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The number of homomorphisms from Zn to Zm
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Abstract

Using elementary results of number theory, we determine the number of homomorphisms from Zn to

Zm as additive groups and as rings.

Resumen

Usando resultados elementales de la teoŕıa de números, determinamos el número de homomorfismos
de Zn a Zm, como grupos aditivos y como anillos
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1 Introduction

In order to determine the number of homomorphisms, we do not need to assume previous knowledge from
group theory or ring theory, except for the definition of group and ring homomorphism. With respect to
number theory, we use some elementary facts on congruences, which can be found on any introductory book
such as [2]. Also, although our results are basically the same as those in [1], our proofs are much more basic.

2 Group homomorphisms

Let f : Zn → Zm be a group homomorphism. Then, for x ∈ Zn, f(x) = f(1 + 1 + · · ·+ 1︸ ︷︷ ︸
x

) = xf(1), so

f(x) = ax, for some a ∈ Zm. So, the homomorphism is determined by its value f(1) in 1. Hence, we only
need to find the values of a ∈ Zm such that the function f(x) = ax is a homomorphism of groups.

If f(x) = ax is a homomorphism, then

0 ≡ f(0) ≡ f(1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

) ≡ f(1) + f(1) + · · ·+ f(1)︸ ︷︷ ︸
n

≡ nf(1) ≡ na mod m.
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2 The number of homomorphisms from Zn to Zm

Conversely, if na ≡ 0 mod m, for x, y ∈ Zn, with x+ y = nq + r and 0 ≤ r < n,

f(x+ y) ≡ f(r) ≡ ar ≡ a(x+ y − nq) ≡ ax+ ay − anq ≡ ax+ ay ≡ f(x) + f(y) mod m

hence f(x) = ax is a homomorphism. Thus, we have established the following lemma.

Lemma 2.1. The function f : Zn → Zm given by f(x) = ax for some a ∈ Zm fixed is a homomorphism of
groups if and only if na ≡ 0 modm.

Now, the congruence
na ≡ 0 modm

has (m,n) solutions, where (m,n) is the gcd(m,n). In fact, if d = (m,n), then the solutions are given by

a =
m

d
k, where k = 0, 1, . . . , d− 1. Therefore,

Theorem 2.2. The number of group homomorphisms f : Zn → Zm, f(x) = ax is d = (m,n), where a =
m

d
k,

and k = 0, 1, . . . , d− 1.

3 Ring homomorphisms

Now let g : Zn → Zm. If g is a ring homomorphism, g is also a group homomorphism, so g(x) = ax for some
a ∈ Zm. Thus, in the same way as for group homomorphisms, we need to find the values of a ∈ Zm such
that g(x) = ax is a ring homomorphism.

If g(x) = ax is a ring homomorphism, then it is a group homomorphism and na ≡ 0 mod m. Also

a ≡ g(1) ≡ g(12) ≡ g(1)2 ≡ a2 mod m.

We will see that these necessary conditions for a function g : Zn → Zm to be a homomorphism of rings,
are also sufficient. Thus, suppose na ≡ 0 mod m and a ≡ a2 mod m. We already know that for x, y ∈
Zn, g(x+ y) = g(x) + g(y), since na ≡ 0 mod m. Also, if xy = nk + r with 0 ≤ r < n, then

g(xy) ≡ g(r) ≡ ar ≡ a(xy − nk) ≡ axy − ank ≡ a2xy ≡ (ax)(ay) ≡ g(x)g(y) mod m.

Therefore g is a ring homomorphism. We have proved the following lemma.

Lemma 3.1. The function g : Zn → Zm given by g(x) = ax, a ∈ Zm is a ring homomorphism if and only if

na ≡ 0 mod m and

a ≡ a2 mod m.

Thus, to find the number of ring homomorphisms from Zn to Zm, we must determine the number of
solutions of the system of congruences in the Lemma 3.1, above. Now to find the number of solutions of the
system of congruences, we will use the theorem below.

Theorem 3.2. Let f1(x), f2(x), . . . , fk(x) be polynomials with integral coefficients, and for any positive
integer m let N(m) denote the number of solutions of the system of congruences

f1(x) ≡ 0 modm,

f2(x) ≡ 0 modm,

...

fk(x) ≡ 0 modm.

If m = m1m2 where (m1,m2) = 1, then N(m) = N(m1)N(m2). If m =
∏
pα is the factorization of m, then

N(m) =
∏
N(pα).
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Proof. Suppose that x ∈ Zm. If f1(x) ≡ 0 modm, f2(x) ≡ 0 modm, . . . , fk(x) ≡ 0 modm, with m = m1m2,
then f1(x) ≡ 0 modm1, f2(x) ≡ 0 modm1, . . . , fk(x) ≡ 0 modm1. Let a1 be the only member of Zm1 for
which x ≡ a1 mod m1. It follows that f1(a1) ≡ 0 mod m1, f2(a1) ≡ 0 mod m1, . . . , fk(a1) ≡ 0 mod m1.
Similarly, there is only one a2 ∈ Zm2

such that x ≡ a2 mod m2, and f1(a2) ≡ 0 mod m2, f2(a2) ≡ 0
mod m2, . . . , fk(a2) ≡ 0 mod m2. Thus, for each solution of the system of congruences modulo m we have
a pair (a1, a2), in which ai is a solution of the system of congruences modulo mi, for i = 1, 2. Suppose now
that m = m1m2, where (m1,m2) = 1, and that for i = 1, 2, the numbers ai ∈ Zmi are such that f1(ai) ≡ 0
mod mi, f2(ai) ≡ 0 mod mi, . . . , fk(ai) ≡ 0 mod mi. By the Chinese Remainder Theorem, there is only
one x ∈ Zm such that x ≡ ai mod mi, for i = 1, 2. Then we conclude that fi(x) ≡ 0 mod m, i = 1, . . . , k.
We have now established a one-to-one correspondence between the solutions x of the system of congruences
modulo m and the pairs (a1, a2) of solutions of the system of congruences modulo m1 and m2. Hence,
N(m) = N(m1)N(m2). Repeatedly applying this to the prime factorization of m, we obtain the second
assertion of the theorem. 2

Now we use this theorem with the polynomials f1(a) = na and f2(a) = a2−a by first finding the number
of solutions for some pα, with p prime, and then, using the last part of the theorem.

Let p be a prime number and α > 0 an integer, a(a− 1) ≡ a2− a ≡ 0 mod pα has at most two solutions
0, 1. This is so, since (a, a−1) = 1, just one of them can be divisible by p, then (pα, a) = 1 or (pα, a−1) = 1.
If (pα, a) = 1, then pα|a− 1, so a ≡ 1 mod pα. In the other case, pα|a, so a ≡ 0 mod pα.

But, 1 is a solution of f1(a) ≡ 0 mod pα if and only if pα|n, while 0 is always a solution. Thus, the
system of congruences

na ≡ 0 mod m,

a2 − a ≡ 0 mod m

has two solutions if pα|n otherwise, it has only one solution.

Now, if m = pα1
1 pα2

2 · · · pαrr is the canonical factorization of m and n = pβ1

1 p
β2

2 · · · pβrr q, with (q,m) = 1,
the number of solutions to f1(a) ≡ 0 mod pαii and f2(a) ≡ 0 mod pαii is two if pαii |n, and one, if pαii 6 |n.
So the number of solutions is

∏
p
αi
i |n

2 =
∏
αi≤βi 2 = 2`, where ` = |{i|αi ≤ βi}|, is the number of elements

in the set {i|αi ≤ βi}.

Theorem 3.3. Let m = pα1
1 pα2

2 · · · pαrr be the prime factorización of m and n = pβ1

1 p
β2

2 · · · pβrr q, with
(q,m) = 1. The number of ring homomorphisms g : Zn → Zm from Zn to Zm is 2` where ` = |{i|αi ≤ βi}|.
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