1) \(\mathbb{Z} \) is a PID.

2) Suppose \(R \) is a commutative ring, \(I_1 \) and \(I_2 \) are ideals in \(R \), \(P \) is a prime ideal in \(R \), and \(I_1 \cap I_2 \subseteq P \). Show that \(I_1 \subseteq P \) or \(I_2 \subseteq P \).

3) Let \(D \) be an integral domain, \(a, b \in D \). Suppose \(a^n = b^n \) and \(a^m = b^m \) for two relatively prime positive integers \(m \) and \(n \). Prove that \(a = b \).

4) Let \(F \) be the field of real numbers. Prove that \(\mathbb{F}[x]/\langle x^2 + 1 \rangle \) is a field isomorphic to \(\mathbb{C} \).

5) Let \(R \) be an integral domain and \(f(x), g(x) \in R[x] \). Prove that \(\deg(f(x), g(x)) = \deg(f(x)) + \deg(g(x)) \).

6) If \(A \) and \(B \) are ideals in a ring \(R \) such that \(AB = \{0\} \), prove that \(a \in A \), \(b \in B \), \(ab = 0 \).

7) Let \(R \) be a commutative ring and suppose that \(A \) is an ideal of \(R \). Let \(N(A) = \{ x \in R \mid x^n \in A \text{ for some } n \} \). Prove

(a) \(N(A) \) is an ideal of \(R \) which contains \(A \).

(b) \(N(N(A)) = N(A) \).

(c) Let \(N = \{ x \in R \mid x \text{ is nilpotent} \} \). Is \(N \) an ideal? Prove or disprove.
1) Let G be a finite abelian group. Prove that G is isomorphic to the direct product of its Sylow subgroups.

2) Let G be a group of order 12. Then either G has a normal Sylow 3-subgroup or it is isomorphic to A_4.

3) There are no simple groups of order 120, 56, 40, 70.

4) A group of order 28 with a normal subgroup of order 4 is abelian.

5) Let p be a prime number, P be a Sylow p-subgroup of a finite group G and Q be any p-subgroup of G. Then $Q \leq N_G(P)$ if $Q \leq P$.
