CENG 382 Analysis of Dynamic Systems Fall 2018

Instructor TA	Sibel Tarı (Room: A-403) <u>stari@metu.edu.tr</u> Ferhat Arslan (Room: A-410) <u>ferhat.arslan@metu.edu.tr</u>	0.4 - ** 0.3 - ** ** ** ** ** ** ** ** ** *
Schedule	Wed 08:40-09:30 and Fri 12:40-14:30 (BMB-1)	0.2 - ** 0.1 - ** × _Y , Y ₁
Textbook	Invitation to Dynamical Systems (E. R. Scheinerman)	°- T(x,y)< (1-1.4x ² +y, 0.3y)
Reference Books	 Nonlinear Dynamics and Chaos (Steven Strogatz) Introduction to Dynamic Systems: Theory, Models, and Applications (D. Luenberger) 	0.1 CENG 382 Sibel Tari 0.2 - 0.3
Prerequisite	Notion of derivative and difference; Linear Algebra.	-1.5 -1 -0.5 0 0.5 1 1.5
Grading	2 MT Exams %45; HW 30%; Final 25%	A simple map with chaotic orbit

Rules and Regulations

- The communication platform is *odtuclass*. Students should follow *odtuclass* regularly for announcements and posted material
- HW reports should be prepared using word processing
- HWs may require MATLAB

Outline

(2 weeks)

What is a dynamical system? State vectors in discrete and continuous time. Iterated maps and flows. Examples (mass-spring, pendulum, bank account, pushing calculator buttons)

What is a dynamical system? Pendulum revisited – linear approximation, numerical solution. More Examples. MATLAB

(1 week)

Linear Systems in 1D: Discrete time. Continuous time.

(3 weeks)

Linear Systems in multiple dimension: Discrete time. Continuous time. Positive Systems

(6 weeks)

Nonlinear Systems: Linearization for multiple dimensional systems. Problems with linearization. Lyapunov functions. Case Studies. Periodicity and chaos in continuous time. One-dimensional systems. Two dimensional systems. Higher dimensions: the Lorenz system and chaos. Periodicity and chaos in discrete time. Stability of periodic points.

(2 weeks)

Fractals Complex Dynamical Systems.