(b , and g are the horizontal depth-averaged velocity, the water 
depth, the bed profile, and the gravitational constant, respectively. In this work, we study the 
special case of linearly sloping bed so that x)x(b α=  and )t,x(xh)t,x(H 0 η+α−=  where 

0h  is the still water depth at the seaward boundary and )t,x(η  is the water surface heigth 
above the still level. 

Figure 1. The geometry of the physical domain. 
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2.2 FRONT-FIXING TRANSFORMATION [7] 
The governing system of equations (1) is considered inside the domain )t(LSx0 −≤≤ . 
Here, S)t(L <  is the time-dependent distance from the shoreline to the point where the total 
depth of the water vanishes and it is defined by  

 
 

)t),t(LS()t(L −η−=α . 
Note that for the runup, )t(L  is negative, while for the draw-down, it is positive in this 
formulation. 
 
Front-fixing transformation amounts to transforming the moving boundary of the domain 

[ ])t(LS ,0x −∈  into the stationary domain [ ]1 0,∈ζ . This is accomplished by defining a new 
set of independent variables, 

tt           and         
)t(LS
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Further, the dependent variables, H and u, following Gelb et al. [11], are transformed using 
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Under these transformations of the dependent and independent variables, the governing 
equations take the following form after some algebra; 
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In particular, the boundary condition at 1=ζ  in this formulation becomes 

, 0)t,1()t,1( 21 =ω=ω                                                    (3) 
that, in turn, produces the equation 
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The Riemann invariants for the transformed hyperbolic system (2) are 

, 
))t(LS(

g
2r 1

1

2

−
ω

±
ω
ω

=±  

whereas, those of the original governing equations (1) are . gH2us ±=±  
 

3. NUMERICAL IMPLEMENTATION 
 
3.1 NUMERICAL METHOD 
In this work, we use a Chebyshev collocation spectral method as the numerical solver. 
Unlike finite difference methods, the spectral methods are global methods which use 
expansion of the unknown function in terms of basis functions globally defined in the 
computational domain and, under suitable conditions of smoothness in the data and/or the 
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solution, achieve very high accuracy [8]. For the Chebyshev collocation method, a function 
)t,x(f  is approximated by 

, )x(T)t(a)t,x(f N

0k kkN ∑ =
=  

 in the interval [ ]1 ,1−  where the basis functions are defined by 
( ) , xarccos)1k(cos)x(Tk −=  

and the coefficients )t(a k  are evaluated based on the interpolation condition [9] at the 
collocation points 
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The governing equations are then forced to accept )t,x(fN  as the solution at the collocation 
points resulting in N semi-discrete equations to be integrated in time for )t(ak . 
  
 
 

Figure 2. The placement of the Chebyshev grid (collocation) points. 
 

3.2 BOUNDARY AND INTERFACE CONDITIONS 
The Chebyshev collocation points are placed more densely at the boundaries, )N(O 2− , than 

in the interior, )N(O 1− , of its domain. While this facilitates the accurate imposition of the 
boundary conditions, it also severely restricts the size of the time step used in the numerical 
integration to )N(O 2−  for stability reasons. The sizes and thus the resolution requirements, 
N, of the individual subdomains are, therefore, kept small by implementing a domain 
decomposition technique. The interfaces of the subdomains are placed so that smoothness of 
the data of the problem, such as the bed profile, is achieved within the subdomains.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Boundary and interface configurations. 
 
In a hyperbolic problem, the information across the domain is carried by the Riemann 
invariants along the characteristics. For this purpose, the computed left-going invariant −

2r  in 

the domain-2 and the right-going invariant +
1r  in the domain-1 are matched at the interface 

to determine the interface conditions for the dependent variables. This procedure is also 
repeated at the open-water boundary for transparency where the right-going invariant is 
taken as 00 gh2c2s ==+  which signifies no incoming information.      
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4. TEST CASES 

We conducted two different sets of numerical experiments to test the implementation of the 
numerical method and the performance of the open-water transparent boundary and interface 
conditions. The first case will be a solitary wave propagation over the canonical bathymetry, 
i.e. a linearly sloping beach connected with a constant-depth segment and the second will be 
long wave propagation and runup on a uniformly sloping beach. 
 
 
4.1 CASE I 
Synolakis [5] analytically solved the linearized form of the equations (1) for solitary wave 
propagation over the canonical bathymetry and provided an analytical expression for the 
maximum runup, referred to as runup law. In order to prepare grounds for comparison, we 
select a solitary wave profile  

, ))xx((hsecA)0,x( c
2 −γ=η  

where A is the wave amplitude and 4A3=γ . The wave is centered at cx  where is half-

wavelength, γ= 05.01harccos2W , away from the toe of the sloping beach at the 
constant depth segment of the bathymetry. The initial velocity is taken as 

, ))0,x()0,x(H(g2)0,x(gH2)0,x(u η−−=  
 in order to prevent the initial disturbance to produce an outgoing wave. The computational 
domain is decomposed into the constant-depth (domain-1) and the linearly sloping beach 
(domain-2) segments. In domain-1, the open-water transparent boundary and the interface 
conditions, whereas, in domain-2, the interface and the moving boundary conditions are 
imposed. While the equations (1) are numerically integrated in time for domain-1, the 
equations (2-4) are used for domain-2. The resulting propagation, the shoreline motion, and 
the maximum runup heights are shown in figures 4 and 5.      

 Figure 4. Solitary wave propagation and runup over the canonical bathymetry with 
20:1=α  and 015.0A = . Here, the dash-line shows the runup, the solid-lines are the spatial 

variations of the water-surface elevation at different nondimensional time ( ght 0= ) 
values. The vertical dotted-line illustrates the interface, while the horizontal dotted-line is the 

still water surface.  
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The propagation picture in figure 4 shows that the unsplitting initial waveform propagates 
towards the beach, reaches its maximum runup and then reflects back towards the open 
water. The conditions imposed at the interface and the open-water boundary are performing 
successfully. The comparison between the runup law and our numerical runup values 
satisfactorily agree, as shown in figure 5, for the few slope and initial wave height values 
that we run.   
 
 

 

 
Figure 5. Runup versus the runup law [4]. 

 
4.2 CASE II 
Carrier et al. [5] performed a semi-analytic study of long wave propagation and runup/draw-
down under the nonlinear equations (1) on a uniformly sloping beach for the four cases of 
initial waveforms having the Gaussian and leading-depression N-wave shapes. These are: 

(a) },)69.1x( 4exp{ 017.0)0,x( 2−−=η  
(b) , })69.1x( 4exp{ 017.0)0,x( 2−−−=η  
(c) , })0.1x( 5.3exp{ 01.0})5625.1x( 5.3exp{ 02.0)0,x( 22 −−−−−=η  and 
(d) . })6384.1x( 4exp{ 018.0})1209.4x( 4444.0exp{ 006.0)0,x( 22 −−−−−=η  

The initial velocity is taken as nil. We have numerically integrated the equations (2-4) in 
time for the given cases over the linearly sloping beach having the moving boundary to the 
right and the open-water boundary to the left. The resulting propagation and the shoreline 
motion is shown in figure 6 for each case.  
 
Figure 6 shows the successful performance of the open-water transparent boundary condition 
as the outgoing piece of the splitting initial disturbance disappears into the open-water. Table 
1 satisfactorily compares the extreme values of the runup and the draw-down.  
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Table 1. Comparison of the extreme values of the runup and the draw-down. 
 Cases (a) (b) (c) (d) 

Numerical - 0.0467 - 0.0267 - 0.0575 - 0.0327 Maximum 
runup Carrier et al. [5] - 0.0470 - 0.0268 - 0.0583 - 0.0328 

Numerical 0.0277 0.0471 0.0247 0.0480 Maximum 
draw-down Carrier et al. [5] 0.0268 0.0470 0.0235 0.0484 

 
5. CONCLUSIONS 

The results presented indicate that the formulation and the numerical implementation of the 
problem perform satisfactorily. The open-water boundary condition provides the intended 
transparency to the outgoing waves. The interface conditions are successful in transferring 
information across. The numerically challenging problem of moving boundary is handled 
satisfactorily by the front-fixing transformation implemented. 
 

 
Figure 6. Wave propagation and shoreline motion in four cases of Carrier et al. [5]. 
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