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Preface

This book is intended to introduce advanced undergraduates and beginnning
graduate students to topology, with an emphasis on its geometric aspects. There
are a variety of influences on its content and structure. The book consists of two
parts. Part I, which consists of the first three chapters, attempts to provide a
balanced view of topology with a geometric emphasis to the student who will
study topology for only one semester. In particular, this material can provide
undergraduates who are not continuing with graduate work a capstone exper-
ience for their mathematics major. Included in this experience is a research
experience through projects and exercise sets motivated by the prominence of
the Research Experience for Undergraduate (REU) programs that have become
important parts of the undergraduate experience for the best students in the
US as well as VIGRE programs. The book builds upon previous work in real
analysis where a rigorous treatment of calculus has been given as well as ideas
in geometry and algebra. Prior exposure to linear algebra is used as a motiv-
ation for affine linear maps and related geometric constructions in introducing
homeomorphisms. In Chapter 3, which introduces the fundamental group, some
group theory is developed as needed. This is intended to be sufficient for students
without a prior group theory course for most of Chapter 3. A prior advanced
undergraduate level exposure to group theory is useful for the discussion of the
Seifert—van Kampen theorem at the end of Chapter 3 and for Part II.

Part I provides enough material for a one-semester or two-quarter course. In
these chapters, material is presented in three related ways. The core of these
chapters presents basic material from point set topology, the classification of
surfaces, and the fundamental group and its applications with many details left
as exercises for the student to verify. These exercises include steps in proofs
as well as application of the theory to related examples. This style fosters the
highly involved approach to learning through discussion and student presenta-
tion which the author favors, but also allows instructors who prefer a lecture
approach to include some of these details in their presentation and to assign
others. The second method of presentation comes from chapter-end exercise sets.
Here the core material of the chapter is extended significantly. These exercise
sets include material an instructor may choose to integrate as additional topics
for the whole class, or they may be used selectively for different types of students
to individualize the course. The author has used them to give graduate students
and undergraduates in the same course different types of assignments to assure
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that undergraduates get a well-balanced exposure to topology within a semester
while graduate students get exposure to the required material for their PhD
written examinations. Finally, these chapters end with a project, which provides
a research experience that draws upon the ideas presented in the chapter. The
author has used these projects as group projects which lead to the students
involved writing a paper and giving a class presentation on their project.

Part II, which consists of Chapters 4-6, extends the material in a way to
make the book useful as well for a full-year course for first-year graduate students
with no prior exposure to topology. These chapters are written in a very different
style, which is motivated in part by the ideal of the Moore method of teaching
topology combined with ideas of VIGRE programs in the US which advocate
earlier introduction of seminar and research activities in the advanced under-
graduate and graduate curricula. In some sense, they are a cross between the
chapter-end exercises and the projects that occur in Part I. These last chapters
cover material from covering spaces, CW complexes, and algebraic topology
through carefully selected exercise sets. What is very different from a pure Moore
method approach is that these exercises come with copious hints and suggested
approaches which are designed to help students master this material while at
the same time improving their abilities in understanding the structure of the
subject as well as in constructing proofs. Instructors may use them with a teach-
ing style which ranges from a pure lecture—problem format, where they supply
key proofs, to a seminar—discussion format, where the students do most of the
work in groups or individually. Class presentations and expository papers by
students, in groups or individually, can also be a component here. The goal is to
lay out the basic structure of the material in carefully developed problem sets
in a way that maximizes the flexiblity of the instructor in utilizing this material
and encourages strong involvement of students in learning it.

We briefly outline what is covered in the text. Chapter 1 gives a basic intro-
duction to the point set topology used in the rest of the book, with emphasis
on developing a geometric feel for the concepts. Quotient space constructions of
spaces built from simpler pieces such as disks and rectangles is stressed as it is
applied frequently in studying surfaces. Chapter 2 gives the classification of sur-
faces using the viewpoint of handle decompositions. It provides an application
of the ideas in the first chapter to surface classification, which is an important
example for the whole field of manifold theory and geometric topology. Chapter 3
introduces the fundamental group and applies it to many geometric problems,
including the final step in the classification of surfaces of using it to distin-
guish nonhomeomorphic surfaces. In Chapter 3, certain basic ideas of covering
spaces (particularly that of exponential covering of the reals over the circle) are
used, and Chapter 4 is concerned with developing these further into the beauti-
ful relationship between covering spaces and the fundamental group. Chapter 5
discusses CW complexes, including simplicial complexes and A-complexes. CW
complexes are motivated by earlier work from handle decompositions and used
later in studying homology. Chapter 6 gives a selective approach to homology the-
ory with emphasis on its application to low-dimensional examples. In particular,
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it gives the proof (through exercise sets) of key results such as invariance of
domain and the Jordan curve theorem which were used earlier. It also gives a
more advanced approach to the concept of orientation, which plays a key role in
Chapter 2.

The coverage in the text differs substantially in content, order, and type
from texts at a similar level. The emphasis on geometry and the desire to have a
balanced one-semester introduction leads to less point set topology but a more
thorough application of it through the handlebody approach to surface classific-
ation. We also move quickly enough to allow a significant exposure to algebraic
topology through the fundamental group within the first semester. The extens-
ive exercise sets, which form the core of developing the more advanced material
in the text, also foster more flexibility in how the text can be used. When indi-
vidual parts are counted, there are more than a thousand exercises in the text. In
particular, it should serve well as a resource for independent study and projects
outside of the standard course structure as well as allow many different types of
courses.

There is an emphasis on understanding the topology of low-dimensional
spaces which exist in three-space, as well as more complicated spaces formed
from planar pieces. This particularly occurs in understanding basic homotopy
theory and the fundamental group. Because of this emphasis, illustrations play
a key role in the text. These have been prepared with LaTeX tools pstricks
and xypic as well as using figures constructed using Mathematica, Matlab, and
Adobe Hlustrator.

The material here is intentionally selective, with the dual goals of first giv-
ing a good one-semester introduction within the first three chapters and then
extending this to provide a problem-oriented approach to the remainder of a
year course. We wish to comment on additional sources which we recommend
for material not covered here, or different approaches to our material where there
is overlap. For a more thorough treatment of point set topology, we recommend
Munkres [24]. For algebraic topology, we recommend Hatcher [13] and Bredon [5].
All of these books are written at a more advanced level than this one. We have
used these books in teaching topology at the first- and second-year graduate
levels and they influenced our approach to many topics. For some schools with
strong graduate students, it may be most appropriate to use just the first three
chapters of our text for undergraduates and to prepare less prepared graduate
students for the graduate course on the level of one of the three books mentioned.
In that situation, some of the projects or selected exercises from Chapters 4-6
could be used as enhancements for the graduate course.

The book contains as an appendix some selected solutions to exercises to
assist students in learning the material. These solutions are limited in number in
order to maximize the flexibility of instructors in using the exercise sets. Instruct-
ors who are adopting this book for use in a course can obtain an Instructor
Solutions Manual with solutions to the exercises in the book in terms of a PDF
file through Oxford University Press (OUP). The LaTeX files for these solutions
are also available through OUP for those instructors who wish to use them in
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preparation of materials for their class. Please write to the following address,
and include your postal and e-mail addresses and full course details including
student numbers:

Marketing Manager

Mathematics and Statistics

Academic and Professional Publishing
Oxford University Press

Great Clarendon Street

Oxford OX2 6DP, UK
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Part 1

A Geometric Introduction
to Topology






1

Basic point set topology

1.1 Topology in R”

Topology is the branch of geometry that studies “geometrical objects” under
the equivalence relation of homeomorphism. A homeomorphism is a function
f:X — Y which is a bijection (so it has an inverse f~!:Y — X) with both
f and f~! being continuous. One of the prime aims of this chapter will be
to enhance our understanding of the concept of continuity and the equivalence
relation of homeomorphism. We will also discuss more precisely the “geometrical
objects” in which we are interested (called topological spaces), but our viewpoint
will primarily be to understand more familiar spaces better (such as surfaces)
rather than to explore the full generalities of topological spaces. In fact, all of the
spaces we will be interested in exist as subspaces of some Euclidean space R™.
Thus our first priority will be to understand continuity and homeomorphism for
maps f: X — Y, where X C R" and Y C R™. We will use bold face « to denote
points in R*.

One of the methods of mathematics is to abstract central ideas from many
examples and then study the abstract concept by itself. Although it often seems
to the student that such an abstraction is hard to relate to in that we are fre-
quently disregarding important information of the particular examples we have
in mind, the technique has been very successful in mathematics. Frequently, the
success is rooted in the following idea: knowing less about something limits the
avenues of approach available in studying it and this makes it easier to prove
theorems (if they are true). Of course, the measure of the success of the abstrac-
ted idea and the definitions it suggests is frequently whether the facts we can
prove are useful back in the specific situations which led us to abstract the idea
in the first place. Some of the most important contributions to mathematics have
been made by those who have figured out good definitions. This is difficult for
the student to appreciate since definitions are usually presented as if they came
from some supreme being. It is more likely that they have evolved through many
wrong guesses and that what is presented is what has survived the test of time.

3



4 1. Basic point set topology

It is also quite possible that definitions and concepts which seem so right now
(or at least after a lot of study) will end up being modified at a later stage.

We now recall from calculus the definition of continuity for a function f: X —
Y, where X and Y are subsets of Fuclidean spaces.

Definition 1.1.1. f is continuous at * € X if, given € > 0, there is a § > 0 so
that d(x,y) < ¢ implies that d(f(x), f(y)) < e. Here d indicates the Euclidean
distance function d((z1, ..., 21), (Y1, -, yx)) = ((x1—y1)%+- -+ (2p —yx)?)) /2.
We say that f is continuous if it is continuous at x for all x € X.

It will be convenient to have a slight reformulation of this definition. For
z € R¥, we define the ball of radius 7 about z to be the set B(z,r) = {y €
R*:d(z,y) < r} If C is a subset of R¥ and z € C, then we will frequently be
interested in the intersection C'N B(z, r), which just consists of those points of C'
which are within distance r of z. We denote by Be(x,r) = C N B(z,r) = {y €
C:d(y,z) < r}. Our reformulation is given in the following definition.

Definition 1.1.2. f: X — Y is continuous at * € X if given € > 0, there is a
§ > 0 so that Bx(z,0) C f~1(By(f(x),€)). f is continuous if it is continuous
at x for all x € X.

Exercise 1.1.1. Show that the reformulation Definition 1.1.2 is equivalent to
the original Definition 1.1.1. This requires showing that, if f is continuous in
Definition 1.1.1, then it is also continuous in Definition 1.1.2, and vice versa.

We reformulate in words what Definition 1.1.2 requires. It says that a function
is continuous at x if, when we look at the set of points in X that are sent to a
ball of radius € about f(x), no matter what € > 0 is given to us, then this set
always contains the intersection of a ball of some radius § > 0 about x with X.
This definition leads naturally to the concept of an open set.

Definition 1.1.3. A set U C R* is open if given any y € U, then there is a
number r > 0 so that B(y,r) C U. If X is a subset of R¥ and U C X, then we
say that U is open in X if given y € U, then there is a number r > 0 so that
Bx(y,r) CU.

In other words, U is an open set in X if it contains all of the points in X that
are close enough to any one of its points. What our second definition is saying
in terms of open sets is that f~!(By (y,€)) satisfies the definition of an open set
in X containing x; that is, all of the points in X close enough to x are in it.
Before we reformulate the definition of continuity entirely in terms of open sets,
we look at a few examples of open sets.

Example 1.1.1. R" is an open set in R"™. Here there is little to check, for given
x € R", we just note that B(z,r) C R", no matter what r > 0 is.

Example 1.1.2. Note that a ball B(z,r) C R™ is open in R™. If y € B(z,r),
then if 7/ = r — d(y, x), then B(y,r’) C B(a,r). To see this, we use the triangle
inequality for the distance function: d(z,y) < r’ implies that

d(z, @) < d(z,y) +d(y,x) <r' +d(y, @) =r.
Figure 1.1 illustrates this for the plane.
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Figure 1.1. Balls are open.

&

-

Figure 1.2. Open and closed rectangles.

Example 1.1.3. The inside of a rectangle R C R?, given by a < z < b, ¢ <
y < d, is open. Suppose (z,y) is a point inside of R. Then let r = min(b — x,z —
a,d —y,y — c). Then if (u,v) € B((z,y),r), we have |[u —z| < r, v —y| < r,
which implies that a < u < b, ¢ < v < d, so (u,v) € R. However, if the perimeter
is included, the rectangle with perimeter is no longer open. For if we take any
point on the perimeter, then any ball about the point will contain some point
outside the rectangle. We illustrate this in Figure 1.2.

Example 1.1.4. The right half plane, consisting of those points in the plane
with first coordinate positive, is open. For given such a point (z,y) with = > 0,
then if r = x, the ball of radius r about (x,y) is still contained in the right half
plane. For any (u,v) € B((z,y),r) satisfies |u — x| < r and so z — u < x, which
implies u > 0.

Example 1.1.5. An interval (a,b) in the line, considered as a subset of the
plane (lying on the z-axis), is not open. Any ball about a point in it would have
to contain some point with positive y-coordinate, so it would not be contained
in (a,b). Note, however, that it is open in the line, because, if € (a,b) and
r = min(b — z,z — a), then the intersection of the ball of radius r about x with
the line is contained in (a,b). Of course, the line itself is not open in the plane.
Thus we have to be careful in dealing with the concept of being open in X, where
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X is some subset of a Euclidean space, since a set which is open in X need not
be open in the whole space.

Exercise 1.1.2. Determine whether the following subsets of the plane are open.
Justify your answers.

(a) A={(z,y):x >0},

(b) B={(z,y):z =0},

(¢) C={(z,y):x>0and y <5},
(d) D={(z,y):2y <1 and = > 0},
(e) E={(z,y):0 <z <5}

Note that all of these sets are contained in A. Which ones are open in A?

We now give another reformulation for what it means for a function to be
continuous in terms of the concept of an open set. This is the definition that has
proved to be most useful to topology.

Definition 1.1.4. f: X — Y is continuous if the inverse image of an open set
in Y is an open set in X. Symbolically, if U is an open set in Y, then f~*(U) is
an open set in X.

Note that this definition is not local (i.e. it is not defining continuity at one
point) but is global (defining continuity of the whole function). We verify that
this definition is equivalent to Definition 1.1.2. Suppose f is continuous under
Definition 1.1.2 and U is an open set in Y. We have to show that f~1(U) is open
in X. Let « be a point in f~*(U). We need to find a ball about x so that the
intersection of this ball with X is contained in f~*(U). Now x € f~1(U) implies
that f(x) € U, and U open in Y means that there is a number ¢ > 0 so that
By (f(x),€) C U. But Definition 1.1.2 implies that there is a number ¢ > 0 so
that Bx(x,8) C f~1(By(f(x),€)) C f~1(U), which means that f~1(U) is open
in X; hence f is continuous using Definition 1.1.4.

Suppose that f is continuous under Definition 1.1.4 and € X. Let ¢ > 0 be
given. We noted above that a ball is open in R¥ and the same proof shows that
the intersection of a ball with Y is open in Y. Since By (f(x),¢€) is open in Y,
Definition 1.1.4 implies that f~1(By (f(x),€)) is open in X. But the definition of
an open set then implies that there is § > 0 so that Bx (z,8) C f~Y(By (f(z),¢));
hence f is continuous by Definition 1.1.2.

Before continuing with our development of continuity, we recall from calculus
some functions which were proved to be continuous there. It is shown in calcu-
lus that any differentiable function is continuous. This includes polynomials,
various trigonometric and exponential functions, and rational functions. Certain
constructions with continuous functions, such as taking sums, products, and
quotients (where defined), are shown to give back continuous functions. Other
important examples are inclusions of one Euclidean space in another and pro-
jections onto Euclidean spaces (e.g. P(z,y,2) = (,z)). Also, compositions of
continuous functions are shown to be continuous. We re-prove this latter fact
with the open-set definition.
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Suppose f: X — Y and g: Y — Z are continuous. We want to show that the
composition gf: X — Z is continuous. Let U be an open set in Z. Since g is
continuous, g~1(U) is open in Y; since f is continuous, f~1(g~(U)) is open in
X.But f~(¢g71(U)) = (9f)"*(U), so we have shown that gf is continuous. Note
that in this proof we have not really used that X,Y, Z are contained in some
Euclidean spaces and that we have our particular definition of what it means for
a subset of Euclidean space to be open. All we really are using in the proof is
that in each of X,Y, Z, there is some notion of an open set and the continuous
functions are those that have inverse images of open sets being open. Thus the
proof would show that even in much more general circumstances, compositions
of continuous functions are continuous. We pursue this in the next section.

1.2 Open sets and topological spaces

The notion of an open set plays a basic role in topology. We investigate the
properties of open sets in X, where X is a subset of some R™. First note that
the empty set is open since there is nothing to prove, there being no points in it
around which we have to have balls. Also, note that X itself is open in X since
given any point in X and any ball about it, then the intersection of the ball with
X is contained in X. This says nothing about whether X is open in R"™.

Next suppose that {U;} is a collection of open sets in X, where ¢ belongs to
some indexing set /. Then we claim that the union of all of the U; is open in X.
For suppose x is a point in the union, then there must be some ¢ with « € U;.
Since U; is open in X, there is a ball about & with the intersection of this ball
with X contained in U;, hence contained in the union of all of the U;.

We now consider intersections of open sets. It is not the case that arbitrary
intersections of open sets have to be open. For example, if we take our sets to be
balls of decreasing radii about a point «, where the radii approach 0, then the
intersection would just be {x} and this point is not an open set in X. However,
if we only take the intersection of a finite number of open sets in X, then we
claim that this finite intersection is open in X. Let Uy, ..., U, be open sets in
X, and suppose x is in their intersection. Then for each 7, ¢ = 1,...,p, there is
a radius r; > 0 so that the intersection of X with the ball of radius r; about x
is contained in U;. Let r be the minimum of the r; (we are using the finiteness
of the indexing set to know that there is a minimum). Then the ball of radius r
is contained in each of the balls of radius r;, and so its intersection with X is
contained in the intersection of the U;. Hence the intersection is open.

The properties that we just verified about the open sets in X turn out to be
the crucial ones when studying the concept of continuity in Euclidean space, and
so the natural thing mathematicians do in such a situation is to abstract these
important properties and then study them alone. This leads to the definition of
a topological space.

Definition 1.2.1. Let X be a set, and let 7 = {U;: i € I} be a collection of
subsets of X. Then 7 is called a topology on X, and the sets U; are called the
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open sets in the topology, if they satisfy the following three properties:
(1) the empty set and X are open sets;

(2) the union of any collection of open sets is open;

(3) the intersection of any finite number of open sets is open.

If 7 is a topology on X, then (X,7), or just X itself if 7 is made clear by
the context, is called a topological space.

Our discussion above shows that if X is contained in R™ and we define the
open sets as we have, then X with this collection of open sets is a topological
space. This will be referred to as the “standard” or “usual” topology on subsets
of R™ and is the one intended if no topology is explicitly mentioned. Note that
Definition 1.1.4 makes sense in any topological space. We use it to define the
notion of continuity in a general topological space. Our proof above that the
composition of continuous functions is continuous goes through in this more
general framework. As we said before, the spaces that we are primarily interested
in are those that get their topology from being subsets of some Euclidean space.
Nevertheless, it is frequently useful to use the notation of a general topological
space and to give more general proofs even though we are dealing with a very
special case. We will also use quotient space descriptions of subsets of R™, which
will require us to use topologies more generally defined than those of R and its
subsets.

One of the important properties of R™ and its subsets as topological spaces
is that the topology is defined in terms of the Euclidean distance function. A
special class of topological spaces are the metric spaces, where the open sets are
defined in terms of a distance function.

Definition 1.2.2. Let X be a set and d: X — R a function. d is called a metric
on X if it satisfies the following properties:

<1) Cl(.%‘,y) > Oand =0iff z = Y;
(2) d(z,y) = d(y,x);
(3) d(z,z) < d(z,y) + d(y, z) (triangle inequality).

The metric d then determines a topology on X, which we denote by 7, by
saying a set U is open if given x € U, there is a ball By(z,7) = {y € X :d(z,y) <
r} contained in U. (X, 74) (or more simply denoted (X, d)) is then called a metric
space.

To verify that the definition of a topology on a metric space does indeed
satisfy the three requirements for a topology is left as an exercise. The proof is
essentially our proof that Euclidean space satisfied those conditions. Also, it is
easy to verify that the usual distance function in R™ satisfies the conditions of a
metric.

From the point of view of some forms of geometry, the particular distance
function used is very important. From the point of view of topology, the import-
ant idea is not the distance function itself, but rather the open sets that it
determines. Different metrics on a set can determine the same open sets. For
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Figure 1.3. Comparing balls.

an example of this, let us consider the plane. Let d denote the usual Euclidean
metric in the plane and let d'((z,y), (u,v)) = |z — u| + |y — v]. We will leave it
as an exercise to verify that d’ is a metric. We will use a subscript to indicate
the metric being used when determining balls and open sets. As illustrated in
Figure 1.3, balls in the metric d’ look like diamonds. We show that these two
metrics determine the same open sets. Since the open sets are determined by
the balls and each type of ball is open, it is enough to show that if By(z,r)
is a ball about z, then there is a number r’ so that By (z,r") C By(z,r), and
conversely, that each ball B/(z,r’) contains a ball By(z,r). First suppose that
we are given a radius r for a ball By(z,r). We need to find a radius v’ so that
By (z,7") C By(z,7). Note that we want |x1 — u1| + |22 — uz| < 7’ to imply
that (z1 — u1)? + (22 — u2)? < 72. But if ' = r, then this will be true as
can be seen by squaring the first inequality. For the other way, given a ball
By (z,r"), we need to find a ball By(z,r) within it. Here r = r'/2 will work:
(21 —u1)? + (20 — ug)? < (r')?/4 implies that |21 — uy| < 77/2, |20 — us| < r'/2,
and so d'(z,u) < r’. As Figure 1.3 suggests, we could actually take r = r'/\/2.
This figure shows the inclusions By(z,7/v/2) C Ba(2,7) C Ba(z,7).

From the topological point of view, the best value of r given 7’ is not really
of much importance; it is just the existence of an appropriate r. The existence
can be seen geometrically.

Exercise 1.2.1. Verify that the definition of an open set for a metric space
satisfies the requirements for a topology.

Exercise 1.2.2. Verify that d’' is a metric.

We give two examples of a metric space besides the usual topology on a subset
of R™. For the first example, we take as a set X = R"™, but define a metric d by
d(z,y) =1if x # y, and d(x,x) = 0. It is straightforward to check that this
satisfies the conditions for a metric. Then a ball B (m, %) = {x}, so one point
sets are open. Hence every set, being a union of one-point sets, will be open. The
topology on a set X where all sets are open is called the discrete topology.
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The next example is of no special importance to us here, but similar construc-
tions are very important in analysis. The points in our space will be continuous
functions defined on the interval [0, 1]. We can then define the distance between
two such functions to be d(f, g) = fol |f(z) — g(z)| dx. We leave it as an exercise
to check that this satisfies the definition of a metric.

Exercise 1.2.3. Show that the above definition of the distance between two
functions does satisfy the three properties required of a metric. This depends
on the fact, which you may assume in your argument, that the integral of a
nonnegative continuous function is positive unless the function is identically 0.

We give an example of a topological space which is not a metric space. To
define a topology on a set, we have to give a collection of subsets of the set (which
we will call open sets) and then verify that they satisfy the three properties
required of open sets in a topology. The simplest example of a nonmetric space
is to take any set X with more than one point and define the open sets by saying
that the only open sets are ¢ and X. This topology is called the indiscrete
topology on X. For a slightly more complicated example, we will take our set to
be the set with three points {a, b, ¢} and then define the following sets to be open:
o,{a,b},{a,b,c}. We may verify that this collection of open sets does satisfy the
three required properties: the empty set and the whole space are open, unions of
open sets are open, and finite intersections of open sets are open. Of course, this
is just one of many possible topologies on the three-point set. In order to get a
better feeling for the requirements of a topology, we will leave it as an exercise
to find some more topologies on this set.

Exercise 1.2.4.

(a) Find five different topologies for the set {a, b, c}.
(b) Find all the possible topologies on the set {a, b, c}.

How do we know that the topology that we put on {a,b,c} does not arise
from some metric? The answer lies in a separation property that any metric
space possesses and our topology does not. Given any two distinct points z,y in
a metric space, there is some distance r = d(x,y) between them. Then the ball
of radius r/2 about x does not intersect the ball of radius r/2 about y and vice
versa. Hence there are two disjoint open sets, one of which contains = and the
other y. But this is not true for the points a and b in the topology given above,
since every open set which contains b also contains a. The same argument shows
that the indiscrete topology on any set X with at least two points does not come
from a metric. A topological space X is called Hausdorff if given x,y € X there
are disjoint open sets U,,U, with x € U, y € U,. The argument above says a
metric space is Hausdorff, and our examples are shown not to arise from a metric
since they are not Hausdorff.

We look at some specific examples of continuous functions. The inclusion of
a subset B of A into A will always be continuous, where A C R". For if B C
A,i:B — A is the inclusion, and if U is an open set in A, then i~}(U) = BNU.
We need to see why BN U is open in B if U is open in A. Let x € BN U.
Then U open in A means that there is a ball B(x,r) with B(x,r)N A C U.
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Since B(x,7) N B C BNU, BNU is open in B. Note that this proof would
work equally as well in any metric space as long as we use the same metric for
the subset. In a general topological space, we have to specify how we get the
topology on the subset from the topology on the original set.

Definition 1.2.3. Suppose A is a topological space and B C A. Aset V C B is
open in the subspace topology on B iff V is the intersection of B with an open set
in the whole space A; that is, V is open in B iff V.= UN B, where U is open in A.

It is straightforward to show that an inclusion map is continuous when the
subset has the subspace topology. From now on, we will assume that a subset is
given the subspace topology unless otherwise stated. The topology on a subset of
R™ coming from using the usual metric is a special case of the subspace topology.

Exercise 1.2.5. For X C R", show that the usual topology on X is the same
as the subspace topology.

Here is another useful construction for continuous functions. Suppose that
f:A — B is continuous and C' is a subset of B which contains the image of f.
Then we may regard f as a function from A to C. This function, which we denote
by fc, is still continuous when C' is given the subspace topology. For if we take
an open set V of C, it will have the form V = U N C, where U is open in B.
Then fal(V) = f~1(U) is open since U is open and f is continuous.

Putting these last two constructions together and using the fact that com-
positions of continuous functions are continuous shows that if we start with a
function f from R™ to R™ which we already know is continuous, such as a poly-
nomial, and then restrict the function to a subset A and restrict the range to
a subset B which contains f(A), then this new function with restricted domain
and range will be continuous.

For many constructions involving continuous functions, it is more convenient
to work with the concept of closed sets rather than open sets.

Definition 1.2.4. A set C' C X is said to be closed if its complement X\C
is open.

From their definition, the closed sets are completely determined by the open
sets and vice versa. From the three properties that the open sets satisfy, we can
deduce three properties that the closed sets must satisfy:

(1) the empty set and X are closed sets;

(2) the intersection of any collection of closed sets is closed;

(3) the union of any finite number of closed sets is closed.

Critical for verifying these properties from the properties of open sets are
DeMorgan’s laws regarding complements:

(2) X\ N; 4; = U (X\4).

First, the empty set and the whole space X will be closed since their comple-
ments (X and the empty set) are open. Second, any intersection of closed sets
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will be closed since the complement of the intersection will be the union of the
individual complements, and thus will be open since the union of open sets is
open. Finally, any finite union of closed sets will be closed since the complement
of the finite union will be the intersection of the individual complements and so
will be open since the finite intersection of open sets is open. It is possible to
define a topology in terms of the concept of closed sets and work with closed
sets instead of open sets. The most familiar example of a closed set is the closed
interval [a, b]. We leave it as an exercise to show that it is closed.

Exercise 1.2.6. Show that [a,b] is a closed set in R. Show that a rectangle
(including the perimeter) is a closed set in R2.

Exercise 1.2.7. Show that [a,b) is neither open nor closed in R.

We now prove a couple of useful propositions involving the concept of closed
sets. Each proposition follows from corresponding statements involving open sets
by taking complements.

Proposition 1.2.1. f: A — B is continuous iff the inverse images of closed
sets are closed.

Proof. Suppose f is continuous and C is a closed subset in B. Then B\C' is
open and f~1(C) = A\ f~1(B\C) is closed since it is the complement of an open
set in A. The converse follows similarly and is left as an exercise. O

Exercise 1.2.8. Complete the proof above by proving the converse.

Proposition 1.2.2. If A C X has the subspace topology, then D C A is closed
in Aiff D=ANE, where E is closed in X.

Proof. By the definition of the subspace topology, the open sets in A are the
intersections of A with the open sets in X. What we are trying to prove here is
a similar statement for closed sets. Suppose D is closed in A. Then D = A\F,
where F' is open in A. Then F' = AN G, where G is open in X. Hence, if
E = X\G, then F is closed in X and

D=A\F=A\(ANG)=ANn(X\G)=ANnE.
The converse is left as an exercise. O

Exercise 1.2.9. Complete the proof above by proving the converse.

Exercise 1.2.10. Suppose A is a closed subset of X. Then D C A is closed in
A (with the subspace topology) iff D is closed in X.

Definition 1.2.5. The closure of a set A C X, denoted A, is the intersection of
all closed sets containing A. The interior of A, denoted int A, is the union of all
open sets contained in A. A point in int A is called an interior point of A. The
boundary of A, denoted Bd A, is AN X\ A. A point in Bd A is called a boundary
point of A.

Exercise 1.2.11. Show that A is closed and int A4 is open.
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To find A in examples, it is useful to have another characterization. Note
that a point  is not in A exactly when there is a closed set C' containing A
which does not contain z. But this means that X\C is an open set containing
x which is disjoint from A, or, equivalently, is contained in int(X\A). Thus A
consists of points of A and points not in A that have the property that every
open set about them intersects A. Since points of A also have that property,
points of A can be characterized in that every open set about them intersects
A nontrivially. The description of X\ A above can also be rephrased as saying
X\A = int(X\A). Using the definition of Bd A and the reformulation of A, we
can characterize points of Bd A as those points where every open set intersects
both A and X\ A.

As an example, we determine A, int A, and Bd A for A = {(z,y): = >y > 0}.
First note that this set is open since it is the intersection of the two open sets,
Ar = {(z,y):  —y >0} and Ay = {(x,y): y > 0}. The sets A; and Ay are
open since they are the inverse images of (0, 00) under the continuous functions
x — y and y, respectively. Thus int A = A. The closure is found from A by
adding the rays x = y and y = 0 within the first quadrant. These points are
in the closure since every open ball about a point in them will intersect A. The
set B = {(z,y): x >y >0} is closed since it is the intersection of two closed
sets, By = {z,y): x —y >0} and By = {(x,y): y > 0}. These sets are closed
since they are the inverse images of [0, c0) under the continuous functions = — y
and y, respectively. Thus A = B. The set X\A4 is closed since its complement
is open. Thus X\A = X\A. Hence Bd4A = AN X\A = {(z,y): 2> 0,z =
y} U{(z,y): 2 20,y = 0}

Exercise 1.2.12. Find A, int A, and Bd A for the following sets A in R? :

(a) {(z,y): 2 >0, y # 0}

(b) {(z,y): 2 €Q, y >0}

(c) {(z,y): 2® +y* <1}.

Exercise 1.2.13. Show that A= Int AU Bd A and Int AN Bd A = (.

We will now prove a piecing lemma, which is very useful in verifying that
certain functions which are constructed by piecing together continuous functions
are themselves continuous.

Lemma 1.2.3 (Piecing lemma). Suppose X = AU B, where A and B are
closed subsets of X. Let f: X — Y be a function so that the restrictions of f
to A and B (given the subspace topology) are each continuous (another way of
saying this is that the compositions of f with the inclusions of A and B into X
give continuous functions). Then f is continuous.

Proof. Let C C Y be closed. Our hypothesis then says that AN f~1(C) is closed
in A and BN f1(C) is closed in B. But Exercise 1.2.10 then says that these
two sets are in fact closed in X since A and B are assumed to be closed subsets
of X. Then f=1(C) = (AN f~1(C))U(BN f~1(C)) is closed since it is the union
of two closed sets. O
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Exercise 1.2.14. Prove the analog of Lemma 1.2.3 where the word closed is
replaced by the word open. Give an example to show that the conclusion that f
is continuous is not true without some hypothesis on the sets A, B.

We will give many examples of continuous functions in the next section con-
structed by piecing together continuous functions defined on closed subsets. We
state the definition of a homeomorphism and give the relevant version of the
piecing lemma for homeomorphisms.

Definition 1.2.6. A homeomorphism is a bijection (1-1 and onto) between
topological spaces so that the map and its inverse are both continuous. If f: X —
Y is a homeomorphism, then we will say X is homeomorphic to Y, denoted
X~Y.

Homeomorphism gives an equivalence relation on topological spaces, as it
satisfies the three conditions of an equivalence relation: (1) reflexivity—the iden-
tity 1x : X — X has continuous inverse 1x; (2) symmetry—if f: X — Y has
continuous inverse g : Y — X, then g has f as its continuous inverse; (3)
transitivity—if f: X — Y has continuous inverse f~!, and g:Y — Z has
continuous inverse ¢~ !, then gf:X — Z has continuous inverse f~'g~!. A
topologist looks at homeomorphic spaces as being essentially the same. One
of the fundamental problems of topology is to decide when two topological
spaces are homeomorphic. One technique for solving this problem (more suc-
cessful in showing that spaces are not homeomorphic than in showing that
they are homeomorphic) is to find properties of spaces which are preserved by
homeomorphisms. We will study two such properties in this chapter, compact-
ness and connectedness. Later we will study an invariant that is associated to
any topological space called the fundamental group of the space. It has the
property that homeomorphic topological spaces have isomorphic fundamental
groups, and thus it may be used to distinguish between topological spaces up to
homeomorphism.

We state our lemma for piecing together homeomorphisms. It follows from
the piecing lemma in a straightforward manner, and we leave the proof as an
exercise.

Lemma 1.2.4 (Piecing lemma for homeomorphisms). Suppose that X =
AUB,Y = CUD, where A, B are closed in X, and C,D are closed in'Y. Let
f:A— C and g: B — D be homeomorphisms, and suppose that the restrictions
of f and g to the intersection AN B agree as maps into Y. Define h: X — Y
by h|A = f and h|B = g (or we could start with h and define f and g just by
restricting them to A and B). If h is a bijection (this just requires that the only
points that are in the image of both f and g are the points in the image of ANDB),
then h is a homeomorphism.

Exercise 1.2.15. Prove the piecing lemma for homeomorphisms.
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1.3 Geometric constructions of
planar homeomorphisms

We now look at some geometric constructions which give continuous functions
and homeomorphisms. For simplicity, we will restrict our domain space to the
plane, although these constructions have analogues for other R™.

Our first example is a rotation. If a point in the plane is given by r(cos 8, sin 6),
then a rotation by an angle ¢ sends this to r(cos(6 + ¢),sin(6 + ¢)). One way
of seeing that this is continuous is to note that distances between points are
unchanged by this map. A map between metric spaces which leaves the distance
between any two points unchanged is continuous; we leave this as an exercise.

Exercise 1.3.1.

(a) Show that any map from R? to R? which leaves distances between points
unchanged (i.e. d(f(x), f(y)) = d(x,y)) is continuous.

(b) Generalize this to show that f:(X,d) — (Y,d') with d'(f(z), f(y)) <
Kd(z,y), K > 0, is continuous.

That a rotation does in fact preserve distances can be checked using trigo-
nometric formulas and the distance formula in the plane. Another way of seeing
that a rotation by ¢ is continuous is to note that it is given by a linear map,
x — Ax, where x represents a point in the plane as a column vector and A is

the 2 x 2 matrix
cos¢p —sing
sing cos¢ )

For a rotation, A is an orthogonal matrix, which means that it preserves the
Euclidean inner product between vectors, and hence preserves distances between
points. Multiplication by any matrix can be shown to give a continuous map. This
is usually shown indirectly in advanced calculus courses by noting that a linear
map is differentiable (it gives its own derivative) and that differentiable maps
are continuous. It could also be shown directly using part (b) of Exercise 1.3.1
and the inequality |Ax — Ay| < ||A|| |& — y| shown in linear algebra. Note that a
rotation is reversible; after rotating a point by an angle 6, we can get back to our
original point by rotating by an angle —6. From the matrix point of view, the
matrix A is invertible. Either way may be used to show that rotation represents
a homeomorphism from the plane to itself.

Another familiar geometric operation which gives a continuous map (and
a homeomorphism) is a translation, T, () = x + v. This is seen to be con-
tinuous either directly from the definition or by the fact that it preserves
distances between points. Its inverse is translation by —wv, and so it gives a
homeomorphism.

Of course, we could rotate about some other point besides the origin. This
also preserves distances and so can be shown to give a homeomorphism. Note that
a rotation by angle ¢ about the point « is the composition of a translation by —a
to send x to the origin, then a rotation of angle ¢ about the origin, and finally a



16 1. Basic point set topology

translation by « to send the origin back to &. A composition of homeomorphisms
will give a homeomorphism, since a composition of continuous maps is continuous
and the inverse of ¢f, given that g and f have inverses, is f~1g~".

Another geometric construction which gives a homeomorphism is a reflection
through a line. That this gives a homeomorphism follows from the fact that it is
its own inverse and that it preserves distances between points. Alternatively,
reflections through lines passing through the origin are given by multiplica-
tion by orthogonal matrices, and other reflections are conjugate to these using
translations which move the line to one passing through the origin.

We may reinterpret the equivalence relation of congruence of triangles fre-
quently studied in high school in terms of these three types of homeomorphisms:
translations, rotations, and reflections. Suppose two triangles 77,75 are congru-
ent. Then they have corresponding sides A;, By,C7 and As, By, Co, which are
of the same length, and the angles between corresponding sides are the same.
Let v; be the vertex between A; and B; and vy the vertex between A, and Bs.
First translate the plane so that the vertex v is sent to v;. Now rotate about
v so that the side A, lies along the side A;. Now either the two triangles will
agree or we can get from shifted triangle T, to T; by reflecting through the line
going through side A;. Thus two triangles are congruent if we can get from one
to the other by a composition of translations, rotations, and reflections. Note
that each type of map used above preserves distances between points. A map
from the plane to itself which preserves distances between points is called a rigid
motion or an isometry. In general, the term isometry is used for a map between
metric spaces which preserves distance between points and their images.

It can be shown that any rigid motion of the plane is just a composition
of translations, rotations, and reflections. We outline this argument. Starting
with a rigid motion f, we get a new rigid motion ¢g from f by translating by
—f(0):9 =T_f(0)f- Then g(0) = 0. Now we use the relation of the dot product
with the distance function (x — y,z — y) = d(z,y)? to show that g(0) = 0
and d(g(x),9(y)) = d(x,y) implies that (g(x), g(y)) = (x,y). Thus g will send
unit vectors to unit vectors and orthogonal vectors to orthogonal vectors. In
particular, g; = g(e1),g5 = g(ea) are orthogonal unit vectors. If @ denotes
multiplication by the orthogonal matrix (q1 q2) with column vectors g, g5, then
Q is a rotation or reflection, and h = Q@ !g is a rigid motion which preserves
0,e1,e2. Then h can be shown to be the identity by using the relation v =
(v,e1)er + (va, ea)es.

Exercise 1.3.2. Fill in the details of the argument sketched above to show
that a rigid motion in the plane is the composition of rotations, reflections, and
translations.

Another familiar geometric relation is the similarity of triangles. If two tri-
angles are similar, their angles will correspond exactly, but corresponding side
lengths need not be equal but only have to have some common ratio k. If 77 and
Ty are similar, we may use a rigid motion to align them so that sides A; and
A, lie on the same line, as do the sides By and Bs. Then the shifted 15 will be
sent to 71 by a map that takes a line through v, and sends the line to itself by
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Figure 1.4. Similarity transformation.

shrinking or expanding along the line by a factor of k (in terms of the distance
to v1). This last map may be described as a composition of a translation of v,
to the origin, multiplication of a vector by k, and then a translation of the origin
back to v1. The multiplication by k gives a continuous map, and its inverse is
given by multiplication by 1/k, so it gives a homeomorphism. We illustrate the
first three steps in a similarity in the Figure 1.4. In this figure, no reflection was
necessary as part of the rigid motion.

We have seen that congruences and similarities are both examples of homeo-
morphisms. In geometry, a triangle and a rectangle are distinguished from one
another by the number of sides, and two triangles, although possibly not similar,
still are seen to have the same “shape”. We will see below that the inside of a
triangle and the inside of a rectangle are in fact homeomorphic. Thus what is
meant when one says that two triangles have the same shape and a triangle and
a rectangle do not? It means that we are looking at the triangle and rectangle
through “affine linear eyes”.

There is a standard triangle A(eg, e, es) with vertices eg = 0, ey, es.
Each point in it can be expressed as (A1, A2) = A1e1 + Aseq, with A, Ao > 0
and 0 < A1 + Ay < 1. We define A\g = 1 — A\; — Ao, and then we can write
()\1, )\2) = /\060+)\1€1 +)\2€2, where )\0, )\1, )\2 2 0 and )\0+)\1 +>\2 = 1. Now sup-
pose we have another triangle with vertices eg, v1,v2, where vy, vy are linearly
independent. If V = ('1)1 vg), then multiplication by V is a linear transforma-
tion which gives a homeomorphism between A(eg,e1,es) and A(eg,v1,vs). If
three points ag, a1, as satisfy the property that v1 = a1 — ag, vo = as — ag
are linearly independent, then we say that ag, a1, as are affinely independent.
This is equivalent to Ajag + A1a; + Asas = 0, Ao + A1 + A2 = 0 implying
Ao = A1 = Ao =0. If ag, a1, as are affinely independent, then there is a triangle
A(ag, a1, as) with vertices ag, a1, as. Translation by ag gives a homeomorphism
between A(eg,v1,v2) and A(ag,a1,az), where v1 = a1 — ag, v2 = as — ay.
The composition of multiplication by V' and the translation then gives a map,
called an affine linear map, which is a homeomorphism between the stand-
ard triangle A(eg,e1,e2) and A(ag,a1,a2). This affine linear map A has the
property that Ageg + Ad1e; + Ases is sent to A\pag + A\1a; + Asas. In partic-
ular, this means that the triangle A(ag,a1,as) is characterized as the points
)\an + )\10,1 + )\20,2 where )\z Z 0, A() + )\1 + )\2 =1.1If A(bo, bl, bg) is another
triangle with affinely independent vertices by, b1, bs, then there is an affine lin-
ear map B sending the standard triangle to it. Then C = BA~! gives an affine
linear map sending A(ag, a1, az) to A(bg, by, bs). Thus any two triangles in the
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plane are homeomorphic via a canonical affine linear map, and the image of a
triangle under an affine linear map will be another triangle. In particular, there
is no affine linear map sending a triangle to a rectangle. Affine linear maps from
one triangle A(ag, a1, as) to another triangle A(bg, by, by) are determined com-
pletely by the map on the vertices a; — b; and the affine linearity condition

Z )\iai — Z )\zaz
Exercise 1.3.3.

(a) Show that a1 — ag, az — ag are linearly independent iff Agag + M\a; +
)\2(12 = 0, )\0 + )\1 + /\2 =0 implies )\0 = )\1 = )\2 =0.

(b) Show that if ag,ai,as are affinely independent, then Ajag + A1a; +
Ao@o = p1ao + p1ay + poas with YA, = > p; = 1 implies pg; = A, i =
0,1,2.

(c) Show that any finite composition of translations and linear maps in the
plane can be written as a single composition T'L, where T' is a translation
and L is a linear map.

(d) Show that any composition M of translations and linear maps satisfies
M(F  Nai) = Y5 AiM(a;) when Y5 A\, = 1. Conversely, show
that if M satisfies this condition for any three affinely independent points,
then M is a composition of a translation and a linear map, so is an affine
linear map.

(e) Show that an affine linear map sending a; to b; will always send a line
segment @pa; to the line segment byby via (1 —t)ag +ta; — (1 —t)bg +
thy, 0<t<1.

Triangles and rectangles are not equivalent under invertible affine linear maps.
A triangle and a rectangle are homeomorphic, however. Moreover, the homeo-
morphism may be taken to be “piecewise linear”. If ag, a1, as are the vertices
of the triangle and by, b1, bs, bs are the vertices of the rectangle, then we can
divide the rectangle into two triangles B; = A(bg, b1, bs), Bo = A(bg, ba, b3) by
introducing the edge bobs (see Figure 1.5). We can also introduce a vertex as in
the triangle at the midpoint of @ya3 and then an edge agas. Now the triangle
is divided into two triangles, A; = A(ag,a1,a2) and Ay = A(ag, az,as). The

b3 b2

By

as

az B,

Ap
ao ail bo bl

Figure 1.5. PL homeomorphism between a triangle and a rectangle.
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map sending a; to b; can be extended affine linearly on triangles to give maps
sending A; to B;. Figure 1.5 shows how the triangle and square are subdivided.
This defines a homeomorphism between the triangle and the rectangle. That
it is a homeomorphism follows from the piecing lemma for homeomorphisms.
Note that on the triangles A;, Az, the map is affine linear (3, Aia; — >, \ib;).
Our homeomorphism is an example of a piecewise linear (PL) homeomorphism
of planar regions—the domain and range are divided into triangles, and the
homeomorphism is an affine linear homeomorphism on each triangle.

We can generalize the argument above to show that any two convex polygonal
regions in the plane are homeomorphic. By a polygonal region R, we mean
a region that is bounded by a closed polygonal path; that is, f(]0,n]), where
f:[0,n] — R? with f affine linear on [i,i + 1], f(i) = x;, To = =, and f(a) =
f(b) implies a = b or {a,b} = {0,n}. The region R is called convez if R lies on
one side of each line T;@; 17 or, equivalently, line segments joining two points of R
are in R. The region R bounded by P is then given by the union of line segments
joining points in P. The idea of the proof that two convex polygonal regions are
homeomorphic is to divide each region into the same number of triangles and
then send the triangles to each other consistently. Our argument above with a
triangle and a rectangle is the simplest case of this procedure.

Exercise 1.3.4.

(a) Construct a PL homeomorphism between a square and a hexagon.

(b) Show that any two convex polygonal regions are homeomorphic via a PL
homeomorphism.

So far all of our examples of homeomorphisms have been piecewise linear.
Here is an example of one that is not. The unit disk D? = {(z,y): 2% + y> < 1}
is homeomorphic to the square S = {(z,y): |z| <1, |y| < 1} (hence to any con-
vex polygonal region). The homeomorphism may be described geometrically as
follows. Each ray from the origin intersects D? and S in a line segment. The
intersection with D? is sent linearly to the intersection with S.

We can verify that this is a homeomorphism by deriving a formula for it. This
is somewhat tedious, however, so we will give a geometrical explanation, leaving
the verification based on this as an exercise. We describe some corresponding
open sets from our construction. Given a point x inside the disk which is not
the center, we get f(x) by first forming the circle about the center on which x
lies, then forming the square which circumscribes this circle, and then sending @
to the the point f(x) on the intersection of the perimeter of this square and the
ray through @. The region between two circles is then sent to the region between
the corresponding squares. The basic open sets inside the circle are given by the
region between two circles, which lie between two lines of angles § = 61, 6 = 05,
as well as disks about the center. For the inside of a square, the basic open sets
are given by regions between two smaller squares, again limited by the same
two radial lines, as well as small squares about the center. Our map gives a
correspondence between these basic open sets about  and f(x) as pictured in
Figure 1.6. At the center, a small disk about the center corresponds to a small
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Figure 1.6. Basic open sets for disk and square.

rectangle about the center. From these facts, we can verify that the map is a
homeomorphism.

Exercise 1.3.5. Use the geometrical facts cited above to verify that our con-
struction gives a homeomorphism. You will need to use the fact that any open
set about a point contains one of the basic open sets as described above.

Note that this homeomorphism sends the boundary circle to the perimeter
of the square. In fact, if the homeomorphism of the circle to the perimeter of the
square is given by @ — f(x), then our homeomorphism is just t@ — tf(x), 0 <
t < 1. We are using the convexity of each region to realize the region as the
“cone” on its boundary and extending the homeomorphisms of boundaries by
“coning”.

This same idea could be used to give a homeomorphism between the unit
disk and the inside of an ellipse, for example.

Exercise 1.3.6. Write down a formula for a homeomorphism between the
unit disk D? and the ellipse E = {(x,y): 22 + y?/4 < 1}, and check whether
it satisfies f(tx,ty) = tf(x,y), 0 <t < 1.

In the exercise above and the preceding example, there is a common idea.
We take two subspaces in the plane A, B and points p ¢ A, ¢ ¢ B. Then
we form spaces pA, gB from taking the line segments joining p to points of A
and line segments joining ¢ to points of B. The set A is chosen so that each
point in pA lies on a unique line segment from p to a unique point of A (and
similarly for ¢B). In the case of the inside of the circle and the inside of the
square, A is the circle and B is the square. For the disk and the inside of
the ellipse, A is the circle and B is the ellipse. In both cases, p = ¢ = 0.
Then we take a homeomorphism f: A — B, and then get a homeomorphism
F:pA — ¢B by sending (1 — t)p + ta to (1 — t)qg + tf(a). That F turns out
to be a homeomorphism depends on pA,¢B having the appropriate types of
corresponding basic open sets. This can be rephrased in terms of the notion of
a quotient topology, which we will study in Section 1.7. The construction of F'
from f is called coning.
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We have seen many examples of different regions in the plane that turn out
to be homeomorphic. Each of the regions so far has been homeomorphic to a
disk. An important problem of topology is to characterize all regions in the plane
that are homeomorphic to the disk. The homeomorphism would send the circle
to a homeomorphic image—this is called a simple closed curve. Thus, a region R
homeomorphic to a disk would have to be “bounded” by a simple closed curve.

The Jordan curve theorem and the Schonflies theorem combine to say that,
if C' is a simple closed curve in the plane, then it “bounds” a region R, and
the homeomorphism f:S! — C extends to a homeomorphism between the unit
disk D and R. The Jordan curve theorem says that the complement of the
curve separates into two open connected pieces, one of which is bounded and the
other of which is unbounded. It says the curve is the boundary of each piece.
The Schonflies theorem then says that the bounded piece is homeomorphic to a
disk and the unbounded piece is homeomorphic to the complement of a closed
disk. We discuss connectedness in Section 1.6 and have a project to prove both
theorems in the polygonal case in Section 1.8. A full proof of the Jordan curve
theorem and it’s generalization, the Jordan separation theorem, is given in terms
of homology in Section 6.14 (see Theorems 6.14.2 and 6.14.6). The full proof of
the Schonflies theorem can be found in [22]. A proof of the generalization of the
Schonflies theorem to higher dimensions for locally flat embeddings is given in
[5] based on the proof by Morton Brown [6].

A natural question would be to ask for examples of regions in the plane that
are not homeomorphic to a disk. A simple example would be an annulus (see
Figure 1.7), which is the region enclosed between two circles. There are two
ways of seeing that this is not homeomorphic to a disk. One way is to compare
their boundaries. The annulus has two circles as boundary and the disk has
one. Of course, we have to understand why one circle is not homeomorphic to
two circles (this can be based on the concept of connectedness, which we will
study later) and why a homeomorphism between the annulus and the disk must
restrict to a homeomorphism between their boundaries. A justification of the last
fact actually leads us to the other reason that they are not homeomorphic. This
involves the ideas surrounding the fundamental group of a space. Intuitively
speaking, there is a circle (the middle circle) in the annulus which cannot be
deformed continuously to a point, but every circle in the disk may be deformed

Figure 1.7. Annulus.
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to a point (just contract the whole disk to its center and see what happens to the
circle). This idea is responsible for a large number of applications and is pursued
in Chapter 3. The classification of regions in the plane up to homeomorphism is
a special case of the classification of surfaces with boundary. This latter topic is
pursued in Chapter 2.

1.4 Compactness

We now discuss the property of compactness. We will discuss this in the context
of a general topological space, but will specialize to metric spaces or subspaces
of R™ on occasion.

Definition 1.4.1. Let X be a topological space. A subset A C X is said to be
compact if whenever A is contained in a union of open sets U; (called an open
cover of A), then A is contained in the union of a finite subcollection of these
open sets (called a finite subcover).

This can be rephrased in terms of the open sets of A in the subspace topology
by saying that whenever A is written as the union of a collection of open sets in
A, then it may be written as the union of a finite number of these open sets.

One of the prime reasons that compactness is important as a topological
concept is that it is preserved by continuous maps.

Proposition 1.4.1. Let f: X — Y be continuous and X compact. Then the
image set f(X) is compact.

Proof. Let V = {V;} be an open cover of f(X). Then U = {U;} = {f~1(Vi)} is

an open cover of X. Since X is compact, there is a finite subcover U1y, ..., Uyx,)
of X. Then the corresponding open sets Vj(1),..., Vi) give a finite subcover
of f(X). O

In particular, this implies that if two sets are homeomorphic, then either both
are compact or both are not compact. A property that is invariant under homeo-
morphisms is called a topological invariant. Thus compactness is a topological
invariant.

Let us look at some examples.

Example 1.4.1. The real line R is not compact since it can be written as the
union of intervals U, = (—k, k) where k ranges over the integers, and it cannot be
written as a union of a finite subcollection of these open sets. The same idea will
show that, for a subset of R to be compact, it must be bounded (i.e. contained
in a large interval). For if it is not, then we can use the collection {(—k, k)} to
cover the subset, and it cannot be contained in any finite subcollection of these.
We leave it as an exercise to generalize this to subsets of metric spaces.

Exercise 1.4.1. A set A of a metric space is said to be bounded if it is contained
in some ball B(z,r). Show that a subset of a metric space which is compact must
be bounded.
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Example 1.4.2. A finite set A = {a1,...,ax} C X is compact. For if it is
contained in a union of open sets U;, then there must be some set U;(;) in the
collection which contains a;. Thus Uj(y), ..., Uiy gives a finite subcover of A.

Exercise 1.4.2. Show that a finite union of compact sets is compact.

Exercise 1.4.3. Decide whether or not the following subsets of R are
compact:

(a) A={1/n:n € N};

(b) B={0}U4;

(c) (0,1].

We have seen that R is not compact, but R is closed as a subset of itself. Thus
a closed set does not have to be compact. A compact set does not have to be
closed in a general topological space, either. For example, the two-point space,
where the only open sets are the empty set and the space itself, has either of its
points as a compact subset, but that point is not a closed set with this topology.
However, if we are dealing with subsets of FEuclidean space and the standard

topology, then compact sets are closed. We will give a proof in the more general
situation of a metric space.

Proposition 1.4.2. In a metric space, compact sets are closed.

Proof. Let X be a metric space and A a compact subset of X. To show that A
is closed, we have to show that its complement is open. Let € X\ A; we need
to find a ball about x that does not intersect A. Let y be a point of A. Then
we can find disjoint balls B(y,r(y)) and B(z,r(x)) . The union of the B(y, r(y))
over all y in A will contain A; since A is compact, there is a finite subcollection
of these balls which covers A. Then the intersection of the corresponding balls
about x will be an open set about x which does not intersect the union of the
subcollection, and hence does not intersect A. O

The crucial property of a metric space X which we used here was that a
metric space is Hausdorff.

Definition 1.4.2. X is called Hausdorffif given x,y € X then there are disjoint
open sets Uz, Uy with x € U,y € U,,.

Exercise 1.4.4. Show that in a Hausdorff space, compact sets are closed. (Hint:
In a general topological space, a set U will be open if given x € U, then there
is an open set U(z) with € U(x) C U; for then we can write U as the union
of the sets U(x) as x ranges over the points of U, and the union of open sets is
open. With this criterion for a set to be open, the proof in the metric case can
be modified to prove the result.)

The next proposition allows us to deduce that certain sets are compact by
knowing that they are closed subsets of a compact set.

Proposition 1.4.3. Let X be compact and let A be closed in X. Then A is
compact.



24 1. Basic point set topology

Proof. Suppose that & = {U;} is a collection of open sets of X whose union
contains A. Then the U; together with X\ A is a collection of open sets whose
union is X, and so some finite subcollection will contain X. Since no points of
A are contained in X'\ A, then the U; in this subcollection will contain A. O

We combine the propositions connecting compact and closed sets to prove
the following very useful proposition that certain bijections between sets are
homeomorphisms.

Proposition 1.4.4. Let f: X — Y be a bijection (i.e. 1-1 and onto). Sup-
pose that f is continuous, X is compact, and Y is Hausdorff. Then f is a
homeomorphism.

Proof. Since f is a bijection, it has an inverse f~':Y — X. To see that f
is a homeomorphism, we need to see that f~! is continuous. We use here the
characterization of a continuous function as one which has the inverse image of
a closed set being closed. Let C be a closed set in X. Then X compact implies
that C is compact. But (f~1)71(C) = f(C) is the image of a compact set, and
so is compact. In a Hausdorff space, a compact set is closed, so f(C) is closed
as required. O

In the proof above, we showed that if f: X — Y is continuous, X is compact,
and Y is Hausdorff, then f sends closed sets to closed sets. A map which sends
closed sets to closed sets is called a closed map. When f is invertible, then f~!
being continuous is the same thing as f being a closed map.

This proposition would no longer be true if we removed the hypothesis that
X is compact. For example, consider the function f:[0,1) — S* given by f(x) =
(cos 2mz, sin27z).

Exercise 1.4.5. Show that the function f defined above is a bijection that is
continuous but is not a homeomorphism. (Hint: Consider the open set [O, %) C
[0,1) and its image.)

We begin studying some basic compact sets in the reals. We first show that
a closed interval [a,b] is compact in the usual topology of the line. This proof
is based on the least upper bound property of the real numbers, which we now
review. A subset A C R is said to have an upper bound u if a < u for all a € A.
u is called the least upper bound of A if it is a upper bound and it is less than
or equal to any other upper bound. The least upper bound property of the real
numbers asserts that any nonempty subset of the reals with an upper bound has
a least upper bound. This property does not hold for the rationals; for example,
the set of rational numbers with square less than 2 has an upper bound, but does
not have a least upper bound. As a subset of the reals, the least upper bound
would be /2. We can think of the reals as being formed from the rationals by
adding to the rationals all the least upper bounds of subsets of the rationals that
are not already in the rationals.

Theorem 1.4.5. The closed interval [a,b] is compact.
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Proof. Suppose that we have an open cover U = {U,} of [a,b]. Consider the set
A = {z € [a,b]: [a,z] has a finite subcover}. We intend to show that A = [a, b].
First note that A is not empty since some U; contains a, and thus must contain
some interval [a, b1], for by > a. Since b is an upper bound for A, the set A must
have a least upper bound, which we will call u. We want to show that v = b and
that b € A. Suppose first that u < b. Since u € [a, b], there must be some element
of the cover, which we will call U;(,,), which contains u. Now Uy, contains some
interval [u1,ug], where a < u; < u < ug < b. Since u is the least upper bound for
A, there must be an element a; € A with u; < a; < w (if not, then u; would be
a smaller upper bound, contradicting the choice of u as the least upper bound).
But then [a, a1] is covered by a finite number of the U; and thus so is [a, us] (just
use those that cover [a, a;] together with Uj(,)). But this contradicts u being an
upper bound for A, since now uy € A. Thus the least upper bound must be b.
Now choose an element Uy, of the cover which contains b, and choose u; with
[u1,0] C Uy Then b being the least upper bound for A implies that there is
an element a; € A with u; < a3 <b. But [a, a;1] is covered by a finite number of
the U; and [ay, b] is contained in Uy, so [a,b] is contained in a finite number of
the elements of the cover, showing that it is compact. O

As a corollary, we can now characterize the compact sets in the line.

Corollary 1.4.6. A C R is compact iff it is closed and bounded.

Proof. If it is compact, then it must be bounded by Exercise 1.4.1 and closed
by Proposition 1.4.2. Conversely, suppose that it is closed and bounded. Since
it is bounded, it is contained in some closed interval [a, b]. Since it is closed as a
subset of the line, it will also be closed in [a, b]. But this makes it a closed subset
of a compact space, and so it is compact. O

Exercise 1.4.6. Analogous to the definition of least upper bound is that of
greatest lower bound. Give a definition of greatest lower bound for a set A C R
and use the least upper bound property to show that a set with a lower bound
must have a greatest lower bound.

Exercise 1.4.7. Give an example of a closed, bounded subset A of a metric
space X that is not compact. (Hint: Consider the metric space X itself to be a
bounded noncompact subset of R and A = X.)

For R we extract an important property of a closed bounded set.

Proposition 1.4.7. A compact subset A of R has a largest element M and a
smallest element m; that is, m < a < M for all a € A.

Proof. We show that it has a largest element; the proof for a smallest element is
analogous. Since A is compact, it is bounded, and so has a least upper bound w.
We claim that v € A, and hence u will be the largest element of A. Suppose that
u is not in A; then we claim that A could not be closed. For every interval about
u has to contain an element of A in order for u to be the least upper bound of A.
But this means that the complement of A is not open; hence A is not closed. [
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Now we give an application of this to analysis.

Proposition 1.4.8. Let f: X — R be continuous and X compact. Then f
assumes a mazimum (and minimum) on X; that is, there are x,y € X with

f@) < f(2) < fly) forall z € X.

Proof. To say that f assumes a maximum just means that f(X) has a largest
element. But X compact and f continuous means that f(X) is compact and so
has a largest element. O

When X is a closed interval, this is the familiar theorem from calculus that
a continuous function assumes a maximum and a minimum on a closed interval.

1.5 The product topology and
compactness in R”

We wish to generalize our characterization of compact sets in R to show that a
subset of R™ is compact iff it is closed and bounded. The only missing ingredient
from our proof above is knowing that a cube [aj,b1] X [ag,b2] X -+ X [an, by)
is compact. This can be proved inductively if we can show that the product
of compact sets in a product of Euclidean spaces is compact. To do this most
efficiently, we need to discuss the notion of a product topology on the product
X XY of two topological spaces.

Suppose that X and Y are topological spaces and consider their product
X xY ={(z,y): x € X, y € Y}. We will define a topology on X x Y by saying
that a set W C X x Y is open if given any (z,y) € W, then there are open sets
Uin X and V in Y so that (z,y) € U x V. C W. In particular, products of open
sets will be open, and the general open set will be a union of products of open
sets. It is not difficult to verify that this definition of open sets does satisfy the
three requirements for a topology, which is called the product topology.

Exercise 1.5.1. Verify that open sets as defined above satisfy the three
properties required of a topology.

Now the product topology in the plane is not defined in exactly the same
way as the usual metric topology, but it does give the same topology; that is,
it gives the same collection of open sets. To see this, first note that if a set W
is open in the plane in the usual metric topology, and (z,y) is a point of A,
then there is a small ball about (x,y) that is contained in W. But inside this
ball we can find a rectangle that is a product of intervals which contains (z,y).
Hence W is open in the product topology. Conversely, suppose W is open in
the product topology, and (z,y) € W. Then there is a product U x V of open
sets (which we may choose to be intervals) with (x,y) € U x V.C W. Then the
rectangle U x V is contained in W. But then we can find a ball contained in
the rectangle and containing (x,y), so W is open in the metric topology (see
Figure 1.3). Inductively, a similar argument shows that the metric topology on
R™ arises as the inductive product of n copies of R using the product topology.
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Thus to show that a product of closed intervals is compact in R"™, it suffices to
show that the product of compact sets is compact in the product topology. We
first need a preliminary lemma on product spaces.

Proposition 1.5.1. Suppose X and Y are topological spaces and let X x Y
have the product topology. Then the inclusions i,:Y — X x Y, i, (y) = (z,y),
iy: X — X xY, iy(x) = (x,y), are continuous. Moreover, each projection
px: X XY =X, px(z,y) =z, py: X XY =Y, py(z,y) =y, is continuous.
In particular, the map X — X x {y} given from i, by restricting the range,
andY — {x} XY given from i, similarly, are homeomorphisms, where X x {y}
and {x} XY are given the subspace topology.

Proof. We first show that 7, is continuous; the proof is analogous for i,. Let
W be an open set in the product topology on X x Y, and let y € i 1(W).
Then (x,y) € W, so there are open sets U,V with (z,y) € U x V. .C W. Then
y eV Cizt (W), so i, (W) is open (using the hint in Exercise 1.4.4). We now
show that px is continuous; the proof for py is analogous. Let U be an open set in
X. Then p}l(U ) = U x Y, which is an open set in the product topology. Finally,
note that i, and py are inverses to one another (when properly restricted) and
so give homeomorphisms between Y and {z} x Y7 similarly, i, and px give
homeomorphisms between X and X x {y}. O

We now show that the product of compact spaces is compact.

Theorem 1.5.2 (Tychanoff). Suppose X andY are compact. Then the product
X XY is compact.

Proof. Let W = {W;} be an open cover of the product. Fix z € X and consider
the set {z} x Y. It is homeomorphic to Y, so it is compact. Thus there are a
finite number of the W;, which we will denote by W;_ ,,...,W;_,, which cover

{z} xY. Let W, =W,;, , U---UW;_,. Then for each y € Y, select an open set

Uy xY

X X

Figure 1.8. A tube U, x Y C W,.
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Uy x V, with (z,y) € Uy x V,, C W,. Then this gives an open cover of {z} x Y,
and so there is a finite subcover Uy, x V,,,..., U, xV, . Let U, = :;:1 Uy,-
Note that {z} xY C U, x Y C W,. The set U, x Y is sometimes called a tube
about {z} xY inside W,,. This is illustrated in Figure 1.8. As x varies over X, the
sets U, give an open cover of X and so there is a finite subcover Uy (1), ..., Ug(y)-
Then Uy1y XY, ..., Uppy X Y will cover X x Y, and so will the corresponding
W (s)- But each W,y is the union of a finite number of sets in our original cover,

and so we will get a covering by a finite number of sets in our original cover. [

The Tychanoff theorem holds for infinite products as well, and it is closely
related to the axiom of choice. See [24] for a discussion and proof in this context.
Now we are ready to characterize the compact sets in R"™.

Theorem 1.5.3 (Heine—Borel). A subset of R™ is compact iff it is closed and
bounded.

Proof. We showed that compact implies closed and bounded in a metric space.
Suppose A is closed and bounded. Then A will be a closed subset of some large
cube (which is compact) and hence will be compact. O

We now wish to introduce another form of compactness, sequential compact-
ness, and show that it is equivalent to compactness in a metric space. In general,
these concepts are not equivalent but counterexamples are rather sophisticated.
In the course of doing so, we will also introduce the concept of the Lebesgue num-
ber of a cover, and show that compact metric spaces have Lebesgue numbers, a
fact which will be very useful to us in Chapter 3.

Definition 1.5.1. A sequence in X is a function s:N — X, where N denotes
the natural numbers. We usually denote s(n) by s, and the sequence by {s,}. A
subsequence s’ of a sequence s is a sequence formed by taking the composition
s’ = sj, where j:N — N is order preserving (a < b implies j(a) < j(b)). It is
usually denoted by s,, where n; = j(i). A sequence is said to converge to z if
given an open set U about x, there is a natural number N so that n > N implies
s, € U.

Definition 1.5.2. X is called sequentially compact if every sequence in X has
a convergent subsequence.

We wish to give a criterion for a sequence to have a subsequence which
converges to x. If a subsequence converges to z, then the definition of convergence
implies that for any open set U containing x, there are an infinite number of
values of n so that s, € U. We show the converse is true in a metric space.

Proposition 1.5.4. Suppose X is a metric space and x € X. If {s,} is a
sequence so that for any ball about z, the ball contains an infinite number of the
Sn (this means that there are an infinite number of n so that s, is in the ball),
then there is a subsequence which converges to x.

Proof. Choose n; so that s,, is contained in the ball of radius 1 about z. Since
there are an infinite number of the s, in the ball of radius % about =, we can
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find ng so that no > ny and s,, € B (;v, %) Inductively, we then use the same

idea to choose n; < ny < nz < --- so that s,, € B(x,1/j). This will give us our
convergent subsequence. We leave the details as an exercise. O

Exercise 1.5.2. Fill in the details in the proof above.

Proposition 1.5.5. In a metric space, compactness implies sequential
compactness.

Proof. We prove the contrapositive. Suppose X is not sequentially compact
and s, is a sequence with no convergent subsequence. If there are only a finite
number of distinct values s,,, then some value must be repeated infinitely often
and we can use this to get a constant, hence convergent, subsequence. Thus we
may assume that there are an infinite number of distinct values s,. For each
x € X, there is no subsequence which converges to x. By the criterion above,
there is an open set U, about x which contains only a finite number of the s,,.
But a covering of X by these balls, one for each x, can have no finite subcover,
since a finite subcover would have to contain only a finite number of the values
of the sequence (which are infinite in number), and hence could not contain all
of X. O

The proof above does not need the full strength of the metric space hypo-
thesis, just the existence for each x of a sequence of open sets U,, with U;11 C U;
about x so that any open set about x contains some U;. This property is called
first countability and is pursued in Exercises 1.9.39-1.9.41 at the end of the
chapter.

Exercise 1.5.3. Show that if {s,:n € N} is finite, then the sequence has a
convergent subsequence.

We now show that in a metric space, sequential compactness implies compact-
ness. To prove this, we introduce the concept of the Lebesgue number of a cover.
Let A be a subset of the metric space (X, d). Consider Dy = {d(a1,a2):a1,a2 €
A}. If Dy is bounded from above, define d4 = sup D4. We will call dg the
diameter of the set A.

Definition 1.5.3. A covering U = {U;,} of a metric space is said to have Lebesgue
number § > 0 if every set A C X of diameter less than § is contained in some
element of the covering.

Proposition 1.5.6. Let X be a metric space which is sequentially compact.
Then every open covering of X has a Lebesgue number.

Proof. We prove the contrapositive: if there is an open cover with no Lebesgue
number, then there is a sequence with no convergent subsequence. Let U = {U;}
be an open cover with no Lebesgue number. Then there is a sequence of sets
{A,} with the diameter of A,, less than 1/n which are not contained in any
element of the cover. Choose a,, € A,. Then we claim that {a,} is a sequence
with no convergent subsequence. Suppose there were a subsequence {a,, } which
converges to a point x, and choose an element U, of the cover containing z.
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Choose m large enough so that B(z,1/m) C Up, and choose ki > 2m so that if
k > ki1, an, € B(x,1/2m). Then if a € A,,, d(a,z) < d(a,an,) + d(an,,x) <
1/2m + 1/2m = 1/m. But this means A,, C U,, which is a contradiction. O

Proposition 1.5.7. In a metric space, sequential compactness implies
compactness.

Proof. A metric space is totally bounded if given € > 0, we can cover X by a finite
number of balls of radius e. We first show that X sequentially compact implies
that it is totally bounded. We show this by proving the contrapositive. Suppose
X cannot be covered by a finite number of balls of radius €. Let 1 € X. Since
B(z1,¢€) does not cover X, choose x4 & B(x1,¢€). Since B(x1,€) U B(xa,€) does
not cover X, we may choose xo & B(z1,€) U B(x2, €). Inductively, we can choose
a sequence {z,} in this manner with z,1 & ;_, B(xk,€). Since d(z,, ) > €
for k£ < n, any ball of diameter € can contain at most one z,, so the sequence
can have no convergent subsequence.

Now suppose X is sequentially compact and U = {U;} is an open cover. By
Proposition 1.5.6 we can find a Lebesgue number ¢ for this cover. By the above
argument, there is a cover of X by a finite number of balls of radius §/3. But
each such ball will be of diameter less than §, so it will lie in an element of our
original cover, B(xy,6/3) C Uy, k =1,...,n. Then Uy, ..., Uy give a finite
subcover of our original cover. O

Definition 1.5.4. Let (X,dx),(Y,dy) be metric spaces. Then f: X — Y is
said to be uniformly continuous if given € > 0 there exists a 6 > 0 such that for
z1,T2 € X,dx (z1,72) < & implies dy (f(z1), f(z2)) < €.

Exercise 1.5.4. Show that f uniformly continuous implies f is continuous, but
construct an example to show that the converse does not hold.

Exercise 1.5.5. Let f: X — Y be a continuous map of the compact metric
space (X, dx) to the metric space (Y, dy ). Show that f is uniformly continuous.
(Hint: Use the Lebesgue number of the covering {f~1(B(y,€/2))}yey of X.)

1.6 Connectedness

We next want to discuss the concept of connectedness. The definition is given in
terms of its negation, as it is easier to say what we mean by a space not being
connected.

Definition 1.6.1. A topological space X is called separated if it is the union of
two disjoint, nonempty open sets. A subset A C X is separated if A is separated
as a topological space, using the subspace topology. A set is called connected if
it is not separated.

Exercise 1.6.1. Show that a space X is connected iff the only subsets of X
which are both open and closed are () and X.
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We rephrase the conditions for a subset A C X to be separated or connected
in terms of open sets in X.

Proposition 1.6.1.

(a) A C X is separated iff there are two open sets U,V C X so that A C
UuV, UNnVNA=0, UNA#£0,VNA#.

(b) A set A C X is connected iff whenever U,V are open sets in X so that
UNVNA=¢p, ACUUV, then ACU or ACV.

Proof. We only prove (a), leaving (b) as an exercise. Suppose A is separated.
Then there are two disjoint nonempty sets U’, V'’ which are open in A so that
A =U"UV’. Since U',V' are open in A, there are open sets U,V in X with
U =UnNA, V"=V nNA. Since U and V' are disjoint, we have UNV N A = (.
Since A =U'UV’, we have A C UUYV. This proves one direction. For the other
direction, given U,V with ACUUV, UNVNA=0UNA#D, VNAZD,
then defining U’ = UNA, V' =V N A gives two nonempty sets U’, V'’ which are
open in A and show that A is separated. O

Exercise 1.6.2. Deduce (b) from (a).

Example 1.6.1. We use Proposition 1.6.1 to describe some examples of sep-
arated sets. The first example we give is the union of two points in the line
X = {0,1}. To see that this is separated, we choose U = (—0.1,0.1),V =
(0.9,1.1). A similar example would be to let Y = [0,1] U [2,3]. Then we could
choose U = (-0.1,1.1),V = (1.9,3.1). Our final example may be somewhat
less intutive. The rationals Q in the line are separated. Here we can choose
U= (-00,v2),V = (v/2,00). We will show that the R itself is connected, so the
missing irrational numbers were crucial in separating the rational ones. Note that
the openness condition in the definition is crucial. For example, you cannot get
an interval being separated by dividing it into two pieces, say [0, 2] = [0, 1]U(1, 2].
The problem is that to get an open set U about [0, 1] you have to include points
greater than 1 and so it will not be disjoint with an open set about (1, 2].

We first investigate connectedness for subsets of the line. Consider the
following property:

(*) If x,y € A C R, then the interval [z,y] C A.

Proposition 1.6.2. Any connected set in the line satisfies (*) or, equivalently,
any set that does not satisfy (*) is separated.

Proof. If A does not satisfy (*), then there are points z,y,z with ¢ < y < 2
and x,z € A and y ¢ A. But then A is separated by the two open sets (—o0,y)
and (y, 00). O

What are the sets that satisfy (*)? The next proposition says that they are
just the intervals, rays, and R.

Proposition 1.6.3. A set A C R satisfies (*) iff it is an interval, a ray, or R.
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Proof. It is straightforward to see that an interval, ray, or R satisfies (*). Sup-
pose A satisfies (*). There are a number of cases to consider; we will only consider
one of the cases and leave the completion of the proof as an exercise. We consider
the case where A is bounded both from above and below. Let a be the greatest
lower bound and b the least upper bound of A. This implies A C [a, b]. We will
show that (a,b) C A. Let ¢ be a point in (a,b). Since a is the greatest lower
bound, there is an element e € A with a < e < ¢. Similarly, b being the least
upper bound implies that there is an element f € A with ¢ < f < b. But (¥)
implies that [e, f] C A and so ¢ € A. Hence (a,b) C A. But A C [a,b], so there
are four possibilities for A: (a,b),[a,b), (a,b], [a,b], each of which is an interval.
The other cases one has to consider are when A is not bounded on one side or
the other or both. O

Exercise 1.6.3. Complete the proof of the proposition by considering the other
cases.

Our previous two propositions say that the only possibilities for connected
sets in R are intervals, rays, and R. We now show that they are connected.

Proposition 1.6.4. Any interval, ray, or R is connected.

Proof. We will just give the proof for a closed interval [a,b], and leave the
other cases for the reader. In Proposition 1.6.1 we re-expressed the condition of
connectivity by saying that a set is connected if, whenever it is contained in the
union of two open sets U,V with U NV N A = (, then it is entirely contained in
one of the two sets. Suppose that [a, b] is contained in the union of two open sets
U,V with UNV NJa,b] = . Assume that @ € U. To show that [a, b] is connected,
we must show that [a,b] C U. Analogously to the proof that [a, b] is compact, we
form the set A = {x € [a,b]: [a,2] C U}. Since U is open, we see that A contains
some x > a. Since A is bounded, it must have a least upper bound u. We first
claim that w € U. If not, then w € V and so there is u; < u with [uy,u] C V
since V' is open. But u being the least upper bound of A means that there is
c € A with u; < ¢ < u. But then ¢ € UNV N A, which is a contradiction. If
u # b, we can find an interval [uy, us] C U, with u3 < u < ug, and so [a,us] C U,
contradicting the choice of u as an upper bound. Thus we must have [a,b] C U,
and so [a, b] is connected. O

Exercise 1.6.4. Show that R is connected.
The three preceding propositions together yield the following theorem.
Theorem 1.6.5. The connected sets in R are intervals, rays, and R.

Here is a useful proposition about connectedness, which could be used to
show that R is connected, knowing that [a, b] is connected.

Proposition 1.6.6. Suppose that A; is a collection of connected subsets of a
topological space X so that they all have at least one point a in common. Then
the union A = U; A; is connected.
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Proof. Suppose A C U UV, where UNV N A = (), and suppose further that
a € U. Then we have to show that A C U. But each A; being connected will
imply that A; CU,so ACU. O

Exercise 1.6.5. Use the proposition above to deduce that R is connected from
the fact that a closed interval is connected.

Unfortunately, there is no nice characterization of connected subsets of other
Euclidean spaces as there is for compact subsets, although the above proposition
is very useful in recognizing connected sets.

We prove that connectedness is preserved under continuous maps, and hence
gives another topological invariant for a space up to homeomorphism.

Proposition 1.6.7. The continuous image of a connected space is connected.

Proof. Suppose f: X — Y is continuous and X is connected. Suppose f(X) C
UUV, where UNV N f(X) =0 and U,V are open. Then X C f~H(U)U f~1(V),
and X N f~YU) N f~4(V) = 0. Now f continuous implies that f~}(U) and
f~1(V) are open, and so X connected means that X is contained in one of
these, say f~1(U). Hence f(X) C U, and so f(X) is connected. O

Since the continuous image of a connected set is connected, so is a homeo-
morphic image. Hence connectedness is also a topological invariant. This fact
could be used to show, for example, that two disjoint intervals could not be
homeomorphic to one interval.

A somewhat more intuitive property than connectedness is path
connectedness.

Definition 1.6.2. A space X is called path connected if, given x,y € X, there is
a continuous map f:[0,1] — X (called a path in X) with f(0) = z and f(1) = y.
We say that the path connects z to y.

There is an equivalence relation generated by this definition as follows: we
say x ~ y if there is a path connecting x to y. The constant path at x shows
x ~ x. That x ~ y implies y ~ x can be seen by composing a path connecting
x to y with a self homeomorphism of [0, 1] which is order reversing; usually one
uses the linear map «(t) = 1 — ¢, but any order reversing homeomorphism will
work. That x ~ y,y ~ z implies x ~ z involves reparametrizing the paths and
lying them end on end. Geometrically, we just traverse the path connecting x
to y and then traverse the path from y to z. However, to get a parametrized
path from the two paths involves reparametrizing them so that their domains
fit together nicely. For example, we can compose f with «(t) = 2¢, so fa(0) =
f(0) =z, fa(3) = f(1) = y. Then we could similarly reparametrize g with an
affine linear map f: [%, 1] — [0,1] and define the path connecting x to z by
making it fo on [0, %] and g0 on [%, 1]. We leave the details as an exercise.
Exercise 1.6.6. Show that the relation z ~ y as defined above is an equivalence
relation.
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The equivalence classes under this equivalence relation are called the path
components in X. For example, if X = [0,1] U [2, 3], then the intervals [0, 1] and
[2, 3] would be the path components. A set is path connected iff it has only one
path component.

We show that path connectedness is preserved by continuous maps, hence,
by homeomorphisms, so is a topological invariant.

Proposition 1.6.8. Suppose X is path connected and f: X — Y is a continuous
map. Then f(X) is path connected.

Proof. Let u = f(z),v = f(y) be points of f(X). Since X is path connected,
there is a path « connecting x and y. Then f« is a path connecting v and v. [

The basic relationship between the two forms of connectivity is given by the
following proposition.

Proposition 1.6.9. If X is path connected, then X is connected.

Proof. Pick a point z € X, and for each point y € X, choose a path connecting
x to y. The images of these paths are all connected since they are images of
connected sets under continuous maps, and each of them contains x. Their union
(as we let y range over all of the points of X) is all of X, and so we get that X
is connected by applying Proposition 1.6.6. O

It is not the case that a connected set has to be path connected. Here is
an example of a set in the plane, called the topologist’s sine curve, which is
connected but is not path connected. Our set is based on the sinl/z curve.
Figure 1.9 shows a global and a local view (near a point on the y-axis) of its
graph. It is the union of two sets, A and B. Here A is just the graph of sin1/z,
where 0 < & < 1, and B is the segment along the y-axis where the y-coordinate
ranges from —1 to 1. To see that A U B is connected, the idea is that if it were
contained in a union U UV of open sets with no points in both U and V', then
since A and B are each connected (being the images of connected sets under
continuous maps), each would have to lie entirely in one of the sets. Suppose
that B C U. Then since U is open, we can show that at least one point of A
must also lie in U. Since A is connected, then all of A must also lie in U and so
AUB lies in U. That AU B is not path connected is based on the idea that there
can be no path connecting a point of A to a point of B. The basic idea is to use
the fact that a small ball about a point in B will intersect A in an infinite number
of disjoint arcs, and to show that for AU B to be path connected, we would have
to be able to connect points in different arcs while staying in such a ball, which
is impossible. Verification of the details are left as Exercises 1.9.44-1.9.46 at the
end of the chapter.

We now consider some examples of path connected, hence connected, sets in
Euclidean spaces.

Example 1.6.2. As our first example, note that R" is path connected. We can
take a straight line path connecting any two points x,y, f(t) = (1—t)x +ty. By
analogous reasoning, any convex set (a set where straight lines joining any two
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Figure 1.9. The topologist’s sine curve—two views.

points in the set lie in the set) is path connected. This contains balls and cubes,
for example.

Example 1.6.3. The unit sphere S* C R"*! is path connected, n > 1. The
best way to see this is to show that R"*1\{0} is path connected, and then show
that there is a continuous map from R"*1\{0} onto S™. To see that R"*!\{0}
is path connected, note that if &,y € R"*! and the straight line joining them
does not pass through 0, then it may be used to give a path connecting them
as before. If it does pass through 0, then choose a point z that is not on this
line (here we use n > 1). Then the straight line from « to z together with the
straight line from 2z to y may be used to give a path from x to y. We can get a
continuous map from R"*1\{0} onto S™ by projecting along lines through the
origin. Precisely, this map is given by the formula, P(x) = z/|x|, where |z|
denotes the length of x.



36 1. Basic point set topology

Exercise 1.6.7. Show that a union of path connected sets with a point in
common is path connected. (Hint: Let z be the common point. Then show that
given z,y in the union, we can find a path that joins them by using paths in
individual path connected spaces that join z to z and join z to y.)

Although a connected set need not be path connected, here is a situation
where that is true.

Proposition 1.6.10. Let A be an open subset of R™. If A is connected, then A
s path connected.

Proof. We show that A has only one path component, hence is path connected.
Note that each path component P is open in A, since each point has a ball about
it contained in A and each point of the ball can be connected to the center by
a straight line path. If A had more than one path component, let P; be a path
component and P, be the union of the other path components. Then P, P, give
a separation of A into two disjoint, nonempty open sets, a contradiction. O

We conclude this section on connectedness by proving a version of the
intermediate value theorem.

Proposition 1.6.11 (Intermediate value theorem). Suppose that f: X — R
is a continuous function and X is connected. Let ¢ = f(x1) and d = f(x2) and
suppose that ¢ < e < d. Then there is x5 € X with f(xz3) = e.

Exercise 1.6.8. Prove the intermediate value theorem using the fact that f(X)
is connected and our characterization of connected sets in the line.

This theorem is encountered in calculus when X is a closed interval [a, b]. In
this context, it says that a continuous function must assume every value between
f(a) and f(b). Another way of stating this is to say that the closed interval with
end points f(a), f(b) is a subset of f([a,b]). By combining compactness and
connectedness, we can describe completely what the image of a closed interval
under a continuous map to the reals must be. Since it must be connected, it
has to be an interval, a ray, or all of the reals. Since it must be compact, the
only possible choice is a closed interval. The end points of this interval will be
the minimal value and the maximal value of the function. We state this as a
proposition.

Proposition 1.6.12. If f:[a,b] — R is continuous, then f([a,b]) = [m, M]

where m, M are the minimal and mazimal values of the function.

Exercise 1.6.9. Show that the letter T is not homeomorphic to the letter O.
(Hint: Consider what happens when a point is removed from each letter and the
corresponding connectivity properties.)

Exercise 1.6.10. Show that S! is not homeomorphic to R by showing S\ {z}
is not homeomorphic to R\{y}.

Exercise 1.6.11. Show that two disjoint concentric circles in the plane are not
homeomorphic to one circle.
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1.7 Quotient spaces

We discuss the notion of a quotient space, which is also called an identification
space. We will be using quotient spaces extensively in Chapter 2 when we study
surfaces.

Definition 1.7.1. Suppose X, Y are topological spaces, and we have a surjective
map ¢: X — Y. Then we say Y has the quotient topology with respect to (X, q)
if U C Y is open iff ¢71(U) C X is open. Y is then called a quotient space of X
and q is called a quotient map.

A simple example of a quotient map is the map ¢: R — St where ¢(t) = €27t
The arcs in the circle which provide a basis for its topology have as their inverse
images the unions of disjoint intervals in the reals.

Note that the map ¢ is continuous when Y has the quotient topology. For
whenever U C Y is open, the definition of the quotient topology requires that

¢ 1(U) has to be open.

Exercise 1.7.1. Suppose ¢: X — Y and Y has the quotient topology with
respect to (X, q). Show C' C Y is closed iff ¢=1(C') C X is closed.

Quotient spaces often arise by starting with some known space X and then
forming Y from X by identifying certain points of X, usually by means of an
equivalence relation we put on points of X. The map ¢ then sends a point z € X
to the equivalence class of all points that are identified with x. In this context,
Y is sometimes called an identification space and the quotient map ¢ is called an
identification map. The equivalence class containing z is denoted by [z] and the
map sending a point to its equivalence class is denoted by ¢(x) = [z]. A simple,
but quite important, example comes from starting with X = [0, 1], and then mak-
ing 0 equivalent to 1 the only nontrivial equivalence relation. The quotient space
then can be imagined geometrically by taking a piece of string and then joining
the end points to get a circle up to homeomorphism for the quotient space Y.

Suppose f: X — Z is a continuous function and Y = X/ ~ is formed from X
by identifying points in X within the same equivalence class, ¢: X — Y, q(z) =
[]. Then f induces a map f:Y — Z if whenever z; is equivalent to 2o then
f(z1) = f(z2); that is, identified points are sent to the same point by f. We
define f by f([z]) = f(z). This is well defined because, if we choose [1] = [z2],
then x; ~ x5 and f(x1) = f(z2). We are defining f by fq(z) = f([z]) = f(z).
We call f the map induced by f. The quotient topology is set up so that f con-
tinuous implies f is continuous. For if U is an open set in Z, then to check that
f is continuous, we verify that f~(U) is open in Y. To check this, we use the
quotient map ¢: X — Y,q(z) = [z]. Then f~1(U) is open in Y iff ¢~ 1(f~1(U))
is open in X. Since fq = f, the condition is that f~!(U) is open, which is true

since f is continuous.
X
|
q
f
Y

HZ
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P

Figure 1.10. Saturated open sets ¢~ 1(U) about [0] for [0, 1] and R.

When a quotient space is formed by identifying points, it is difficult to picture
the equivalence classes directly and the open sets in the quotient space. What
we can do, however, is picture their inverse images within the space X. The sets
q~1(U) are open sets that are saturated with respect to the equivalence relation.
This means that if v € ¢~1(U) and z ~ y, then y € ¢~*(U). For a simple example,
consider X = [0,1] with the only nontrivial equivalence being 0 ~ 1. Then the
basis for the topology of X/ ~ will have inverse images being open intervals
in (0,1) and also sets of the form [0,a) U (b,1] for 0 < a < b < 1. The last
set is a saturated open set that contains the equivalence class {0,1}. A related
example uses X’ = R and forms the quotient space using the equivalence relation
x ~ z+n,n € Z. A typical equivalence classis {...,z—2,z—1,z,z+1,24+2,...}.
A basic open set U about this point will have inverse image ¢~ *(U) = Upez(z +
n—e€,x+n+e), where € < % This is just an interval about x together with all
of its translates by integers. See Figure 1.10.

We prove some elementary propositions about quotient spaces. The first
proposition formalizes our last observation about induced maps.

Proposition 1.7.1. Let Y be a quotient space of X with quotient map q: X —
Y. Let g:Y — Z be a map. Then g is continuous iff the composition gq is
continuous.

Proof. If g is continuous, then the composition is continuous since the compos-
ition of continuous functions is continuous. Conversely, suppose the composition
is continuous and U C Z is an open set. Look at g=!(U). To see that it is open,
we have to show that ¢=1(g~1(U)) is open. But ¢~ (g7 1(U)) = (g9q) 1 (U), so it
is open since gq is continuous. O

Proposition 1.7.2. Suppose Y is a quotient space with respect to (X, q) and Y’

is a quotient space with respect to (X',q'). Let f: X — X', f:Y — Y’ be maps
with ¢'f = fq. We also could express this by saying that the following diagram
18 commutative.

f
X — X
JIY
f
Y —=Y’
Then f is continuous if f is continuous.

Proof. To show f is continuous, we need to show that fq is continuous, by
Proposition 1.7.1. But ¢’ f = fq and f, ¢’ continuous imply ¢’ f is continuous. [

Proposition 1.4.4 has a nice application for quotient spaces.
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Proposition 1.7.3. Suppose f: X — Y is a surjective continuous map, X is
compact and Y is Hausdorff. Define an equivalence relation on X by saying u ~ v
iff f(u) = f(v); the equivalence classes are the inverse images f~1(y). Then the

induced map f:X/ ~—Y is a homeomorphism.

Proof. Proposition 1.7.1 implies that f is continuous. It is a bijection since
we are identifying points in X which map to the same point. Since X/~ is
the continuous image of the compact space X by the quotient map ¢: X —
X /~, we have that X/~ is compact. Then Proposition 1.4.4 implies that f is a
homeomorphism. O

We now apply these propositions to the quotient spaces Y = [0,1]/~ and
Y’ = R/~. Consider the map f:[0,1] — S! given by f(t) = (cos2nt, sin 27t).
This is a continuous surjection and the only nontrivial inverse image is
(1,00} = {0,1}. Thus if we form the quotient space Y from the inter-
val X = [0,1] by identifying 0 with 1, then Proposition 1.7.3 implies that the
induced map f is a homeomorphism.

We could instead start with X’ = R and identify x with x +n,n € Z to
form the quotient space Y’'. We claim that Y’ is also homeomorphic to the
circle. We start with the same map p, now considered as a map from the
reals. It determines a map p:Y’ — S' by p[t] = (cos27t,sin 27t). This is well
defined since (cos27(t + n),sin 27 (t + n)) = (cos 2t, sin 27t) and is continuous,
by Proposition 1.7.1. Note that it is onto since both ¢ and p are. It is also 1-
1, since p[t] = p[t'] implies (cos 27t, sin 27t) = (cos 27t’, sin 27t’). But this only
happens if ¢ = t' + n for some integer n; hence [¢f] = [t']. To see that p is in
fact a homeomorphism, we can no longer use Proposition 1.7.3 since R is not
compact. We need to see that its inverse p—! is continuous. But this is equivalent
to (p~1)"1(U) = p(U) being open when U is open; that is, p sends open sets
to open sets. Since p(U) = pg~*(U), this condition is equivalent to p sending
saturated open sets to open sets. But p is an open map; that is, it sends open
sets to open sets. Hence p is a homeomorphism from R/~ to S?.

We state, for future use, the principle used in the last example.

Proposition 1.7.4. Suppose f: X — Y is a surjective continuous map. Define
an equivalence relation on X by saying u ~ v iff f(u) = f(v); the equivalence
classes are the inverse images f~'(y). Then the induced map f: X/~ — Y is a
homeomorphism exactly when f sends saturated open sets ¢~ 1(U) to open sets.

In particular, it is a homeomorphism if f is an open map.

Since each of Y, Y’ is homeomorphic to S, they are homeomorphic to each
other. We now show this more directly. Let ¢: X — Y, ¢ : X’ — Y’ be the
identification maps. Define ¢: X — X’ by inclusion. Since [i(0)] = [0] = [1] =
[i(1)], i induces a map i:Y — Y’ defined by i([z]) = [i(x)]. Thus we have a
commutative diagram (i.e. i¢ = ¢’i) by definition. Thus 7 is continuous since i
is. Next note that 4 is 1-1 since iq is except for 0,1, and [0] = [1] in Y. i maps
onto Y’ since any [y] € Y is represented by a y between 0 and 1. We leave it as
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Figure 1.11. Cylinder and torus as quotient spaces of the square.

an exercise to construct an inverse for ¢ and to prove it is continuous.

X=[01 —= X' =R

IS

Y Y’ St

Exercise 1.7.2. Construct an inverse for ¢ and show that it is continuous.
(Hint: Consider the discontinuous function from X’ to X defined by sending z
to x — [x], where [z] denotes the greatest integer in x; i.e. the unique integer
satisfying [z] <z < [z] +1.)

Consider the product of the circle with itself. This space is called a torus and
will be studied in more depth in Chapter 2. From our description of the circle as a
quotient space, we may give a description of S* x S' as a quotient space. We take
the product R x R and make the following identifications: (s,t) ~ (s +m,t+n),
where m,n € Z. An alternate description would be to take [0,1] x [0,1] and
identify (0,t) with (1,¢) and (s,0) with (s,1). A pictorial description is given in
Figure 1.11. It is supposed to indicate that we identify the edges labeled a and
the edges labeled b. Geometrically, we can think of gluing the edges labeled a
together to form a cylinder (the b edges becoming circles) and then gluing the
two circles together to get a torus.

Exercise 1.7.3. Describe basic open sets in the quotient space [0,1] X
[0,1]/(0,t) ~ (1,1), (s,0) ~ (s,1) about each of the points [(0,0)],[(%,0)],[(0, )],
and [(3, )]. Describe the inverse image ¢~'(U) of each of these basic open sets.

Exercise 1.7.4. Show that the quotient space formed from a square by
identifying all of the points in the bottom edge of the square to each other
is homeomorphic to a triangle. (Hint: Start with the map from the rectangle to
the triangle preserving y-levels and sending the bottom edge of the rectangle to
the bottom vertex of the triangle. See Figure 1.12, where the bottom line that
is to be collapsed to a point is thickened, as is the image point.)
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Figure 1.12. Triangle as a quotient space of the square.

We now discuss quotient spaces that are formed from two disjoint sets by
identifying certain points in one of the sets with points in the other by means
of a function. Suppose A and B are disjoint topological spaces. Then the union
of A and B can be regarded as a topological space by saying a set is open iff
it is the union of an open set in A with an open set in B. We will denote the
union with this topology as A| | B, and call it the disjoint union. Frequently, we
will perform this construction when A and B are not disjoint. In this case we
will regard them as disjoint by distinguishing points by saying the point comes
from A or it comes from B. This is the reason for our terminology “disjoint
union”—we want to emphasize that we are regarding the two sets as disjoint.
Now suppose K is a closed subset of B and f is a homeomorphism from K onto
a closed subset f(K) of A. Then we may form the quotient space AUy B =
(Al|B)/x ~ f(x),x € K C B, formed from the disjoint union by identifying
x € K with f(z) € f(K).

Proposition 1.7.5. Let g: AUy B — C be a map induced from continuous
functions ga: A — C, gp: B — C with gaf = gp|K. That is, ift € A C AUy B,
then g(z) = ga(z), and if x € B, g(x) = gp(x). Then g is continuous.

Proof. To show g is continuous, we have to show that the composition
99: Al JB — AUy B — C is continuous. But the topology on the disjoint
union is just the union of the topologies on A and B. Since the restriction of this
composition to A, B is just ga, gp, respectively, it is continuous. O

Proposition 1.7.6. Let A, Uy, B; = A;||B;/x ~ fi(z), v € K; C B; be the
quotient space of A;UB; coming from identifying x € K; C B; with f(x) € A; via
a homeomorphism f; : K; — f(K;), i = 1,2. Suppose there are homeomorphisms
FA:Al — AQ,FB:Bl — BQ with FB(K1) = KQ and FAf1 = fQFB. Then
the map F: Ay Uy, Bi — Ay Uy, By given by F(z) = Fa(z) if ¢ € A and
F(z) = Fp(z) if x € By is a homeomorphism.

Exercise 1.7.5. Prove Proposition 1.7.6.

Given a topological space X and closed subsets A, B with AUB = X, we can
regard X as a quotient space of A| | B usingid: ANB C B — ANB C A,id(z) =
x. For the inclusion maps give a map ¢: A| | B — X; this induces AUjq B — X,
which is a bijection. To see that it is a homeomorphism just requires showing X
has the quotient topology. A set C' in X is closed iff CN A and C' N B are closed
since C = (CNA)U(CNB), and A and B are assumed closed. The quotient
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topology on X from (A| | B,q) comes from requiring C' to be closed iff ¢=1(C)
is closed in A U B; that is, C N A and C N B are closed. Thus X does have the
quotient topology and so ¢ is a homeomorphism.

Suppose now we have homeomorphisms hy: A — A',hg:B — B’. Then
Proposition 1.7.6 implies X = AU;q B ~ A’ Uy B’, where f:hg(AN B) —
ha(AN B) is f(x) = hahgz'(x). We will use this in situations where we can
choose A’, B’ to be particularly nice spaces such as disks or rectangles.

As an example, consider the annulus X = {(z1,22):1 < 27 +23 < 2}. We can
first break X up into A = XN{(z1,22): 22 <0} and B = X N{(x1,z2): 22 > 0}.
We will give a number of different descriptions of the annulus as a quotient space
(see Figure 1.13). The variety of descriptions given below illustrate that a space
may arise as a quotient space in many different ways. The simplest description
comes from using f:[—1,1] x [1,2] — X, f(s,t) = (tcosmws,tsinms). The first
coordinate s is used to wrap the interval around the circle (giving the angle
up to a factor of ), and the second coordinate ¢ measures the distance from
the origin. This map sends (—1,¢) and (1,t) to the same point (—¢,0) and is
otherwise 1-1. Thus f induces a homeomorphism between the quotient space
Q1 = [-1,1] x [1,2]/(-1,t) ~ (1,t) and the annulus X. We could replace the
interval [1,2] by the homeomorphic interval [—1,1] and thus identify @1, and
hence X, to the quotient space Q2 = [—1,1] x [-1,1]/(=1,t) ~ (1,t). We will
think of this as the standard description of the annulus as a quotient of the
square D' x D', where we are identifying the left-hand boundary interval to the
right hand boundary interval. We depict this identification and the corresponding
image on the annulus by labeling the identified edges with the letter a.

We now split the interval [—1, 1] into two intervals [—1, 0] and [0, 1] and think
of it as a quotient of the disjoint union by identifying the two copies of 0. Using

Q1 Qe

Figure 1.13. Expressing the annulus as a quotient space.
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Figure 1.14. Mobius band.

this, the inclusion gives maps of the disjoint union [—1,0] x D*||[0,1] x D!
to D! x D'. This map then induces a homeomorphism between the quotient
space Q3 = [—1,0] x D1 U; [0,1] x D! and Q2, where f(—1,t) = (1,t), f(0,t) =
(0,). This identification of the two copies of 0 x D! is labeled with b, as is
its image in the annulus. Now by identifying [—1,0] and [0,1] with D! using
the order preserving affine linear maps, we can re-express (J3 as the quotient
Q4= D' x D'U, D' x D!, where g(—1,t) = g(1,t), g(1,t) = (—1,t). As another
description, form a quotient Q5 = D' x D' U, D' x D', where h(—1,t) =
(=1,t),h(1,t) = (1,t); that is, h is the identity on the identified edges. The
homeomorphism F': Q5 — @4 is induced from the map that sends the left-hand
copy of D' x D! to itself via the identity, and sends the right-hand copy of
D' x D! to itself via (s,t) — (—s,t). We use Proposition 1.7.6 to see that this
induces a homeomorphism from Q5 to Q4.

Descriptions such as the last ones will be very useful to us in Chapter 2,
where we study surfaces. We will decompose a surface into a number of pieces,
each of which is homeomorphic to D? or D! x D! and then think of the surface
as a quotient space of the disjoint union of these nice pieces. The structure of the
surface will be contained in the pieces involved and how they are glued together.

Here is another example. The Mobius band B is formed from a rectangular

strip by identifying the ends after making a half twist as in Figure 1.14. More
formally, B = D x D*/(—1,t) ~ (1, —t). We might also write this as a quotient
space formed from two rectangles by splitting D! = [~1,0] U [0, 1] to form @} =
[~1,0] x D*Ug [0,1] x DY, with k(—1,t) = (1, —t), k(0,¢) = (0,¢). By identifying
[—1,0] and [0, 1] with D!, we can re-express this as a quotient space D* x D' U,
D' x D', with p(—1,t) = (1,t),p(1,t) = (=1, —t).
Exercise 1.7.6. Consider the space X formed from two copies of R = D! x D!
by identifying {—1,1} x D! to itself via d with d(1,y) = (1, —y) and d(—1,y) =
(=1, —y); that is, X = RUg R. Construct a homeomorphism between X and the
annulus.

Exercise 1.7.7. Suppose X = AU, B,Y = AUy B, where g,¢': K C B —
9(K), ¢'(K) C A are homeomorphisms. Suppose (¢')"'g: K — K = h|K, where
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h:B — B is a homeomorphism. Show that the identity on A and h on B piece
together to give a homeomorphism from X to Y.

Exercise 1.7.8. Show that the M&bius band can also be described as a quotient
space D! x D' Uy D' x D', with f(—1,t) = (=1,¢), f(1,t) = (1,—t).

Exercise 1.7.9. Identify all points in the lower half of the circle to each other.
Show that the resulting quotient space S'/ ~ is homeomorphic to S'. (Hint:
Find a continuous map from the circle to the circle which sends the lower half
of the circle to a point and is 1-1 elsewhere.)

Exercise 1.7.10. Put an equivalence relation on the unit disk by making all
points on the boundary circle equivalent to each other. Show that the resulting
quotient space D?/ ~ is homeomorphic to S?. (Hint: Send diameters to great
circles with the origin going to the south pole and the boundary circle going to
the north pole.)

1.8 The Jordan curve theorem and
the Schonflies theorem

In this section we outline proofs of the Jordan curve theorem and the Schonflies

theorem for polygonal curves. The section is essentially in the form of a project

to fill in the details of the outline to prove these results. The proofs of these

theorems in the polygonal case will provide us with many opportunities to apply

the concepts from the chapter in justifying geometric steps in the argument.
We start by carefully stating these theorems in their general versions.

Definition 1.8.1. A simple closed curve in the plane is a function f:S5! — R?
which is a homeomorphism onto its image. The image C' = f(S!) C R? is
sometimes also called a simple closed curve when the parametrization is not
important. Alternatively, a simple closed curve in the plane can be given as a
map f:[a,b] — R2 with f(x) = f(y) for x # y iff {x,y} = {a,b} so that when
the quotient space [a,b]/a ~ b is identified with S!, the induced map f is a
homeomorphism onto its image.

Theorem 1.8.1 (Jordan curve theorem). Let C = f(S) be a simple closed
curve in the plane. Then R?\C' is the disjoint union of two open sets A, B so
that each is path connected. Moreover, one of these sets A is bounded and the
other B is unbounded. Also, C is the boundary of each of these sets.

Theorem 1.8.2 (Schonflies theorem). Let C = f(S') be a simple closed
curve in the plane and R*\C = AU B as given by the Jordan curve theorem,
with A bounded. Then there is a homeomorphism of the plane to itself which
sends the open unit disk to A and the closed unit disk to AU C.

The Jordan curve theorem was first stated as a theorem by Camille Jordan
(1838-1932) in his Cours d’Analyse in the late nineteenth century. His original
proof was very complicated and was found to have gaps, which required consid-
erable effort to fill in. Modern proofs use homology theory, where the separation
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Figure 1.15. A polygonal simple closed curve.

part of the theorem is expressed by saying that Ho(R?*\C) is the free abelian
group on two generators. Hy measures the path components of a space; the two
generators correspond to A and B. The difficulty, in general, has to do with
the very wild nature a simple closed curve may have. If the curve is restricted
somewhat, then the theorem becomes much easier. The Schonflies theorem was
proved in 1908.

In this section we will only look at the case of a polygonal simple closed curve,
which is the image of a map p : [0,n] — R? where, on each subinterval [k, k + 1],
the map is an affine linear map onto a line segment Lj determined by the points
(called vertices) p(k) = vy and p(k + 1) = vi41. We assume that p(0) = p(n)
but p(a) # p(b) if a # b unless {a,b} = {0,n}. Note that the quotient space
[0,7]/0 ~ n is homeomorphic to S and p determines a map p:S' — R? as in
the original definition of a simple closed curve. Figure 1.15 shows an example of
a polygonal simple closed curve and the bounded region which it bounds. We
will assume that adjacent segments in C' do not lie on the same line.

We give an outline of the proofs of these theorems, giving the major steps
with illustrations when appropriate.

Step 1. Show that both theorems are unaffected by composing f:S! — R?
with an affine linear homeomorphism (sends lines to lines) H: R* — R2. Use
this to show that we can reduce the theorems to the case that no segment in the
polygonal curve is horizontal, which we will assume from now on.

Step 2. There are two types of points in C, edge points in p(k,k + 1), and
vertices, which are the points p(k). The vertices can be divided into two types,
regular vertices and special vertices. The special vertices are those which are
a local maxima or local minima for the y-coordinate on C, and the regular
vertices are the others. Figure 1.16 shows neighborhoods of each type of point,
and smaller regular neighborhoods within these which consist of nearby parallel
line segments. Show that such neighborhoods exist for each type of point in C.

Step 3. Consider a horizontal line at height yo. Suppose it intersects C in k
points (not counting any special vertices). Show that there is a number € so that
horizontal curves at height between yy—e and yo—+e€ intersect C' in [ points besides
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Edge point Regular vertex Special vertex

Figure 1.16. Nice neighborhoods.

Figure 1.17. How lines intersect C.

special vertices, where £k = [ mod 2. It is necessary to consider line segments
in C' which are missed at height yo as well as special vertices at height 1. Use
this fact to show that the function that sends y to the number of points of C'
mod 2 that are not special vertices at height y is a continuous function from R to
{0,1}. Show that the horizontal line at height y intersects C' in an even number
of points which are not special vertices. See Figure 1.17 for an illustration.

Step 4. For each (x,y) & C, define I(x,y) to be 0 if there are an even number
of points of C' (not counting special vertices) at height y to the left of (z,y),
and equal to 1 when there are an odd number of such points. Show that I is
continuous, and that the sets A = I=1({1}) and B = I~1({0}) are disjoint open
sets with R2\C' = AU B.

Step 5. Figure 1.18 shows a regular neighborhood of the curve C consisting of
parallel polygonal curves near C'. Show that C has such a regular neighborhood
N(C). Show that that N(C) is homeomorphic to the annulus S* x [$, 3] C R?
enclosed between the circles of radii § and 3 with C corresponding to S* x {1}.
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Figure 1.18. A regular neighborhood.

Figure 1.19. Using C'4 to connect z,y € A.

In particular, show that N(C)\C consists of two sets which are path connected
but that N(C)\C is not path connected.

Step 6. Show that BAN(C) = C4 U Cp, where Cy C A and Cp C B are
parallel polygonal curves to C. Use the curves C'4 and Cp to show that each of
A and B are path connected. See Figure 1.19 for a motivating example of such
a path connecting two points z,y € A that uses C4. Use N(C) to show that
A=AUC, B=BUC.

Step 7. Use the fact that C' is compact to show that A is compact and B is
not compact.

These steps then complete the proof of the polygonal version of the Jordan
curve theorem. We now outline an approach to proving the polygonal Schonflies
theorem. Our starting point is the setup from the polygonal Jordan curve
theorem above.

For our proof of the Schonflies theorem, we first need to modify C slightly
before we give our argument, but in a way that does not change the validity of
the Schonflies theorem.

Step 1. Show that there is a homeomorphism h:R? — R? which is the iden-
tity outside a regular neighborhood of C' so that the special vertices all occur at
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Figure 1.20. Moving a vertex.

different y-values. The idea is depicted in Figure 1.20, where we push the vertex
vertically, keep the boundary of the part of the regular neighborhood of two
adjacent edges that come together at the vertex fixed, and extend this to a PL
map of the regular neighborhood. This allows an extension via the identity out-
side of the regular neighborhood to get a homeomorphism of R? which displaces
the vertex slightly. Show that this modification does not affect the validity of
the Schonflies theorem. Figure 1.20 shows the original piece of the curve and the
displaced piece in a regular neighborhood.

Step 2. Use compactness to show that there is the minimal value m assumed
by C and the maximal value M assumed by C' and the A lies between the y = m
and y = M. Moreover, show that there is a minimal special vertex at height m
and a maximal special vertex at height M. Show that there are an even number
of special vertices, half of which are local minima and half local maxima.

Step 3. Show that if there are just two special vertices, then A is homeo-
morphic to a triangle, and that the homeomorphism can be chosen to fix
pointwise a small subtriangle at the bottom of A and is the identity outside
a large rectangle containing A. Use induction on the number V' of vertices, with
starting point V' = 3. Your homeomorphism should be expressible as a composi-
tion of homeomorphisms which are the identity outside a small neighborhood of
a triangle which is being worked on. At each step a triangle is added or removed
from A where two of its sides are on C' and the third side is not. The interior
of the triangle will lie entirely in A or entirely in B. The argument should show
the existence of such triangles. The requirement that there are no horizontal
lines occurring in any intermediate steps may require working on two adjacent
triangles in a single reduction step. As a hint, we illustrate an example of a
complete reduction of such a region to a triangle in Figure 1.21. The dotted lines
show intermediate triangles being used and the numbering shows new edges in
C as it is homeomorphed to the bottom triangle.

Step 4. The general argument is by induction on the ordered pairs (V,.5),
where V' denotes the total number of vertices and S is the number of special
vertices. The ordering is lexicographic ordering: (V7,57) < (Va, Sa) iff (1) V; <
Va, or (2) V1 = V4 and S; < Ss. The starting point for the induction is (3,2)
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Figure 1.21. Homeomorphing A to a triangle.

and the way it works is to either keep the total number of vertices the same
and reduce the number of special vertices by 2, or reduce the number of total
vertices. Consider the lowest special vertex (minimal y-value) vy, which is a local
maximum. There are a number of cases to consider. A useful concept to look at is
the position of the first two vertices on the segments moving downward from vy,
and look for ways to homeomorph R? to simplify the image of C so that it has one
fewer regular vertex. All of your homeomorphisms should fix a small triangle at
the bottom of A and the region outside a large rectangle containing A. In fact, at
each step the homeomorphism should just fix everything outside a region near a
triangle on which you are working. Some steps may require composing a couple of
these as well as introducing new vertices to avoid horizontal edges. Figure 1.22
illustrates how C' is deformed to a C’ with a single local maximum and local
minimum. Intermediate triangles being used are indicated with dotted lines.

1.9 Supplementary exercises

Definition 1.9.1. A collection B = {B;:i € I} of subsets of X is called a
basis and its elements are called basis elements if the following properties are
satisfied:

(a) every x € X is contained in some Bj;
(b) if & € B; N By, B;, B; € B, then there is a basis element By with « €
B, C B;n BJ

The topology 75 determined by the basis B is defined as follows: a set U C X
is open if, for every x € U, there is a basis element B; with x € B; C U.

The first six problems concern the concept of a basis and the topology which
it determines.

Exercise 1.9.1. Verify that 7z satisfies the three properties required of a
topology.
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Figure 1.22. Removing excess special vertices.

Exercise 1.9.2. Show that the set of balls {B(x,r), z € X, r > 0} is a basis
for the topology of a metric space X; that is, show that it is a basis and the
topology it determines is the metric topology.

Exercise 1.9.3. Show that any open set in 7p is a union of basis elements.
(Hint: For x € U, choose a basis element B;(,) with 2 € By, C U.)

Exercise 1.9.4. Suppose the topology for Y is determined by a basis. Show
that f:X — Y is continuous iff, for each basis element B of Y, f~1(B) is open.

Exercise 1.9.5. Show that the open intervals give a basis for the topology of R.

Exercise 1.9.6. Combine the last two exercises to show that a map to R is
continuous iff, for each open interval I C R, we have f~1(I) is open. Formu-
late and prove an analogous statement for maps to a metric space in terms
of balls.

Exercise 1.9.7. Let X be a metric space with metric d and let A be a subset of
X. Show that the metric topology on A given by d is the same as the subspace
topology.

Exercise 1.9.8. Suppose A C B C X, and B has the subspace topology. Show
that, if A is open in B and B is open in X, then A is open in X.

Exercise 1.9.9. If z,y € R? let d(z,y) = |z1 — y1|. Which of the three
properties of a metric does d satisfy?
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Exercise 1.9.10. On R?\{0}, write each point in polar coordinates as (r,6),
where 0 < 6 < 2x. Define d((r1,61), (r2,02)) = |r1 — 12| + |61 — 02|. Show that
this gives a metric on R?\{0} but the topology formed is not the usual topology.

Definition 1.9.2. A point z is called a limit point of a set A if every open set
U containing = intersects A\{z} in a nonempty set; that is, U N (A — {z}) # 0
for U open, x € U. Denote the limit points of A by A’.

Exercise 1.9.11. Show that a set A is closed iff it contains all of its limit points.

Exercise 1.9.12. Find the limit points of the following subsets of
R: (a)(0,1); (b)Q, the rationals; (c) {1/n: n € N}.

Exercise 1.9.13. Let X be a metric space and A C X. Show that z is a limit
point of A iff every ball B(x,r) contains infinitely many points of A.

Exercise 1.9.14. Show that, in Hausdorff space X with subset A,z is a limit
point of A iff every open set containing x contains infinitely many points of A.

Exercise 1.9.15.

(a) Show that if C is a closed set containing A, then A C C.
(b) Show that if V' is an open set contained in A, then V' C int A.

Exercise 1.9.16. Show that A is closed iff A = A, and A is open iff A = int A.
Exercise 1.9.17. Show that A= AU A’.
Exercise 1.9.18.

(a) Show that in R™ we have B(z,7) = {z : d(z,2) < r} and Bd B(z,r) =
{z:d(z,z) =r}.

(b) By using the discrete topology, show that this does not hold generally in
a metric space.

Definition 1.9.3. A topological space X is called limit point compact if every
infinite set has a limit point.

Exercise 1.9.19. Show that a compact space is limit point compact.

Exercise 1.9.20. Show that if X is a metric space, then X is limit point compact
iff it is sequentially compact iff it is compact.

Exercise 1.9.21. Show that if f: X — Y is continuous at x and x,, is a sequence
converging to x, then f(x,) converges to f(x).

Exercise 1.9.22. Show that a map f:(X,d) — (Y,d’) between metric spaces
is continuous at z iff for every sequence x,, which converges to x, the sequence
f(z,) converges to f(z).

Exercise 1.9.23. Show that, in a Hausdorff space, the limit of a sequence is
well defined; that is, if x,, converges to z and to y, then z = y.

Exercise 1.9.24. Show that, in a Hausdorff space, if z,, converges to z, then
x is the only limit point of the set of all of values {z,: n € N}. Is the converse
true? Give a proof or counterexample.
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Exercise 1.9.25. Show that a finite set in a Hausdorff space is closed.

Definition 1.9.4. A Hausdorff space is called regular if, given x € X and a
closed set C' with z & C, then there are disjoint open sets U and V with z € U
and C C V. A Hausdorff space is called normal if, whenever C, D are disjoint
closed subsets, then there are disjoint open sets U,V with C C U, D C V.

Exercise 1.9.26. Show that a compact Hausdorff space is regular. (Hint: Use
the fact that a closed subset of a compact space is compact. Get an open cover
of the closed, hence compact, set C' where there is an open set V,, for each point
y € C with y € V,, and an open set Uy so that « € U, with U, NV, =0.)

Exercise 1.9.27. Suppose z € U C X, where X is regular and U is open. Show
that there is an open set V with z € V. C V C U. (Hint: Consider the point z
and the disjoint closed set X\U.)

Exercise 1.9.28. Show that a compact Hausdorff space is normal. (Hint: Apply
the conclusion of Exercise 1.9.26 to pairs x, D, where x € C and use the
compactness of C.)

Exercise 1.9.29. Suppose C' C U C X, where X is normal, C'is closed and U
is open. Then show that there is an open set V with C C V C V C U. (Hint: C
and X\U = D are disjoint closed sets.)

Exercise 1.9.30. Show that a metric space is normal. (Hint: If C, D are disjoint
closed subsets, then cover C' by balls B(c,r(c)) disjoint from D and cover D by
balls B(d,r(d)) disjoint from C. Then show that U = U.ec B(e,r(c)/2) and
V = Ugep B(d,r(d)/2) are disjoint open sets containing C' and D.)

Definition 1.9.5. Let C be a subset of a metric space X. For each z € X,
define the distance from x to C by d(x,C) = inf{d(z,y): y € C}.

Exercise 1.9.31. Show that {z: d(z,C) = 0} = C. Show that if C' is closed and
x & C, then d(x,C) > 0.

Exercise 1.9.32. Show that C. = {y: d(y,C) < €}, where € > 0, is an open set
containing C'.

Exercise 1.9.33. Show that the function f: X — R given by f(z) = d(z,C) is
continuous. (Hint: Look at the inverse image of an interval.)

Exercise 1.9.34. Suppose C, D are disjoint closed sets in a metric space X.
Use the notion of the distance from a point to a set to define d(C, D) in terms of
d(x, D) for x € C. Give an example to show that this distance could be 0. Show
that if X is compact, then the distance must be positive.

The next two exercises give versions of Urysohn’s lemma and the Tietze
extension theorem for metric spaces.

Exercise 1.9.35. Suppose the (X,d) is a metric space and A, B are disjoint
closed sets. Show that the function
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is a continuous real-valued function f:X — [-1,1] with f~1{-1} =
A, f~1{1} = B. The existence of a function from X to [—1,1] which is —1
on A and 1 on B is called Urysohn’s Lemma and holds in the more general
situation of a normal space.

Exercise 1.9.36. Suppose X is a metric space and C' C X is a closed subset,
with a continuous function f:C — R. This exercise leads you through a proof
that there is a continuous extension F': X — R. This result is called the Tietze
extension theorem and holds in the more general situation of a normal space.

(a) Reduce to the case where f is bounded by considering the composition
of f with a homeomorphism from R to (—1,1).

(b) Because of (a), we assume from now on that f:X — [-M,M].
We inductively define continuous maps from X to [—M,M] which
give better and better approximations to f on C. Let A; =
Y ([—M,—M/3]), and By = f~1([M/3, M]). Show that A;, B; are dis-
joint closed subsets of X. Apply Exercise 1.9.35 to show that there is
a continuous map g : X — [~M/3, M/3] with A; C g;*{—M/3}, and
By C g7 'Y{M/3}. Show that |f(z) — g1 ()| < 2M/3 on C.

(c) Repeat the construction in (b) applied to hy = f — ¢1 defined on C to
construct go: X — [—2M/9,2M /9] so that

hy! ([_23M_ZMD o ({‘29MD
hr! ({2342‘;\@ co ({234})

and [f(z) — g1(x) — g2(x)[ < 4M/9.

(d) Use induction to construct a sequence of maps g¢g,: X —
(2"~ 1M /3", 2"~ M /3"] so that if hy(2) = f(z) — g1(z) — - = gn(2),
then |h,,(x)| < 2"M /3™ on C and |g,(z)| < 2"~1M/3".

(e) Define g(z) = >..°, gi(x). Show that g(x) converges uniformly to a

continuous function g: X — [—M, M] which is an extension of f; that is,
g(x) = f(z) for z € C.

Exercise 1.9.37. Urysohn’s lemma states that for a normal space X with
disjoint closed sets A, B, there is a continuous function f:X — [—1,1] with
A C f7Y{-1} and B C f~'{1}. The Tietze extension theorem states that for
a normal space X with a closed subset C and a continuous function f:C — R,
there is a continuous function g: X — R with f(x) = g(z) for z € C. Show that
Urysohn’s lemma is equivalent to the Tietze extension theorem. (Hint: Use the
argument in Exercise 1.9.36 to show that Urysohn’s lemma implies the Tietze
extension theorem.)

Definition 1.9.6. A set is countable if it can be put in 1-1 correspondence with
the natural numbers N or is finite. For example, the rationals Q and n-tuples of
rationals Q" = {(r1,72,...,7m,):7; € Q} are countable. A space X is called first
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countable if, for each x € X, there is a countable basis of open sets containing
x; that is, there is a collection {B, :n € N} of open sets containing z so that,
if U is an open set containing x, then there is a set By, C U. This is called a
neighborhood basis. A space X is called second countable if there is a countable
basis for the topology of X. A space X is called countably compact if every
countable open cover has a finite subcover. A metric space is called separable if
there is a countable set {x,, :n € N} so that every open set contains at least one
x, (we say {z,} is dense in X and {z,} is a countable dense subset).

Exercise 1.9.38. Show that Q is dense in R, and hence R is separable.
Exercise 1.9.39. Show that a metric space is first countable.

Exercise 1.9.40. Show that, if X is first countable and x is a limit point of C,
then there is a sequence x; € C' which converges to x.

Exercise 1.9.41. Show that if X is first countable, Hausdorff, and compact,
then X is sequentially compact. (Hint: Adapt the proof given in Section 1.5 for
metric spaces.)

Exercise 1.9.42. Show that a metric space is separable iff it is second countable.
(Hint: If it is separable, use balls about the countable dense subset to get a
countable basis. A countable number of countable sets is still countable. If it is
second countable, select a countable set by choosing one point from each basis
element.)

Exercise 1.9.43. Show that compactness implies countable compactness, and
that the converse holds in a second countable space. (Hint: In a second countable
space show that for each open covering {U;};cs there is a covering by basis
elements so that each basis element is contained in an element of the given
covering {U;}.)

Consider the space X = AU B, where A = {(z,sinl/z): 0 <2 <1} and
B = {(0,y): —1 <y < 1}. The space X is called the topologist’s sine curve.
The next three problems show that X is connected but not path connected. See
Figure 1.9.

Exercise 1.9.44. Show that AU B = A.

Exercise 1.9.45. Show that the closure of a connected set is connected, thus
implying that A U B is connected.

Exercise 1.9.46. We show here that A U B is not path connected. Suppose
AU B were path connected. Let f:[0,1] — AU B be a path with f(0) = (0,0)
and f(1) = (1,sin1). Consider the set S = {t: f([0,t]) € B}. Let p:R? — R be
p(z,y) = .
(a) Show that S is nonempty, is bounded from above, and has a least upper
bound u < 1.

(b) Show that u € S.
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(c) Show that there is a neighborhood Ny, of f(u) consisting of an infinite
number of separated arcs, and a neighborhood N, of u with f(N,) C
N(wy-

(d) Show that there is u; > u, u; € N, with pf(uy) > 0.

(e) Show that there are disjoint open sets U,V C Ny with
fu)ye U, f(ur) €V, and UUV = Ny(,; that is, Ny, is separated
by U, V.

(f) By looking at f|[u,u1], arrive at a contradiction.
Definition 1.9.7. A topological space X is called locally path connected at x
if for each open set V containing «, there is a path connected open set U with
x e U C V. It is called locally path connected if it is locally path connected at
each x € X. It is called locally connected at x if, for each open set V' containing

x, there is a connected open set U with x € U C V. It is called locally connected
if it is locally connected for each x € X.

Exercise 1.9.47. Show that a locally path connected space is locally connected.
Exercise 1.9.48. Show that the topologist’s sine curve is not locally connected.
Exercise 1.9.49. Show that an open set in R"™ is locally path connected.

Exercise 1.9.50. Show that the path components of a locally path connected
space are open sets.

Exercise 1.9.51. Show that if X is locally path connected and connected, then
X is path connected. (Hint: Modify the proof that a connected open set in R™
is path connected.)

Exercise 1.9.52. Give an example of a path connected space which is not locally
path connected.

Exercise 1.9.53. Define an equivalence relation on X by z ~ y if there is a
connected set containing both z and y. The equivalence classes are called the
components of X.

(a) Verify that this is an equivalence relation.

(b) Show that each component is connected, that any two components are
equal or disjoint, and that the union of the components is X.

(¢) Show that any connected subset of X intersects at most one component
and is a subset of that component.

(d) Show that each path component is contained in a component, and that
a component is a disjoint union of path components.

(e) Show that a component is a closed set.
Exercise 1.9.54.

(a) Show that a space is locally connected iff, for each open set U, each
component of U is open in X.
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(b) Show that a space is locally path connected iff, for each open set U, each
path component of U is open in X.

Exercise 1.9.55. A collection D of subsets of X is said to satisfy the finite
intersection property (F.I.P.) if for every finite subcollection {D;, ..., Dy} of D,
the intersection Dy N---N Dy, # (). Show that X is compact iff for every collection
D of closed sets satisfying the F.I.P., the intersection of all of the elements of
D is nonempty. (Hint: If not, consider the covering of X by the complements
{X\Di}.)

Exercise 1.9.56. Let (X,d) be a compact metric space, and f: X — X con-
tinuous. = € X is called a fized point of f if f(x) = x. f is called a contraction
if there is a number a < 1 such that d(f(z), f(y)) < ad(x,y) for all z,y € X.
Show that a contraction has a unique fixed point. This result is known as the
contraction mapping principle and plays a key role in analysis. (Hint: Consider
Nf™(X). where f™ denotes the n-fold composition of f with itself and use the
finite intersection property from the previous exercise.)

Definition 1.9.8. X is called locally compact at x if there is an open set U and
a compact set C' with x € U C C. It is called locally compact if it is locally
compact at each x € X.

Exercise 1.9.57. Show that a compact space is locally compact.
Exercise 1.9.58. Show that R” is locally compact.

Exercise 1.9.59. Show that if X is Hausdorff and locally compact at z, then
there is an open set U containing = so that U is compact.

Exercise 1.9.60. Suppose X is a locally compact Hausdorff space. Show that
if z € U C X, U open, then there exists an open set V containing = such that
V is compact and V C U. (Hint: Use the preceding exercise and the argument
of Exercise 1.9.27.)

The following exercise leads through the construction of the one-point
compactification of a locally compact Hausdorff space.

Exercise 1.9.61. Suppose that X is a locally compact Hausdoff space. Form
a new space X1, called the one-point compactification of X as X+ = X U {p},
the disjoint union of X and an added point p. A set U C X7 is called open if
(1) U is an open set in X, or (2) p € U and X T\U is a compact set in X.

a ow tha 1s definition of open set satisfies the three properties of a
Show that this definiti f t satisfies the th ti f
topology.

(b) Show that the subspace topology on X C X% is the same as its usual
topology.

(¢) Show that X is a compact Hausdorff space.

Exercise 1.9.62. Show that if X is a locally compact Hausdorff space and Y
is a compact Hausdorff space with Y\{yo} ~ X, then ¥ ~ X+,
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Exercise 1.9.63.

(a) Show that the one-point compactification of R is homeomorphic to S*.

(b) Show that the one-point compactification of R? is homeomorphic to
S2. (Hint: Use projection from the point p = (0,0,1) to get a
homeomorphism from S2\{p} to R2.)

(¢) Show that the one-point compactification of R™ is homeomorphic to S™.

Exercise 1.9.64. Show that, if X is compact, the one-point compactification
of X is XT = X | [{p}, where the set {p} is an open set in the disjoint union.

Exercise 1.9.65. Consider the space R*, which is the product of a countably
infinite number of copies of R. This is given the product topology with basis the
sets which are product of a finite number of intervals with a product of copies
of the reals:

(a1,b01) X +++ X (Qpybp) X RX - xR x -+,

Show that this space is not locally compact. (Hint: Look at basic open sets and
show that they do not have compact closure.)

Exercise 1.9.66.

(a) Show that the following two subsets of R are not homeomorphic: A =
{1/n:n e N}uU{0}, B=N.
(b) Show that B* is homeomorphic to A.

Exercise 1.9.67. Show that oo is not homeomorphic to O (Hint: Consider
where the crossing point of co could go under a homeomorphism.)

The next four exercises concern the homeomorphism type of the letters of
the alphabet. In each case, assume the letter is written as given below in the
sans serif style, with no adornments:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Exercise 1.9.68. Show that the letter X is not homeomorphic to the letter VY,
but that the letter Y is homeomorphic to the letter T.

Exercise 1.9.69. Construct a homeomorphism between the letter D and the
letter O.

Exercise 1.9.70. Prove that the letter A is not homeomorphic to the letter B.

Exercise 1.9.71. Group the letters of the alphabet into equivalence classes
so that equivalent letters are homeomorphic and nonequivalent letters are not
homeomorphic.

Exercise 1.9.72. Prove that if an open set U C R? is path connected, then any
two points in U can actually be connected by a polygonal path in U.

Exercise 1.9.73. For each of the following subsets of R? indicate which of the
following properties it possesses, namely, (i) compact; (ii) connected; (iii) path
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connected; (iv) open; (v) closed:

(a) A={z1,22):21 > 0,4 < o < 8};
(b) B = {(w1,72): 2% + 23 = 25};

(¢ C=ANB;
(d) D= {(z1,22):27 + 235 < 1};
(e) E=D.

Exercise 1.9.74. Show that the torus is not homeomorphic to an open set in
RZ2. (Hint: Use the properties of compactness and connectedness.)

Exercise 1.9.75. Show that if A C S! with 4 # S!, then A is not
homeomorphic to S*.

Exercise 1.9.76. Put an equivalence relation ~ on R? by saying that two points
are equivalent if they both lie on the circle of radius r about the origin. Show
that R?/ ~, with the quotient topology, is homeomorphic to [0, o).

Exercise 1.9.77. Identify all points in the lower hemisphere of the sphere S2.
Show that the resulting quotient space S?/ ~ is homeomorphic to S2.

Exercise 1.9.78. Identify points on the boundary circles of an annulus A
between the circles of radius 1 and radius 2 that lie on the same ray from the
origin. Show that the resulting quotient space A/ ~ is homeomorphic to the
torus T2.

Exercise 1.9.79. Identify the points on the outer circle of an annulus A to one-
point and the points on the inner circle to a (different) point. Show that A/ ~
is homeomorphic to S2. Describe what space you would get if you identified the
points on both circles to a single point.

Exercise 1.9.80. Consider the quotient space X formed from two copies of
D' x DY using f:{-1,1} x D! — {-1,1} x D' by f(-1,2) = (1,—x), f(1,y) =
(-1,y), X = (D' x DY) Uy (D! x D'). Decide whether X is homeomorphic to
the annulus or the Mobius band, and prove your assertion.

Exercise 1.9.81. Show that the upper hemisphere of S? is homeomorphic to
D? and similarly for the lower hemisphere. Use this to show S? is homeomorphic
to D* U, D? for g: S* — S' and determine g.

Exercise 1.9.82. Show that D? Uy D? where f: K — K is f(z) = z, and
K = {(z1,72) € S':z; > 0} is homeomorphic to D?. (Hint: First choose a
homeomorphism h from D? to D! x D! where h(K) = {(x1,22) € D! xD': 2y =
1}. Use this to get a homeomorphism D?Uy D? ~ (D! x D')u, (D! x D), where
g:h(K) — h(K) is g(z) = z.)

Exercise 1.9.83. Construct a homeomorphism between a square and a
diamond.

Exercise 1.9.84. Construct a homeomorphism between the two regions in
Figure 1.23.
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Figure 1.23. Annular regions.

Figure 1.24. Star.

cle:

Figure 1.25. Two pairs of circles.

Exercise 1.9.85. Show that any two rectangles in the plane are homeomorphic.
Exercise 1.9.86. Construct a homeomorphism between the inside of a square
and the star in Figure 1.24.

Exercise 1.9.87. Show that there is no homeomorphism of the plane to itself
which sends the unit circle to itself and sends (0,0) to (2,0).

Exercise 1.9.88. Construct an example of a simple closed curve in the plane
where a horizontal line intersects the curve in an infinite number of points but
the curve contains no horizontal line segments.

Exercise 1.9.89. Show that the complement of two disjoint polygonal simple
closed curves in the plane consists of three disjoint open, path connected sets.

The next three problems concern Figure 1.25.
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Exercise 1.9.90. Show that there is a homeomorphism sending AUB to CUD.

Exercise 1.9.91. Show that any homeomorphism sending AU B to C' U D
which sends z € A to y € C must send A homeomorphically to C' and B
homeomorphically to D.

Exercise 1.9.92. Show that there does not exist a homeomorphism of the plane
sending AU B to C U D. (Hint: Consider the regions bounded by A and C.)

Exercise 1.9.93. Consider a polygonal path P that is not closed and does not
intersect itself. Show that R?\ P is path connected using a polygonal path. (Hint:
Use induction on the number of segments in the path.)

Exercise 1.9.94. Show directly that the triangle with vertices (0, 0), (1,0), (0,1)
separates the plane into two nonempty disjoint open path connected sets, one of
which is bounded and the other not.

Exercise 1.9.95. Consider the shaded region in Figure 1.26 (which is not
homeomorphic to a disk). Analyze how the region changes as we move upward
past the special vertices.

Figure 1.26. A polygonal annular region.

Figure 1.27. A curvy disk.
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Exercise 1.9.96. Show that the region in Figure 1.26 is homeomorphic to the
region R enclosed between the squares [—1,1] x [—1,1] and [-2,2] X [—2,2]. Do
this both by a direct argument and by breaking the each region into two regions
to which we can apply the polygonal Schonflies theorem.

Exercise 1.9.97. Describe a homeomorphism between the region in Figure 1.27
and a disk.
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The classification of surfaces

2.1 Definitions and construction of the models

In this chapter we discuss surfaces and classify them up to homeomorphism. A
surface is a topological space which locally looks like a piece of the plane, such
as a sphere or the exterior of a donut (a torus). Before specializing to surfaces,
we begin by introducing the concept of an n-manifold, where a surface is a
2-manifold. Manifolds constitute one of the primary areas of study in topology.
Our study of surfaces will introduce us to many of the key ideas in manifold
theory in a fairly concrete geometric setting.

Definition 2.1.1. A topological space M is an n-manifold if

(1) there is an embedding (a homeomorphism onto its image with the
subspace topology) of M into RY for some N;

(2) given z € M, there is a neighborhood U of  and a homeomorphism h
from U onto an open set in R™.

Condition (1) turns out to be equivalent (in the presence of (2)) to either
requiring M to be a separable metric space or requiring M to be a second
countable, Hausdorff space (see the supplementary exercises of Chapter 1 and
[24, 5]). We will mainly concern ourselves with condition (2), regarding (1) as a
technicality to rule out certain pathological examples. Condition (2) is sometimes
phrased as requiring M to be locally homeomorphic to R™ or, if n is clear from the
context, requiring M to be locally Euclidean. In condition (2), we may require
h(U) = R™, and not just an open set in R™. For if A(U) is open in R", there
is a smaller neighborhood V of « with h(V) = B(y,r),y = h(z). But there is
a homeomorphism ¢ : B(y,r) — R™ and so gh : V — R" is a homeomorphism.
An n-manifold is said to be of dimension n. By a surface we mean a 2-manifold.

Exercise 2.1.1.
(a) Verify that g : (—1,1) —» R, g(z) = x/(1 — 2?), is a homeomorphism and

that it restricts to a homeomorphism of [0,1) onto [0, c0).

62
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(b) Construct a homeomorphism of B(y,r) onto B(0,1), where y,0 €
R™, r > 0.

(¢) Construct a homeomorphism from &k : B(0,1) — R™. (Hint: Use the
analog of (a).)

The classification problem for n-manifolds seeks a collection M;,7 € I, of
n-manifolds so that each n-manifold is homeomorphic to one of the M;, and
M; is not homeomorphic to M; for ¢ # j. Also, a procedure should be given
for deciding which M; a given n-manifold is homeomorphic to. Frequently, the
class of n-manifolds under consideration is restricted in some way. A common
restriction is to compact, connected n-manifolds, and we will only give the classi-
fication of compact, connected surfaces in this chapter. The problem of classifying
compact, connected 1-manifolds turns out to be relatively simple. A proof will
be outlined in Exercises 2.9.1-2.9.8 that any compact, connected 1-manifold is
homeomorphic to the circle. For compact, connected 3-manifolds, the problem is
still unsolved. For n-manifolds, n > 4, the problem has been shown to be unde-
cidable in a precise logical sense. Nevertheless, some more restricted classification
problems have been solved and have constituted some of the most fruitful areas
of research in topology in the last 50 years.

Surfaces constitute a familiar example of manifolds from advanced calculus.
Many surfaces arise there as solution sets of some equation. For example, the
2-sphere S? is the solution to F(x,y, z) = 22+y?+22—1 = 0. Higher-dimensional
manifolds also arise as solution sets to equations. Besides an open set U in R",
the simplest n-manifold is the graph of a function f : U C R" — RP, T'(f) =
{(z, f(x)): ® € U}. It is homeomorphic to U by projection to its first n coordin-
ates. If F': R"** — R is a differentiable function so that on F~1(0) the matrix
of partial derivatives has rank k at each point, then F~!(0) is an n-manifold.
This is shown by using the implicit function theorem to show that a neighbor-
hood of # € F~1(0) is the graph of a function defined on an open set in a
hyperplane determined by n of its coordinates.

We will also need the more refined notion of an n-manifold with bound-
ary. First let H" = {(z1,...,z,) € R": 2, >0} and OH" = {(x1,...,2,) €
R™: z, = 0}.

Definition 2.1.2. An n-manifold with boundary is a topological space M so
that

(1) there is an embedding of M into RV for some N;

(2) given € M, there is a neighborhood U of 2 and a homeomorphism h
of U onto an open set in H".

Again, (1) may be replaced by requiring M to be either separable metric or
second countable, Hausdorff, and (2) may be refined by requiring that either
h(U) = R™ or h(U) = H". For if h(x) = y ¢ OH", then there will be a smaller
neighborhood V' with (V') = B(y, ), and then kgh : V — R" will be a homeo-
morphism as before. We leave it as an exercise to modify this argument in the
case where h(z) € OH".
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Exercise 2.1.2. Show that if h : U — H" is a homeomorphism onto an open
set in H® and h(z) € OH", then there is a smaller open set V' about z and a
homeomorphism A’ : V — H".

Definition 2.1.3. In a manifold with boundary, those points « with h(z) ¢ OH™
are called interior points and those points with h(x) € H" are called boundary
points. The collection of all interior points is called the interior of M, and is
denoted by int M. The collection of all the boundary points is called the boundary
of M, and is denoted by 0M. int M is an n-manifold (without boundary) and
OM is an (n — 1)-manifold (without boundary).

We now quote some basic results related to these definitions. These will be
proved in Chapter 6 using homology theory. First, an open set in R™ is not
homeomorphic to an open set in R™ for m # n. Second, if € JH" and U is an
open set in H™ about @, then U is not homeomorphic to an open set in R™ (or
even any R™).

Exercise 2.1.3. Assuming the two results quoted above, show that the dimen-
sion of a manifold is well defined and that an interior point cannot be a boundary
point as well, so the concepts of interior point and boundary point are well
defined.

Exercise 2.1.4. Suppose U is an open set about 0 € [0,00) = H! and V is an
open set in R. Show that U is not homeomorphic to V. (Hint: Note that there
is an interval [0, ¢) contained in U which is path connected after 0 is removed.)

Exercise 2.1.5. Show that the boundary of an n-manifold is either empty or
an (n — 1)-manifold. (Hint: Use the fact that a point is either an interior point
or a boundary point but not both.)

Exercise 2.1.6. Suppose M, N are n-manifolds with boundary. Show that if
h: M — N is a homeomorphism, then h|O0M is a homeomorphism from dM
to ON.

There is a stronger statement about open sets in R™ from which some of the
above statements can be deduced. This is the invariance of domain property,
which we will also prove in Chapter 6.

Theorem 2.1.1 (Invariance of domain). Suppose U is an open subset of R™
and f : U — R"™ is 1-1 and continuous. Then f is an open map; that is, it maps
open sets to open sets.

Exercise 2.1.7. Apply Theorem 2.1.1 to prove the following version for n-
manifolds: If M™, N™ are n-manifolds and f : M™ — N" is 1-1 and continuous,
then f is an open map. Show that if we also assume that M™ is compact,
connected and N™ is connected, then f must be a homeomorphism.

Exercise 2.1.8. Deduce the fact that the dimension of an n-manifold is well
defined from the invariance of domain.

Exercise 2.1.9. Prove that the invariance of domain holds when n = 1.
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In order to classify compact, connected surfaces with boundary, we need to
construct some examples which will be our basic building blocks.

The simplest example of a surface with boundary is the closed disk D?. It is
compact since it is closed and bounded, and path connectivity follows by using
straight line paths. The boundary will be the circle S'. To see that points on
the circle are boundary points, note first that if &,y € S!, there is a rotation
(hence homeomorphism) of D? sending @ to y (hence a neighborhood of & to a
neighborhood of y). Thus it is sufficient to exhibit one point x on the circle with
a neighborhood homeomorphic to an open set in H2. But there is a homeomorph-
ism of D? onto a rectangle R which sends the circle to the perimeter of R. For a
point on the interior of the bottom edge of the rectangle, there is a neighborhood
homeomorphic to an open set in H™, and so all points of the boundary circle
(and thus also on the perimeter of the rectangle) have the required neighborhood.
Note that this implies that the corner points on the perimeter have appropriate
neighborhoods. The following exercise asks the reader to show this directly.

Exercise 2.1.10. Show directly that Hi = {(x1,22): x1 > 0,29 > 0} is homeo-
morphic to H2. (Hint: Use polar coordinates to define the map.)

In the following examples, we will frequently refer to the boundary of certain
surfaces without verifying precisely that the points involved are boundary points.
Frequently, a direct verification is possible using the ideas for the disk above
together with Exercise 2.1.10, and you are encouraged to convince yourself that
the boundary is as indicated.

The 2-sphere S? is defined as {(z1,72,73) € R3: 2% + 23+ 23 =1}. It is
compact since it is closed and bounded in R3. Path connectivity was shown in
Chapter 1. To see that it is locally homeomorphic to R?, we show the stronger
fact that if p € S?, then S?\{p} is homeomorphic to R%. We first do this for
the special points p = (0,0, 1), the north pole N, and p = (0,0, —1), the south
pole S. Our technique is standard and is called stereographic projection (see Fig-
ure 2.1). For each € S?\{IN}, consider the line through N and . It intersects
the plane R? C R? in some point, which we call hn (). This gives us a map
hn @ S?\{N} — R?. We will show that this is a homeomorphism by exhibiting
formulas for hn and h;,l. First note, however, that hy sends the upper hemi-
sphere Si = {(x1,72,23) € S?: 23 > 0} to the exterior of the unit disk in R?
and the lower hemisphere S2 = {(x1, 72, 23) € S%: 23 < 0}, to the unit disk.

To derive a formula for hpy, it is useful to restrict hn to the plane determined
by N, x, and 0. Let > = 2% + 23, & = (21,72, 23), and hn(x) = (a,b), s*> =
a? + b?. Then by similar triangles we get 7/(1 — z3) = s or s/r = 1/(1 — x3).
By projection of these two triangles onto the planes o = 0 and x; = 0, we also
get the equalities x1/(1 — z3) = a,22/(1 — x3) = b. Thus hn(x) = (z1/(1 —
z3), 22/(1 — 3)). To get a formula for hy' we solve for 21,22, 3 in terms of
a,b. Using our three equations together with 3 = 1 —r?, algebraic manipulation
yields

2a 2b s2—1
= — To = ——— Taq =
1+ s2’ 2T 1482 2T 1482

Z1
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x3

Figure 2.1. Stereographic projection.

Thus hn' (a,b) = (2a/(1+52),2b/(1+s?), 52 —1/(1+s2)). The continuity of hn
and h;\,l follows from the algebraic nature of their formulas in terms of rational
functions.

The homeomorphisms from S2?\{p} to R? for other p follow similarly by
projecting onto the plane perpendicular to the line through 0 and p and then
identifying that plane with R2. A derivation similar to the one above shows that
if we project from the south pole, we get

hs(w):< 2 2 ) hsl(a,b)=< 2 2 1—82)

1423’ 1423 14827145271+ 52

Note that hgl sends the unit disk to the upper hemisphere and h;,l sends the
unit disk to the lower hemisphere and each maps the circle to itself via the
identity. Let D? denote a copy of the unit disk, i = 1,2. Form the quotient space
D2 Ujq D2 by identifying corresponding points of the circle in the two copies of
the disk via the identity. Then h]_vl, hgl fit together to give a homeomorphism
from D? Uyq D3 to S2.

The representation of the sphere as two copies of the unit disk glued together
along their boundary is a very useful one in topology and can be given for higher-
dimensional spheres by an analogous construction. The identification of the two
copies of S! by the identity is unnecessary in the following sense. If f : S' — S!
is any homeomorphism, we may form D? Uy D3, where x € S] is identified to
f(z) € S} with the quotient topology. Now f extends to a homeomorphism
of D? via F(tx) = tf(x), 0 < t < 1. We can construct a homeomorphism
h: D}Us D3 — D?U;q D3 by sending D? to D? via the identity and D3 to D3 via
F'. The piecing lemma for homeomorphisms shows that this is a homeomorphism.

Our second model surface will be the torus, which we denote by T'. Its most
convenient description is as a product space, T = S* x S1. A geometric realization
occurs in R? by taking a circle in the right zsz3-half-plane and revolving it about
the x3-axis. That it is a surface is left as an exercise.

Exercise 2.1.11. Show that the product of an m-manifold M and n-manifold
N is an (m 4 n)-manifold M x N. Conclude that T is a compact, connected
surface.
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We give a description of T' analogous to our description of S? as the union
of two disks glued along their boundaries. First note that S! is homeomorphic
to D} Uiq D3 where D} denotes a copy of the interval [—1,1]. The proof is left
as an exercise.

Exercise 2.1.12. Construct a homeomorphism between the quotient space
D} Uig D} and the circle S*.

Thus T = S! x S! is homeomorphic to
(D1 x D1) Uy (Di x D3)) Ug (D3 x Dy)) Up (D3 x Dy),

where f, g, h indicate that certain points in the boundary of each product are
identified via homeomorphisms to points in the boundary of the space preceding
it. We now make these identifications more explicit. The boundary of D} x D1}
is {—1} x DU {1} x DI UD} x {=1} U D} x {1}. The map f identifies copies
of D} x {—1} and D} x {1}. See Figure 2.2 to see how the first two pieces form
an annulus within the front half of the torus.

Note that the boundary of Di x D} Uy D x D} is {£1} x (D{ U D) =
{£1} x S, which is the union of two circles. Now D3 x D1 has boundary {—1} x
D} U {1} x D} UD} x {~1} U D x {1}. The map g identifies {—1} x D} U
{1} x D} in this boundary with {—1} x D} U {1} x D} in the boundary of
(Di x Di)Ug (D{ x D3). The boundary of ((D} x D{)Uy (D} x D3))U, (D3 x DY)
is DI x {=1} U D} x {1} U{-1} x D} U {1} x D}, which is also the boundary
of D} x D}. The map h now identifies these two boundaries. See Figure 2.3 for
views of the first two pieces and then the first three pieces within the torus.

D! x D! Di x D

W [

DixStcT

Figure 2.2. Decomposition of front half of the torus.
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Figure 2.3. Views of one-half and three-fourths of the torus.

2.2 Handle decompositions and
more basic surfaces

Recall that the last piece D3 x D3 = [~1,1]x [~1, 1] of the torus is homeomorphic
to the unit disk D2. Our identifications are occurring on the boundary of D} x D3,
which is homeomorphic to the circle. We could also think of D} x D} as a disk
D2, Our decomposition of S x S! is then better expressed as

(D" x D*) Uy (D' x DY) U, (D* x DY) Uy, (D* x DY),

where D° is a point and D! x D7 is attached to the boundary of the space
preceding it by an embedding of D% x D7,

Definition 2.2.1. We will call D x D7 an i-handle. We say that it has indez i
and denote it by h?, with subscripts used to distinguish different handles of
the same index. A handle decomposition of a surface (with boundary) is a
decomposition of the form

AU« Uhf, UhiU---Uhg UhTU---Uh},,

where kg > 1 and 0D! x D7 is identified with a homeomorphic image in the
boundary of the space (which is a surface with boundary) preceding it in the
decomposition. A surface (possibly with boundary) with a handle decomposition
is called a handlebody.

As an alternate description, a handlebody H is built up inductively from
a disk by attaching handles of nondecreasing index Xy € X; C --- X, C
Xp+1 C X, = H, where Xy = X U hY, with 0D x DI C h* identified to
a homeomorphic image in 0Xj. In the case of the 2-sphere, we have exhibited
a handle decomposition with one 0-handle and one 2-handle. For the torus, we
have given a handle decomposition with one 0-handle, two 1-handles, and one
2-handle.

Note that the above definition assumes implicitly that each X is a surface
with boundary. This will be proved later in the chapter as a step in proving the
classification theorem. Basically, the idea is that attaching a 1-handle to a surface



2.2. Handle decompositions and more basic surfaces 69

Figure 2.4. Attaching a 1-handle.

with boundary gives a surface with boundary. This is clear geometrically if we
know that there is a “nice neighborhood” of the part of the boundary where the
handle is attached and the handle is attached in a “nice” manner. See Figure 2.4
for a picture of how the boundary changes when a 1-handle is attached. Two arcs
that were part of the boundary where the 1-handle is attached are no longer in
the boundary, but the two complementary arcs of the boundary of the 1-handle
become part of the boundary.

The index of a handle indicates the way that the handles are attached in
forming the surface inductively. The 0-handles just consist of disjoint disks. The
1-handles are also homeomorphic to disks, but in terms of the handle decom-
position they are best thought of as rectangles D' x D'. They are attached to
the surface already formed by identifying {—1} x D! and {1} x D! with arcs in
the boundary circles. The 2-handles are best thought of as disks D? and they
are attached to the preceding surface by identifying their boundary circle with
a circle in the boundary of the surface. Attaching a 2-handle can be regarded as
filling in a hole in the surface. There is no choice in how a 0-handle is added to
a surface (just as a disjoint disk) and little choice for the 2-handles (essentially
only which boundary circle one fills in). The interesting operation in forming
the surface is attaching the 1-handles, and the bulk of our work in classifying
surfaces is to understand this.

The existence of a handle decomposition on a compact surface follows from
the existence of a triangulation or a differentiable structure on the surface.
Examples are given in Section 2.8 to show how these structures give rise to
handle decompositions. We will see through examples how handle decomposi-
tions arise naturally for surfaces with boundary in 3-space that come from
embeddings of the circle in 3-space (knots). In 1925, Radd [29] first proved
that surfaces could be triangulated as PL manifolds, and it was later shown
that two PL surfaces were homeomorphic iff they were PL homeomorphic [27].
Moreover, all surfaces arise as differentiable surfaces, and they are homeo-
morphic iff they are diffeomorphic. These results also hold for 3-manifolds,
but are not true in higher dimensions—understanding the distinctions between
topological manifolds, PL manifolds, and differentiable manifolds have provided
some of the most fascinating research problems in topology. Some of the early
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Figure 2.5. Another handle decomposition of the sphere.

foundational papers involving both surfaces and higher-dimensional manifolds
include [23, 4, 8, 26, 33]. See [3, 22, 10, 25] for more expository presentations.

Note that a surface may have many different handle decompositions. The
ones we have exhibited so far are minimal in that they have the minimal number
of handles of each index necessary for a handle decomposition of each surface. We
illustrate by a picture another handle decomposition of the sphere in Figure 2.5.
This is formed with one 0-handle, one 1-handle (starting off like a torus with
an annulus), and then two 2-handles. The role of the first 2-handle is to close
a hole in the annulus to get a disk. Thus the effect of the first three handles is
to give a complicated handle decomposition of a disk. The remaining 2-handle
then completes the disk to a sphere, as in the standard handle decomposition of
the sphere.

Our next two model surfaces are best described in terms of handle decomposi-
tions. Neither of them can be embedded in R?, although one of their fundamental
building blocks—the M&bius band—can be. The first is the projective plane,
which we denote by P. The projective plane has a handle decomposition with
one 0-handle, one 1-handle, and one 2-handle. The 0-handle may be regarded
as [—1,0] x D! and the 1-handle as [0, 1] x D!. The 1-handle is attached to the
0-handle by identifying the two copies of 0 x D! via the identity and identifying
(1,y) with (=1, —y). The space obtained so far is the Mobius band, which we
had looked at previously in Section 1.7 as an example of a quotient space. It
can be formed by taking a rectangular strip of paper and joining the ends after
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[-1,0] x D* [0,1] x D*

Figure 2.6. Handle decomposition of Md&bius band.

making a half twist (see Figure 2.6). Its boundary is one circle, which comes
from [—1,1] x {£1} by identifying (1,—1) with (—1,1) and identifying (1,1)
with (—1,—1). This is homeomorphic to a circle since it is the union of two
intervals with their respective end points identified.

The Mobius band has the interesting property that it is “one-sided”. You
can run your finger around a path on the Mdbius band to get from one “side”
to the other without crossing the edge. Practical application of this property
is made in conveyor belts so that they wear out evenly. Another description of
this property, which is called nonorientability, is given by establishing near a
point a direction of counterclockwise rotation as being a positive orientation at
that point. Then there is a path in the Md&bius band so that if we carry this
orientation consistently along the path, we will return to the initial point with
the opposite orientation (clockwise) from which we started. See Figure 2.7 for an
illustration of this in the quotient space model. It is also useful to make a paper
model of the Mobius band and confirm this property in the paper model.

It is worthwhile to experiment with a model of the Mébius band to gain some
intuitive feeling for the property of nonorientability. You should also construct a
model of the cylinder by taking a rectangular strip and joining the ends without
making a twist. For each model, try cutting it lengthwise down the middle and
also lengthwise one-third of the way across. Try to predict what will happen
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Figure 2.7. Orientation-reversing path.

C,

Figure 2.8. Decomposition of P.

in each case before you cut it. You may find more experiments and further
manifestations of nonorientability discussed in [2]. We will study orientability
more thoroughly in Section 2.4. It plays a key role in the classification of surfaces.
We will give a more advanced treatment of orientability from the viewpoint of
homology in Chapter 6.

Returning to the projective plane, note that the boundary of the Mobius band
is a circle. The projective plane is formed from the Mdébius band by attaching a
2-handle D? x D% = D? to the Mdbius band by identifying the boundary circle
S with the boundary circle of the Mobius band. The projective plane may not
be embedded as a subspace of R? so that it is difficult to draw a picture of it as
in the case of the 2-sphere and the torus.

Here is a way to see how to embed P in R*. Consider the boundary circle
C of the Mébius band. We can find an embedded disk in R? with boundary
C as follows—first draw lines L, Lo connecting points of C', breaking C' into
C1,C5,C5,Cy as indicated in Figure 2.8.
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Cl 04 C12
Cl D1 L1 L1 R L2 L2 D2 CQ
C1 Cs Co

Figure 2.9. Forming a disk from three disks.

Now C7 U L7 bounds a disk D; and Cs U Ly bounds a disk D, that lies above
the paper (like the upper hemisphere of the 2-sphere bounding the equator).
Then Ly U C5 U Ly U Cy bounds a twisted rectangular strip R. To see that
Dy, D5, and L fit together to give a homeomorphic copy of the disk, redraw Dy
and D as rectangles and put the three pieces together in the plane. What we
get is three rectangles laid end on end, which is homeomorphic to a rectangle
and hence to a disk (see Figure 2.9).

Unfortunately, this disk D? intersects the Mobius band within the strip R.
By perturbing it, we can remove this intersection in R%. Let f : D? — R3, ¢ :
M — R3 be our embeddings into R® which agree on the boundary circles. Now
define [ : D2 — RY, g: M — R by f(z) = (f(x),1 — |]), g(x) = (9(x),0).
Here the first entry corresponds to the first three coordinates of R*, and the
last entry corresponds to the fourth coordinate. Now f and g are embeddings
into R, which intersect only along the common boundary circle, and hence fit
together to give an embedding of P into R*. We are using the extra dimension to
remove the intersection between the original images of f and g. This is analogous
to removing the intersection of a figure 8 in the plane by lifting one piece of the
8 slightly into R? near the intersection point.

There are useful descriptions of P besides being the union of the Mobius
band and a disk along their boundary circles. For instance, it may be described
as a quotient space of the 2-sphere S? by identifying © = (21,72, 23) with
—x = (—x1,—2a,—x3); —x is called the antipodal point of x. There is a nat-
ural identification map f : S? — P and we give P the quotient topology using
this map. This description of P is responsible for the name projective plane since
each pair of points {x,—x} which are identified corresponds to a unique line
through the origin. Thus P can be thought of the space of lines through the ori-
gin in R? with the appropriate topology. Another description of P as a quotient
space can be derived from the above by noting that only the upper hemisphere
is necessary in finding a surjective map onto P. Using the fact that the upper
hemisphere is homeomorphic to the disk, P may be described as the quotient
space of the disk with opposite points (z1,22) and (—z1, —22) on the boundary
circle identified. From this description we can see (as illustrated in Figure 2.10)
why P is the union of the Mobius band and the disk. In this figure, B is easily
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Figure 2.10. Two views of the projective plane.
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Figure 2.11. Two homeomorphic half disks.

identified to the Mobius band and D; and Dy (with the indicated identifications)
together form a disk. Note that we are using the idea of Exercise 2.2.1.

Exercise 2.2.1. Construct a homeomorphism between the lower half of the disk
and the upper half of the disk sending the boundary as indicated in Figure 2.11.
(Hint: Construct homeomorphisms between each half disk and the whole disk.)

Exercise 2.2.2.

(a) Use the quotient map f : S2 — P to show that P is a compact, connected
surface.

(b) Use the handle decomposition description of P to show that P is a
compact connected surface.

Our final model surface is the Klein bottle, which we denote by K. It is the
union of two Mobius bands joined along their boundary circles. We can think of
it as being obtained from two projective planes by removing a disk from each
and gluing along the boundaries of each disk. We will return to this idea in a
more general context of forming connected sums. We can picture K and 7" at
the same time by taking a rectangle and making certain identifications on the
boundary. Each starts with the space D' x D'. For the torus and Klein bottle,
we first identify D! x {—1} with D! x {1} by identifying (z,—1) with (z,1).
This forms a cylinder. For the torus we then identify {1} x D! with {1} x D! by
identifying (—1,y) with (1,y). For the Klein bottle, we identify {—1} x D! with
{1} x D! by identifying (—1,y) with (1, —y). See Figure 2.12 for an illustration.
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Figure 2.12. Constructing the torus and Klein bottle.

We indicate how the Klein bottle is the union of two Mobius bands glued
along their boundary circles in Figure 2.13.

Exercise 2.2.3. Give a description of K as a quotient space of R? analogous to
our description of T as a quotient space of R? in Chapter 1. Use this description
to show that K is a surface.

Exercise 2.2.4. Show that K is compact and connected.

We describe two different handle decompositions of K. Each has one 0-handle,
two 1-handles, and one 2-handle. They differ in that in one we have a cylinder
after the first 1-handle is attached, and in the other we have a M&bius band after
the first 1-handle is attached. We will illustrate both decompositions in terms of
our picture of the Klein bottle as a rectangle with identifications.

We have illustrated in Figure 2.14 the decomposition of K as h® U hl U
h Uh?%. But we could have added the two 1-handles in the other order and got a
decomposition of K as h® Ukl Uhi Uh?Z Note that in the second decomposition
hPUh} is a cylinder and the attaching map for h} identifies {£1} x D! to part of
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Figure 2.13. The Klein bottle is a union of two Md&bius bands.

Figure 2.14. A handle decomposition of the Klein bottle.

(St x DY) = S x {£1} by identifying {—1} x D! to an interval in D! x {—1}
but identifying {1} x D! to a similar interval in an orientation-reversing fashion.
By this we mean that if f : D! — S is the embedding of [~1,1] into S!, then
{=1}xD' — Stx{—1}is given by (—1,2) — (f(z),—1) and {1} x D! — St x{1}
is given by (1,z) — (f(—=z),1).
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The four surfaces—S? (hereafter just called S), T, P, K—are our model sur-
faces. We now describe the model surfaces with boundary. The first will be the
disk D?. Note that the exterior of the disk in the plane is homeomorphic via
(r,y) — (z/(2* +y?),y/(2? +y?)) to D*\{(0,0)}. Hence the exterior of the
disk is also a manifold with boundary. By a disk in a surface we mean the image
f(D?) of the standard disk D? C R? under a homeomorphism f from R? onto an
open set in the surface, where f |D? = f. Since the complement of the interior
of the disk in R? is a surface with boundary, it follows that the complement
of the interior of a disk in a surface is a surface with boundary. The question
then arises whether two such complements M\int D; and M \int Dy are homeo-
morphic if Dy, Dy are disks in M. This is true when M is connected because of
the following important result, which is called the ‘disk lemma’. The lemma is
a basic one in PL or differential topology for manifolds of any dimension and is
based on the idea of a regular neighborhood or tubular neighborhood of a point.
Rourke and Sanderson [31] and Hirsch [15] are good sources for treatments from
these viewpoints. We will give a more refined version as well as relate it to the
Schonflies theorem and the concept of orientation in Section 2.4 and the sup-
plementary exercises at the end of the chapter. The general topological case in
higher dimensions is closely connected to recognizing an annular region enclosed
between one embedded disk and a larger one, which was a difficult question that
was only recently solved by Kirby [16] in dimensions other than 4 and then more
recently by Quinn [28] in dimension 4.

Lemma 2.2.1 (Disk lemma, first version). Let D1, Dy be disks in the
interior of a connected surface (with boundary) M. Then there is a homeomorph-
ism h: M — M (fixed on OM ) with h(D1) = Ds.

Exercise 2.2.5. Show by induction that if Dy,..., Dy are k disjoint disks in
the interior of a connected surface M, and D7, ..., Dj is another collection of k
disjoint disks in the interior of M, then there is a homeomorphism h: M — M
which is the identity on OM sending D; to D..

We define M,y to be the surface obtained from M by removing p disjoint
disks from int M when M is connected. By Exercise 2.2.5 it is well defined
up to homeomorphism independent of the particular disks removed. Our model
surfaces with boundary will be S, T(,), Fp), and K(,). Note that S() is a
disk and Py is a Mobius band.

p)> +(p)

2.3 Isotopy and attaching handles

In this section we will develop some technical lemmas to understand how the
attaching of 1- and 2-handles depends on the particular attaching homeomorph-
ism used. The important thing for the reader to understand from this section
is the statements of the lemmas and how they reduce the classification problem
to a problem of understanding certain models. The proofs of the lemmas are of
less importance, and it may be useful to omit them on the first reading of the
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section. They are largely an application of ideas of collars, quotient spaces, and
properties of self-homeomorphisms of an interval to itself.

Suppose H is a handlebody; we will show that the boundary of H is a disjoint
union of a number of circles and that there is a (closed) neighborhood of OH of
the form OH x I. Such a neighborhood is called a collar of the boundary, and we
will be using the existence of such a collar throughout the section. Any compact
manifold with boundary possesses a collar on the boundary. Arguments are given
by Rourke and Sanderson [31] and Hirsch [15] in the PL and differentiable cases
and by Hatcher [13] for topological manifolds. We consider how H Us h' depends
on the particular embedding of f : {1} x D! — 9H. In understanding this, we
will use the concept of an isotopy.

Definition 2.3.1. We say homeomorphisms go,g1 : B — B are isotopic if
there is a homeomorphism G : B x I — B x I with G(b,t) = (G¢(b),t) and
Go = go,G1 = g1. G is called an isotopy between gy and g;. We say embeddings
fo, f1: A — B are ambient isotopic if there is an isotopy G : B X I — B x I so
that Gy =id and G4 fy = f1.

We will be dealing with the notion of ambient isotopy of embeddings of D!
in S! in this section and of embeddings of D? in surfaces in the next section.
Isotopy of homeomorphisms is an equivalence relation, with transitivity the only
difficult property to verify. If F; gives an isotopy between f and g, and G; gives
an isotopy between g and h, then

g oo VP H0St<g,
C G ifi<t<

gives an isotopy between f and h. Note that the argument is the same one
that we used to show that path connectivity is transitive. An isotopy is a path of
homeomorphisms connecting two homeomorphisms. In terms of ambient isotopy,
there is also an argument in terms of composition. If F, G are ambient isotopies
with Fy = id, F1f = g, and Gy = id, G1g = h, then if H = GF, we have
HO = ld, Hlf = GlFlf == Glg = h.

We first review how the circle arises from the interval and from the reals as
a quotient space. Let p : R — S! be the map given by p(t) = (cos 27t, sin 27t).
Then p is a quotient map and we can use it to identify S with R/t ~ t+n, n € Z.
Any closed interval of length <1 will be mapped homeomorphically onto its
image, which will be called an arc in the circle. A homeomorphism f: R — R is
called periodic of period 1 if either f(x + 1) = f(z) + 1 (for f order preserving),
or f(x+1) = f(x) —1 (for f order reversing). Such a homeomorphism f will

then induce a homeomorphism f by the quotient construction: f([z]) = [f(x)].
It is also the case that any homeomorphism of S! arises as f for a periodic
homeomorphism f.

Since the homeomorphism f is periodic, it is actually determined by its
values on any interval of length 1. To discuss this, we will assume that f is
order preserving for simplicity, but the argument is analogous in the order-

reversing case. Choosing an interval [a, a+1], f order-preserving periodic implies
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that f(a+ 1) = f(a) + 1; thus f gives a homeomorphism by restriction f' =
flla,a+1] : [a,a+1] — [b,b+ 1], where b = f(a). Conversely, whenever we have
an order-preserving homeomorphism f’ : [a,a + 1] — [b,b + 1], it determines
a periodic homeomorphism f : R — R via noting that any € R can be
expressed as ¢ =t +n,n € Z,t € [a,a + 1) and ¢t unique. Then f is defined by
f(z) = f(t)+n. We leave it as an exercise to check that f is continuous and gives
a periodic homeomorphism. Thus order-preserving periodic homeomorphisms of
R may be identified with order-preserving homeomorphisms f’ : [a,a+1] — [b, b+
1]. In turn, these are identified with orientation-preserving homeomorphisms of
the circle. A related fact is that the restriction of p to [a,a + 1] or [b,b + 1]
determines a quotient map to the circle, and so f can also be regarded as coming
from f’ via this quotient construction. We indicate the relationship of these
maps by the following commutative diagram, where i,,7; denote the natural
inclusions.
la,a + 1] d [b,b+1]

K /
f
p

R—R

1o

st —— 5t

Exercise 2.3.1. Show that the map f : R — R defined above using [ : [a,a +
1] — [b,b+ 1] is a periodic homeomorphism.

Because of these relationships, we may deal with maps from the circle to
itself by using periodic maps of R or maps from the interval [a,a+ 1] to [b,b+1].
This also applies to self-maps of S x I in a similar manner.

Lemma 2.3.1. Let I1, I (resp., I, 1) be disjoint arcs in the circle. Then there
is a homeomorphism of the circle sending I to I and Iy to I5. Moreover, this
homeomorphism may be chosen to be isotopic to the identity.

Proof. Note first that any two arcs I,I’ in the circle are homeomorphic.
Moreover, there is “standard” homeomorphism between them. For consider
p: R — SY p(t) = (cos2nt,sin2xt). Select intervals J,J' C R so that
p(J) = I, p(J') = I'. Now any two intervals are homeomorphic via the
unique order-preserving affine linear homeomorphism from [a, b] to [@’, b'] sending
ta+(1—t)b to ta’+(1—t)b',0 < ¢t < 1. This induces (via p) a “standard” homeo-
morphism from I to I’. We leave it as an exercise to show that this “standard”
homeomorphism does not depend on the choice of J, J'.

Regarding S' as the quotient space of R, we can find intervals Jy, Ja, J7, J}
which p sends to I3, I, I1, I, homeomorphically. Moreover, these can be chosen
so that 11 < wa <wg <wvy <wp+1, v) <vh<vh<v)<vp+1, |vg—vi| <1,
and J; = [v1, v2], Ja = [vs, v4], J] = [v], V5], J§ = [vh,v}]. We then define a map
f v, v1+1] — v}, vi+1] by requiring that f(v;) = v and f(v1+1) = v} +1, as
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Figure 2.15. Isotoping embeddings.

well as making the map affine linear on each subinterval [v;, v;41] and [vg, v1 +1].
This induces the homeomorphism f : S* — S which sends I; to I I

To see that it is isotopic to the identity, we construct a map using intervals
which induces the isotopy. The map F; giving the isotopy will be defined at each
level t by a map like the one above and will be determined by the images of the
vertices. Its graph for a fixed vertex v; and varying ¢ is just the straight line
segment joining v; and vé-. We show in Figure 2.15 the images of these vertices
as t varies. The subintervals between vertices are then mapped by affine linear
maps. These maps then induce the required isotopy of homeomorphisms of the
circle. O

Exercise 2.3.2. Show that the “standard” homeomorphism constructed above
does not depend on the choice of J, J'.

Note that Lemma 2.3.1 also allows us to move a single interval via an isotopy.
We will use it in both situations. Lemma 2.3.1 is used in conjunction with the
following lemma to say that we may specify without loss of generality the image
arcs without changing the homeomorphism type of H Uy h'.

Lemma 2.3.2. Suppose H Uy h' and H Uy h' are handlebodies, and there is a
neighborhood of OH in H of the form OH x I where OH corresponds to OH x {0}
and an isotopy F : OH x I — OH x I with Fyf = g and Fy = id, the identity.
Then there is a homeomorphism from H Ug h' to H U, h' sending h' to h'
by identification (via the “identity”). The homeomorphism is also the identity
outside the collar of the boundary.

Proof. Define the homeomorphism as follows. First send h! to h! via the iden-
tity. Identifying the neighborhood of 0H with 0H x I, send O0H x I — 0H x I
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Figure 2.16. Using an isotopy on the collar.

via F, and send H\(OH x I) to H\(OH x I) via the identity. These maps fit
together to give a homeomorphism. O

Figure 2.16 gives an illustration of the above proof.

The way to use this lemma with the preceding one is to define g by Fpyf,
where Fy(I1) = Iy, Fo(I2) = I,. This allows us to shift our image arcs of the
attaching homeomorphism up to isotopy without changing the homeomorphism
type of the resulting handlebody.

We now study the dependence of H Uy h' on f, after fixing the image set
f({#£1} x D'). Because of the argument above, we will assume that f;({—1} x
DY) = fo({—1}xD') and f1({1}xD') = fo({1} x D') and then compare HUg, h'
and HUy, ht. Consider f2_1f1; this is a homeomorphism from {41} x D? to itself,
sending each copy of D' to itself. We claim that the only important fact we need
to know to compare the homeomorphism type of H Uy, h' is whether both these
maps preserve order (or reverse it) or whether one preserves order and the other
reverses it. The claim depends on the following lemma, in which we are using I
instead of D! because we also want to apply it to homeomorphisms of the circle.

Lemma 2.3.3.

(a) Any order-preserving homeomorphism f : I — I is isotopic to the
identity.

(b) Any order-reversing homeomorphism f : I — I is isotopic tor'(t) = 1—t.

Proof. The idea of the proof of (a) is to graph f and the identity and connect
f(s) and s by a straight line. We use the formula G(s,t) = Gi(s) = (1—t) f(s)+ts.
Then Gi(—1) = —1,G¢(1) = 1,Go(s) = f(s),G1(s) = s, and G is a homeo-
morphism for each ¢t. We confirm the last fact by noting that if 0 < 51 < 59 <1,
then

Gi(s1) = (1 —t)f(s1) +t(s1) < (1 —1)f(s2) + tsz = Gi(s2).

We are using here that 0 < (1 —t), ¢t <1 and both 1 —¢ and ¢ cannot be 0 since
they add to 1. We leave (b) as an exercise. O
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Exercise 2.3.3. Deduce part (b) from (a) by composing an order-reversing f
with 7/ to get an orientation preserving g = fr’ to which to apply (a).

Here is the version for D?.
Lemma 2.3.4.

(a) Any order-preserving homeomorphism g : D' — D' is isotopic to the
identity.

(b) Any orientation-reversing homeomorphism g : D' — D' is isotopic to
the reflection r(t) = —t.

Exercise 2.3.4. Use the homeomorphism h : D' — I,h(s) = 1(s+ 1) and
Lemma 2.3.3 to prove Lemma 2.3.4.

We define an embedding of D! into S to be orientation preserving (resp.,
reversing) if it is the composition of an order-preserving (reversing) embedding
of D! into R and the map p : R — S, p(t) = (cos2wt,sin27t). We say that
a homeomorphism from S' to S! is orientation preserving if it comes from a
periodic homeomorphism of R which is order preserving. The composition of an
orientation-preserving embedding and an orientation-preserving homeomorph-
ism of S will be orientation preserving. All isotopies of S' arise as periodic
isotopies of R. This means that each F; must be orientation preserving when
Fy = id. We use this for the next proposition.

Proposition 2.3.5.

(a) Suppose fi,fo : DY — S are orientation-preserving embeddings. Then
they are ambient isotopic.

(b) Suppose f1,fo : D' — S are orientation-reversing embeddings. Then
they are ambient isotopic.

(c) Suppose f1, fo : DY — S* are embeddings so that f preserves orientation
and fo reverses orientation. Then they are not ambient isotopic.

Proof.

(a) Let Iy = fi(D'), Iy = fo(D'). By Lemma 2.3.1, there is an ambient
isotopy Fy so that Fy = id and Fy(I;) = I5. By construction, F; arises
from a periodic order-preserving homeomorphism of R, so will preserve
orientation for all . Let g, = F; fi—this is orientation preserving. Hence
gflfg : D' — D'is order preserving. By Lemma 2.3.4 there is an ambient
isotopy G : D' x I — D! x I so that Go(z) = z,G; = gflfg. Define
H:IyxI—I,xIby H = ¢:Gig7". Then Hy = id, H, = ¢1G1g; " =
9197 f297 " = fagy ' Then Higy = fogy ‘g1 = fo. Now the isotopy H is
the identity on {g1(—1), g1(1)} since G is the identity on the end points.
Hence we can extend H; to all of S' by defining it to be the identity
on S'\I,. Finally, the composition H;F; will give an ambient isotopy
connecting f; and fa.
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(b) The embeddings fir, for are orientation preserving. By (a), there is an
isotopy F : St — S! with Fy = id, Fyfir = for. Composing with r gives

Fifi = Fufi(rr) = (Fufir)r = (for)r = fa(rr) = fo.

¢) By the comment above, isotopies o are orientation preserving a

By th t ab isotopies of S* ientati ing at
each level F} so ambient isotopic embeddings are either both orientation
preserving or both orientation reversing.

O

There is a result for homeomorphisms of S' which is analogous to
Lemma 2.3.3 and follows from it.

Lemma 2.3.6.

(a) Any orientation-preserving homeomorphism f : S' — S sending 1 to
1 is isotopic to the identity, where 1 is sent to 1 at each stage of the
1s0topy.

(b) Any orientation-preserving homeomorphism f : S1 — Sl is isotopic to
the identity.

(c) Any orientation-reversing homeomorphism f : S — S is isotopic to
T(Z‘,y) = (.17, _y>

Proof.

(a) The orientation-preserving homeomorphism f is induced from an order-
preserving homeomorphism f’ : I — I, which by Lemma 2.3.3 is isotopic
to the identity via an isotopy F;. Then F; induces an isotopy F} : ST — S*
between f and the identity.

(b) A rotation Rg(cos¢,sin¢) = (cos(¢p + 0),sin(¢ + 0)) is isotopic to the
identity via F; = Ryy. First isotope f to a map g = Ry f which sends 1 to
1. Then apply (a).

(¢) This is left as an exercise.

Exercise 2.3.5. Prove part (c).

Now consider what happens when we attach a 1-handle to H. The boundary
of H consists of a finite number of circles, each of which has a collar neighbor-
hood. Since D' is connected, it will be embedded into a single boundary circle.
When we form H Uy D' x D', then the images f({—1} x D*) U f({1} x D)
will lie in either one or two boundary circles. We identify each of these bound-
ary circles with S' and the collar with S' x I. Suppose g is another attaching
map which has f({—1} x D) and g({—1} x D!) lie in the same boundary circle
and f({1} x D') and g({—1} x D') lie in the same boundary circle. Denote
by f(-1), f1) the restrictions of f to the two attaching intervals, with similar
notation for g. Then Lemma 2.3.1 says that there is an ambient isotopy F of
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the relevant circles so that Fy = id and Fyf(_q) = f(’_l),Flf(l) = f(’l), where
Fi_y (=1} x DY) = gy ({=1} x DY), 4, ({1} x DY) = gy ({1} x DL). Then
if ( f(’_l))*1 g(—1) is order preserving, then there is an ambient isotopy between
f('_l) and g(_1). Composing these ambient isotopies will give an ambient isotopy
between f(_qy and g(_1). On the other hand, if (f('fl))_lg(,l) is order reversing,
then there will be no ambient isotopy between f(/71) and g(_1), and hence no
ambient isotopy between f(_;) and g(_;). However, in this case, we have the
map (f('_l))’lg(_l)r order preserving, where r(z,y) = (z,—y) and so we get
f(~1) is ambient isotopic to g_1yr. Similarly, we either have f(;) ambient iso-
topic to g(1)y or to g)r. Note that when f(_y), f1) both attach the handle to
the same boundary circle, the proof of Lemma 2.3.5 will allow us to construct
an ambient isotopy of this circle to achieve these results for both embeddings
simultaneously.
Thus there are four possibilities:

(1)
(2)
3)
(4)

f(~1) is ambient isotopic to g(_1) and f(1) is ambient isotopic to g(1);
f(—1) is ambient isotopic to g(_1)r and f(;) is ambient isotopic to g(1)r;
3) f(-1) is ambient isotopic to g_1) and f(;) is ambient isotopic to g)r;

4) f(-1) is ambient isotopic to g(_1)r and f(1) is ambient isotopic to g(1).

In case (1), Lemma 2.3.2 says that there is a homeomorphism between H Uy
h' and H U, h': this homeomorphism will be the standard identification on
the handle A' and the identity on the complement of a collar on the boundary
circle(s) in H, and will use the isotopy on the collar(s). We get similar results
in the other three cases. However, there is a homeomorphism between H U, h'
and H U, h' which is defined by sending H to itself by the identity and sending
h' = D! x D! to itself via r. Thus in the first two cases, we get a homeomorphism
between HUjy h' and H Uy h'. In the third case, we get a homeomorphism between
H Uy h' and H Uy h' where 9271) = g(-1) and 9£1) = ga)r. Case (4) gives the
same space as in case (3) since H Uy h' ~ H Uy, h! using the homeomorphism
r on h'. Thus there are at most two different ways to attach a handle up to
homeomorphism. Given one way f, the other way which may be different up to
homeomorphism is to use the same attaching map on one interval and to compose
with r on the other interval. When both intervals are attached to the same circle,
these will be different, as we will see below. When they are attached to two
different circles, they may or may not be different, depending on connectivity
and orientability conditions, which are discussed in the next section.

We next look at how the boundary changes when we attach h'. Because of
the discussion above, we can specify the attaching map on one interval, and
the attaching map up to possible composition with a reflection on the other
subinterval. The only place the boundary will change is for the circles where
the handle is attached. The other circles and their collars will remain after the
handle is attached. First consider the case where the handles are attached to a
single circle. We draw a collar neighborhood and look at two standard ways of
attaching the handle. We can identify the two possibilities in Figure 2.17. In the
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Figure 2.17. Attaching a 1-handle to one boundary circle.
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Figure 2.18. New boundary neighborhoods.

one on the left, the new boundary will have two components in place of one. For
each component it is easy to find a collar on the boundary that will use part of
the old collar which has been adjusted near where the handle is attached to fit
together with an adjusted collar on the handle. For the case on the right, the new
boundary will still consist of one boundary circle, and there is a Md&bius band
embedded in the surface using a piece of the collar and the handle h'. Again, we
can piece together a collar using the old collar and a collar on the handle, where
we adjust each near where the two pieces meet. In each case, the new boundary is
formed from the old by removing the attaching intervals and putting in the new
intervals D! x {£1}. We picture the new collars in Figure 2.18. Since these two
surfaces have different numbers of boundary circles, they are not homeomorphic.

Exercise 2.3.6. Find the Md&bius band that is referred to above on the right
surface in Figure 2.17.

Now consider the case where the handle is attached to two different boundary
circles, each of which has a collar. All of the other boundary circles and their
collars will remain after this handle is attached. We can again reduce to two
cases, which are pictured in Figure 2.19. By examining the two diagrams, we see
that after the handle is attached, the two boundary circles have been replaced
by a single boundary circle, and we can again find a collar of this new boundary
piece which comes from modifying the old collars and the collar on the handle.
We again remove the attaching intervals from the boundary and add in D* x {4-1}
to the boundary.
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Figure 2.19. Attaching a 1-handle to two boundary circles.

Exercise 2.3.7. Show that the result from attaching a 1-handle to the same
boundary circle is never homeomorphic to what you get when it is attached to
two different boundary circles. (Hint: Consider the number of boundary circles
in each case.)

We summarize the main results in this section. To understand how attaching
a 1-handle changes a handlebody, we only need a limited amount of information.
First, we need to know the components of the boundary where the handle is
attached. Within any individual component, we may specify completely what
the image arcs are without changing the homeomorphism type of H U h'. Once
the image arcs are specified, then the result of attaching the 1-handle is described
via one of our standard models. Thus to study the changes in the handlebody
induced by adding a 1-handle, it suffices to study what happens in each of our
model situations.

Theorem 2.3.7. Let H be a handlebody with a handle decomposition with
0-handles and 1-handles.

(a) Then OH is homeomorphic to the disjoint union of a finite number of
circles.

(b) There is a neighborhood N(OH) of OH which is homeomorphic to
OH x I, where 0H x {0} C OH x I is sent to 9H C H wvia the standard
identification (x,0) — x.

Proof. We outline the argument, leaving the details as Exercise 2.3.8. For
0-handles, the two claims are easily verified. Thus we prove the result by
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induction on the number of 1-handles, seeing that it holds as each 1-handle
is attached. Let H = H; U h'. We assume by induction hypothesis that (a) and
(b) hold for H;. Hence 0H; is a disjoint union of a number of circles and there
is a neighborhood of dH; of the form OH; x I. Since we have a collar on the
boundary where the 1-handle is attached, our earlier discussion applies. To see
what the new boundary will be, we may choose our attaching maps to be one of
the two standard ones. Only one or two boundary circles and its neighborhood
will be affected by attaching the 1-handle. Thus it suffices to show that the new
boundary and neighborhood as claimed in these two cases. Figure 2.18 can be
used to show that (a) and (b) still hold after the 1-handle is attached when
they are attached to the same boundary component. We leave as an exercise the
case where the two arcs are attached to different boundary components, where
Figure 2.19 may be used to find the required neighborhood. O

Exercise 2.3.8. Fill in the details in the proof above.

We next consider what happens when we attach a 2-handle h? to form H =
Hy Uy h?. Here f: S' — 0H, is an embedding into the boundary, which consists
of a finite number of circles, each of which has a collar. Such an embedding
has to be sent into a single circle. Its image is connected and compact. If it
missed any point, it would be a closed subarc, which is not homeomorphic to the
circle. Thus the image must be the whole circle. If we identify the two circles,
then the map would have to be isotopic to either the identity or a reflection
by Lemma 2.3.6. But these two give the same result up to homeomorphism,
using a homeomorphism which is the identity on H; and r on h? = D?. The
boundary circle to which the handle is attached is removed from the boundary
by this operation. This can be seen by identifying the collar neighborhood to
the annular region S! x [1, 2] between circles of radius 1 and 2 in the plane and
then attaching the handle via the identity to fill in the unit disk. Thus we get
the following proposition.

Proposition 2.3.8. If f,g: S' — 0H, are attaching maps for a 2-handle which
map to the same boundary circle, then Hy Uy h? ~ H, Ug h2. This new surface
will have one fewer boundary circle than Hi.

This last proposition says that if we have two handlebodies that are homeo-
morphic, then if we attach corresponding 2-handles to “fill in” these boundary
circles, the resulting surfaces are homeomorphic. There is an alternate proof
which does not use the result on isotopic homeomorphisms of the circle. Instead
it uses the fact that any homeomorphism of the circle extends to a homeomorph-
ism of the disk by coning; that is, given h : S — S, we define H : D? — D? by
H(0) =0 and H(rx) =rh(x), where || = 1 and 0 < r < 1. The homeomorph-
ism between H; Uy h? and H; Ug h? is the identity on H; and the extension of
the homeomorphism g~ f on D? = h2. If there are multiple 2-handles, we can
use this on each one. In the other direction, the disk lemma and the exercise
which follows it says that if two surfaces are homeomorphic, then the surfaces
obtained by removing k disks from each of them are also homeomorphic. For it
provides a homeomorphism of a surface with itself which sends any connected
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k disks in the interior to any other collection. Because of these results, we will
largely focus our attention on the 1-handles. However, embedded 2-disks in a
surface do play a key role in the concept of orientation, which we will study in
the next section.

2.4 Orientation

We now discuss the concept of orientability of a surface. Orientability is a prop-
erty that is frequently easy to grasp intuitively but is relatively difficult to deal
with precisely. A more advanced means of handling it is to re-express it in terms
of homology conditions and note that the homology computations of orientability
agree with one’s intuition in the usual examples. In Chapter 6 we will pursue this
approach through homology. Here we will deal with it formally through orient-
ing handle decompositions but will discuss other definitions such as embedded
Mobius bands and isotopy classes of embedded disks.

Before giving a more formal treatment, let us discuss some of the more
common intuitive definitions. The models to think of in each case are the cylin-
der (orientable) and the Mébius band (nonorientable). A surface (possibly with
boundary) embedded in R3 is said to be orientable if it has two sides, and nonori-
entable if it has one side. Locally, of course, the surface looks like a plane which
cuts space into two halves. Imagine a point on the surface and a vector pointing
to one side of the surface. To say that the surface has one side means that we
can find a path in M so that if we translate our vector consistently along this
path then it will be pointing to the other side of the surface when we return to
the original point. See Figure 2.20 for an illustration.

Although this idea may seem fairly understandable, it has many pitfalls. One
is that we are implicitly assuming that there is a “normal direction” to the surface
towards which our vector can point. This problem can be handled by restricting
our attention to differentiable surfaces, where the idea of a normal direction is
readily defined. A more serious problem is that we are assuming our surface lies

Figure 2.20. Orientation-reversing path via normal vector.
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in R3: no compact nonorientable surface without boundary is embeddable in
R3. One way out of this problem is to imagine the surface to be locally a plane
and to orient this plane consistently by choosing a basis vy, v at each point. If
the surface sits differentiably in some R™, there is a tangent plane attached to
each point so that projection onto this plane gives a homeomorphism locally. Any
other basis for the plane w1, ws is related to vy, vs via (w1 ’LU2) = (’Ul ’U2) A,
where A is an invertible 2 x 2 matrix. To say the basis w1, wo determines the same
orientation as v1,vs means that the determinant of A is positive. If det A < 0,
we say w1, ws determines the opposite orientation. There are two equivalence
classes of orientations at a point, since det A is either positive or negative. It is
common practice to attach a direction of rotation from v; to vy at each point
of M to indicate the choice of an equivalence class of a basis. Now we say that
a surface is orientable if we can do this at each point in a consistent manner.
The consistency can be checked locally since M locally looks like R? and so
each basis can be referred back to R? to see whether it is always clockwise or
always counterclockwise as a rotation. If M is path connected and there is a
global choice of orientation which is locally consistent, then it will be globally
consistent in terms of translation along a path in the surface always keeping the
chosen orientation. The nonorientability of the Mobius band under this definition
is illustrated in Figure 2.21.

The above definition resolves the problem of the previous definition in that
the surface need not be embedded in R3. However, it does depend on a well-
defined transition between equivalence classes of bases according to different
local descriptions of M as R2. This can be done if we require our manifold to be
differentiable, since a differentiable map from R? to R? has a linear approxima-
tion which can be used to compare bases. In fact, this idea is the basis for the
standard definition of orientability for differentiable manifolds in general.

Motivated by the fact that Mobius band epitomizes nonorientablity, we now
give the first of three equivalent definitions of orientability for a surface.

Figure 2.21. Orientation-reversing path via rotation direction.
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Definition 2.4.1 (Md&bius band version). We call a surface nonorientable if
it possesses an embedded M&bius band. If it is not nonorientable, then it is said
to be orientable.

This definition is sometimes useful in establishing that a surface is nonori-
entable, but it can be difficult to use in seeing that it is orientable. The next two
exercises, which use the strength of the Jordan curve theorem and invariance of
domain, show that the plane is orientable with this definition.

Exercise 2.4.1. Show that the complement of the center circle in a Mdbius
band is connected but that the complement of the center circle in an annulus is
separated.

Exercise 2.4.2. Use the previous exercise to show that a Mobius band cannot be
embedded in the plane. (Hint: Consider the Jordan curve theorem and invariance
of domain.)

In the statement of the disk lemma, we are focusing more on the image
of the embedding rather than the embedding itself. A refined version of the
disk lemma leads to an equivalent definition for orientability that involves the
notion of an ambient isotopy. As motivation, suppose that f : D? — R? is
a standard embedding onto a disk B(zg,71) C B(0,r). Let R : B(0,r) be a
rotation of the plane by angle 6; that is, R = Ry|B(0,r). We can extend R to
a homeomorphism of the plane which is the identity outside of B(0,r 4 1) by
defining it on the annulus A(r,7 + 1) = {z: 7 < |z| < 7+ 1} by R|(r + 5)S! =
R(1_5)9|(r +5)St, 0 <t < 1. This just rotates these circles by smaller angles
until we send the circle of radius r + 1 to itself by the identity. Then we can
extend R over the complement of B(0,r + 1) by defining it to be the identity.
The homeomorphism R is isotopic to the identity, where the isotopy again just
moves the amount of rotation on each circle back to the angle 0. The formula
for the isotopy is

Rip(x) x| <,
Ri(x) = { Rya—syo(x) |z|=r+s, 0<s<1,
x lx| > r+ 1.

Thus the embedding Rf is ambient isotopic to f via an ambient isotopy which
is the identity outside a ball. In particular, if f = i is the standard inclusion,
then Ri = i(R|D?) is ambient isotopic to the identity.

Now consider the reflection r : D? — D2 r(x,y) = (x,—y) and the
embedding f = dr. It turns out that ir is not ambient isotopic to i. This
will be shown in Chapter 6 using homology. We give here an argument that
fr = i is not (continuously) differentiably ambient isotopic to f. For suppose
there were a diffeomorphism F : R? x I — R? x I, F(z,t) = (Fy(x),t) with
Fy = id, F1i = ir. The derivative map DF;(x) will vary continuously and has
positive determinant 1 for ¢ = 0. Hence it has positive determinant for all ¢. But
DF;(0)Di(0) = Di(0)Dr(0) and the left-hand side has positive determinant
while the right-hand side has determinant —1, a contradiction. The homology
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argument is based on the same idea, where we replace the derivative computa-
tion with one based on homology. The same type of argument can be used in the
differentiable case for embeddings f : D? — M to show f is not isotopic to fr if
M is oriented as a differentiable manifold, which will mean that there will be a
continuously varying way to compute the sign of the derivative of an embedding
by comparing with a choice of basis giving the orientation of the tangent space
at each point. This gives a restriction on when embeddings of disks are ambi-
ent isotopic and it turns out to be the only restriction in a connected oriented
differentiable manifold (see [15]).

We contrast this last example to what happens in a Md&bius band, where
there is an isotopy which is the identity on the boundary circle and gives
an isotopy between f and fr for a standard embedding f. We regard the
Mébius band B as a quotient of R x 2D' C R? via the equivalence relation
(z,y) ~ (¥ 4+ 1,—y). Now consider the region By = R x D!/ ~C B. For
0 <t <1, the translation T} : R x D! — R x D!, Ty(z,y) = (z + t,y) induces
a homeomorphism H; : By — Bj. Moreover, H; induces the same map as the
reflection r(z,y) = (z, —y) does since Ty (z,y) = (z + 1,y) ~ (x,—y). Thus, if
i : D?* — Bj is a standard embedded disk about (0,0), then this shows that
ir = ri is ambient isotopic to the identity with isotopy H;. The boundary circle
of By comes from [—1, 1] x {1}/ ~. This is homeomorphic to a circle S'
using k(s,—1) = (cosms,sinns), k(s,1) = (cos(n/2 + s),sin(n/2 + s)). Using k
to identify the boundary with S', then H; becomes the rotation R,;; that is,
R, = kTik~'. In particular, H; is rotation by 7. We can extend k to a homeo-
morphism K : B\int By — S x [1,2] by defining K (s,t) = (k(s,—1),[t]), t <0,
and K(s,t) = (k(s,1),t), t > 0. Then we can extend R, over S! x [1,2] —
St x [1,2] by rotating R(z,t) = (Rr(2—s)(2),t). This map is isotopic to the iden-
tity via Ry(z,t) = (Rux(2-1)(2),t). By identifying B\int B; with St ox [1,2];
this allows us to extend H; to a homeomorphism H; : B — B which is the
identity on the boundary and is induced by reflection » on Bj, and extend
H; to an isotopy H; : B — B between the identity and H;. Finally, suppose
g : B — M is an embedding into the interior of a surface M. Then we can define
an isotopy in M which is the identity isotopy on M\ g(B) and corresponds to our
isotopy above on g(B). For the embedded disk f = gi, we will have f ambient
isotopic to fr.

When we discussed the Schonflies theorem earlier in the case of polygonal
curves in the plane in Section 1.8, our main concern was to see that the com-
pact region that was bounded was homeomorphic to a disk. However, the proof
that was outlined there actually allows us to find an isotopy which moves the
original polygonal curve to a standard triangle, with the isotopy being the iden-
tity outside a larger ball. This holds since various homeomorphisms used in the
argument can be chosen to be locally based near triangles where they are the
identity outside a neighborhood of the triangle and the action within the neigh-
borhood can be shown to be isotopic to the identity. This form generalizes to
the general case of simple closed curves in the plane. For a proof, see [3]. There
are also other versions which hold in all dimensions. Besides [3], good sources
are [22, 5, 6].
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Theorem 2.4.1 (Strong form of the Schénflies theorem). Let C = f(S1)
be a simple closed curve in the plane and R*\C' = AU B as given by the Jordan
curve theorem, with A bounded. Then there is an ambient isotopy G : R? x I —
R2 x I with Gy = id, so that G1(C) = S! and G1(A) = D?. The ambient isotopy
can be chosen to be the identity outside a large disk.

We now state a strong form of the disk lemma for embeddings of a disk into
the plane and then in a surface.

Theorem 2.4.2 (Strong form of disk lemma in the plane). Let f: D* —
R? be an embedded disk in the plane. Then there is an isotopy G : R2xI — R2x T
with Gy = id and G1f =i or G1f = ir. Herei : D?> — R? is the inclusion map of
the unit disk and r is the reflection r(x,y) = (x, —y). This isotopy is the identity
outside a large disk. Moreover, there is no such isotopy connecting i and ir.

Theorem 2.4.3 (Strong form of the disk lemma). Let fo, fi : D*> — M
be embedded disks in the connected surface M with boundary OM (which may be

empty). Then there is an isotopy Gy : M — M which is the identity on a collar
neighborhood of the boundary and Gy = id, Gy fo = f1 or G1fo = fir.

Note that Theorem 2.4.3 is a two-dimensional analogue of Theorem 2.3.5. In
the supplementary exercises, Exercises 2.9.25-2.9.33 derive Theorem 2.4.3 from
Theorem 2.4.1.

There are two isotopy equivalence classes of embeddings of disks in R? and
they are represented by the inclusion and the reflection followed by the inclu-
sion. Theorem 2.4.3 extends this for disks in a connected surface M. The basic
idea, which is pursued in the supplementary exercises, is that there is an ambi-
ent isotopy so that the image of the disk is contained in a fixed neighborhood
homeomorphic to R2. This allows us to apply Theorem 2.4.2 to compare with a
standard embedding. Thus there will be either one or two ambient isotopy equi-
valence classes of disks in M. The surface will be orientable when there are two
classes, and nonorientable when there is just one class. If the surface contains
a Mobius band, then we have shown that there is an ambient isotopy between
f and fr, so any two embedded disks are ambient isotopic. Moreover, any sur-
face which is nonorientable in terms of possessing an embedded Mobius band
will have any two embedded disks ambient isotopic to each other. This leads to
the following alternate definition of an orientable surface.

Definition 2.4.2 (Embedded disk version). A connected surface M is ori-
entable iff there are exactly two ambient isotopy equivalence classes of embedded
disks in M. If M is nonorientable, then any two embedded disks are ambient
isotopic. When a connected surface M is orientable, an orientation is a choice of
equivalence class of embedded disks in M. An embedded disk in this equivalence
class will be called positively oriented.

If H; is an isotopy with Hy = id, Higo = ¢1, then h = H; is a
homeomorphism with hgy = g1. We state this form of the disk lemma.

Theorem 2.4.4 (Alternate form of disk lemma). Let M be a compact
connected surface, possibly with boundary.
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(a) Suppose M is oriented, and g1,g2 : D> — M are positively oriented
embedded disks. Then there is a homeomorphism h : M — M with h the
identity on a collar neighborhood of OM and hgy = go. Moreover, h is
isotopic to the identity.

(b) If M is nonorientable, and g1,g2 : D> — M are embedded disks, then
there is a homeomorphism h : M — M with h the identity on a collar
neighborhood of OM and hgy = go. Moreover, h is isotopic to the identity.

Exercise 2.2.5 can be modified to give the following result.

Corollary 2.4.5. Let M be a compact connected surface, possibly with boundary.
Suppose g1, ...,g9x : D> — M are k disjoint embedded disks in the interior of a
connected surface M, and ¢,. .., g}, : D? — M is another collection of k disjoint
embedded disks in the interior of M.

(a) If M is oriented and all g;,g. are positively oriented, then there is
a homeomorphism h : M — M which is the identity on a collar
neighborhood of OM with hg; = g;. Moreover, h is isotopic to the identity.

(b) If M is nonorientable, then there is a homeomorphism h : M — M which
is the identity on a collar neighborhood of OM with h(g;) = g¢;. Moreover,
h is isotopic to the identity.

Now suppose that M is a surface with p boundary circles. If M is oriented, the
choice of orientation on M will determine an orientation on each boundary circle.
When we identify a collar with S1 x [1,2] with the boundary circle corresponding
to S' x {1}, then if the orientation on the surface corresponds to the usual
positive orientation, then the orientation on the boundary corresponds to the
usual negative orientation on this circle. This allows us to fill in any boundary
circle with the usual positively oriented disk to get an oriented surface N with
one fewer boundary circle and a embedded disk g; for each boundary circle.
Applying Corollary 2.4.5 to N, there is a homeomorphism of N which permutes
these embedded disks. When we remove the interiors of these disks, this leads to
a homeomorphism of M which permutes the boundary components so that the
orientation of the boundary circles is preserved. If M is not orientable, then IV
will also be nonorientable and so we can choose the homeomorphism to achieve
any desired result in terms of orientation of the boundary circles. This leads to
a homeomorphism of M which may preserve or reverse the orientation on each
boundary circle independently.

Corollary 2.4.6. Let M be a compact connected surface with boundary,
Ci,...,Ck a subcollection of boundary circles of M, and o a permutation of
{1,...,k}. Then there is a homeomorphism h : M — M which is the identity on
a collar neighborhood of OM\ |JC; so that h(C;) = Cy(;y. If M is oriented, then
h will preserve the orientation on the boundary circles. If M is nonorientable,
then h can be chosen to preserve or reverse orientation on each boundary circle
C; independently.

We now return to handle decompositions and give a definition of orientability
that will be easy to use and will play a key role in the classification theorem. We
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give a more direct approach to Corollary 2.4.6 for handlebodies in Section 2.6
and in Exercises 2.9.37 and 2.9.38.

We examine the handle decomposition of the Mobius band in order to motiv-
ate the definition we will give for nonorientability of handlebodies. First, note
that any handle, being homeomorphic to a disk, has a notion of orientation
attached to it. We can think of this as being given a direction of rotation with
counterclockwise being thought of as positive and clockwise as negative (since
(1,0), (0, 1) is taken as the standard basis of R? and rotation from (1,0) to (0,1) is
counterclockwise). This sense of rotation on the disk induces a preferred orienta-
tion on the boundary circle. This is usually indicated by an arrow. On any subset
of the circle which excludes at least one point, this preferred direction induces
an ordering on an interval in R using p : R — S p(x) = (cos 27z, sin 27x).
The positive orientation corresponds to the usual ordering of R. Note that the
direction of rotation on D? is completely determined by the direction of rotation
on the circle. Since this may be expressed locally in terms of ordering, we will
use it for our definition of orientability of handlebodies.

Definition 2.4.3. An orientation for a handle is an orientation of its boundary
circle. By this we mean a consistent ordering for any arc (an arc is a homeo-
morphic image of an interval in the circle). By consistent, we mean that if two
arcs intersect in an arc, the two orderings agree on the arc of intersection.

Note that this definition allows us to decide on a preferred equivalence class
for an embedded disk into the interior of the handle.

We indicate the two possible orientations for our two models of the disk D?
and D! x D! by arrows in Figure 2.22. With this in mind, let us look at the
handle decomposition for the Moébius band. As Figure 2.23 indicates, a Mobius
band has a handle decomposition with one O-handle and one 1-handle. Note
that when the 1-handle is attached the orientation agrees on one of the arcs and
disagrees on the other. We leave it as an exercise to check that this phenomenon
is not dependent on our choice of orientation for either handle.

Positive Negative Positive Negative

orientation orientation orientation orientation

Figure 2.22. Orienting handles.
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h® he

Figure 2.23. Orienting handles on the Mobius band and annulus.

Exercise 2.4.3. Show that no matter how one orients each of the handles in the
Mobius band, the 1-handle is attached to the O-handle so that the orientation
agrees on one of the arcs and disagrees on the other.

Let us compare this with the corresponding handle decomposition of the
annulus. Note that for the annulus we may choose orientations for each handle
so that they disagree on their intersection (i.e. where the 1-handle is attached)
(see Figure 2.23).

Definition 2.4.4 (Handlebody version). We say that a handlebody is
orientable if we may choose an orientation for each handle so that these ori-
entations disagree on identifications; otherwise, it is said to be nonorientable.
An orientation for a handlebody is a consistent choice of orientations for each
handle, where consistent means that the orientations disagree on identifications
of the boundaries of handles.

The reader may be puzzled by the fact that we want the orientations of the
handles to disagree on the arcs that are identified instead of having them agree
on both arcs. In the example of the annulus above, we could have easily chosen
an orientation of the second handle so that the orientations agree on the identi-
fied arcs. The main reason for the condition of making the orientations of arcs
disagree as we attach a 1-handle is that this is what is required for small embed-
ded disks with counterclockwise orientations of each handle to be isotopic as we
move across the edge where the two handles are joined. Thus the orientation on
the edge must change if we are to have a consistent orientation in the adjoining
handle. This change allows us to extend an embedded disk in the preferred equi-
valence class across the edge into the preferred equivalence class in the adjacent
disk. It is also needed to consistently orient the new boundary. The boundary of
a handlebody will be a disjoint union of circles. If the handlebody is oriented as
we have defined it, then the boundary circles will inherit an orientation from the
orientations of the individual handles. In Figure 2.23, for example, the boundary
of the annulus consists of two circles, each of which is oriented.

Since the structure of a handle decomposition is an inductive one, our defini-
tion of orientability is also inductive. In order to use the definition with three or
more handles, it has to be the case that the boundary circles have an orientation
determined by the orientations of the handles involved at the end of each step.
We now indicate why the boundary will inherit a consistent orientation with
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Figure 2.24. Orienting the boundary.
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Figure 2.25. Some handlebodies.

our definition when a 1-handle is attached. Suppose that we have oriented the
handles consistently so far, so that the boundary has an orientation imposed
on it from the orientations of the individual handles. The new handle will be
attached along two arcs, which will be identified in some way with two arcs in
the boundary so far. If the new handle is attached so that both orientations
disagree, then Section 2.3 shows that the change in the boundary is represented
by the model in Figure 2.24. But in this model, the new boundary is seen to
inherit a consistent orientation.

Exercise 2.4.4. Use the definition to determine whether the handlebodies in
Figure 2.25 are orientable or not.



2.4. Orientation 97

Note that the only problem in orienting a handlebody will occur when a
1-handle is attached, since, when 0-handles are attached, we are taking a disjoint
union with a disk, and when 2-handles are attached, they are attached via a
homeomorphism of the circle to one of the boundary pieces. One of the two
possible orientations on the circle will disagree with the orientation so far on the
boundary.

If a handlebody is orientable and connected, then there are precisely two
ways to orient the handles consistently (we use the word consistently to mean
that orientations always disagree on identified arcs). Note that an individual
handle has exactly two choices of orientation. If the handlebody is orientable,
then there is at least one way to orient handles in a consistent manner, which
we now consider fixed. Note that if we change the orientation of every individual
handle from the fixed orientation, then the handles with the new orientations are
oriented consistently. We want to see that these are the only two ways to orient
the connected handlebody. Suppose we change the orientation on one of the
handles h; in the handlebody from the fixed orientation. Since the handlebody
is connected, this handle must be incident to at least one other handle (where we
call two handles incident if they have boundary arcs which are identified). For
any handle hy incident to hy, we must change the orientation of ho from the fixed
orientation in order to be consistent with the new orientation of h;. Similarly, we
would have to change the orientation of any handle 3 incident to hye. Continuing
this argument inductively, we see that whenever we have a chain hq,..., h; of
handles with h; incident to h;;, then changing the orientation of h; from the
fixed orientation forces us to change the orientations of all of the handles in the
chain in order to be consistent. But a connected handlebody has the property
that given any two handles hg, hp, there is a chain h, = hy,...,hy = hy of
handles with h; incident to h;41. This may be proved inductively on the number
of handles in the handlebody and is left as an exercise. Hence, if one of the
handles has its orientation changed from the fixed orientation, then we have
to change the orientations of all of the handles for the new orientations to be
consistent.

Exercise 2.4.5. Show by induction on the number of handles that in a con-
nected handlebody any two handles h,, h, may be joined by a chain h, =
hl, hg, ey h}g = hb with hi incident to hi+1.

The discussion above has consequences for nonorientable handlebodies as
well. If a handlebody is nonorientable, then we will be able to orient the first
n handles hq, ..., h, consistently, but the next handle h,4; cannot be oriented
consistently with all of these, even if we go back and change orientations on some
of the earlier handles. Suppose that we have a handlebody H and that we have
succeeded in orienting the handlebody Hy; = hy U --- U h,, consisting of the first
n handles of H, but that we cannot orient the next handle h, 41 consistently
with the chosen orientations in H;. Must H be nonorientable, or can we go
back and make better choices of the orientations in H; so that we can orient
hn+1 consistently with the new orientations? If H; is connected, then H will
be nonorientable. For H; is orientable, so the only possibility of changing the
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orientations in H; is to change all of the orientations of the individual handles, in
which case h,,+1 cannot be oriented consistently with all of the new orientations,
since it still must agree with one of the new orientations of the boundary of H;
and disagree with the other in the two intervals where it is attached.

Exercise 2.4.6. Give an example of an oriented handlebody H; and a handle
h' attached to H; so that h' cannot be oriented consistently with the chosen
orientations of the handles in H; but that H; U Al is orientable.

The condition of orientability of a handlebody is equivalent to the conditions
involving embedded disks or embedded Mobius bands. In Chapter 6 we use
homology to show that a handle-oriented surface is disk-oriented. We show as
one step in the proof of the classification theorem that when a handlebody is
nonorientable, there will be an embedded Md&bius band and a corresponding
isotopy between an embedding f and fr. Using these facts, we outline a proof
of the equivalence of the definitions of orientability in Exercise 2.9.39.

2.5 Connected sums

Our classification theorem will be stated in terms of the concept of connected
sum. Actually, there are two different definitions involved, that of ordinary con-
nected sum, denoted #, and boundary connected sum, denoted II. We work
in the context of compact connected surfaces (with or without boundary) for
connected sum, and compact connected surfaces with boundary for boundary
connected sum. The boundary of such a surface will be a union of a finite number
of circles.

We first define boundary connected sum of two surfaces M, N with boundary.
Choose an embedding f of {£1} x D! which sends {—1} x D! into an arc in dM
and sends {1} x D! into an arc in ON. Then the boundary connected sum of M
and N is

MIIN = M Uy, D' x D' Uy, N = (M| |N) Uy D' x D*.

If M, N are handlebodies, then MIIN is a handlebody formed from the disjoint
union M| |N by adding a 1-handle. If M, N are oriented, then there is an
additional restriction imposed on the construction that the 1-handle must be
attached so that its orientation is consistent with that of M, N, and so MIIN
will be oriented as well. In terms of handlebodies, this is expressed so the natural
orientation of the 1-handle is such that it disagrees on each attaching boundary
circle with the orientations of the boundaries of the handlebodies M, N. We say
that we are forming the oriented boundary connected sum of the two oriented
handlebodies. See Figure 2.26 for an illustration of the boundary connected sum
of a torus with one hole and a sphere with two holes. Note how the orientations
on the boundaries match up so that the result is still oriented. When forming
boundary connected sum, all components of the boundary except the two where
the 1-handle is being attached are unchanged. For those two components, the
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Figure 2.26. Boundary connected sum T{1)I15s.

effect of the 1-handle is to exchange the two circles that are part of the boundary
for a single circle.

We need to know th