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Preface

This book is intended to introduce advanced undergraduates and beginnning
graduate students to topology, with an emphasis on its geometric aspects. There
are a variety of influences on its content and structure. The book consists of two
parts. Part I, which consists of the first three chapters, attempts to provide a
balanced view of topology with a geometric emphasis to the student who will
study topology for only one semester. In particular, this material can provide
undergraduates who are not continuing with graduate work a capstone exper-
ience for their mathematics major. Included in this experience is a research
experience through projects and exercise sets motivated by the prominence of
the Research Experience for Undergraduate (REU) programs that have become
important parts of the undergraduate experience for the best students in the
US as well as VIGRE programs. The book builds upon previous work in real
analysis where a rigorous treatment of calculus has been given as well as ideas
in geometry and algebra. Prior exposure to linear algebra is used as a motiv-
ation for affine linear maps and related geometric constructions in introducing
homeomorphisms. In Chapter 3, which introduces the fundamental group, some
group theory is developed as needed. This is intended to be sufficient for students
without a prior group theory course for most of Chapter 3. A prior advanced
undergraduate level exposure to group theory is useful for the discussion of the
Seifert–van Kampen theorem at the end of Chapter 3 and for Part II.

Part I provides enough material for a one-semester or two-quarter course. In
these chapters, material is presented in three related ways. The core of these
chapters presents basic material from point set topology, the classification of
surfaces, and the fundamental group and its applications with many details left
as exercises for the student to verify. These exercises include steps in proofs
as well as application of the theory to related examples. This style fosters the
highly involved approach to learning through discussion and student presenta-
tion which the author favors, but also allows instructors who prefer a lecture
approach to include some of these details in their presentation and to assign
others. The second method of presentation comes from chapter-end exercise sets.
Here the core material of the chapter is extended significantly. These exercise
sets include material an instructor may choose to integrate as additional topics
for the whole class, or they may be used selectively for different types of students
to individualize the course. The author has used them to give graduate students
and undergraduates in the same course different types of assignments to assure
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that undergraduates get a well-balanced exposure to topology within a semester
while graduate students get exposure to the required material for their PhD
written examinations. Finally, these chapters end with a project, which provides
a research experience that draws upon the ideas presented in the chapter. The
author has used these projects as group projects which lead to the students
involved writing a paper and giving a class presentation on their project.

Part II, which consists of Chapters 4–6, extends the material in a way to
make the book useful as well for a full-year course for first-year graduate students
with no prior exposure to topology. These chapters are written in a very different
style, which is motivated in part by the ideal of the Moore method of teaching
topology combined with ideas of VIGRE programs in the US which advocate
earlier introduction of seminar and research activities in the advanced under-
graduate and graduate curricula. In some sense, they are a cross between the
chapter-end exercises and the projects that occur in Part I. These last chapters
cover material from covering spaces, CW complexes, and algebraic topology
through carefully selected exercise sets. What is very different from a pure Moore
method approach is that these exercises come with copious hints and suggested
approaches which are designed to help students master this material while at
the same time improving their abilities in understanding the structure of the
subject as well as in constructing proofs. Instructors may use them with a teach-
ing style which ranges from a pure lecture–problem format, where they supply
key proofs, to a seminar–discussion format, where the students do most of the
work in groups or individually. Class presentations and expository papers by
students, in groups or individually, can also be a component here. The goal is to
lay out the basic structure of the material in carefully developed problem sets
in a way that maximizes the flexiblity of the instructor in utilizing this material
and encourages strong involvement of students in learning it.

We briefly outline what is covered in the text. Chapter 1 gives a basic intro-
duction to the point set topology used in the rest of the book, with emphasis
on developing a geometric feel for the concepts. Quotient space constructions of
spaces built from simpler pieces such as disks and rectangles is stressed as it is
applied frequently in studying surfaces. Chapter 2 gives the classification of sur-
faces using the viewpoint of handle decompositions. It provides an application
of the ideas in the first chapter to surface classification, which is an important
example for the whole field of manifold theory and geometric topology. Chapter 3
introduces the fundamental group and applies it to many geometric problems,
including the final step in the classification of surfaces of using it to distin-
guish nonhomeomorphic surfaces. In Chapter 3, certain basic ideas of covering
spaces (particularly that of exponential covering of the reals over the circle) are
used, and Chapter 4 is concerned with developing these further into the beauti-
ful relationship between covering spaces and the fundamental group. Chapter 5
discusses CW complexes, including simplicial complexes and ∆-complexes. CW
complexes are motivated by earlier work from handle decompositions and used
later in studying homology. Chapter 6 gives a selective approach to homology the-
ory with emphasis on its application to low-dimensional examples. In particular,
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it gives the proof (through exercise sets) of key results such as invariance of
domain and the Jordan curve theorem which were used earlier. It also gives a
more advanced approach to the concept of orientation, which plays a key role in
Chapter 2.

The coverage in the text differs substantially in content, order, and type
from texts at a similar level. The emphasis on geometry and the desire to have a
balanced one-semester introduction leads to less point set topology but a more
thorough application of it through the handlebody approach to surface classific-
ation. We also move quickly enough to allow a significant exposure to algebraic
topology through the fundamental group within the first semester. The extens-
ive exercise sets, which form the core of developing the more advanced material
in the text, also foster more flexibility in how the text can be used. When indi-
vidual parts are counted, there are more than a thousand exercises in the text. In
particular, it should serve well as a resource for independent study and projects
outside of the standard course structure as well as allow many different types of
courses.

There is an emphasis on understanding the topology of low-dimensional
spaces which exist in three-space, as well as more complicated spaces formed
from planar pieces. This particularly occurs in understanding basic homotopy
theory and the fundamental group. Because of this emphasis, illustrations play
a key role in the text. These have been prepared with LaTeX tools pstricks
and xypic as well as using figures constructed using Mathematica, Matlab, and
Adobe Illustrator.

The material here is intentionally selective, with the dual goals of first giv-
ing a good one-semester introduction within the first three chapters and then
extending this to provide a problem-oriented approach to the remainder of a
year course. We wish to comment on additional sources which we recommend
for material not covered here, or different approaches to our material where there
is overlap. For a more thorough treatment of point set topology, we recommend
Munkres [24]. For algebraic topology, we recommend Hatcher [13] and Bredon [5].
All of these books are written at a more advanced level than this one. We have
used these books in teaching topology at the first- and second-year graduate
levels and they influenced our approach to many topics. For some schools with
strong graduate students, it may be most appropriate to use just the first three
chapters of our text for undergraduates and to prepare less prepared graduate
students for the graduate course on the level of one of the three books mentioned.
In that situation, some of the projects or selected exercises from Chapters 4–6
could be used as enhancements for the graduate course.

The book contains as an appendix some selected solutions to exercises to
assist students in learning the material. These solutions are limited in number in
order to maximize the flexibility of instructors in using the exercise sets. Instruct-
ors who are adopting this book for use in a course can obtain an Instructor
Solutions Manual with solutions to the exercises in the book in terms of a PDF
file through Oxford University Press (OUP). The LaTeX files for these solutions
are also available through OUP for those instructors who wish to use them in
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preparation of materials for their class. Please write to the following address,
and include your postal and e-mail addresses and full course details including
student numbers:

Marketing Manager
Mathematics and Statistics

Academic and Professional Publishing
Oxford University Press
Great Clarendon Street
Oxford OX2 6DP, UK
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Part I

A Geometric Introduction

to Topology





1

Basic point set topology

1.1 Topology in Rn

Topology is the branch of geometry that studies “geometrical objects” under
the equivalence relation of homeomorphism. A homeomorphism is a function
f :X → Y which is a bijection (so it has an inverse f−1 :Y → X) with both
f and f−1 being continuous. One of the prime aims of this chapter will be
to enhance our understanding of the concept of continuity and the equivalence
relation of homeomorphism. We will also discuss more precisely the “geometrical
objects” in which we are interested (called topological spaces), but our viewpoint
will primarily be to understand more familiar spaces better (such as surfaces)
rather than to explore the full generalities of topological spaces. In fact, all of the
spaces we will be interested in exist as subspaces of some Euclidean space Rn.
Thus our first priority will be to understand continuity and homeomorphism for
maps f :X → Y , where X ⊂ Rn and Y ⊂ Rm. We will use bold face x to denote
points in Rk.
One of the methods of mathematics is to abstract central ideas from many

examples and then study the abstract concept by itself. Although it often seems
to the student that such an abstraction is hard to relate to in that we are fre-
quently disregarding important information of the particular examples we have
in mind, the technique has been very successful in mathematics. Frequently, the
success is rooted in the following idea: knowing less about something limits the
avenues of approach available in studying it and this makes it easier to prove
theorems (if they are true). Of course, the measure of the success of the abstrac-
ted idea and the definitions it suggests is frequently whether the facts we can
prove are useful back in the specific situations which led us to abstract the idea
in the first place. Some of the most important contributions to mathematics have
been made by those who have figured out good definitions. This is difficult for
the student to appreciate since definitions are usually presented as if they came
from some supreme being. It is more likely that they have evolved through many
wrong guesses and that what is presented is what has survived the test of time.

3



4 1. Basic point set topology

It is also quite possible that definitions and concepts which seem so right now
(or at least after a lot of study) will end up being modified at a later stage.
We now recall from calculus the definition of continuity for a function f :X →

Y , where X and Y are subsets of Euclidean spaces.

Definition 1.1.1. f is continuous at x ∈ X if, given ǫ > 0, there is a δ > 0 so
that d(x,y) < δ implies that d(f(x), f(y)) < ǫ. Here d indicates the Euclidean
distance function d((x1, . . . , xk), (y1, . . . , yk)) = ((x1−y1)

2+· · ·+(xk −yk)
2))1/2.

We say that f is continuous if it is continuous at x for all x ∈ X.

It will be convenient to have a slight reformulation of this definition. For
z ∈ Rk, we define the ball of radius r about z to be the set B(z, r) = {y ∈
Rk : d(z,y) < r} If C is a subset of Rk and z ∈ C, then we will frequently be
interested in the intersection C∩B(z, r), which just consists of those points of C
which are within distance r of z. We denote by BC(x, r) = C ∩ B(x, r) = {y ∈
C : d(y,x) < r}. Our reformulation is given in the following definition.
Definition 1.1.2. f :X → Y is continuous at x ∈ X if given ǫ > 0, there is a
δ > 0 so that BX(x, δ) ⊂ f−1(BY (f(x), ǫ)). f is continuous if it is continuous
at x for all x ∈ X.

Exercise 1.1.1. Show that the reformulation Definition 1.1.2 is equivalent to
the original Definition 1.1.1. This requires showing that, if f is continuous in
Definition 1.1.1, then it is also continuous in Definition 1.1.2, and vice versa.

We reformulate in words what Definition 1.1.2 requires. It says that a function
is continuous at x if, when we look at the set of points in X that are sent to a
ball of radius ǫ about f(x), no matter what ǫ > 0 is given to us, then this set
always contains the intersection of a ball of some radius δ > 0 about x with X.
This definition leads naturally to the concept of an open set.

Definition 1.1.3. A set U ⊂ Rk is open if given any y ∈ U , then there is a
number r > 0 so that B(y, r) ⊂ U . If X is a subset of Rk and U ⊂ X, then we
say that U is open in X if given y ∈ U , then there is a number r > 0 so that
BX(y, r) ⊂ U .

In other words, U is an open set in X if it contains all of the points in X that
are close enough to any one of its points. What our second definition is saying
in terms of open sets is that f−1(BY (y, ǫ)) satisfies the definition of an open set
in X containing x; that is, all of the points in X close enough to x are in it.
Before we reformulate the definition of continuity entirely in terms of open sets,
we look at a few examples of open sets.

Example 1.1.1. Rn is an open set in Rn. Here there is little to check, for given
x ∈ Rn, we just note that B(x, r) ⊂ Rn, no matter what r > 0 is.

Example 1.1.2. Note that a ball B(x, r) ⊂ Rn is open in Rn. If y ∈ B(x, r),
then if r′ = r − d(y,x), then B(y, r′) ⊂ B(x, r). To see this, we use the triangle
inequality for the distance function: d(z,y) < r′ implies that

d(z,x) ≤ d(z,y) + d(y,x) < r′ + d(y,x) = r.

Figure 1.1 illustrates this for the plane.
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x

y z

Figure 1.1. Balls are open.

Figure 1.2. Open and closed rectangles.

Example 1.1.3. The inside of a rectangle R ⊂ R2, given by a < x < b, c <
y < d, is open. Suppose (x, y) is a point inside of R. Then let r = min(b− x, x−
a, d − y, y − c). Then if (u, v) ∈ B((x, y), r), we have |u − x| < r, |v − y| < r,
which implies that a < u < b, c < v < d, so (u, v) ∈ R. However, if the perimeter
is included, the rectangle with perimeter is no longer open. For if we take any
point on the perimeter, then any ball about the point will contain some point
outside the rectangle. We illustrate this in Figure 1.2.

Example 1.1.4. The right half plane, consisting of those points in the plane
with first coordinate positive, is open. For given such a point (x, y) with x > 0,
then if r = x, the ball of radius r about (x, y) is still contained in the right half
plane. For any (u, v) ∈ B((x, y), r) satisfies |u − x| < r and so x − u < x, which
implies u > 0.

Example 1.1.5. An interval (a, b) in the line, considered as a subset of the
plane (lying on the x-axis), is not open. Any ball about a point in it would have
to contain some point with positive y-coordinate, so it would not be contained
in (a, b). Note, however, that it is open in the line, because, if x ∈ (a, b) and
r = min(b − x, x − a), then the intersection of the ball of radius r about x with
the line is contained in (a, b). Of course, the line itself is not open in the plane.
Thus we have to be careful in dealing with the concept of being open in X, where
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X is some subset of a Euclidean space, since a set which is open in X need not
be open in the whole space.

Exercise 1.1.2. Determine whether the following subsets of the plane are open.
Justify your answers.

(a) A = {(x, y) :x ≥ 0},
(b) B = {(x, y) :x = 0},
(c) C = {(x, y) :x > 0 and y < 5},
(d) D = {(x, y) :xy < 1 and x ≥ 0},
(e) E = {(x, y) : 0 ≤ x < 5}.
Note that all of these sets are contained in A. Which ones are open in A?

We now give another reformulation for what it means for a function to be
continuous in terms of the concept of an open set. This is the definition that has
proved to be most useful to topology.

Definition 1.1.4. f : X → Y is continuous if the inverse image of an open set
in Y is an open set in X. Symbolically, if U is an open set in Y , then f−1(U) is
an open set in X.

Note that this definition is not local (i.e. it is not defining continuity at one
point) but is global (defining continuity of the whole function). We verify that
this definition is equivalent to Definition 1.1.2. Suppose f is continuous under
Definition 1.1.2 and U is an open set in Y . We have to show that f−1(U) is open
in X. Let x be a point in f−1(U). We need to find a ball about x so that the
intersection of this ball with X is contained in f−1(U). Now x ∈ f−1(U) implies
that f(x) ∈ U , and U open in Y means that there is a number ǫ > 0 so that
BY (f(x), ǫ) ⊂ U . But Definition 1.1.2 implies that there is a number δ > 0 so
that BX(x, δ) ⊂ f−1(BY (f(x), ǫ)) ⊂ f−1(U), which means that f−1(U) is open
in X; hence f is continuous using Definition 1.1.4.
Suppose that f is continuous under Definition 1.1.4 and x ∈ X. Let ǫ > 0 be

given. We noted above that a ball is open in Rk and the same proof shows that
the intersection of a ball with Y is open in Y . Since BY (f(x), ǫ) is open in Y ,
Definition 1.1.4 implies that f−1(BY (f(x), ǫ)) is open in X. But the definition of
an open set then implies that there is δ > 0 so that BX(x, δ) ⊂ f−1(BY (f(x), ǫ));
hence f is continuous by Definition 1.1.2.
Before continuing with our development of continuity, we recall from calculus

some functions which were proved to be continuous there. It is shown in calcu-
lus that any differentiable function is continuous. This includes polynomials,
various trigonometric and exponential functions, and rational functions. Certain
constructions with continuous functions, such as taking sums, products, and
quotients (where defined), are shown to give back continuous functions. Other
important examples are inclusions of one Euclidean space in another and pro-
jections onto Euclidean spaces (e.g. P (x, y, z) = (x, z)). Also, compositions of
continuous functions are shown to be continuous. We re-prove this latter fact
with the open-set definition.
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Suppose f :X → Y and g :Y → Z are continuous. We want to show that the
composition gf :X → Z is continuous. Let U be an open set in Z. Since g is
continuous, g−1(U) is open in Y ; since f is continuous, f−1(g−1(U)) is open in
X. But f−1(g−1(U)) = (gf)−1(U), so we have shown that gf is continuous. Note
that in this proof we have not really used that X,Y, Z are contained in some
Euclidean spaces and that we have our particular definition of what it means for
a subset of Euclidean space to be open. All we really are using in the proof is
that in each of X,Y, Z, there is some notion of an open set and the continuous
functions are those that have inverse images of open sets being open. Thus the
proof would show that even in much more general circumstances, compositions
of continuous functions are continuous. We pursue this in the next section.

1.2 Open sets and topological spaces

The notion of an open set plays a basic role in topology. We investigate the
properties of open sets in X, where X is a subset of some Rn. First note that
the empty set is open since there is nothing to prove, there being no points in it
around which we have to have balls. Also, note that X itself is open in X since
given any point in X and any ball about it, then the intersection of the ball with
X is contained in X. This says nothing about whether X is open in Rn.
Next suppose that {Ui} is a collection of open sets in X, where i belongs to

some indexing set I. Then we claim that the union of all of the Ui is open in X.
For suppose x is a point in the union, then there must be some i with x ∈ Ui.
Since Ui is open in X, there is a ball about x with the intersection of this ball
with X contained in Ui, hence contained in the union of all of the Ui.
We now consider intersections of open sets. It is not the case that arbitrary

intersections of open sets have to be open. For example, if we take our sets to be
balls of decreasing radii about a point x, where the radii approach 0, then the
intersection would just be {x} and this point is not an open set in X. However,
if we only take the intersection of a finite number of open sets in X, then we
claim that this finite intersection is open in X. Let U1, . . . , Up be open sets in
X, and suppose x is in their intersection. Then for each i, i = 1, . . . , p, there is
a radius ri > 0 so that the intersection of X with the ball of radius ri about x

is contained in Ui. Let r be the minimum of the ri (we are using the finiteness
of the indexing set to know that there is a minimum). Then the ball of radius r
is contained in each of the balls of radius ri, and so its intersection with X is
contained in the intersection of the Ui. Hence the intersection is open.
The properties that we just verified about the open sets in X turn out to be

the crucial ones when studying the concept of continuity in Euclidean space, and
so the natural thing mathematicians do in such a situation is to abstract these
important properties and then study them alone. This leads to the definition of
a topological space.

Definition 1.2.1. Let X be a set, and let T = {Ui: i ∈ I} be a collection of
subsets of X. Then T is called a topology on X, and the sets Ui are called the
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open sets in the topology, if they satisfy the following three properties:

(1) the empty set and X are open sets;

(2) the union of any collection of open sets is open;

(3) the intersection of any finite number of open sets is open.

If T is a topology on X, then (X, T ), or just X itself if T is made clear by
the context, is called a topological space.

Our discussion above shows that if X is contained in Rn and we define the
open sets as we have, then X with this collection of open sets is a topological
space. This will be referred to as the “standard” or “usual” topology on subsets
of Rn and is the one intended if no topology is explicitly mentioned. Note that
Definition 1.1.4 makes sense in any topological space. We use it to define the
notion of continuity in a general topological space. Our proof above that the
composition of continuous functions is continuous goes through in this more
general framework. As we said before, the spaces that we are primarily interested
in are those that get their topology from being subsets of some Euclidean space.
Nevertheless, it is frequently useful to use the notation of a general topological
space and to give more general proofs even though we are dealing with a very
special case. We will also use quotient space descriptions of subsets of Rn, which
will require us to use topologies more generally defined than those of Rn and its
subsets.
One of the important properties of Rn and its subsets as topological spaces

is that the topology is defined in terms of the Euclidean distance function. A
special class of topological spaces are the metric spaces, where the open sets are
defined in terms of a distance function.

Definition 1.2.2. Let X be a set and d :X → R a function. d is called a metric
on X if it satisfies the following properties:

(1) d(x, y) ≥ 0 and = 0 iff x = y;

(2) d(x, y) = d(y, x);

(3) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The metric d then determines a topology on X, which we denote by Td, by
saying a set U is open if given x ∈ U , there is a ball Bd(x, r) = {y ∈ X : d(x, y) <
r} contained in U . (X, Td) (or more simply denoted (X, d)) is then called a metric
space.

To verify that the definition of a topology on a metric space does indeed
satisfy the three requirements for a topology is left as an exercise. The proof is
essentially our proof that Euclidean space satisfied those conditions. Also, it is
easy to verify that the usual distance function in Rn satisfies the conditions of a
metric.
From the point of view of some forms of geometry, the particular distance

function used is very important. From the point of view of topology, the import-
ant idea is not the distance function itself, but rather the open sets that it
determines. Different metrics on a set can determine the same open sets. For
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Figure 1.3. Comparing balls.

an example of this, let us consider the plane. Let d denote the usual Euclidean
metric in the plane and let d′((x, y), (u, v)) = |x − u| + |y − v|. We will leave it
as an exercise to verify that d′ is a metric. We will use a subscript to indicate
the metric being used when determining balls and open sets. As illustrated in
Figure 1.3, balls in the metric d′ look like diamonds. We show that these two
metrics determine the same open sets. Since the open sets are determined by
the balls and each type of ball is open, it is enough to show that if Bd(z, r)
is a ball about z, then there is a number r′ so that Bd′(z, r′) ⊂ Bd(z, r), and
conversely, that each ball B′

d(z, r
′) contains a ball Bd(z, r). First suppose that

we are given a radius r for a ball Bd(z, r). We need to find a radius r′ so that
Bd′(z, r′) ⊂ Bd(z, r). Note that we want |x1 − u1| + |x2 − u2| < r′ to imply
that (x1 − u1)

2 + (x2 − u2)
2 < r2. But if r′ = r, then this will be true as

can be seen by squaring the first inequality. For the other way, given a ball
Bd′(z, r′), we need to find a ball Bd(z, r) within it. Here r = r′/2 will work:
(z1 − u1)

2 + (z2 − u2)
2 < (r′)2/4 implies that |z1 − u1| < r′/2, |z2 − u2| < r′/2,

and so d′(z,u) < r′. As Figure 1.3 suggests, we could actually take r = r′/
√
2.

This figure shows the inclusions Bd(z, r/
√
2) ⊂ Bd′(z, r) ⊂ Bd(z, r).

From the topological point of view, the best value of r given r′ is not really
of much importance; it is just the existence of an appropriate r. The existence
can be seen geometrically.

Exercise 1.2.1. Verify that the definition of an open set for a metric space
satisfies the requirements for a topology.

Exercise 1.2.2. Verify that d′ is a metric.

We give two examples of a metric space besides the usual topology on a subset
of Rn. For the first example, we take as a set X = Rn, but define a metric d by
d(x,y) = 1 if x �= y, and d(x,x) = 0. It is straightforward to check that this
satisfies the conditions for a metric. Then a ball B

(

x, 1
2

)

= {x}, so one point
sets are open. Hence every set, being a union of one-point sets, will be open. The
topology on a set X where all sets are open is called the discrete topology.
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The next example is of no special importance to us here, but similar construc-
tions are very important in analysis. The points in our space will be continuous
functions defined on the interval [0, 1]. We can then define the distance between

two such functions to be d(f, g) =
∫ 1

0
|f(x)− g(x)|dx. We leave it as an exercise

to check that this satisfies the definition of a metric.

Exercise 1.2.3. Show that the above definition of the distance between two
functions does satisfy the three properties required of a metric. This depends
on the fact, which you may assume in your argument, that the integral of a
nonnegative continuous function is positive unless the function is identically 0.

We give an example of a topological space which is not a metric space. To
define a topology on a set, we have to give a collection of subsets of the set (which
we will call open sets) and then verify that they satisfy the three properties
required of open sets in a topology. The simplest example of a nonmetric space
is to take any set X with more than one point and define the open sets by saying
that the only open sets are φ and X. This topology is called the indiscrete
topology on X. For a slightly more complicated example, we will take our set to
be the set with three points {a, b, c} and then define the following sets to be open:
φ, {a, b}, {a, b, c}. We may verify that this collection of open sets does satisfy the
three required properties: the empty set and the whole space are open, unions of
open sets are open, and finite intersections of open sets are open. Of course, this
is just one of many possible topologies on the three-point set. In order to get a
better feeling for the requirements of a topology, we will leave it as an exercise
to find some more topologies on this set.

Exercise 1.2.4.

(a) Find five different topologies for the set {a, b, c}.
(b) Find all the possible topologies on the set {a, b, c}.
How do we know that the topology that we put on {a, b, c} does not arise

from some metric? The answer lies in a separation property that any metric
space possesses and our topology does not. Given any two distinct points x, y in
a metric space, there is some distance r = d(x, y) between them. Then the ball
of radius r/2 about x does not intersect the ball of radius r/2 about y and vice
versa. Hence there are two disjoint open sets, one of which contains x and the
other y. But this is not true for the points a and b in the topology given above,
since every open set which contains b also contains a. The same argument shows
that the indiscrete topology on any set X with at least two points does not come
from a metric. A topological space X is called Hausdorff if given x, y ∈ X there
are disjoint open sets Ux, Uy with x ∈ Ux, y ∈ Uy. The argument above says a
metric space is Hausdorff, and our examples are shown not to arise from a metric
since they are not Hausdorff.
We look at some specific examples of continuous functions. The inclusion of

a subset B of A into A will always be continuous, where A ⊂ Rn. For if B ⊂
A, i :B → A is the inclusion, and if U is an open set in A, then i−1(U) = B ∩U .
We need to see why B ∩ U is open in B if U is open in A. Let x ∈ B ∩ U .
Then U open in A means that there is a ball B(x, r) with B(x, r) ∩ A ⊂ U .
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Since B(x, r) ∩ B ⊂ B ∩ U, B ∩ U is open in B. Note that this proof would
work equally as well in any metric space as long as we use the same metric for
the subset. In a general topological space, we have to specify how we get the
topology on the subset from the topology on the original set.

Definition 1.2.3. Suppose A is a topological space and B ⊂ A. A set V ⊂ B is
open in the subspace topology on B iff V is the intersection of B with an open set
in the whole space A; that is, V is open in B iff V = U∩B, where U is open in A.

It is straightforward to show that an inclusion map is continuous when the
subset has the subspace topology. From now on, we will assume that a subset is
given the subspace topology unless otherwise stated. The topology on a subset of
Rn coming from using the usual metric is a special case of the subspace topology.

Exercise 1.2.5. For X ⊂ Rn, show that the usual topology on X is the same
as the subspace topology.

Here is another useful construction for continuous functions. Suppose that
f :A → B is continuous and C is a subset of B which contains the image of f .
Then we may regard f as a function from A to C. This function, which we denote
by fC , is still continuous when C is given the subspace topology. For if we take
an open set V of C, it will have the form V = U ∩ C, where U is open in B.
Then f−1

C (V ) = f−1(U) is open since U is open and f is continuous.
Putting these last two constructions together and using the fact that com-

positions of continuous functions are continuous shows that if we start with a
function f from Rn to Rm which we already know is continuous, such as a poly-
nomial, and then restrict the function to a subset A and restrict the range to
a subset B which contains f(A), then this new function with restricted domain
and range will be continuous.
For many constructions involving continuous functions, it is more convenient

to work with the concept of closed sets rather than open sets.

Definition 1.2.4. A set C ⊂ X is said to be closed if its complement X\C
is open.

From their definition, the closed sets are completely determined by the open
sets and vice versa. From the three properties that the open sets satisfy, we can
deduce three properties that the closed sets must satisfy:

(1) the empty set and X are closed sets;

(2) the intersection of any collection of closed sets is closed;

(3) the union of any finite number of closed sets is closed.

Critical for verifying these properties from the properties of open sets are
DeMorgan’s laws regarding complements:

(1) X\ ∪i Ai = ∩i(X\Ai);

(2) X\ ∩i Ai = ∪i(X\Ai).

First, the empty set and the whole space X will be closed since their comple-
ments (X and the empty set) are open. Second, any intersection of closed sets
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will be closed since the complement of the intersection will be the union of the
individual complements, and thus will be open since the union of open sets is
open. Finally, any finite union of closed sets will be closed since the complement
of the finite union will be the intersection of the individual complements and so
will be open since the finite intersection of open sets is open. It is possible to
define a topology in terms of the concept of closed sets and work with closed
sets instead of open sets. The most familiar example of a closed set is the closed
interval [a, b]. We leave it as an exercise to show that it is closed.

Exercise 1.2.6. Show that [a, b] is a closed set in R. Show that a rectangle
(including the perimeter) is a closed set in R2.

Exercise 1.2.7. Show that [a, b) is neither open nor closed in R.

We now prove a couple of useful propositions involving the concept of closed
sets. Each proposition follows from corresponding statements involving open sets
by taking complements.

Proposition 1.2.1. f :A → B is continuous iff the inverse images of closed
sets are closed.

Proof. Suppose f is continuous and C is a closed subset in B. Then B\C is
open and f−1(C) = A\f−1(B\C) is closed since it is the complement of an open
set in A. The converse follows similarly and is left as an exercise.

Exercise 1.2.8. Complete the proof above by proving the converse.

Proposition 1.2.2. If A ⊂ X has the subspace topology, then D ⊂ A is closed
in A iff D = A ∩ E, where E is closed in X.

Proof. By the definition of the subspace topology, the open sets in A are the
intersections of A with the open sets in X. What we are trying to prove here is
a similar statement for closed sets. Suppose D is closed in A. Then D = A\F ,
where F is open in A. Then F = A ∩ G, where G is open in X. Hence, if
E = X\G, then E is closed in X and

D = A\F = A\(A ∩ G) = A ∩ (X\G) = A ∩ E.

The converse is left as an exercise.

Exercise 1.2.9. Complete the proof above by proving the converse.

Exercise 1.2.10. Suppose A is a closed subset of X. Then D ⊂ A is closed in
A (with the subspace topology) iff D is closed in X.

Definition 1.2.5. The closure of a set A ⊂ X, denoted Ā, is the intersection of
all closed sets containing A. The interior of A, denoted intA, is the union of all
open sets contained in A. A point in intA is called an interior point of A. The
boundary of A, denoted BdA, is Ā ∩ X\A. A point in BdA is called a boundary
point of A.

Exercise 1.2.11. Show that Ā is closed and intA is open.
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To find Ā in examples, it is useful to have another characterization. Note
that a point x is not in Ā exactly when there is a closed set C containing A
which does not contain x. But this means that X\C is an open set containing
x which is disjoint from A, or, equivalently, is contained in int(X\A). Thus Ā
consists of points of A and points not in A that have the property that every
open set about them intersects A. Since points of A also have that property,
points of Ā can be characterized in that every open set about them intersects
A nontrivially. The description of X\Ā above can also be rephrased as saying
X\Ā = int(X\A). Using the definition of BdA and the reformulation of Ā, we
can characterize points of BdA as those points where every open set intersects
both A and X\A.
As an example, we determine Ā, intA, and BdA for A = {(x, y): x > y > 0}.

First note that this set is open since it is the intersection of the two open sets,
A1 = {(x, y): x − y > 0} and A2 = {(x, y): y > 0}. The sets A1 and A2 are
open since they are the inverse images of (0,∞) under the continuous functions
x − y and y, respectively. Thus intA = A. The closure is found from A by
adding the rays x = y and y = 0 within the first quadrant. These points are
in the closure since every open ball about a point in them will intersect A. The
set B = {(x, y): x ≥ y ≥ 0} is closed since it is the intersection of two closed
sets, B1 = {x, y): x − y ≥ 0} and B2 = {(x, y): y ≥ 0}. These sets are closed
since they are the inverse images of [0,∞) under the continuous functions x − y
and y, respectively. Thus Ā = B. The set X\A is closed since its complement
is open. Thus X\A = X\A. Hence BdA = Ā ∩ X\A = {(x, y): x ≥ 0, x =
y} ∪ {(x, y): x ≥ 0, y = 0}.
Exercise 1.2.12. Find Ā, intA, and BdA for the following sets A in R2 :

(a) {(x, y): x ≥ 0, y �= 0};
(b) {(x, y): x ∈ Q, y > 0};
(c) {(x, y): x2 + y2 < 1}.

Exercise 1.2.13. Show that Ā = IntA ∪ BdA and IntA ∩ BdA = ∅.
We will now prove a piecing lemma, which is very useful in verifying that

certain functions which are constructed by piecing together continuous functions
are themselves continuous.

Lemma 1.2.3 (Piecing lemma). Suppose X = A ∪ B, where A and B are
closed subsets of X. Let f :X → Y be a function so that the restrictions of f
to A and B (given the subspace topology) are each continuous (another way of
saying this is that the compositions of f with the inclusions of A and B into X
give continuous functions). Then f is continuous.

Proof. Let C ⊂ Y be closed. Our hypothesis then says that A∩f−1(C) is closed
in A and B ∩ f−1(C) is closed in B. But Exercise 1.2.10 then says that these
two sets are in fact closed in X since A and B are assumed to be closed subsets
of X. Then f−1(C) = (A∩f−1(C))∪ (B∩f−1(C)) is closed since it is the union
of two closed sets.
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Exercise 1.2.14. Prove the analog of Lemma 1.2.3 where the word closed is
replaced by the word open. Give an example to show that the conclusion that f
is continuous is not true without some hypothesis on the sets A,B.

We will give many examples of continuous functions in the next section con-
structed by piecing together continuous functions defined on closed subsets. We
state the definition of a homeomorphism and give the relevant version of the
piecing lemma for homeomorphisms.

Definition 1.2.6. A homeomorphism is a bijection (1–1 and onto) between
topological spaces so that the map and its inverse are both continuous. If f :X →
Y is a homeomorphism, then we will say X is homeomorphic to Y , denoted
X ≃ Y .

Homeomorphism gives an equivalence relation on topological spaces, as it
satisfies the three conditions of an equivalence relation: (1) reflexivity—the iden-
tity 1X :X → X has continuous inverse 1X ; (2) symmetry—if f :X → Y has
continuous inverse g : Y → X, then g has f as its continuous inverse; (3)
transitivity—if f :X → Y has continuous inverse f−1, and g :Y → Z has
continuous inverse g−1, then gf :X → Z has continuous inverse f−1g−1. A
topologist looks at homeomorphic spaces as being essentially the same. One
of the fundamental problems of topology is to decide when two topological
spaces are homeomorphic. One technique for solving this problem (more suc-
cessful in showing that spaces are not homeomorphic than in showing that
they are homeomorphic) is to find properties of spaces which are preserved by
homeomorphisms. We will study two such properties in this chapter, compact-
ness and connectedness. Later we will study an invariant that is associated to
any topological space called the fundamental group of the space. It has the
property that homeomorphic topological spaces have isomorphic fundamental
groups, and thus it may be used to distinguish between topological spaces up to
homeomorphism.
We state our lemma for piecing together homeomorphisms. It follows from

the piecing lemma in a straightforward manner, and we leave the proof as an
exercise.

Lemma 1.2.4 (Piecing lemma for homeomorphisms). Suppose that X =
A ∪ B, Y = C ∪ D, where A,B are closed in X, and C,D are closed in Y . Let
f :A → C and g :B → D be homeomorphisms, and suppose that the restrictions
of f and g to the intersection A ∩ B agree as maps into Y . Define h :X → Y
by h|A = f and h|B = g (or we could start with h and define f and g just by
restricting them to A and B). If h is a bijection (this just requires that the only
points that are in the image of both f and g are the points in the image of A∩B),
then h is a homeomorphism.

Exercise 1.2.15. Prove the piecing lemma for homeomorphisms.
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1.3 Geometric constructions of

planar homeomorphisms

We now look at some geometric constructions which give continuous functions
and homeomorphisms. For simplicity, we will restrict our domain space to the
plane, although these constructions have analogues for other Rn.
Our first example is a rotation. If a point in the plane is given by r(cos θ, sin θ),

then a rotation by an angle φ sends this to r(cos(θ + φ), sin(θ + φ)). One way
of seeing that this is continuous is to note that distances between points are
unchanged by this map. A map between metric spaces which leaves the distance
between any two points unchanged is continuous; we leave this as an exercise.

Exercise 1.3.1.

(a) Show that any map from R2 to R2 which leaves distances between points
unchanged (i.e. d(f(x), f(y)) = d(x,y)) is continuous.

(b) Generalize this to show that f : (X, d) → (Y, d′) with d′(f(x), f(y)) ≤
Kd(x, y),K > 0, is continuous.

That a rotation does in fact preserve distances can be checked using trigo-
nometric formulas and the distance formula in the plane. Another way of seeing
that a rotation by φ is continuous is to note that it is given by a linear map,
x → Ax, where x represents a point in the plane as a column vector and A is
the 2× 2 matrix

(

cosφ − sinφ
sinφ cosφ

)

.

For a rotation, A is an orthogonal matrix, which means that it preserves the
Euclidean inner product between vectors, and hence preserves distances between
points. Multiplication by any matrix can be shown to give a continuous map. This
is usually shown indirectly in advanced calculus courses by noting that a linear
map is differentiable (it gives its own derivative) and that differentiable maps
are continuous. It could also be shown directly using part (b) of Exercise 1.3.1
and the inequality |Ax−Ay| ≤ ‖A‖ |x−y| shown in linear algebra. Note that a
rotation is reversible; after rotating a point by an angle θ, we can get back to our
original point by rotating by an angle −θ. From the matrix point of view, the
matrix A is invertible. Either way may be used to show that rotation represents
a homeomorphism from the plane to itself.
Another familiar geometric operation which gives a continuous map (and

a homeomorphism) is a translation, Tv(x) = x + v. This is seen to be con-
tinuous either directly from the definition or by the fact that it preserves
distances between points. Its inverse is translation by −v, and so it gives a
homeomorphism.
Of course, we could rotate about some other point besides the origin. This

also preserves distances and so can be shown to give a homeomorphism. Note that
a rotation by angle φ about the point x is the composition of a translation by −x

to send x to the origin, then a rotation of angle φ about the origin, and finally a
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translation by x to send the origin back to x. A composition of homeomorphisms
will give a homeomorphism, since a composition of continuous maps is continuous
and the inverse of gf , given that g and f have inverses, is f−1g−1.
Another geometric construction which gives a homeomorphism is a reflection

through a line. That this gives a homeomorphism follows from the fact that it is
its own inverse and that it preserves distances between points. Alternatively,
reflections through lines passing through the origin are given by multiplica-
tion by orthogonal matrices, and other reflections are conjugate to these using
translations which move the line to one passing through the origin.
We may reinterpret the equivalence relation of congruence of triangles fre-

quently studied in high school in terms of these three types of homeomorphisms:
translations, rotations, and reflections. Suppose two triangles T1, T2 are congru-
ent. Then they have corresponding sides A1, B1, C1 and A2, B2, C2, which are
of the same length, and the angles between corresponding sides are the same.
Let v1 be the vertex between A1 and B1 and v2 the vertex between A2 and B2.
First translate the plane so that the vertex v2 is sent to v1. Now rotate about
v1 so that the side A2 lies along the side A1. Now either the two triangles will
agree or we can get from shifted triangle T2 to T1 by reflecting through the line
going through side A1. Thus two triangles are congruent if we can get from one
to the other by a composition of translations, rotations, and reflections. Note
that each type of map used above preserves distances between points. A map
from the plane to itself which preserves distances between points is called a rigid
motion or an isometry. In general, the term isometry is used for a map between
metric spaces which preserves distance between points and their images.
It can be shown that any rigid motion of the plane is just a composition

of translations, rotations, and reflections. We outline this argument. Starting
with a rigid motion f , we get a new rigid motion g from f by translating by
−f(0) : g = T−f(0)f . Then g(0) = 0. Now we use the relation of the dot product
with the distance function 〈x − y,x − y〉 = d(x,y)2 to show that g(0) = 0
and d(g(x), g(y)) = d(x,y) implies that 〈g(x), g(y)〉 = 〈x,y〉. Thus g will send
unit vectors to unit vectors and orthogonal vectors to orthogonal vectors. In
particular, q1 = g(e1), q2 = g(e2) are orthogonal unit vectors. If Q denotes
multiplication by the orthogonal matrix

(

q1 q2

)

with column vectors q1, q2, then
Q is a rotation or reflection, and h = Q−1g is a rigid motion which preserves
0, e1, e2. Then h can be shown to be the identity by using the relation v =
〈v, e1〉e1 + 〈v2, e2〉e2.

Exercise 1.3.2. Fill in the details of the argument sketched above to show
that a rigid motion in the plane is the composition of rotations, reflections, and
translations.

Another familiar geometric relation is the similarity of triangles. If two tri-
angles are similar, their angles will correspond exactly, but corresponding side
lengths need not be equal but only have to have some common ratio k. If T1 and
T2 are similar, we may use a rigid motion to align them so that sides A1 and
A2 lie on the same line, as do the sides B1 and B2. Then the shifted T2 will be
sent to T1 by a map that takes a line through v1 and sends the line to itself by
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Figure 1.4. Similarity transformation.

shrinking or expanding along the line by a factor of k (in terms of the distance
to v1). This last map may be described as a composition of a translation of v1

to the origin, multiplication of a vector by k, and then a translation of the origin
back to v1. The multiplication by k gives a continuous map, and its inverse is
given by multiplication by 1/k, so it gives a homeomorphism. We illustrate the
first three steps in a similarity in the Figure 1.4. In this figure, no reflection was
necessary as part of the rigid motion.
We have seen that congruences and similarities are both examples of homeo-

morphisms. In geometry, a triangle and a rectangle are distinguished from one
another by the number of sides, and two triangles, although possibly not similar,
still are seen to have the same “shape”. We will see below that the inside of a
triangle and the inside of a rectangle are in fact homeomorphic. Thus what is
meant when one says that two triangles have the same shape and a triangle and
a rectangle do not? It means that we are looking at the triangle and rectangle
through “affine linear eyes”.
There is a standard triangle ∆(e0, e1, e2) with vertices e0 = 0, e1, e2.

Each point in it can be expressed as (λ1, λ2) = λ1e1 + λ2e2, with λ1, λ2 ≥ 0
and 0 ≤ λ1 + λ2 ≤ 1. We define λ0 = 1 − λ1 − λ2, and then we can write
(λ1, λ2) = λ0e0+λ1e1+λ2e2, where λ0, λ1, λ2 ≥ 0 and λ0+λ1+λ2 = 1. Now sup-
pose we have another triangle with vertices e0,v1,v2, where v1,v2 are linearly
independent. If V =

(

v1 v2

)

, then multiplication by V is a linear transforma-
tion which gives a homeomorphism between ∆(e0, e1, e2) and ∆(e0,v1,v2). If
three points a0,a1,a2 satisfy the property that v1 = a1 − a0, v2 = a2 − a0

are linearly independent, then we say that a0,a1,a2 are affinely independent.
This is equivalent to λ1a0 + λ1a1 + λ2a2 = 0, λ0 + λ1 + λ2 = 0 implying
λ0 = λ1 = λ2 = 0. If a0,a1,a2 are affinely independent, then there is a triangle
∆(a0,a1,a2) with vertices a0,a1,a2. Translation by a0 gives a homeomorphism
between ∆(e0,v1,v2) and ∆(a0,a1,a2), where v1 = a1 − a0, v2 = a2 − a0.
The composition of multiplication by V and the translation then gives a map,
called an affine linear map, which is a homeomorphism between the stand-
ard triangle ∆(e0, e1, e2) and ∆(a0,a1,a2). This affine linear map A has the
property that λ0e0 + λ1e1 + λ2e2 is sent to λ0a0 + λ1a1 + λ2a2. In partic-
ular, this means that the triangle ∆(a0,a1,a2) is characterized as the points
λ0a0 + λ1a1 + λ2a2 where λi ≥ 0, λ0 + λ1 + λ2 = 1. If ∆(b0, b1, b2) is another
triangle with affinely independent vertices b0, b1, b2, then there is an affine lin-
ear map B sending the standard triangle to it. Then C = BA−1 gives an affine
linear map sending ∆(a0,a1,a2) to ∆(b0, b1, b2). Thus any two triangles in the
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plane are homeomorphic via a canonical affine linear map, and the image of a
triangle under an affine linear map will be another triangle. In particular, there
is no affine linear map sending a triangle to a rectangle. Affine linear maps from
one triangle ∆(a0,a1,a2) to another triangle ∆(b0, b1, b2) are determined com-
pletely by the map on the vertices ai → bi and the affine linearity condition
∑

λiai → ∑

λiai.

Exercise 1.3.3.

(a) Show that a1 − a0, a2 − a0 are linearly independent iff λ0a0 + λ1a1 +
λ2a2 = 0, λ0 + λ1 + λ2 = 0 implies λ0 = λ1 = λ2 = 0.

(b) Show that if a0,a1,a2 are affinely independent, then λ1a0 + λ1a1 +
λ2a2 = µ1a0 + µ1a1 + µ2a2 with

∑

λi =
∑

µi = 1 implies µi = λi, i =
0, 1, 2.

(c) Show that any finite composition of translations and linear maps in the
plane can be written as a single composition TL, where T is a translation
and L is a linear map.

(d) Show that any composition M of translations and linear maps satisfies

M(
∑k

i=1 λiai) =
∑k

i=1 λiM(ai) when
∑k

i=1 λi = 1. Conversely, show
that ifM satisfies this condition for any three affinely independent points,
thenM is a composition of a translation and a linear map, so is an affine
linear map.

(e) Show that an affine linear map sending ai to bi will always send a line
segment a0a1 to the line segment b0b1 via (1− t)a0+ ta1 → (1− t)b0+
tb1, 0 ≤ t ≤ 1.

Triangles and rectangles are not equivalent under invertible affine linear maps.
A triangle and a rectangle are homeomorphic, however. Moreover, the homeo-
morphism may be taken to be “piecewise linear”. If a0,a1,a3 are the vertices
of the triangle and b0, b1, b2, b3 are the vertices of the rectangle, then we can
divide the rectangle into two triangles B1 = ∆(b0, b1, b2), B2 = ∆(b0, b2, b3) by
introducing the edge b0b2 (see Figure 1.5). We can also introduce a vertex a2 in
the triangle at the midpoint of a1a3 and then an edge a0a2. Now the triangle
is divided into two triangles, A1 = ∆(a0,a1,a2) and A2 = ∆(a0,a2,a3). The

a0 a1

a2

a3

A1

A2

b0 b1

b2b3

B2

B1

Figure 1.5. PL homeomorphism between a triangle and a rectangle.
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map sending ai to bi can be extended affine linearly on triangles to give maps
sending Ai to Bi. Figure 1.5 shows how the triangle and square are subdivided.
This defines a homeomorphism between the triangle and the rectangle. That
it is a homeomorphism follows from the piecing lemma for homeomorphisms.
Note that on the triangles A1, A2, the map is affine linear (

∑

i λiai → ∑

i λibi).
Our homeomorphism is an example of a piecewise linear (PL) homeomorphism
of planar regions—the domain and range are divided into triangles, and the
homeomorphism is an affine linear homeomorphism on each triangle.
We can generalize the argument above to show that any two convex polygonal

regions in the plane are homeomorphic. By a polygonal region R, we mean
a region that is bounded by a closed polygonal path; that is, f([0, n]), where
f : [0, n] → R2 with f affine linear on [i, i + 1], f(i) = xi, x0 = xn and f(a) =
f(b) implies a = b or {a, b} = {0, n}. The region R is called convex if R lies on
one side of each line xixi+1 or, equivalently, line segments joining two points of R
are in R. The region R bounded by P is then given by the union of line segments
joining points in P . The idea of the proof that two convex polygonal regions are
homeomorphic is to divide each region into the same number of triangles and
then send the triangles to each other consistently. Our argument above with a
triangle and a rectangle is the simplest case of this procedure.

Exercise 1.3.4.

(a) Construct a PL homeomorphism between a square and a hexagon.

(b) Show that any two convex polygonal regions are homeomorphic via a PL
homeomorphism.

So far all of our examples of homeomorphisms have been piecewise linear.
Here is an example of one that is not. The unit disk D2 = {(x, y): x2 + y2 ≤ 1}
is homeomorphic to the square S = {(x, y): |x| ≤ 1, |y| ≤ 1} (hence to any con-
vex polygonal region). The homeomorphism may be described geometrically as
follows. Each ray from the origin intersects D2 and S in a line segment. The
intersection with D2 is sent linearly to the intersection with S.
We can verify that this is a homeomorphism by deriving a formula for it. This

is somewhat tedious, however, so we will give a geometrical explanation, leaving
the verification based on this as an exercise. We describe some corresponding
open sets from our construction. Given a point x inside the disk which is not
the center, we get f(x) by first forming the circle about the center on which x

lies, then forming the square which circumscribes this circle, and then sending x

to the the point f(x) on the intersection of the perimeter of this square and the
ray through x. The region between two circles is then sent to the region between
the corresponding squares. The basic open sets inside the circle are given by the
region between two circles, which lie between two lines of angles θ = θ1, θ = θ2,
as well as disks about the center. For the inside of a square, the basic open sets
are given by regions between two smaller squares, again limited by the same
two radial lines, as well as small squares about the center. Our map gives a
correspondence between these basic open sets about x and f(x) as pictured in
Figure 1.6. At the center, a small disk about the center corresponds to a small
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Figure 1.6. Basic open sets for disk and square.

rectangle about the center. From these facts, we can verify that the map is a
homeomorphism.

Exercise 1.3.5. Use the geometrical facts cited above to verify that our con-
struction gives a homeomorphism. You will need to use the fact that any open
set about a point contains one of the basic open sets as described above.

Note that this homeomorphism sends the boundary circle to the perimeter
of the square. In fact, if the homeomorphism of the circle to the perimeter of the
square is given by x → f(x), then our homeomorphism is just tx → tf(x), 0 ≤
t ≤ 1. We are using the convexity of each region to realize the region as the
“cone” on its boundary and extending the homeomorphisms of boundaries by
“coning”.
This same idea could be used to give a homeomorphism between the unit

disk and the inside of an ellipse, for example.

Exercise 1.3.6. Write down a formula for a homeomorphism between the
unit disk D2 and the ellipse E = {(x, y): x2 + y2/4 ≤ 1}, and check whether
it satisfies f(tx, ty) = tf(x, y), 0 ≤ t ≤ 1.
In the exercise above and the preceding example, there is a common idea.

We take two subspaces in the plane A,B and points p �∈ A, q �∈ B. Then
we form spaces pA, qB from taking the line segments joining p to points of A
and line segments joining q to points of B. The set A is chosen so that each
point in pA lies on a unique line segment from p to a unique point of A (and
similarly for qB). In the case of the inside of the circle and the inside of the
square, A is the circle and B is the square. For the disk and the inside of
the ellipse, A is the circle and B is the ellipse. In both cases, p = q = 0.
Then we take a homeomorphism f :A → B, and then get a homeomorphism
F : pA → qB by sending (1 − t)p + ta to (1 − t)q + tf(a). That F turns out
to be a homeomorphism depends on pA, qB having the appropriate types of
corresponding basic open sets. This can be rephrased in terms of the notion of
a quotient topology, which we will study in Section 1.7. The construction of F
from f is called coning.
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We have seen many examples of different regions in the plane that turn out
to be homeomorphic. Each of the regions so far has been homeomorphic to a
disk. An important problem of topology is to characterize all regions in the plane
that are homeomorphic to the disk. The homeomorphism would send the circle
to a homeomorphic image—this is called a simple closed curve. Thus, a region R
homeomorphic to a disk would have to be “bounded” by a simple closed curve.
The Jordan curve theorem and the Schönflies theorem combine to say that,

if C is a simple closed curve in the plane, then it “bounds” a region R, and
the homeomorphism f :S1 → C extends to a homeomorphism between the unit
disk D and R. The Jordan curve theorem says that the complement of the
curve separates into two open connected pieces, one of which is bounded and the
other of which is unbounded. It says the curve is the boundary of each piece.
The Schönflies theorem then says that the bounded piece is homeomorphic to a
disk and the unbounded piece is homeomorphic to the complement of a closed
disk. We discuss connectedness in Section 1.6 and have a project to prove both
theorems in the polygonal case in Section 1.8. A full proof of the Jordan curve
theorem and it’s generalization, the Jordan separation theorem, is given in terms
of homology in Section 6.14 (see Theorems 6.14.2 and 6.14.6). The full proof of
the Schönflies theorem can be found in [22]. A proof of the generalization of the
Schönflies theorem to higher dimensions for locally flat embeddings is given in
[5] based on the proof by Morton Brown [6].
A natural question would be to ask for examples of regions in the plane that

are not homeomorphic to a disk. A simple example would be an annulus (see
Figure 1.7), which is the region enclosed between two circles. There are two
ways of seeing that this is not homeomorphic to a disk. One way is to compare
their boundaries. The annulus has two circles as boundary and the disk has
one. Of course, we have to understand why one circle is not homeomorphic to
two circles (this can be based on the concept of connectedness, which we will
study later) and why a homeomorphism between the annulus and the disk must
restrict to a homeomorphism between their boundaries. A justification of the last
fact actually leads us to the other reason that they are not homeomorphic. This
involves the ideas surrounding the fundamental group of a space. Intuitively
speaking, there is a circle (the middle circle) in the annulus which cannot be
deformed continuously to a point, but every circle in the disk may be deformed

Figure 1.7. Annulus.
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to a point (just contract the whole disk to its center and see what happens to the
circle). This idea is responsible for a large number of applications and is pursued
in Chapter 3. The classification of regions in the plane up to homeomorphism is
a special case of the classification of surfaces with boundary. This latter topic is
pursued in Chapter 2.

1.4 Compactness

We now discuss the property of compactness. We will discuss this in the context
of a general topological space, but will specialize to metric spaces or subspaces
of Rn on occasion.

Definition 1.4.1. Let X be a topological space. A subset A ⊂ X is said to be
compact if whenever A is contained in a union of open sets Ui (called an open
cover of A), then A is contained in the union of a finite subcollection of these
open sets (called a finite subcover).

This can be rephrased in terms of the open sets of A in the subspace topology
by saying that whenever A is written as the union of a collection of open sets in
A, then it may be written as the union of a finite number of these open sets.
One of the prime reasons that compactness is important as a topological

concept is that it is preserved by continuous maps.

Proposition 1.4.1. Let f :X → Y be continuous and X compact. Then the
image set f(X) is compact.

Proof. Let V = {Vi} be an open cover of f(X). Then U = {Ui} = {f−1(Vi)} is
an open cover of X. Since X is compact, there is a finite subcover Ui(1), . . . , Ui(k)

of X. Then the corresponding open sets Vi(1), . . . , Vi(k) give a finite subcover
of f(X).

In particular, this implies that if two sets are homeomorphic, then either both
are compact or both are not compact. A property that is invariant under homeo-
morphisms is called a topological invariant. Thus compactness is a topological
invariant.
Let us look at some examples.

Example 1.4.1. The real line R is not compact since it can be written as the
union of intervals Uk = (−k, k) where k ranges over the integers, and it cannot be
written as a union of a finite subcollection of these open sets. The same idea will
show that, for a subset of R to be compact, it must be bounded (i.e. contained
in a large interval). For if it is not, then we can use the collection {(−k, k)} to
cover the subset, and it cannot be contained in any finite subcollection of these.
We leave it as an exercise to generalize this to subsets of metric spaces.

Exercise 1.4.1. A set A of a metric space is said to be bounded if it is contained
in some ball B(x, r). Show that a subset of a metric space which is compact must
be bounded.
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Example 1.4.2. A finite set A = {a1, . . . , ak} ⊂ X is compact. For if it is
contained in a union of open sets Ui, then there must be some set Ui(j) in the
collection which contains aj . Thus Ui(1), . . . , Ui(k) gives a finite subcover of A.

Exercise 1.4.2. Show that a finite union of compact sets is compact.

Exercise 1.4.3. Decide whether or not the following subsets of R are
compact:

(a) A = {1/n :n ∈ N};
(b) B = {0} ∪ A;

(c) (0, 1].

We have seen that R is not compact, but R is closed as a subset of itself. Thus
a closed set does not have to be compact. A compact set does not have to be
closed in a general topological space, either. For example, the two-point space,
where the only open sets are the empty set and the space itself, has either of its
points as a compact subset, but that point is not a closed set with this topology.
However, if we are dealing with subsets of Euclidean space and the standard
topology, then compact sets are closed. We will give a proof in the more general
situation of a metric space.

Proposition 1.4.2. In a metric space, compact sets are closed.

Proof. Let X be a metric space and A a compact subset of X. To show that A
is closed, we have to show that its complement is open. Let x ∈ X\A; we need
to find a ball about x that does not intersect A. Let y be a point of A. Then
we can find disjoint balls B(y, r(y)) and B(x, r(x)) . The union of the B(y, r(y))
over all y in A will contain A; since A is compact, there is a finite subcollection
of these balls which covers A. Then the intersection of the corresponding balls
about x will be an open set about x which does not intersect the union of the
subcollection, and hence does not intersect A.

The crucial property of a metric space X which we used here was that a
metric space is Hausdorff.

Definition 1.4.2. X is called Hausdorff if given x, y ∈ X then there are disjoint
open sets Ux, Uy with x ∈ Ux, y ∈ Uy.

Exercise 1.4.4. Show that in a Hausdorff space, compact sets are closed. (Hint:
In a general topological space, a set U will be open if given x ∈ U , then there
is an open set U(x) with x ∈ U(x) ⊂ U ; for then we can write U as the union
of the sets U(x) as x ranges over the points of U , and the union of open sets is
open. With this criterion for a set to be open, the proof in the metric case can
be modified to prove the result.)

The next proposition allows us to deduce that certain sets are compact by
knowing that they are closed subsets of a compact set.

Proposition 1.4.3. Let X be compact and let A be closed in X. Then A is
compact.
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Proof. Suppose that U = {Ui} is a collection of open sets of X whose union
contains A. Then the Ui together with X\A is a collection of open sets whose
union is X, and so some finite subcollection will contain X. Since no points of
A are contained in X\A, then the Ui in this subcollection will contain A.

We combine the propositions connecting compact and closed sets to prove
the following very useful proposition that certain bijections between sets are
homeomorphisms.

Proposition 1.4.4. Let f :X → Y be a bijection (i.e. 1–1 and onto). Sup-
pose that f is continuous, X is compact, and Y is Hausdorff. Then f is a
homeomorphism.

Proof. Since f is a bijection, it has an inverse f−1 :Y → X. To see that f
is a homeomorphism, we need to see that f−1 is continuous. We use here the
characterization of a continuous function as one which has the inverse image of
a closed set being closed. Let C be a closed set in X. Then X compact implies
that C is compact. But (f−1)−1(C) = f(C) is the image of a compact set, and
so is compact. In a Hausdorff space, a compact set is closed, so f(C) is closed
as required.

In the proof above, we showed that if f :X → Y is continuous, X is compact,
and Y is Hausdorff, then f sends closed sets to closed sets. A map which sends
closed sets to closed sets is called a closed map. When f is invertible, then f−1

being continuous is the same thing as f being a closed map.
This proposition would no longer be true if we removed the hypothesis that

X is compact. For example, consider the function f : [0, 1)→ S1 given by f(x) =
(cos 2πx, sin 2πx).

Exercise 1.4.5. Show that the function f defined above is a bijection that is
continuous but is not a homeomorphism. (Hint: Consider the open set

[

0, 1
2

)

⊂
[0, 1) and its image.)

We begin studying some basic compact sets in the reals. We first show that
a closed interval [a, b] is compact in the usual topology of the line. This proof
is based on the least upper bound property of the real numbers, which we now
review. A subset A ⊂ R is said to have an upper bound u if a ≤ u for all a ∈ A.
u is called the least upper bound of A if it is a upper bound and it is less than
or equal to any other upper bound. The least upper bound property of the real
numbers asserts that any nonempty subset of the reals with an upper bound has
a least upper bound. This property does not hold for the rationals; for example,
the set of rational numbers with square less than 2 has an upper bound, but does
not have a least upper bound. As a subset of the reals, the least upper bound
would be

√
2. We can think of the reals as being formed from the rationals by

adding to the rationals all the least upper bounds of subsets of the rationals that
are not already in the rationals.

Theorem 1.4.5. The closed interval [a, b] is compact.
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Proof. Suppose that we have an open cover U = {Ui} of [a, b]. Consider the set
A = {x ∈ [a, b]: [a, x] has a finite subcover}. We intend to show that A = [a, b].
First note that A is not empty since some Ui contains a, and thus must contain
some interval [a, b1], for b1 > a. Since b is an upper bound for A, the set A must
have a least upper bound, which we will call u. We want to show that u = b and
that b ∈ A. Suppose first that u < b. Since u ∈ [a, b], there must be some element
of the cover, which we will call Ui(u), which contains u. Now Ui(u) contains some
interval [u1, u2], where a < u1 < u < u2 < b. Since u is the least upper bound for
A, there must be an element a1 ∈ A with u1 < a1 ≤ u (if not, then u1 would be
a smaller upper bound, contradicting the choice of u as the least upper bound).
But then [a, a1] is covered by a finite number of the Ui and thus so is [a, u2] (just
use those that cover [a, a1] together with Ui(u)). But this contradicts u being an
upper bound for A, since now u2 ∈ A. Thus the least upper bound must be b.
Now choose an element Ui(b) of the cover which contains b, and choose u1 with
[u1, b] ⊂ Ui(b). Then b being the least upper bound for A implies that there is
an element a1 ∈ A with u1 < a1 ≤ b. But [a, a1] is covered by a finite number of
the Ui and [a1, b] is contained in Ui(b), so [a, b] is contained in a finite number of
the elements of the cover, showing that it is compact.

As a corollary, we can now characterize the compact sets in the line.

Corollary 1.4.6. A ⊂ R is compact iff it is closed and bounded.

Proof. If it is compact, then it must be bounded by Exercise 1.4.1 and closed
by Proposition 1.4.2. Conversely, suppose that it is closed and bounded. Since
it is bounded, it is contained in some closed interval [a, b]. Since it is closed as a
subset of the line, it will also be closed in [a, b]. But this makes it a closed subset
of a compact space, and so it is compact.

Exercise 1.4.6. Analogous to the definition of least upper bound is that of
greatest lower bound. Give a definition of greatest lower bound for a set A ⊂ R

and use the least upper bound property to show that a set with a lower bound
must have a greatest lower bound.

Exercise 1.4.7. Give an example of a closed, bounded subset A of a metric
space X that is not compact. (Hint: Consider the metric space X itself to be a
bounded noncompact subset of R and A = X.)

For R we extract an important property of a closed bounded set.

Proposition 1.4.7. A compact subset A of R has a largest element M and a
smallest element m; that is, m ≤ a ≤ M for all a ∈ A.

Proof. We show that it has a largest element; the proof for a smallest element is
analogous. Since A is compact, it is bounded, and so has a least upper bound u.
We claim that u ∈ A, and hence u will be the largest element of A. Suppose that
u is not in A; then we claim that A could not be closed. For every interval about
u has to contain an element of A in order for u to be the least upper bound of A.
But this means that the complement of A is not open; hence A is not closed.
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Now we give an application of this to analysis.

Proposition 1.4.8. Let f :X → R be continuous and X compact. Then f
assumes a maximum (and minimum) on X; that is, there are x, y ∈ X with
f(x) ≤ f(z) ≤ f(y) for all z ∈ X.

Proof. To say that f assumes a maximum just means that f(X) has a largest
element. But X compact and f continuous means that f(X) is compact and so
has a largest element.

When X is a closed interval, this is the familiar theorem from calculus that
a continuous function assumes a maximum and a minimum on a closed interval.

1.5 The product topology and

compactness in Rn

We wish to generalize our characterization of compact sets in R to show that a
subset of Rn is compact iff it is closed and bounded. The only missing ingredient
from our proof above is knowing that a cube [a1, b1] × [a2, b2] × · · · × [an, bn]
is compact. This can be proved inductively if we can show that the product
of compact sets in a product of Euclidean spaces is compact. To do this most
efficiently, we need to discuss the notion of a product topology on the product
X × Y of two topological spaces.
Suppose that X and Y are topological spaces and consider their product

X × Y = {(x, y): x ∈ X, y ∈ Y }. We will define a topology on X × Y by saying
that a set W ⊂ X × Y is open if given any (x, y) ∈ W , then there are open sets
U in X and V in Y so that (x, y) ∈ U ×V ⊂ W . In particular, products of open
sets will be open, and the general open set will be a union of products of open
sets. It is not difficult to verify that this definition of open sets does satisfy the
three requirements for a topology, which is called the product topology.

Exercise 1.5.1. Verify that open sets as defined above satisfy the three
properties required of a topology.

Now the product topology in the plane is not defined in exactly the same
way as the usual metric topology, but it does give the same topology; that is,
it gives the same collection of open sets. To see this, first note that if a set W
is open in the plane in the usual metric topology, and (x, y) is a point of A,
then there is a small ball about (x, y) that is contained in W . But inside this
ball we can find a rectangle that is a product of intervals which contains (x, y).
Hence W is open in the product topology. Conversely, suppose W is open in
the product topology, and (x, y) ∈ W . Then there is a product U × V of open
sets (which we may choose to be intervals) with (x, y) ∈ U × V ⊂ W . Then the
rectangle U × V is contained in W . But then we can find a ball contained in
the rectangle and containing (x, y), so W is open in the metric topology (see
Figure 1.3). Inductively, a similar argument shows that the metric topology on
Rn arises as the inductive product of n copies of R using the product topology.
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Thus to show that a product of closed intervals is compact in Rn, it suffices to
show that the product of compact sets is compact in the product topology. We
first need a preliminary lemma on product spaces.

Proposition 1.5.1. Suppose X and Y are topological spaces and let X × Y
have the product topology. Then the inclusions ix :Y → X × Y, ix(y) = (x, y),
iy :X → X × Y, iy(x) = (x, y), are continuous. Moreover, each projection
pX :X × Y → X, pX(x, y) = x, pY :X × Y → Y, pY (x, y) = y, is continuous.
In particular, the map X → X × {y} given from iy by restricting the range,
and Y → {x} ×Y given from ix similarly, are homeomorphisms, where X × {y}
and {x} × Y are given the subspace topology.

Proof. We first show that ix is continuous; the proof is analogous for iy. Let
W be an open set in the product topology on X × Y , and let y ∈ i−1

x (W ).
Then (x, y) ∈ W , so there are open sets U, V with (x, y) ∈ U × V ⊂ W . Then
y ∈ V ⊂ i−1

x (W ), so i−1
x (W ) is open (using the hint in Exercise 1.4.4). We now

show that pX is continuous; the proof for pY is analogous. Let U be an open set in
X. Then p−1

X (U) = U ×Y , which is an open set in the product topology. Finally,
note that ix and pY are inverses to one another (when properly restricted) and
so give homeomorphisms between Y and {x} × Y ; similarly, iy and pX give
homeomorphisms between X and X × {y}.

We now show that the product of compact spaces is compact.

Theorem 1.5.2 (Tychanoff). Suppose X and Y are compact. Then the product
X × Y is compact.

Proof. Let W = {Wi} be an open cover of the product. Fix x ∈ X and consider
the set {x} × Y . It is homeomorphic to Y , so it is compact. Thus there are a
finite number of the Wi, which we will denote by Wix,1

, . . . ,Wix,k
, which cover

{x} × Y . Let Wx =Wix,1 ∪ · · · ∪ Wix,k
. Then for each y ∈ Y , select an open set

U

W

xX

Y

Yx

x

x

Figure 1.8. A tube Ux × Y ⊂ Wx.
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Uy × Vy with (x, y) ∈ Uy × Vy ⊂ Wx. Then this gives an open cover of {x} × Y ,
and so there is a finite subcover Uy1 × Vy1 , . . . , Uyp

× Vyp
. Let Ux =

⋂p
j=1 Uyj

.
Note that {x} × Y ⊂ Ux × Y ⊂ Wx. The set Ux × Y is sometimes called a tube
about {x}×Y insideWx. This is illustrated in Figure 1.8. As x varies over X, the
sets Ux give an open cover of X and so there is a finite subcover Ux(1), . . . , Ux(r).
Then Ux(1) × Y, . . . , Ux(r) × Y will cover X × Y , and so will the corresponding
Wx(i). But eachWx(i) is the union of a finite number of sets in our original cover,
and so we will get a covering by a finite number of sets in our original cover.

The Tychanoff theorem holds for infinite products as well, and it is closely
related to the axiom of choice. See [24] for a discussion and proof in this context.
Now we are ready to characterize the compact sets in Rn.

Theorem 1.5.3 (Heine–Borel). A subset of Rn is compact iff it is closed and
bounded.

Proof. We showed that compact implies closed and bounded in a metric space.
Suppose A is closed and bounded. Then A will be a closed subset of some large
cube (which is compact) and hence will be compact.

We now wish to introduce another form of compactness, sequential compact-
ness, and show that it is equivalent to compactness in a metric space. In general,
these concepts are not equivalent but counterexamples are rather sophisticated.
In the course of doing so, we will also introduce the concept of the Lebesgue num-
ber of a cover, and show that compact metric spaces have Lebesgue numbers, a
fact which will be very useful to us in Chapter 3.

Definition 1.5.1. A sequence in X is a function s :N → X, where N denotes
the natural numbers. We usually denote s(n) by sn and the sequence by {sn}. A
subsequence s′ of a sequence s is a sequence formed by taking the composition
s′ = sj, where j :N → N is order preserving (a < b implies j(a) < j(b)). It is
usually denoted by sni

where ni = j(i). A sequence is said to converge to x if
given an open set U about x, there is a natural number N so that n > N implies
sn ∈ U.

Definition 1.5.2. X is called sequentially compact if every sequence in X has
a convergent subsequence.

We wish to give a criterion for a sequence to have a subsequence which
converges to x. If a subsequence converges to x, then the definition of convergence
implies that for any open set U containing x, there are an infinite number of
values of n so that sn ∈ U . We show the converse is true in a metric space.

Proposition 1.5.4. Suppose X is a metric space and x ∈ X. If {sn} is a
sequence so that for any ball about x, the ball contains an infinite number of the
sn (this means that there are an infinite number of n so that sn is in the ball),
then there is a subsequence which converges to x.

Proof. Choose n1 so that sn1 is contained in the ball of radius 1 about x. Since
there are an infinite number of the sn in the ball of radius

1
2 about x, we can
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find n2 so that n2 > n1 and sn2 ∈ B
(

x, 1
2

)

. Inductively, we then use the same
idea to choose n1 < n2 < n3 < · · · so that snj

∈ B(x, 1/j). This will give us our
convergent subsequence. We leave the details as an exercise.

Exercise 1.5.2. Fill in the details in the proof above.

Proposition 1.5.5. In a metric space, compactness implies sequential
compactness.

Proof. We prove the contrapositive. Suppose X is not sequentially compact
and sn is a sequence with no convergent subsequence. If there are only a finite
number of distinct values sn, then some value must be repeated infinitely often
and we can use this to get a constant, hence convergent, subsequence. Thus we
may assume that there are an infinite number of distinct values sn. For each
x ∈ X, there is no subsequence which converges to x. By the criterion above,
there is an open set Ux about x which contains only a finite number of the sn.
But a covering of X by these balls, one for each x, can have no finite subcover,
since a finite subcover would have to contain only a finite number of the values
of the sequence (which are infinite in number), and hence could not contain all
of X.

The proof above does not need the full strength of the metric space hypo-
thesis, just the existence for each x of a sequence of open sets Un with Ui+1 ⊂ Ui

about x so that any open set about x contains some Ui. This property is called
first countability and is pursued in Exercises 1.9.39–1.9.41 at the end of the
chapter.

Exercise 1.5.3. Show that if {sn: n ∈ N} is finite, then the sequence has a
convergent subsequence.

We now show that in a metric space, sequential compactness implies compact-
ness. To prove this, we introduce the concept of the Lebesgue number of a cover.
Let A be a subset of the metric space (X, d). Consider DA = {d(a1, a2) : a1, a2 ∈
A}. If DA is bounded from above, define dA = supDA. We will call dA the
diameter of the set A.

Definition 1.5.3. A covering U = {Ui} of a metric space is said to have Lebesgue
number δ > 0 if every set A ⊂ X of diameter less than δ is contained in some
element of the covering.

Proposition 1.5.6. Let X be a metric space which is sequentially compact.
Then every open covering of X has a Lebesgue number.

Proof. We prove the contrapositive: if there is an open cover with no Lebesgue
number, then there is a sequence with no convergent subsequence. Let U = {Ui}
be an open cover with no Lebesgue number. Then there is a sequence of sets
{An} with the diameter of An less than 1/n which are not contained in any
element of the cover. Choose an ∈ An. Then we claim that {an} is a sequence
with no convergent subsequence. Suppose there were a subsequence {ank

} which
converges to a point x, and choose an element Up of the cover containing x.
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Choose m large enough so that B(x, 1/m) ⊂ Up, and choose k1 ≥ 2m so that if
k ≥ k1, ank

∈ B(x, 1/2m). Then if a ∈ Ank
, d(a, x) ≤ d(a, ank

) + d(ank
, x) <

1/2m+ 1/2m = 1/m. But this means Ank
⊂ Up, which is a contradiction.

Proposition 1.5.7. In a metric space, sequential compactness implies
compactness.

Proof. Ametric space is totally bounded if given ǫ > 0, we can coverX by a finite
number of balls of radius ǫ. We first show that X sequentially compact implies
that it is totally bounded. We show this by proving the contrapositive. Suppose
X cannot be covered by a finite number of balls of radius ǫ. Let x1 ∈ X. Since
B(x1, ǫ) does not cover X, choose x2 �∈ B(x1, ǫ). Since B(x1, ǫ) ∪ B(x2, ǫ) does
not cover X, we may choose x2 �∈ B(x1, ǫ)∪B(x2, ǫ). Inductively, we can choose
a sequence {xn} in this manner with xn+1 �∈ ⋃n

k=1 B(xk, ǫ). Since d(xn, xk) ≥ ǫ
for k < n, any ball of diameter ǫ can contain at most one xn, so the sequence
can have no convergent subsequence.
Now suppose X is sequentially compact and U = {Ui} is an open cover. By

Proposition 1.5.6 we can find a Lebesgue number δ for this cover. By the above
argument, there is a cover of X by a finite number of balls of radius δ/3. But
each such ball will be of diameter less than δ, so it will lie in an element of our
original cover, B(xk, δ/3) ⊂ Ui(k), k = 1, . . . , n. Then Ui(1), . . . , Ui(n) give a finite
subcover of our original cover.

Definition 1.5.4. Let (X, dX), (Y, dY ) be metric spaces. Then f :X → Y is
said to be uniformly continuous if given ǫ > 0 there exists a δ > 0 such that for
x1, x2 ∈ X, dX(x1, x2) < δ implies dY (f(x1), f(x2)) < ǫ.

Exercise 1.5.4. Show that f uniformly continuous implies f is continuous, but
construct an example to show that the converse does not hold.

Exercise 1.5.5. Let f :X → Y be a continuous map of the compact metric
space (X, dX) to the metric space (Y, dY ). Show that f is uniformly continuous.
(Hint: Use the Lebesgue number of the covering {f−1(B(y, ǫ/2))}y∈Y of X.)

1.6 Connectedness

We next want to discuss the concept of connectedness. The definition is given in
terms of its negation, as it is easier to say what we mean by a space not being
connected.

Definition 1.6.1. A topological space X is called separated if it is the union of
two disjoint, nonempty open sets. A subset A ⊂ X is separated if A is separated
as a topological space, using the subspace topology. A set is called connected if
it is not separated.

Exercise 1.6.1. Show that a space X is connected iff the only subsets of X
which are both open and closed are ∅ and X.
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We rephrase the conditions for a subset A ⊂ X to be separated or connected
in terms of open sets in X.

Proposition 1.6.1.

(a) A ⊂ X is separated iff there are two open sets U, V ⊂ X so that A ⊂
U ∪ V, U ∩ V ∩ A = ∅, U ∩ A �= ∅, V ∩ A �= ∅.

(b) A set A ⊂ X is connected iff whenever U, V are open sets in X so that
U ∩ V ∩ A = φ,A ⊂ U ∪ V , then A ⊂ U or A ⊂ V .

Proof. We only prove (a), leaving (b) as an exercise. Suppose A is separated.
Then there are two disjoint nonempty sets U ′, V ′ which are open in A so that
A = U ′ ∪ V ′. Since U ′, V ′ are open in A, there are open sets U, V in X with
U ′ = U ∩ A, V ′ = V ∩ A. Since U ′ and V ′ are disjoint, we have U ∩ V ∩ A = ∅.
Since A = U ′ ∪ V ′, we have A ⊂ U ∪ V . This proves one direction. For the other
direction, given U, V with A ⊂ U ∪ V, U ∩ V ∩ A = ∅, U ∩ A �= ∅, V ∩ A �= ∅,
then defining U ′ = U ∩A, V ′ = V ∩A gives two nonempty sets U ′, V ′ which are
open in A and show that A is separated.

Exercise 1.6.2. Deduce (b) from (a).

Example 1.6.1. We use Proposition 1.6.1 to describe some examples of sep-
arated sets. The first example we give is the union of two points in the line
X = {0, 1}. To see that this is separated, we choose U = (−0.1, 0.1), V =
(0.9, 1.1). A similar example would be to let Y = [0, 1] ∪ [2, 3]. Then we could
choose U = (−0.1, 1.1), V = (1.9, 3.1). Our final example may be somewhat
less intutive. The rationals Q in the line are separated. Here we can choose
U = (−∞,

√
2), V = (

√
2,∞). We will show that the R itself is connected, so the

missing irrational numbers were crucial in separating the rational ones. Note that
the openness condition in the definition is crucial. For example, you cannot get
an interval being separated by dividing it into two pieces, say [0, 2] = [0, 1]∪(1, 2].
The problem is that to get an open set U about [0, 1] you have to include points
greater than 1 and so it will not be disjoint with an open set about (1, 2].

We first investigate connectedness for subsets of the line. Consider the
following property:

(*) If x, y ∈ A ⊂ R, then the interval [x, y] ⊂ A.

Proposition 1.6.2. Any connected set in the line satisfies (*) or, equivalently,
any set that does not satisfy (*) is separated.

Proof. If A does not satisfy (*), then there are points x, y, z with x < y < z
and x, z ∈ A and y �∈ A. But then A is separated by the two open sets (−∞, y)
and (y,∞).

What are the sets that satisfy (*)? The next proposition says that they are
just the intervals, rays, and R.

Proposition 1.6.3. A set A ⊂ R satisfies (*) iff it is an interval, a ray, or R.
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Proof. It is straightforward to see that an interval, ray, or R satisfies (*). Sup-
pose A satisfies (*). There are a number of cases to consider; we will only consider
one of the cases and leave the completion of the proof as an exercise. We consider
the case where A is bounded both from above and below. Let a be the greatest
lower bound and b the least upper bound of A. This implies A ⊂ [a, b]. We will
show that (a, b) ⊂ A. Let c be a point in (a, b). Since a is the greatest lower
bound, there is an element e ∈ A with a ≤ e < c. Similarly, b being the least
upper bound implies that there is an element f ∈ A with c < f ≤ b. But (*)
implies that [e, f ] ⊂ A and so c ∈ A. Hence (a, b) ⊂ A. But A ⊂ [a, b], so there
are four possibilities for A : (a, b), [a, b), (a, b], [a, b], each of which is an interval.
The other cases one has to consider are when A is not bounded on one side or
the other or both.

Exercise 1.6.3. Complete the proof of the proposition by considering the other
cases.

Our previous two propositions say that the only possibilities for connected
sets in R are intervals, rays, and R. We now show that they are connected.

Proposition 1.6.4. Any interval, ray, or R is connected.

Proof. We will just give the proof for a closed interval [a, b], and leave the
other cases for the reader. In Proposition 1.6.1 we re-expressed the condition of
connectivity by saying that a set is connected if, whenever it is contained in the
union of two open sets U, V with U ∩ V ∩ A = ∅, then it is entirely contained in
one of the two sets. Suppose that [a, b] is contained in the union of two open sets
U, V with U ∩V ∩ [a, b] = ∅. Assume that a ∈ U . To show that [a, b] is connected,
we must show that [a, b] ⊂ U . Analogously to the proof that [a, b] is compact, we
form the set A = {x ∈ [a, b]: [a, x] ⊂ U}. Since U is open, we see that A contains
some x > a. Since A is bounded, it must have a least upper bound u. We first
claim that u ∈ U . If not, then u ∈ V and so there is u1 < u with [u1, u] ⊂ V
since V is open. But u being the least upper bound of A means that there is
c ∈ A with u1 < c ≤ u. But then c ∈ U ∩ V ∩ A, which is a contradiction. If
u �= b, we can find an interval [u1, u2] ⊂ U , with u1 < u < u2, and so [a, u2] ⊂ U ,
contradicting the choice of u as an upper bound. Thus we must have [a, b] ⊂ U ,
and so [a, b] is connected.

Exercise 1.6.4. Show that R is connected.

The three preceding propositions together yield the following theorem.

Theorem 1.6.5. The connected sets in R are intervals, rays, and R.

Here is a useful proposition about connectedness, which could be used to
show that R is connected, knowing that [a, b] is connected.

Proposition 1.6.6. Suppose that Ai is a collection of connected subsets of a
topological space X so that they all have at least one point a in common. Then
the union A = ∪iAi is connected.
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Proof. Suppose A ⊂ U ∪ V , where U ∩ V ∩ A = ∅, and suppose further that
a ∈ U . Then we have to show that A ⊂ U . But each Ai being connected will
imply that Ai ⊂ U , so A ⊂ U .

Exercise 1.6.5. Use the proposition above to deduce that R is connected from
the fact that a closed interval is connected.

Unfortunately, there is no nice characterization of connected subsets of other
Euclidean spaces as there is for compact subsets, although the above proposition
is very useful in recognizing connected sets.
We prove that connectedness is preserved under continuous maps, and hence

gives another topological invariant for a space up to homeomorphism.

Proposition 1.6.7. The continuous image of a connected space is connected.

Proof. Suppose f :X → Y is continuous and X is connected. Suppose f(X) ⊂
U ∪V , where U ∩V ∩f(X) = ∅ and U, V are open. Then X ⊂ f−1(U)∪f−1(V ),
and X ∩ f−1(U) ∩ f−1(V ) = ∅. Now f continuous implies that f−1(U) and
f−1(V ) are open, and so X connected means that X is contained in one of
these, say f−1(U). Hence f(X) ⊂ U , and so f(X) is connected.

Since the continuous image of a connected set is connected, so is a homeo-
morphic image. Hence connectedness is also a topological invariant. This fact
could be used to show, for example, that two disjoint intervals could not be
homeomorphic to one interval.
A somewhat more intuitive property than connectedness is path

connectedness.

Definition 1.6.2. A space X is called path connected if, given x, y ∈ X, there is
a continuous map f : [0, 1]→ X (called a path in X) with f(0) = x and f(1) = y.
We say that the path connects x to y.

There is an equivalence relation generated by this definition as follows: we
say x ∼ y if there is a path connecting x to y. The constant path at x shows
x ∼ x. That x ∼ y implies y ∼ x can be seen by composing a path connecting
x to y with a self homeomorphism of [0, 1] which is order reversing; usually one
uses the linear map α(t) = 1 − t, but any order reversing homeomorphism will
work. That x ∼ y, y ∼ z implies x ∼ z involves reparametrizing the paths and
lying them end on end. Geometrically, we just traverse the path connecting x
to y and then traverse the path from y to z. However, to get a parametrized
path from the two paths involves reparametrizing them so that their domains
fit together nicely. For example, we can compose f with α(t) = 2t, so fα(0) =
f(0) = x, fα( 12 ) = f(1) = y. Then we could similarly reparametrize g with an
affine linear map β : [ 12 , 1] → [0, 1] and define the path connecting x to z by
making it fα on [0, 1

2 ] and gβ on [12 , 1]. We leave the details as an exercise.

Exercise 1.6.6. Show that the relation x ∼ y as defined above is an equivalence
relation.
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The equivalence classes under this equivalence relation are called the path
components in X. For example, if X = [0, 1] ∪ [2, 3], then the intervals [0, 1] and
[2, 3] would be the path components. A set is path connected iff it has only one
path component.
We show that path connectedness is preserved by continuous maps, hence,

by homeomorphisms, so is a topological invariant.

Proposition 1.6.8. Suppose X is path connected and f :X → Y is a continuous
map. Then f(X) is path connected.

Proof. Let u = f(x), v = f(y) be points of f(X). Since X is path connected,
there is a path α connecting x and y. Then fα is a path connecting u and v.

The basic relationship between the two forms of connectivity is given by the
following proposition.

Proposition 1.6.9. If X is path connected, then X is connected.

Proof. Pick a point x ∈ X, and for each point y ∈ X, choose a path connecting
x to y. The images of these paths are all connected since they are images of
connected sets under continuous maps, and each of them contains x. Their union
(as we let y range over all of the points of X) is all of X, and so we get that X
is connected by applying Proposition 1.6.6.

It is not the case that a connected set has to be path connected. Here is
an example of a set in the plane, called the topologist’s sine curve, which is
connected but is not path connected. Our set is based on the sin 1/x curve.
Figure 1.9 shows a global and a local view (near a point on the y-axis) of its
graph. It is the union of two sets, A and B. Here A is just the graph of sin 1/x,
where 0 < x ≤ 1, and B is the segment along the y-axis where the y-coordinate
ranges from −1 to 1. To see that A ∪ B is connected, the idea is that if it were
contained in a union U ∪ V of open sets with no points in both U and V , then
since A and B are each connected (being the images of connected sets under
continuous maps), each would have to lie entirely in one of the sets. Suppose
that B ⊂ U . Then since U is open, we can show that at least one point of A
must also lie in U . Since A is connected, then all of A must also lie in U and so
A∪B lies in U . That A∪B is not path connected is based on the idea that there
can be no path connecting a point of A to a point of B. The basic idea is to use
the fact that a small ball about a point in B will intersect A in an infinite number
of disjoint arcs, and to show that for A∪B to be path connected, we would have
to be able to connect points in different arcs while staying in such a ball, which
is impossible. Verification of the details are left as Exercises 1.9.44–1.9.46 at the
end of the chapter.
We now consider some examples of path connected, hence connected, sets in

Euclidean spaces.

Example 1.6.2. As our first example, note that Rn is path connected. We can
take a straight line path connecting any two points x,y, f(t) = (1− t)x+ ty. By
analogous reasoning, any convex set (a set where straight lines joining any two
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Figure 1.9. The topologist’s sine curve—two views.

points in the set lie in the set) is path connected. This contains balls and cubes,
for example.

Example 1.6.3. The unit sphere Sn ⊂ Rn+1 is path connected, n ≥ 1. The
best way to see this is to show that Rn+1\{0} is path connected, and then show
that there is a continuous map from Rn+1\{0} onto Sn. To see that Rn+1\{0}
is path connected, note that if x,y ∈ Rn+1 and the straight line joining them
does not pass through 0, then it may be used to give a path connecting them
as before. If it does pass through 0, then choose a point z that is not on this
line (here we use n ≥ 1). Then the straight line from x to z together with the
straight line from z to y may be used to give a path from x to y. We can get a
continuous map from Rn+1\{0} onto Sn by projecting along lines through the
origin. Precisely, this map is given by the formula, P (x) = x/|x|, where |x|
denotes the length of x.
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Exercise 1.6.7. Show that a union of path connected sets with a point in
common is path connected. (Hint: Let z be the common point. Then show that
given x, y in the union, we can find a path that joins them by using paths in
individual path connected spaces that join x to z and join z to y.)

Although a connected set need not be path connected, here is a situation
where that is true.

Proposition 1.6.10. Let A be an open subset of Rn. If A is connected, then A
is path connected.

Proof. We show that A has only one path component, hence is path connected.
Note that each path component P is open in A, since each point has a ball about
it contained in A and each point of the ball can be connected to the center by
a straight line path. If A had more than one path component, let P1 be a path
component and P2 be the union of the other path components. Then P1, P2 give
a separation of A into two disjoint, nonempty open sets, a contradiction.

We conclude this section on connectedness by proving a version of the
intermediate value theorem.

Proposition 1.6.11 (Intermediate value theorem). Suppose that f :X → R

is a continuous function and X is connected. Let c = f(x1) and d = f(x2) and
suppose that c < e < d. Then there is x3 ∈ X with f(x3) = e.

Exercise 1.6.8. Prove the intermediate value theorem using the fact that f(X)
is connected and our characterization of connected sets in the line.

This theorem is encountered in calculus when X is a closed interval [a, b]. In
this context, it says that a continuous function must assume every value between
f(a) and f(b). Another way of stating this is to say that the closed interval with
end points f(a), f(b) is a subset of f([a, b]). By combining compactness and
connectedness, we can describe completely what the image of a closed interval
under a continuous map to the reals must be. Since it must be connected, it
has to be an interval, a ray, or all of the reals. Since it must be compact, the
only possible choice is a closed interval. The end points of this interval will be
the minimal value and the maximal value of the function. We state this as a
proposition.

Proposition 1.6.12. If f : [a, b] → R is continuous, then f([a, b]) = [m,M ]
where m,M are the minimal and maximal values of the function.

Exercise 1.6.9. Show that the letter T is not homeomorphic to the letter O.
(Hint: Consider what happens when a point is removed from each letter and the
corresponding connectivity properties.)

Exercise 1.6.10. Show that S1 is not homeomorphic to R by showing S1\{x}
is not homeomorphic to R\{y}.
Exercise 1.6.11. Show that two disjoint concentric circles in the plane are not
homeomorphic to one circle.
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1.7 Quotient spaces

We discuss the notion of a quotient space, which is also called an identification
space. We will be using quotient spaces extensively in Chapter 2 when we study
surfaces.

Definition 1.7.1. SupposeX,Y are topological spaces, and we have a surjective
map q :X → Y . Then we say Y has the quotient topology with respect to (X, q)
if U ⊂ Y is open iff q−1(U) ⊂ X is open. Y is then called a quotient space of X
and q is called a quotient map.

A simple example of a quotient map is the map q :R → S1 where q(t) = e2πit.
The arcs in the circle which provide a basis for its topology have as their inverse
images the unions of disjoint intervals in the reals.
Note that the map q is continuous when Y has the quotient topology. For

whenever U ⊂ Y is open, the definition of the quotient topology requires that
q−1(U) has to be open.

Exercise 1.7.1. Suppose q :X → Y and Y has the quotient topology with
respect to (X, q). Show C ⊂ Y is closed iff q−1(C) ⊂ X is closed.

Quotient spaces often arise by starting with some known space X and then
forming Y from X by identifying certain points of X, usually by means of an
equivalence relation we put on points of X. The map q then sends a point x ∈ X
to the equivalence class of all points that are identified with x. In this context,
Y is sometimes called an identification space and the quotient map q is called an
identification map. The equivalence class containing x is denoted by [x] and the
map sending a point to its equivalence class is denoted by q(x) = [x]. A simple,
but quite important, example comes from starting withX = [0, 1], and then mak-
ing 0 equivalent to 1 the only nontrivial equivalence relation. The quotient space
then can be imagined geometrically by taking a piece of string and then joining
the end points to get a circle up to homeomorphism for the quotient space Y .
Suppose f :X → Z is a continuous function and Y = X/ ∼ is formed from X

by identifying points in X within the same equivalence class, q :X → Y, q(x) =
[x]. Then f induces a map f̄ :Y → Z if whenever x1 is equivalent to x2 then
f(x1) = f(x2); that is, identified points are sent to the same point by f . We
define f̄ by f̄([x]) = f(x). This is well defined because, if we choose [x1] = [x2],
then x1 ∼ x2 and f(x1) = f(x2). We are defining f̄ by f̄ q(x) = f̄([x]) = f(x).
We call f̄ the map induced by f . The quotient topology is set up so that f con-
tinuous implies f̄ is continuous. For if U is an open set in Z, then to check that
f̄ is continuous, we verify that f̄−1(U) is open in Y . To check this, we use the
quotient map q :X → Y, q(x) = [x]. Then f̄−1(U) is open in Y iff q−1(f̄−1(U))
is open in X. Since f̄ q = f , the condition is that f−1(U) is open, which is true
since f is continuous.

X
f

���
�

�

�

�

�

�

q

��

Y
f̄

�� Z
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Figure 1.10. Saturated open sets q−1(U) about [0] for [0, 1] and R.

When a quotient space is formed by identifying points, it is difficult to picture
the equivalence classes directly and the open sets in the quotient space. What
we can do, however, is picture their inverse images within the space X. The sets
q−1(U) are open sets that are saturated with respect to the equivalence relation.
This means that if x ∈ q−1(U) and x ∼ y, then y ∈ q−1(U). For a simple example,
consider X = [0, 1] with the only nontrivial equivalence being 0 ∼ 1. Then the
basis for the topology of X/ ∼ will have inverse images being open intervals
in (0, 1) and also sets of the form [0, a) ∪ (b, 1] for 0 < a < b < 1. The last
set is a saturated open set that contains the equivalence class {0, 1}. A related
example uses X ′ = R and forms the quotient space using the equivalence relation
x ∼ x+n, n ∈ Z. A typical equivalence class is {. . . , x−2, x−1, x, x+1, x+2, . . .}.
A basic open set U about this point will have inverse image q−1(U) = ∪n∈Z(x+
n − ǫ, x+ n+ ǫ), where ǫ < 1

2 . This is just an interval about x together with all
of its translates by integers. See Figure 1.10.
We prove some elementary propositions about quotient spaces. The first

proposition formalizes our last observation about induced maps.

Proposition 1.7.1. Let Y be a quotient space of X with quotient map q :X →
Y . Let g :Y → Z be a map. Then g is continuous iff the composition gq is
continuous.

Proof. If g is continuous, then the composition is continuous since the compos-
ition of continuous functions is continuous. Conversely, suppose the composition
is continuous and U ⊂ Z is an open set. Look at g−1(U). To see that it is open,
we have to show that q−1(g−1(U)) is open. But q−1(g−1(U)) = (gq)−1(U), so it
is open since gq is continuous.

Proposition 1.7.2. Suppose Y is a quotient space with respect to (X, q) and Y ′

is a quotient space with respect to (X ′, q′). Let f :X → X ′, f̄ :Y → Y ′ be maps
with q′f = f̄ q. We also could express this by saying that the following diagram
is commutative.

X
f

��

q

��

X ′

q′

��

Y
f̄

�� Y ′

Then f̄ is continuous if f is continuous.

Proof. To show f̄ is continuous, we need to show that f̄ q is continuous, by
Proposition 1.7.1. But q′f = f̄ q and f, q′ continuous imply q′f is continuous.

Proposition 1.4.4 has a nice application for quotient spaces.
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Proposition 1.7.3. Suppose f :X → Y is a surjective continuous map, X is
compact and Y is Hausdorff. Define an equivalence relation on X by saying u ∼ v
iff f(u) = f(v); the equivalence classes are the inverse images f−1(y). Then the
induced map f̄ :X/ ∼ → Y is a homeomorphism.

Proof. Proposition 1.7.1 implies that f̄ is continuous. It is a bijection since
we are identifying points in X which map to the same point. Since X/∼ is
the continuous image of the compact space X by the quotient map q :X →
X/∼, we have that X/∼ is compact. Then Proposition 1.4.4 implies that f̄ is a
homeomorphism.

We now apply these propositions to the quotient spaces Y = [0, 1]/∼ and
Y ′ = R/∼. Consider the map f : [0, 1] → S1 given by f(t) = (cos 2πt, sin 2πt).
This is a continuous surjection and the only nontrivial inverse image is
f−1{(1, 0)} = {0, 1}. Thus if we form the quotient space Y from the inter-
val X = [0, 1] by identifying 0 with 1, then Proposition 1.7.3 implies that the
induced map f̄ is a homeomorphism.
We could instead start with X ′ = R and identify x with x + n, n ∈ Z to

form the quotient space Y ′. We claim that Y ′ is also homeomorphic to the
circle. We start with the same map p, now considered as a map from the
reals. It determines a map p̄ :Y ′ → S1 by p̄[t] = (cos 2πt, sin 2πt). This is well
defined since (cos 2π(t+ n), sin 2π(t+ n)) = (cos 2πt, sin 2πt) and is continuous,
by Proposition 1.7.1. Note that it is onto since both q and p are. It is also 1–
1, since p̄[t] = p̄[t′] implies (cos 2πt, sin 2πt) = (cos 2πt′, sin 2πt′). But this only
happens if t = t′ + n for some integer n; hence [t] = [t′]. To see that p̄ is in
fact a homeomorphism, we can no longer use Proposition 1.7.3 since R is not
compact. We need to see that its inverse p̄−1 is continuous. But this is equivalent
to (p̄−1)−1(U) = p̄(U) being open when U is open; that is, p̄ sends open sets
to open sets. Since p̄(U) = pq−1(U), this condition is equivalent to p sending
saturated open sets to open sets. But p is an open map; that is, it sends open
sets to open sets. Hence p̄ is a homeomorphism from R/∼ to S1.
We state, for future use, the principle used in the last example.

Proposition 1.7.4. Suppose f :X → Y is a surjective continuous map. Define
an equivalence relation on X by saying u ∼ v iff f(u) = f(v); the equivalence
classes are the inverse images f−1(y). Then the induced map f̄ :X/∼ → Y is a
homeomorphism exactly when f sends saturated open sets q−1(U) to open sets.
In particular, it is a homeomorphism if f is an open map.

Since each of Y, Y ′ is homeomorphic to S1, they are homeomorphic to each
other. We now show this more directly. Let q :X → Y, q′ :X ′ → Y ′ be the
identification maps. Define i :X → X ′ by inclusion. Since [i(0)] = [0] = [1] =
[i(1)], i induces a map ī :Y → Y ′ defined by ī([x]) = [i(x)]. Thus we have a
commutative diagram (i.e. īq = q′i) by definition. Thus ī is continuous since i
is. Next note that ī is 1–1 since īq is except for 0, 1, and [0] = [1] in Y. ī maps
onto Y ′ since any [y] ∈ Y ′ is represented by a y between 0 and 1. We leave it as
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Figure 1.11. Cylinder and torus as quotient spaces of the square.

an exercise to construct an inverse for ī and to prove it is continuous.

X = [0, 1]
i

��

q

��

X ′ = R

p
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Y
ī

�� Y ′
p̄

�� S1

Exercise 1.7.2. Construct an inverse for ī and show that it is continuous.
(Hint: Consider the discontinuous function from X ′ to X defined by sending x
to x − [x], where [x] denotes the greatest integer in x; i.e. the unique integer
satisfying [x] ≤ x < [x] + 1.)

Consider the product of the circle with itself. This space is called a torus and
will be studied in more depth in Chapter 2. From our description of the circle as a
quotient space, we may give a description of S1×S1 as a quotient space. We take
the product R × R and make the following identifications: (s, t) ∼ (s+m, t+n),
where m,n ∈ Z. An alternate description would be to take [0, 1] × [0, 1] and
identify (0, t) with (1, t) and (s, 0) with (s, 1). A pictorial description is given in
Figure 1.11. It is supposed to indicate that we identify the edges labeled a and
the edges labeled b. Geometrically, we can think of gluing the edges labeled a
together to form a cylinder (the b edges becoming circles) and then gluing the
two circles together to get a torus.

Exercise 1.7.3. Describe basic open sets in the quotient space [0, 1] ×

[0, 1]/(0, t) ∼ (1, t), (s, 0) ∼ (s, 1) about each of the points [(0, 0)], [( 1
2 , 0)], [(0,

1
2 )],

and [(1
2 ,

1
2 )]. Describe the inverse image q−1(U) of each of these basic open sets.

Exercise 1.7.4. Show that the quotient space formed from a square by
identifying all of the points in the bottom edge of the square to each other
is homeomorphic to a triangle. (Hint: Start with the map from the rectangle to
the triangle preserving y-levels and sending the bottom edge of the rectangle to
the bottom vertex of the triangle. See Figure 1.12, where the bottom line that
is to be collapsed to a point is thickened, as is the image point.)
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Figure 1.12. Triangle as a quotient space of the square.

We now discuss quotient spaces that are formed from two disjoint sets by
identifying certain points in one of the sets with points in the other by means
of a function. Suppose A and B are disjoint topological spaces. Then the union
of A and B can be regarded as a topological space by saying a set is open iff
it is the union of an open set in A with an open set in B. We will denote the
union with this topology as A

⊔

B, and call it the disjoint union. Frequently, we
will perform this construction when A and B are not disjoint. In this case we
will regard them as disjoint by distinguishing points by saying the point comes
from A or it comes from B. This is the reason for our terminology “disjoint
union”—we want to emphasize that we are regarding the two sets as disjoint.
Now suppose K is a closed subset of B and f is a homeomorphism from K onto
a closed subset f(K) of A. Then we may form the quotient space A ∪f B =
(A

⊔

B)/x ∼ f(x), x ∈ K ⊂ B, formed from the disjoint union by identifying
x ∈ K with f(x) ∈ f(K).

Proposition 1.7.5. Let g :A ∪f B → C be a map induced from continuous
functions gA :A → C, gB :B → C with gAf = gB |K. That is, if x ∈ A ⊂ A∪f B,
then g(x) = gA(x), and if x ∈ B, g(x) = gB(x). Then g is continuous.

Proof. To show g is continuous, we have to show that the composition
gq :A

⊔

B → A ∪f B → C is continuous. But the topology on the disjoint
union is just the union of the topologies on A and B. Since the restriction of this
composition to A,B is just gA, gB , respectively, it is continuous.

Proposition 1.7.6. Let Ai ∪fi
Bi = Ai

⊔

Bi/x ∼ fi(x), x ∈ Ki ⊂ Bi be the
quotient space of Ai∪Bi coming from identifying x ∈ Ki ⊂ Bi with f(x) ∈ Ai via
a homeomorphism fi :Ki → f(Ki), i = 1, 2. Suppose there are homeomorphisms
FA :A1 → A2, FB :B1 → B2 with FB(K1) = K2 and FAf1 = f2FB. Then
the map F :A1 ∪f1

B1 → A2 ∪f2
B2 given by F (x) = FA(x) if x ∈ A1 and

F (x) = FB(x) if x ∈ B1 is a homeomorphism.

Exercise 1.7.5. Prove Proposition 1.7.6.

Given a topological space X and closed subsets A,B with A∪B = X, we can
regard X as a quotient space of A

⊔

B using id :A∩B ⊂ B → A∩B ⊂ A, id(x) =
x. For the inclusion maps give a map q :A

⊔

B → X; this induces A∪id B → X,
which is a bijection. To see that it is a homeomorphism just requires showing X
has the quotient topology. A set C in X is closed iff C ∩A and C ∩B are closed
since C = (C ∩ A) ∪ (C ∩ B), and A and B are assumed closed. The quotient
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topology on X from (A
⊔

B, q) comes from requiring C to be closed iff q−1(C)
is closed in A ∪ B; that is, C ∩ A and C ∩ B are closed. Thus X does have the
quotient topology and so q̄ is a homeomorphism.
Suppose now we have homeomorphisms hA :A → A′, hB :B → B′. Then

Proposition 1.7.6 implies X = A ∪id B ≃ A′ ∪f B′, where f :hB(A ∩ B) →
hA(A ∩ B) is f(x) = hAh−1

B (x). We will use this in situations where we can
choose A′, B′ to be particularly nice spaces such as disks or rectangles.
As an example, consider the annulusX = {(x1, x2) : 1 ≤ x2

1+x2
2 ≤ 2}. We can

first break X up into A = X∩{(x1, x2) :x2 ≤ 0} and B = X∩{(x1, x2) :x2 ≥ 0}.
We will give a number of different descriptions of the annulus as a quotient space
(see Figure 1.13). The variety of descriptions given below illustrate that a space
may arise as a quotient space in many different ways. The simplest description
comes from using f : [−1, 1] × [1, 2] → X, f(s, t) = (t cosπs, t sinπs). The first
coordinate s is used to wrap the interval around the circle (giving the angle
up to a factor of π), and the second coordinate t measures the distance from
the origin. This map sends (−1, t) and (1, t) to the same point (−t, 0) and is
otherwise 1–1. Thus f induces a homeomorphism between the quotient space
Q1 = [−1, 1] × [1, 2]/(−1, t) ∼ (1, t) and the annulus X. We could replace the
interval [1, 2] by the homeomorphic interval [−1, 1] and thus identify Q1, and
hence X, to the quotient space Q2 = [−1, 1] × [−1, 1]/(−1, t) ∼ (1, t). We will
think of this as the standard description of the annulus as a quotient of the
square D1 ×D1, where we are identifying the left-hand boundary interval to the
right hand boundary interval. We depict this identification and the corresponding
image on the annulus by labeling the identified edges with the letter a.
We now split the interval [−1, 1] into two intervals [−1, 0] and [0, 1] and think

of it as a quotient of the disjoint union by identifying the two copies of 0. Using

A

B

a b
a a

Q1

a a

Q2

a b b a

Q3

A B a bA b aB

Q4

a bA a bB

Q5

Figure 1.13. Expressing the annulus as a quotient space.
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a a

Figure 1.14. Möbius band.

this, the inclusion gives maps of the disjoint union [−1, 0] × D1
⊔
[0, 1] × D1

to D1 × D1. This map then induces a homeomorphism between the quotient
space Q3 = [−1, 0]×D1 ∪f [0, 1]×D1 and Q2, where f(−1, t) = (1, t), f(0, t) =
(0, t). This identification of the two copies of 0 × D1 is labeled with b, as is
its image in the annulus. Now by identifying [−1, 0] and [0, 1] with D1 using
the order preserving affine linear maps, we can re-express Q3 as the quotient
Q4 = D1 ×D1 ∪gD

1 ×D1, where g(−1, t) = g(1, t), g(1, t) = (−1, t). As another
description, form a quotient Q5 = D1 × D1 ∪h D1 × D1, where h(−1, t) =
(−1, t), h(1, t) = (1, t); that is, h is the identity on the identified edges. The
homeomorphism F :Q5 → Q4 is induced from the map that sends the left-hand
copy of D1 × D1 to itself via the identity, and sends the right-hand copy of
D1 × D1 to itself via (s, t) → (−s, t). We use Proposition 1.7.6 to see that this
induces a homeomorphism from Q5 to Q4.

Descriptions such as the last ones will be very useful to us in Chapter 2,
where we study surfaces. We will decompose a surface into a number of pieces,
each of which is homeomorphic to D2 or D1 ×D1 and then think of the surface
as a quotient space of the disjoint union of these nice pieces. The structure of the
surface will be contained in the pieces involved and how they are glued together.

Here is another example. The Möbius band B is formed from a rectangular
strip by identifying the ends after making a half twist as in Figure 1.14. More
formally, B = D1 ×D1/(−1, t) ∼ (1,−t). We might also write this as a quotient
space formed from two rectangles by splitting D1 = [−1, 0]∪ [0, 1] to form Q′

1 =
[−1, 0]×D1 ∪k [0, 1]×D1, with k(−1, t) = (1,−t), k(0, t) = (0, t). By identifying
[−1, 0] and [0, 1] with D1, we can re-express this as a quotient space D1 ×D1 ∪p

D1 ×D1, with p(−1, t) = (1, t), p(1, t) = (−1,−t).

Exercise 1.7.6. Consider the space X formed from two copies of R = D1 ×D1

by identifying {−1, 1} ×D1 to itself via d with d(1, y) = (1,−y) and d(−1, y) =
(−1,−y); that is, X = R∪dR. Construct a homeomorphism between X and the
annulus.

Exercise 1.7.7. Suppose X = A ∪g B, Y = A ∪g′ B, where g, g′ :K ⊂ B →
g(K), g′(K) ⊂ A are homeomorphisms. Suppose (g′)−1g :K → K = h|K, where
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h :B → B is a homeomorphism. Show that the identity on A and h on B piece
together to give a homeomorphism from X to Y .

Exercise 1.7.8. Show that the Möbius band can also be described as a quotient
space D1 × D1 ∪f D1 × D1, with f(−1, t) = (−1, t), f(1, t) = (1,−t).

Exercise 1.7.9. Identify all points in the lower half of the circle to each other.
Show that the resulting quotient space S1/ ∼ is homeomorphic to S1. (Hint:
Find a continuous map from the circle to the circle which sends the lower half
of the circle to a point and is 1–1 elsewhere.)

Exercise 1.7.10. Put an equivalence relation on the unit disk by making all
points on the boundary circle equivalent to each other. Show that the resulting
quotient space D2/ ∼ is homeomorphic to S2. (Hint: Send diameters to great
circles with the origin going to the south pole and the boundary circle going to
the north pole.)

1.8 The Jordan curve theorem and

the Schönflies theorem

In this section we outline proofs of the Jordan curve theorem and the Schönflies
theorem for polygonal curves. The section is essentially in the form of a project
to fill in the details of the outline to prove these results. The proofs of these
theorems in the polygonal case will provide us with many opportunities to apply
the concepts from the chapter in justifying geometric steps in the argument.
We start by carefully stating these theorems in their general versions.

Definition 1.8.1. A simple closed curve in the plane is a function f :S1 → R2

which is a homeomorphism onto its image. The image C = f(S1) ⊂ R2 is
sometimes also called a simple closed curve when the parametrization is not
important. Alternatively, a simple closed curve in the plane can be given as a
map f : [a, b] → R2, with f(x) = f(y) for x �= y iff {x, y} = {a, b} so that when
the quotient space [a, b]/a ∼ b is identified with S1, the induced map f̄ is a
homeomorphism onto its image.

Theorem 1.8.1 (Jordan curve theorem). Let C = f(S1) be a simple closed
curve in the plane. Then R2\C is the disjoint union of two open sets A,B so
that each is path connected. Moreover, one of these sets A is bounded and the
other B is unbounded. Also, C is the boundary of each of these sets.

Theorem 1.8.2 (Schönflies theorem). Let C = f(S1) be a simple closed
curve in the plane and R2\C = A ∪ B as given by the Jordan curve theorem,
with A bounded. Then there is a homeomorphism of the plane to itself which
sends the open unit disk to A and the closed unit disk to A ∪ C.

The Jordan curve theorem was first stated as a theorem by Camille Jordan
(1838–1932) in his Cours d’Analyse in the late nineteenth century. His original
proof was very complicated and was found to have gaps, which required consid-
erable effort to fill in. Modern proofs use homology theory, where the separation
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Figure 1.15. A polygonal simple closed curve.

part of the theorem is expressed by saying that H0(R
2\C) is the free abelian

group on two generators. H0 measures the path components of a space; the two
generators correspond to A and B. The difficulty, in general, has to do with
the very wild nature a simple closed curve may have. If the curve is restricted
somewhat, then the theorem becomes much easier. The Schönflies theorem was
proved in 1908.
In this section we will only look at the case of a polygonal simple closed curve,

which is the image of a map p : [0, n]→ R2 where, on each subinterval [k, k+1],
the map is an affine linear map onto a line segment Lk determined by the points
(called vertices) p(k) = vk and p(k + 1) = vk+1. We assume that p(0) = p(n)
but p(a) �= p(b) if a �= b unless {a, b} = {0, n}. Note that the quotient space
[0, n]/0 ∼ n is homeomorphic to S1 and p determines a map p̄ :S1 → R2 as in
the original definition of a simple closed curve. Figure 1.15 shows an example of
a polygonal simple closed curve and the bounded region which it bounds. We
will assume that adjacent segments in C do not lie on the same line.
We give an outline of the proofs of these theorems, giving the major steps

with illustrations when appropriate.
Step 1. Show that both theorems are unaffected by composing f :S1 → R2

with an affine linear homeomorphism (sends lines to lines) H: R2 → R2. Use
this to show that we can reduce the theorems to the case that no segment in the
polygonal curve is horizontal, which we will assume from now on.

Step 2. There are two types of points in C, edge points in p(k, k + 1), and
vertices, which are the points p(k). The vertices can be divided into two types,
regular vertices and special vertices. The special vertices are those which are
a local maxima or local minima for the y-coordinate on C, and the regular
vertices are the others. Figure 1.16 shows neighborhoods of each type of point,
and smaller regular neighborhoods within these which consist of nearby parallel
line segments. Show that such neighborhoods exist for each type of point in C.

Step 3. Consider a horizontal line at height y0. Suppose it intersects C in k
points (not counting any special vertices). Show that there is a number ǫ so that
horizontal curves at height between y0−ǫ and y0+ǫ intersect C in l points besides
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Edge point Regular vertex Special vertex

Figure 1.16. Nice neighborhoods.

Figure 1.17. How lines intersect C.

special vertices, where k ≡ l mod 2. It is necessary to consider line segments
in C which are missed at height y0 as well as special vertices at height y0. Use
this fact to show that the function that sends y to the number of points of C
mod 2 that are not special vertices at height y is a continuous function from R to
{0, 1}. Show that the horizontal line at height y intersects C in an even number
of points which are not special vertices. See Figure 1.17 for an illustration.

Step 4. For each (x, y) �∈ C, define I(x, y) to be 0 if there are an even number
of points of C (not counting special vertices) at height y to the left of (x, y),
and equal to 1 when there are an odd number of such points. Show that I is
continuous, and that the sets A = I−1({1}) and B = I−1({0}) are disjoint open
sets with R2\C = A ∪ B.

Step 5. Figure 1.18 shows a regular neighborhood of the curve C consisting of
parallel polygonal curves near C. Show that C has such a regular neighborhood
N(C). Show that that N(C) is homeomorphic to the annulus S1 × [ 12 , 3

2 ] ⊂ R2

enclosed between the circles of radii 1
2 and

3
2 with C corresponding to S1 × {1}.
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Figure 1.18. A regular neighborhood.

x

y
CA CB

Figure 1.19. Using CA to connect x, y ∈ A.

In particular, show that N(C)\C consists of two sets which are path connected
but that N(C)\C is not path connected.

Step 6. Show that BdN(C) = CA ∪ CB , where CA ⊂ A and CB ⊂ B are
parallel polygonal curves to C. Use the curves CA and CB to show that each of
A and B are path connected. See Figure 1.19 for a motivating example of such
a path connecting two points x, y ∈ A that uses CA. Use N(C) to show that
Ā = A ∪ C, B̄ = B ∪ C.

Step 7. Use the fact that C is compact to show that Ā is compact and B̄ is
not compact.
These steps then complete the proof of the polygonal version of the Jordan

curve theorem. We now outline an approach to proving the polygonal Schönflies
theorem. Our starting point is the setup from the polygonal Jordan curve
theorem above.
For our proof of the Schönflies theorem, we first need to modify C slightly

before we give our argument, but in a way that does not change the validity of
the Schönflies theorem.

Step 1. Show that there is a homeomorphism h :R2 → R2 which is the iden-
tity outside a regular neighborhood of C so that the special vertices all occur at
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Figure 1.20. Moving a vertex.

different y-values. The idea is depicted in Figure 1.20, where we push the vertex
vertically, keep the boundary of the part of the regular neighborhood of two
adjacent edges that come together at the vertex fixed, and extend this to a PL
map of the regular neighborhood. This allows an extension via the identity out-
side of the regular neighborhood to get a homeomorphism of R2 which displaces
the vertex slightly. Show that this modification does not affect the validity of
the Schönflies theorem. Figure 1.20 shows the original piece of the curve and the
displaced piece in a regular neighborhood.

Step 2. Use compactness to show that there is the minimal value m assumed
by C and the maximal valueM assumed by C and the A lies between the y = m
and y = M . Moreover, show that there is a minimal special vertex at height m
and a maximal special vertex at height M . Show that there are an even number
of special vertices, half of which are local minima and half local maxima.

Step 3. Show that if there are just two special vertices, then A is homeo-
morphic to a triangle, and that the homeomorphism can be chosen to fix
pointwise a small subtriangle at the bottom of A and is the identity outside
a large rectangle containing A. Use induction on the number V of vertices, with
starting point V = 3. Your homeomorphism should be expressible as a composi-
tion of homeomorphisms which are the identity outside a small neighborhood of
a triangle which is being worked on. At each step a triangle is added or removed
from A where two of its sides are on C and the third side is not. The interior
of the triangle will lie entirely in A or entirely in B. The argument should show
the existence of such triangles. The requirement that there are no horizontal
lines occurring in any intermediate steps may require working on two adjacent
triangles in a single reduction step. As a hint, we illustrate an example of a
complete reduction of such a region to a triangle in Figure 1.21. The dotted lines
show intermediate triangles being used and the numbering shows new edges in
C as it is homeomorphed to the bottom triangle.

Step 4. The general argument is by induction on the ordered pairs (V, S),
where V denotes the total number of vertices and S is the number of special
vertices. The ordering is lexicographic ordering: (V1, S1) < (V2, S2) iff (1) V1 <
V2, or (2) V1 = V2 and S1 < S2. The starting point for the induction is (3, 2)
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Figure 1.21. Homeomorphing A to a triangle.

and the way it works is to either keep the total number of vertices the same
and reduce the number of special vertices by 2, or reduce the number of total
vertices. Consider the lowest special vertex (minimal y-value) vm which is a local
maximum. There are a number of cases to consider. A useful concept to look at is
the position of the first two vertices on the segments moving downward from vm

and look for ways to homeomorph R2 to simplify the image of C so that it has one
fewer regular vertex. All of your homeomorphisms should fix a small triangle at
the bottom of A and the region outside a large rectangle containing A. In fact, at
each step the homeomorphism should just fix everything outside a region near a
triangle on which you are working. Some steps may require composing a couple of
these as well as introducing new vertices to avoid horizontal edges. Figure 1.22
illustrates how C is deformed to a C ′ with a single local maximum and local
minimum. Intermediate triangles being used are indicated with dotted lines.

1.9 Supplementary exercises

Definition 1.9.1. A collection B = {Bi: i ∈ I} of subsets of X is called a
basis and its elements are called basis elements if the following properties are
satisfied:

(a) every x ∈ X is contained in some Bi;

(b) if x ∈ Bi ∩ Bj , Bi, Bj ∈ B, then there is a basis element Bk with x ∈
Bk ⊂ Bi ∩ Bj .

The topology TB determined by the basis B is defined as follows: a set U ⊂ X
is open if, for every x ∈ U , there is a basis element Bi with x ∈ Bi ⊂ U .

The first six problems concern the concept of a basis and the topology which
it determines.

Exercise 1.9.1. Verify that TB satisfies the three properties required of a
topology.
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Figure 1.22. Removing excess special vertices.

Exercise 1.9.2. Show that the set of balls {B(x, r), x ∈ X, r > 0} is a basis
for the topology of a metric space X; that is, show that it is a basis and the
topology it determines is the metric topology.

Exercise 1.9.3. Show that any open set in TB is a union of basis elements.
(Hint: For x ∈ U , choose a basis element Bi(x) with x ∈ Bi(x) ⊂ U.)

Exercise 1.9.4. Suppose the topology for Y is determined by a basis. Show
that f :X → Y is continuous iff, for each basis element B of Y, f−1(B) is open.

Exercise 1.9.5. Show that the open intervals give a basis for the topology of R.

Exercise 1.9.6. Combine the last two exercises to show that a map to R is
continuous iff, for each open interval I ⊂ R, we have f−1(I) is open. Formu-
late and prove an analogous statement for maps to a metric space in terms
of balls.

Exercise 1.9.7. Let X be a metric space with metric d and let A be a subset of
X. Show that the metric topology on A given by d is the same as the subspace
topology.

Exercise 1.9.8. Suppose A ⊂ B ⊂ X, and B has the subspace topology. Show
that, if A is open in B and B is open in X, then A is open in X.

Exercise 1.9.9. If x,y ∈ R2, let d(x,y) = |x1 − y1|. Which of the three
properties of a metric does d satisfy?
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Exercise 1.9.10. On R2\{0}, write each point in polar coordinates as (r, θ),
where 0 ≤ θ < 2π. Define d((r1, θ1), (r2, θ2)) = |r1 − r2| + |θ1 − θ2|. Show that
this gives a metric on R2\{0} but the topology formed is not the usual topology.
Definition 1.9.2. A point x is called a limit point of a set A if every open set
U containing x intersects A\{x} in a nonempty set; that is, U ∩ (A − {x}) �= ∅
for U open, x ∈ U . Denote the limit points of A by A′.

Exercise 1.9.11. Show that a set A is closed iff it contains all of its limit points.

Exercise 1.9.12. Find the limit points of the following subsets of
R : (a)(0, 1); (b)Q, the rationals; (c) {1/n: n ∈ N}.
Exercise 1.9.13. Let X be a metric space and A ⊂ X. Show that x is a limit
point of A iff every ball B(x, r) contains infinitely many points of A.

Exercise 1.9.14. Show that, in Hausdorff space X with subset A, x is a limit
point of A iff every open set containing x contains infinitely many points of A.

Exercise 1.9.15.

(a) Show that if C is a closed set containing A, then Ā ⊂ C.

(b) Show that if V is an open set contained in A, then V ⊂ intA.

Exercise 1.9.16. Show that A is closed iff A = Ā, and A is open iff A = intA.

Exercise 1.9.17. Show that Ā = A ∪ A′.

Exercise 1.9.18.

(a) Show that in Rn we have B(z, r) = {x : d(z, x) ≤ r} and Bd B(z, r) =
{x : d(z, x) = r}.

(b) By using the discrete topology, show that this does not hold generally in
a metric space.

Definition 1.9.3. A topological space X is called limit point compact if every
infinite set has a limit point.

Exercise 1.9.19. Show that a compact space is limit point compact.

Exercise 1.9.20. Show that ifX is a metric space, thenX is limit point compact
iff it is sequentially compact iff it is compact.

Exercise 1.9.21. Show that if f :X → Y is continuous at x and xn is a sequence
converging to x, then f(xn) converges to f(x).

Exercise 1.9.22. Show that a map f : (X, d) → (Y, d′) between metric spaces
is continuous at x iff for every sequence xn which converges to x, the sequence
f(xn) converges to f(x).

Exercise 1.9.23. Show that, in a Hausdorff space, the limit of a sequence is
well defined; that is, if xn converges to x and to y, then x = y.

Exercise 1.9.24. Show that, in a Hausdorff space, if xn converges to x, then
x is the only limit point of the set of all of values {xn: n ∈ N}. Is the converse
true? Give a proof or counterexample.
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Exercise 1.9.25. Show that a finite set in a Hausdorff space is closed.

Definition 1.9.4. A Hausdorff space is called regular if, given x ∈ X and a
closed set C with x �∈ C, then there are disjoint open sets U and V with x ∈ U
and C ⊂ V . A Hausdorff space is called normal if, whenever C,D are disjoint
closed subsets, then there are disjoint open sets U, V with C ⊂ U,D ⊂ V.

Exercise 1.9.26. Show that a compact Hausdorff space is regular. (Hint: Use
the fact that a closed subset of a compact space is compact. Get an open cover
of the closed, hence compact, set C where there is an open set Vy for each point
y ∈ C with y ∈ Vy and an open set Uy so that x ∈ Uy with Uy ∩ Vy = ∅.)
Exercise 1.9.27. Suppose x ∈ U ⊂ X, where X is regular and U is open. Show
that there is an open set V with x ∈ V ⊂ V̄ ⊂ U . (Hint: Consider the point x
and the disjoint closed set X\U.)

Exercise 1.9.28. Show that a compact Hausdorff space is normal. (Hint: Apply
the conclusion of Exercise 1.9.26 to pairs x,D, where x ∈ C and use the
compactness of C.)

Exercise 1.9.29. Suppose C ⊂ U ⊂ X, where X is normal, C is closed and U
is open. Then show that there is an open set V with C ⊂ V ⊂ V̄ ⊂ U . (Hint: C
and X\U = D are disjoint closed sets.)

Exercise 1.9.30. Show that a metric space is normal. (Hint: If C,D are disjoint
closed subsets, then cover C by balls B(c, r(c)) disjoint from D and cover D by
balls B(d, r(d)) disjoint from C. Then show that U = ∪c∈C B(c, r(c)/2) and
V = ∪d∈D B(d, r(d)/2) are disjoint open sets containing C and D.)

Definition 1.9.5. Let C be a subset of a metric space X. For each x ∈ X,
define the distance from x to C by d(x,C) = inf{d(x, y): y ∈ C}.
Exercise 1.9.31. Show that {x: d(x,C) = 0} = C̄. Show that if C is closed and
x �∈ C, then d(x,C) > 0.

Exercise 1.9.32. Show that Cǫ = {y: d(y, C) < ǫ}, where ǫ > 0, is an open set
containing C.

Exercise 1.9.33. Show that the function f :X → R given by f(x) = d(x,C) is
continuous. (Hint: Look at the inverse image of an interval.)

Exercise 1.9.34. Suppose C,D are disjoint closed sets in a metric space X.
Use the notion of the distance from a point to a set to define d(C,D) in terms of
d(x,D) for x ∈ C. Give an example to show that this distance could be 0. Show
that if X is compact, then the distance must be positive.

The next two exercises give versions of Urysohn’s lemma and the Tietze
extension theorem for metric spaces.

Exercise 1.9.35. Suppose the (X, d) is a metric space and A,B are disjoint
closed sets. Show that the function

f(x) =
d(x,A)− d(x,B)

d(x,A) + d(x,B)
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is a continuous real-valued function f :X → [−1, 1] with f−1{−1} =
A, f−1{1} = B. The existence of a function from X to [−1, 1] which is −1
on A and 1 on B is called Urysohn’s Lemma and holds in the more general
situation of a normal space.

Exercise 1.9.36. Suppose X is a metric space and C ⊂ X is a closed subset,
with a continuous function f :C → R. This exercise leads you through a proof
that there is a continuous extension F :X → R. This result is called the Tietze
extension theorem and holds in the more general situation of a normal space.

(a) Reduce to the case where f is bounded by considering the composition
of f with a homeomorphism from R to (−1, 1).

(b) Because of (a), we assume from now on that f :X → [−M,M ].
We inductively define continuous maps from X to [−M,M ] which
give better and better approximations to f on C. Let A1 =
f−1([−M,−M/3]), and B1 = f−1([M/3,M ]). Show that A1, B1 are dis-
joint closed subsets of X. Apply Exercise 1.9.35 to show that there is
a continuous map g1 :X → [−M/3,M/3] with A1 ⊂ g−1

1 {−M/3}, and
B1 ⊂ g−1

1 {M/3}. Show that |f(x)− g1(x)| ≤ 2M/3 on C.

(c) Repeat the construction in (b) applied to h1 = f − g1 defined on C to
construct g2 :X → [−2M/9, 2M/9] so that

h−1
1

([−2M
3

,
−2M
9

])
⊂ g−1

2

({−2M
9

})
,

h−1
1

([
2M

9
,
2M

3

])
⊂ g−1

2

({
2M

9

})

and |f(x)− g1(x)− g2(x)| ≤ 4M/9.

(d) Use induction to construct a sequence of maps gn :X →
[−2n−1M/3n, 2n−1M/3n] so that if hn(x) = f(x) − g1(x) − · · · − gn(x),
then |hn(x)| ≤ 2nM/3n on C and |gn(x)| ≤ 2n−1M/3n.

(e) Define g(x) =
∑∞

n=1 gi(x). Show that g(x) converges uniformly to a
continuous function g :X → [−M,M ] which is an extension of f ; that is,
g(x) = f(x) for x ∈ C.

Exercise 1.9.37. Urysohn’s lemma states that for a normal space X with
disjoint closed sets A,B, there is a continuous function f :X → [−1, 1] with
A ⊂ f−1{−1} and B ⊂ f−1{1}. The Tietze extension theorem states that for
a normal space X with a closed subset C and a continuous function f :C → R,
there is a continuous function g :X → R with f(x) = g(x) for x ∈ C. Show that
Urysohn’s lemma is equivalent to the Tietze extension theorem. (Hint: Use the
argument in Exercise 1.9.36 to show that Urysohn’s lemma implies the Tietze
extension theorem.)

Definition 1.9.6. A set is countable if it can be put in 1–1 correspondence with
the natural numbers N or is finite. For example, the rationals Q and n-tuples of
rationals Qn = {(r1, r2, . . . , rn) : ri ∈ Q} are countable. A space X is called first
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countable if, for each x ∈ X, there is a countable basis of open sets containing
x; that is, there is a collection {Bn :n ∈ N} of open sets containing x so that,
if U is an open set containing x, then there is a set Bk ⊂ U . This is called a
neighborhood basis. A space X is called second countable if there is a countable
basis for the topology of X. A space X is called countably compact if every
countable open cover has a finite subcover. A metric space is called separable if
there is a countable set {xn :n ∈ N} so that every open set contains at least one
xn (we say {xn} is dense in X and {xn} is a countable dense subset).

Exercise 1.9.38. Show that Q is dense in R, and hence R is separable.

Exercise 1.9.39. Show that a metric space is first countable.

Exercise 1.9.40. Show that, if X is first countable and x is a limit point of C,
then there is a sequence xi ∈ C which converges to x.

Exercise 1.9.41. Show that if X is first countable, Hausdorff, and compact,
then X is sequentially compact. (Hint: Adapt the proof given in Section 1.5 for
metric spaces.)

Exercise 1.9.42. Show that a metric space is separable iff it is second countable.
(Hint: If it is separable, use balls about the countable dense subset to get a
countable basis. A countable number of countable sets is still countable. If it is
second countable, select a countable set by choosing one point from each basis
element.)

Exercise 1.9.43. Show that compactness implies countable compactness, and
that the converse holds in a second countable space. (Hint: In a second countable
space show that for each open covering {Ui}i∈I there is a covering by basis
elements so that each basis element is contained in an element of the given
covering {Ui}.)

Consider the space X = A ∪ B, where A = {(x, sin 1/x): 0 < x ≤ 1} and
B = {(0, y) : − 1 ≤ y ≤ 1}. The space X is called the topologist’s sine curve.
The next three problems show that X is connected but not path connected. See
Figure 1.9.

Exercise 1.9.44. Show that A ∪ B = Ā.

Exercise 1.9.45. Show that the closure of a connected set is connected, thus
implying that A ∪ B is connected.

Exercise 1.9.46. We show here that A ∪ B is not path connected. Suppose
A ∪ B were path connected. Let f : [0, 1] → A ∪ B be a path with f(0) = (0, 0)
and f(1) = (1, sin 1). Consider the set S = {t: f([0, t]) ∈ B}. Let p :R2 → R be
p(x, y) = x.

(a) Show that S is nonempty, is bounded from above, and has a least upper
bound u < 1.

(b) Show that u ∈ S.
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(c) Show that there is a neighborhood Nf(u) of f(u) consisting of an infinite
number of separated arcs, and a neighborhood Nu of u with f(Nu) ⊂
Nf(u).

(d) Show that there is u1 > u, u1 ∈ Nu with pf(u1) > 0.

(e) Show that there are disjoint open sets U, V ⊂ Nf(u) with
f(u) ∈ U, f(u1) ∈ V , and U ∪ V = Nf(u); that is, Nf(u) is separated
by U, V .

(f) By looking at f |[u, u1], arrive at a contradiction.

Definition 1.9.7. A topological space X is called locally path connected at x
if for each open set V containing x, there is a path connected open set U with
x ∈ U ⊂ V . It is called locally path connected if it is locally path connected at
each x ∈ X. It is called locally connected at x if, for each open set V containing
x, there is a connected open set U with x ∈ U ⊂ V . It is called locally connected
if it is locally connected for each x ∈ X.

Exercise 1.9.47. Show that a locally path connected space is locally connected.

Exercise 1.9.48. Show that the topologist’s sine curve is not locally connected.

Exercise 1.9.49. Show that an open set in Rn is locally path connected.

Exercise 1.9.50. Show that the path components of a locally path connected
space are open sets.

Exercise 1.9.51. Show that if X is locally path connected and connected, then
X is path connected. (Hint: Modify the proof that a connected open set in Rn

is path connected.)

Exercise 1.9.52. Give an example of a path connected space which is not locally
path connected.

Exercise 1.9.53. Define an equivalence relation on X by x ∼ y if there is a
connected set containing both x and y. The equivalence classes are called the
components of X.

(a) Verify that this is an equivalence relation.

(b) Show that each component is connected, that any two components are
equal or disjoint, and that the union of the components is X.

(c) Show that any connected subset of X intersects at most one component
and is a subset of that component.

(d) Show that each path component is contained in a component, and that
a component is a disjoint union of path components.

(e) Show that a component is a closed set.

Exercise 1.9.54.

(a) Show that a space is locally connected iff, for each open set U , each
component of U is open in X.
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(b) Show that a space is locally path connected iff, for each open set U , each
path component of U is open in X.

Exercise 1.9.55. A collection D of subsets of X is said to satisfy the finite
intersection property (F.I.P.) if for every finite subcollection {D1, . . . , Dk} of D,
the intersection D1∩· · ·∩Dk �= ∅. Show that X is compact iff for every collection
D of closed sets satisfying the F.I.P., the intersection of all of the elements of
D is nonempty. (Hint: If not, consider the covering of X by the complements
{X\Di}.)
Exercise 1.9.56. Let (X, d) be a compact metric space, and f :X → X con-
tinuous. x ∈ X is called a fixed point of f if f(x) = x. f is called a contraction
if there is a number a < 1 such that d(f(x), f(y)) ≤ ad(x, y) for all x, y ∈ X.
Show that a contraction has a unique fixed point. This result is known as the
contraction mapping principle and plays a key role in analysis. (Hint: Consider
∩fn(X). where fn denotes the n-fold composition of f with itself and use the
finite intersection property from the previous exercise.)

Definition 1.9.8. X is called locally compact at x if there is an open set U and
a compact set C with x ∈ U ⊂ C. It is called locally compact if it is locally
compact at each x ∈ X.

Exercise 1.9.57. Show that a compact space is locally compact.

Exercise 1.9.58. Show that Rn is locally compact.

Exercise 1.9.59. Show that if X is Hausdorff and locally compact at x, then
there is an open set U containing x so that Ū is compact.

Exercise 1.9.60. Suppose X is a locally compact Hausdorff space. Show that
if x ∈ U ⊂ X, U open, then there exists an open set V containing x such that
V̄ is compact and V̄ ⊂ U . (Hint: Use the preceding exercise and the argument
of Exercise 1.9.27.)

The following exercise leads through the construction of the one-point
compactification of a locally compact Hausdorff space.

Exercise 1.9.61. Suppose that X is a locally compact Hausdoff space. Form
a new space X+, called the one-point compactification of X as X+ = X ∪ {p},
the disjoint union of X and an added point p. A set U ⊂ X+ is called open if
(1) U is an open set in X, or (2) p ∈ U and X+\U is a compact set in X.

(a) Show that this definition of open set satisfies the three properties of a
topology.

(b) Show that the subspace topology on X ⊂ X+ is the same as its usual
topology.

(c) Show that X+ is a compact Hausdorff space.

Exercise 1.9.62. Show that if X is a locally compact Hausdorff space and Y
is a compact Hausdorff space with Y \{y0} ≃ X, then Y ≃ X+.
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Exercise 1.9.63.

(a) Show that the one-point compactification of R is homeomorphic to S1.

(b) Show that the one-point compactification of R2 is homeomorphic to
S2. (Hint: Use projection from the point p = (0, 0, 1) to get a
homeomorphism from S2\{p} to R2.)

(c) Show that the one-point compactification of Rn is homeomorphic to Sn.

Exercise 1.9.64. Show that, if X is compact, the one-point compactification
of X is X+ = X

⊔
{p}, where the set {p} is an open set in the disjoint union.

Exercise 1.9.65. Consider the space R∞, which is the product of a countably
infinite number of copies of R. This is given the product topology with basis the
sets which are product of a finite number of intervals with a product of copies
of the reals:

(a1, b1)× · · · × (an, bn)× R × · · · × R × · · · .
Show that this space is not locally compact. (Hint: Look at basic open sets and
show that they do not have compact closure.)

Exercise 1.9.66.

(a) Show that the following two subsets of R are not homeomorphic: A =
{1/n :n ∈ N} ∪ {0}, B = N.

(b) Show that B+ is homeomorphic to A.

Exercise 1.9.67. Show that ∞ is not homeomorphic to O (Hint: Consider
where the crossing point of ∞ could go under a homeomorphism.)

The next four exercises concern the homeomorphism type of the letters of
the alphabet. In each case, assume the letter is written as given below in the
sans serif style, with no adornments:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Exercise 1.9.68. Show that the letter X is not homeomorphic to the letter Y,
but that the letter Y is homeomorphic to the letter T.

Exercise 1.9.69. Construct a homeomorphism between the letter D and the
letter O.

Exercise 1.9.70. Prove that the letter A is not homeomorphic to the letter B.

Exercise 1.9.71. Group the letters of the alphabet into equivalence classes
so that equivalent letters are homeomorphic and nonequivalent letters are not
homeomorphic.

Exercise 1.9.72. Prove that if an open set U ⊂ R2 is path connected, then any
two points in U can actually be connected by a polygonal path in U .

Exercise 1.9.73. For each of the following subsets of R2 indicate which of the
following properties it possesses, namely, (i) compact; (ii) connected; (iii) path
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connected; (iv) open; (v) closed:

(a) A = {x1, x2) :x1 ≥ 0, 4 < x2 ≤ 8};
(b) B = {(x1, x2) :x

2
1 + x2

2 = 25};
(c) C = A ∩ B;

(d) D = {(x1, x2) :x
2
1 + x2

2 < 1};
(e) E = D̄.

Exercise 1.9.74. Show that the torus is not homeomorphic to an open set in
R2. (Hint: Use the properties of compactness and connectedness.)

Exercise 1.9.75. Show that if A ⊂ S1 with A �= S1, then A is not
homeomorphic to S1.

Exercise 1.9.76. Put an equivalence relation ∼ on R2 by saying that two points
are equivalent if they both lie on the circle of radius r about the origin. Show
that R2/ ∼, with the quotient topology, is homeomorphic to [0,∞).
Exercise 1.9.77. Identify all points in the lower hemisphere of the sphere S2.
Show that the resulting quotient space S2/ ∼ is homeomorphic to S2.

Exercise 1.9.78. Identify points on the boundary circles of an annulus A
between the circles of radius 1 and radius 2 that lie on the same ray from the
origin. Show that the resulting quotient space A/ ∼ is homeomorphic to the
torus T 2.

Exercise 1.9.79. Identify the points on the outer circle of an annulus A to one-
point and the points on the inner circle to a (different) point. Show that A/ ∼
is homeomorphic to S2. Describe what space you would get if you identified the
points on both circles to a single point.

Exercise 1.9.80. Consider the quotient space X formed from two copies of
D1 ×D1 using f : {−1, 1}×D1 → {−1, 1}×D1 by f(−1, x) = (1,−x), f(1, y) =
(−1, y), X = (D1 × D1) ∪f (D

1 × D1). Decide whether X is homeomorphic to
the annulus or the Möbius band, and prove your assertion.

Exercise 1.9.81. Show that the upper hemisphere of S2 is homeomorphic to
D2 and similarly for the lower hemisphere. Use this to show S2 is homeomorphic
to D2 ∪g D2 for g :S1 → S1 and determine g.

Exercise 1.9.82. Show that D2 ∪f D2, where f :K → K is f(x) = x, and
K = {(x1, x2) ∈ S1 :x1 ≥ 0} is homeomorphic to D2. (Hint: First choose a
homeomorphism h from D2 to D1×D1 where h(K) = {(x1, x2) ∈ D1×D1 :x1 =
1}. Use this to get a homeomorphism D2∪f D2 ≃ (D1×D1)∪g (D

1×D1), where
g :h(K)→ h(K) is g(x) = x.)

Exercise 1.9.83. Construct a homeomorphism between a square and a
diamond.

Exercise 1.9.84. Construct a homeomorphism between the two regions in
Figure 1.23.
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Figure 1.23. Annular regions.

Figure 1.24. Star.

x

B

A C
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D

Figure 1.25. Two pairs of circles.

Exercise 1.9.85. Show that any two rectangles in the plane are homeomorphic.

Exercise 1.9.86. Construct a homeomorphism between the inside of a square
and the star in Figure 1.24.

Exercise 1.9.87. Show that there is no homeomorphism of the plane to itself
which sends the unit circle to itself and sends (0, 0) to (2, 0).

Exercise 1.9.88. Construct an example of a simple closed curve in the plane
where a horizontal line intersects the curve in an infinite number of points but
the curve contains no horizontal line segments.

Exercise 1.9.89. Show that the complement of two disjoint polygonal simple
closed curves in the plane consists of three disjoint open, path connected sets.

The next three problems concern Figure 1.25.
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Exercise 1.9.90. Show that there is a homeomorphism sending A∪B to C∪D.

Exercise 1.9.91. Show that any homeomorphism sending A ∪ B to C ∪ D
which sends x ∈ A to y ∈ C must send A homeomorphically to C and B
homeomorphically to D.

Exercise 1.9.92. Show that there does not exist a homeomorphism of the plane
sending A ∪ B to C ∪ D. (Hint: Consider the regions bounded by A and C.)

Exercise 1.9.93. Consider a polygonal path P that is not closed and does not
intersect itself. Show that R2\P is path connected using a polygonal path. (Hint:
Use induction on the number of segments in the path.)

Exercise 1.9.94. Show directly that the triangle with vertices (0, 0), (1, 0), (0, 1)
separates the plane into two nonempty disjoint open path connected sets, one of
which is bounded and the other not.

Exercise 1.9.95. Consider the shaded region in Figure 1.26 (which is not
homeomorphic to a disk). Analyze how the region changes as we move upward
past the special vertices.

Figure 1.26. A polygonal annular region.

Figure 1.27. A curvy disk.
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Exercise 1.9.96. Show that the region in Figure 1.26 is homeomorphic to the
region R enclosed between the squares [−1, 1]× [−1, 1] and [−2, 2]× [−2, 2]. Do
this both by a direct argument and by breaking the each region into two regions
to which we can apply the polygonal Schönflies theorem.

Exercise 1.9.97. Describe a homeomorphism between the region in Figure 1.27
and a disk.
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The classification of surfaces

2.1 Definitions and construction of the models

In this chapter we discuss surfaces and classify them up to homeomorphism. A
surface is a topological space which locally looks like a piece of the plane, such
as a sphere or the exterior of a donut (a torus). Before specializing to surfaces,
we begin by introducing the concept of an n-manifold, where a surface is a
2-manifold. Manifolds constitute one of the primary areas of study in topology.
Our study of surfaces will introduce us to many of the key ideas in manifold
theory in a fairly concrete geometric setting.

Definition 2.1.1. A topological space M is an n-manifold if

(1) there is an embedding (a homeomorphism onto its image with the
subspace topology) of M into RN for some N ;

(2) given x ∈ M , there is a neighborhood U of x and a homeomorphism h
from U onto an open set in Rn.

Condition (1) turns out to be equivalent (in the presence of (2)) to either
requiring M to be a separable metric space or requiring M to be a second
countable, Hausdorff space (see the supplementary exercises of Chapter 1 and
[24, 5]). We will mainly concern ourselves with condition (2), regarding (1) as a
technicality to rule out certain pathological examples. Condition (2) is sometimes
phrased as requiring M to be locally homeomorphic to Rn or, if n is clear from the
context, requiring M to be locally Euclidean. In condition (2), we may require
h(U) = Rn, and not just an open set in Rn. For if h(U) is open in Rn, there
is a smaller neighborhood V of x with h(V ) = B(y, r),y = h(x). But there is
a homeomorphism g : B(y, r) → Rn and so gh : V → Rn is a homeomorphism.
An n-manifold is said to be of dimension n. By a surface we mean a 2-manifold.

Exercise 2.1.1.

(a) Verify that g : (−1, 1) → R, g(x) = x/(1−x2), is a homeomorphism and
that it restricts to a homeomorphism of [0, 1) onto [0,∞).

62
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(b) Construct a homeomorphism of B(y, r) onto B(0, 1), where y,0 ∈
Rn, r > 0.

(c) Construct a homeomorphism from k : B(0, 1) → Rn. (Hint: Use the
analog of (a).)

The classification problem for n-manifolds seeks a collection Mi, i ∈ I, of
n-manifolds so that each n-manifold is homeomorphic to one of the Mi, and
Mi is not homeomorphic to Mj for i �= j. Also, a procedure should be given
for deciding which Mi a given n-manifold is homeomorphic to. Frequently, the
class of n-manifolds under consideration is restricted in some way. A common
restriction is to compact, connected n-manifolds, and we will only give the classi-
fication of compact, connected surfaces in this chapter. The problem of classifying
compact, connected 1-manifolds turns out to be relatively simple. A proof will
be outlined in Exercises 2.9.1–2.9.8 that any compact, connected 1-manifold is
homeomorphic to the circle. For compact, connected 3-manifolds, the problem is
still unsolved. For n-manifolds, n ≥ 4, the problem has been shown to be unde-
cidable in a precise logical sense. Nevertheless, some more restricted classification
problems have been solved and have constituted some of the most fruitful areas
of research in topology in the last 50 years.

Surfaces constitute a familiar example of manifolds from advanced calculus.
Many surfaces arise there as solution sets of some equation. For example, the
2-sphere S2 is the solution to F (x, y, z) = x2+y2+z2−1 = 0. Higher-dimensional
manifolds also arise as solution sets to equations. Besides an open set U in Rn,
the simplest n-manifold is the graph of a function f : U ⊂ Rn → Rp, Γ(f) =
{(x, f(x)): x ∈ U}. It is homeomorphic to U by projection to its first n coordin-
ates. If F : Rn+k → Rk is a differentiable function so that on F−1(0) the matrix
of partial derivatives has rank k at each point, then F−1(0) is an n-manifold.
This is shown by using the implicit function theorem to show that a neighbor-
hood of x ∈ F−1(0) is the graph of a function defined on an open set in a
hyperplane determined by n of its coordinates.

We will also need the more refined notion of an n-manifold with bound-
ary. First let H

n = {(x1, . . . , xn) ∈ R
n: xn ≥ 0} and ∂H

n = {(x1, . . . , xn) ∈
R

n: xn = 0}.

Definition 2.1.2. An n-manifold with boundary is a topological space M so
that

(1) there is an embedding of M into R
N for some N ;

(2) given x ∈ M , there is a neighborhood U of x and a homeomorphism h
of U onto an open set in H

n.

Again, (1) may be replaced by requiring M to be either separable metric or
second countable, Hausdorff, and (2) may be refined by requiring that either
h(U) = R

n or h(U) = H
n. For if h(x) = y �∈ ∂H

n, then there will be a smaller
neighborhood V with h(V ) = B(y, r), and then kgh : V → R

n will be a homeo-
morphism as before. We leave it as an exercise to modify this argument in the
case where h(x) ∈ ∂H

n.
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Exercise 2.1.2. Show that if h : U → H
n is a homeomorphism onto an open

set in H
n and h(x) ∈ ∂H

n, then there is a smaller open set V about x and a
homeomorphism h′ : V → H

n.

Definition 2.1.3. In a manifold with boundary, those points x with h(x) �∈ ∂H
n

are called interior points and those points with h(x) ∈ H
n are called boundary

points. The collection of all interior points is called the interior of M , and is
denoted by int M . The collection of all the boundary points is called the boundary
of M , and is denoted by ∂M . int M is an n-manifold (without boundary) and
∂M is an (n − 1)-manifold (without boundary).

We now quote some basic results related to these definitions. These will be
proved in Chapter 6 using homology theory. First, an open set in R

n is not
homeomorphic to an open set in R

m for m �= n. Second, if x ∈ ∂H
n and U is an

open set in H
n about x, then U is not homeomorphic to an open set in R

n (or
even any R

m).

Exercise 2.1.3. Assuming the two results quoted above, show that the dimen-
sion of a manifold is well defined and that an interior point cannot be a boundary
point as well, so the concepts of interior point and boundary point are well
defined.

Exercise 2.1.4. Suppose U is an open set about 0 ∈ [0,∞) = H
1 and V is an

open set in R. Show that U is not homeomorphic to V . (Hint: Note that there
is an interval [0, c) contained in U which is path connected after 0 is removed.)

Exercise 2.1.5. Show that the boundary of an n-manifold is either empty or
an (n − 1)-manifold. (Hint: Use the fact that a point is either an interior point
or a boundary point but not both.)

Exercise 2.1.6. Suppose M,N are n-manifolds with boundary. Show that if
h : M → N is a homeomorphism, then h|∂M is a homeomorphism from ∂M
to ∂N .

There is a stronger statement about open sets in R
n from which some of the

above statements can be deduced. This is the invariance of domain property,
which we will also prove in Chapter 6.

Theorem 2.1.1 (Invariance of domain). Suppose U is an open subset of R
n

and f : U → R
n is 1–1 and continuous. Then f is an open map; that is, it maps

open sets to open sets.

Exercise 2.1.7. Apply Theorem 2.1.1 to prove the following version for n-
manifolds: If Mn, Nn are n-manifolds and f : Mn → Nn is 1–1 and continuous,
then f is an open map. Show that if we also assume that Mn is compact,
connected and Nn is connected, then f must be a homeomorphism.

Exercise 2.1.8. Deduce the fact that the dimension of an n-manifold is well
defined from the invariance of domain.

Exercise 2.1.9. Prove that the invariance of domain holds when n = 1.
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In order to classify compact, connected surfaces with boundary, we need to
construct some examples which will be our basic building blocks.

The simplest example of a surface with boundary is the closed disk D2. It is
compact since it is closed and bounded, and path connectivity follows by using
straight line paths. The boundary will be the circle S1. To see that points on
the circle are boundary points, note first that if x,y ∈ S1, there is a rotation
(hence homeomorphism) of D2 sending x to y (hence a neighborhood of x to a
neighborhood of y). Thus it is sufficient to exhibit one point x on the circle with
a neighborhood homeomorphic to an open set in H

2. But there is a homeomorph-
ism of D2 onto a rectangle R which sends the circle to the perimeter of R. For a
point on the interior of the bottom edge of the rectangle, there is a neighborhood
homeomorphic to an open set in H

n, and so all points of the boundary circle
(and thus also on the perimeter of the rectangle) have the required neighborhood.
Note that this implies that the corner points on the perimeter have appropriate
neighborhoods. The following exercise asks the reader to show this directly.

Exercise 2.1.10. Show directly that H
2
+ = {(x1, x2): x1 ≥ 0, x2 ≥ 0} is homeo-

morphic to H
2. (Hint: Use polar coordinates to define the map.)

In the following examples, we will frequently refer to the boundary of certain
surfaces without verifying precisely that the points involved are boundary points.
Frequently, a direct verification is possible using the ideas for the disk above
together with Exercise 2.1.10, and you are encouraged to convince yourself that
the boundary is as indicated.

The 2-sphere S2 is defined as {(x1, x2, x3) ∈ R
3: x2

1 + x2
2 + x2

3 = 1}. It is
compact since it is closed and bounded in R

3. Path connectivity was shown in
Chapter 1. To see that it is locally homeomorphic to R

2, we show the stronger
fact that if p ∈ S2, then S2\{p} is homeomorphic to R

2. We first do this for
the special points p = (0, 0, 1), the north pole N , and p = (0, 0,−1), the south
pole S. Our technique is standard and is called stereographic projection (see Fig-
ure 2.1). For each x ∈ S2\{N}, consider the line through N and x. It intersects
the plane R

2 ⊂ R
3 in some point, which we call hN (x). This gives us a map

hN : S2\{N} → R
2. We will show that this is a homeomorphism by exhibiting

formulas for hN and h−1
N

. First note, however, that hN sends the upper hemi-
sphere S2

+ = {(x1, x2, x3) ∈ S2: x3 ≥ 0} to the exterior of the unit disk in R
2

and the lower hemisphere S2
− = {(x1, x2, x3) ∈ S2: x3 ≤ 0}, to the unit disk.

To derive a formula for hN , it is useful to restrict hN to the plane determined
by N , x, and 0. Let r2 = x2

1 + x2
2, x = (x1, x2, x3), and hN (x) = (a, b), s2 =

a2 + b2. Then by similar triangles we get r/(1 − x3) = s or s/r = 1/(1 − x3).
By projection of these two triangles onto the planes x2 = 0 and x1 = 0, we also
get the equalities x1/(1 − x3) = a, x2/(1 − x3) = b. Thus hN (x) = (x1/(1 −
x3), x2/(1 − x3)). To get a formula for h−1

N
we solve for x1, x2, x3 in terms of

a, b. Using our three equations together with x2
3 = 1−r2, algebraic manipulation

yields

x1 =
2a

1 + s2
, x2 =

2b

1 + s2
, x3 =

s2 − 1

1 + s2
.
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(x,y,z) 

(u,v) 

N 

s

r
x3

Figure 2.1. Stereographic projection.

Thus h−1
N
(a, b) = (2a/(1+s2), 2b/(1+s2), s2 −1/(1+s2)). The continuity of hN

and h−1
N

follows from the algebraic nature of their formulas in terms of rational
functions.

The homeomorphisms from S2\{p} to R2 for other p follow similarly by
projecting onto the plane perpendicular to the line through 0 and p and then
identifying that plane with R2. A derivation similar to the one above shows that
if we project from the south pole, we get

hS(x) =

(

x1

1 + x3

,
x2

1 + x3

)

, h−1

S
(a, b) =

(

2a

1 + s2
,

2b

1 + s2
,
1− s2

1 + s2

)

.

Note that h−1

S
sends the unit disk to the upper hemisphere and h−1

N
sends the

unit disk to the lower hemisphere and each maps the circle to itself via the
identity. Let D2

i denote a copy of the unit disk, i = 1, 2. Form the quotient space
D2

1 ∪id D2
2 by identifying corresponding points of the circle in the two copies of

the disk via the identity. Then h−1

N
, h−1

S
fit together to give a homeomorphism

from D2
1 ∪id D2

2 to S2.
The representation of the sphere as two copies of the unit disk glued together

along their boundary is a very useful one in topology and can be given for higher-
dimensional spheres by an analogous construction. The identification of the two
copies of S1 by the identity is unnecessary in the following sense. If f : S1 → S1

is any homeomorphism, we may form D2
1 ∪f D2

2, where x ∈ S1
2 is identified to

f(x) ∈ S1
1 with the quotient topology. Now f extends to a homeomorphism

of D2 via F (tx) = tf(x), 0 ≤ t ≤ 1. We can construct a homeomorphism
h : D2

1 ∪f D2
2 → D2

1 ∪idD2
2 by sending D2

1 to D2
1 via the identity and D2

2 to D2
2 via

F . The piecing lemma for homeomorphisms shows that this is a homeomorphism.
Our second model surface will be the torus, which we denote by T . Its most

convenient description is as a product space, T = S1×S1. A geometric realization
occurs in R3 by taking a circle in the right x2x3-half-plane and revolving it about
the x3-axis. That it is a surface is left as an exercise.

Exercise 2.1.11. Show that the product of an m-manifold M and n-manifold
N is an (m + n)-manifold M × N . Conclude that T is a compact, connected
surface.
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We give a description of T analogous to our description of S2 as the union
of two disks glued along their boundaries. First note that S1 is homeomorphic
to D1

1 ∪id D1
2 where D1

i denotes a copy of the interval [−1, 1]. The proof is left
as an exercise.

Exercise 2.1.12. Construct a homeomorphism between the quotient space
D1

1 ∪id D1
2 and the circle S1.

Thus T = S1 × S1 is homeomorphic to

(((D1
1 × D1

1) ∪f (D1
1 × D1

2)) ∪g (D1
2 × D1

1)) ∪h (D1
2 × D1

2),

where f, g, h indicate that certain points in the boundary of each product are
identified via homeomorphisms to points in the boundary of the space preceding
it. We now make these identifications more explicit. The boundary of D1

1 × D1
1

is {−1} × D1
1 ∪ {1} × D1

1 ∪ D1
1 × {−1} ∪ D1

1 × {1}. The map f identifies copies
of D1

1 × {−1} and D1
1 × {1}. See Figure 2.2 to see how the first two pieces form

an annulus within the front half of the torus.
Note that the boundary of D1

1 × D1
1 ∪f D1

1 × D1
2 is {±1} × (D1

1 ∪ D1
2) =

{±1}×S1, which is the union of two circles. Now D1
2 ×D1

1 has boundary {−1}×
D1

1 ∪ {1} × D1
1 ∪ D1

2 × {−1} ∪ D1
2 × {1}. The map g identifies {−1} × D1

1 ∪
{1} × D1

1 in this boundary with {−1} × D1
1 ∪ {1} × D1

1 in the boundary of
(D1

1 ×D1
1)∪f (D

1
1 ×D1

2). The boundary of ((D1
1 ×D1

1)∪f (D
1
1 ×D1

2))∪g (D
1
2 ×D1

1)
is D1

2 × {−1} ∪ D1
2 × {1} ∪ {−1} × D1

2 ∪ {1} × D1
2, which is also the boundary

of D1
2 × D1

2. The map h now identifies these two boundaries. See Figure 2.3 for
views of the first two pieces and then the first three pieces within the torus.

D1

1 × D1

1

b

a

a b

D1

1 × D1

2

d

c

c
d

D1

1 × S1 ⊂ T

b

d

a

c

Figure 2.2. Decomposition of front half of the torus.
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Figure 2.3. Views of one-half and three-fourths of the torus.

2.2 Handle decompositions and

more basic surfaces

Recall that the last pieceD1
2×D1

2 = [−1, 1]×[−1, 1] of the torus is homeomorphic
to the unit diskD2. Our identifications are occurring on the boundary ofD1

2×D1
2,

which is homeomorphic to the circle. We could also think of D1
1 × D1

1 as a disk
D2. Our decomposition of S1 × S1 is then better expressed as

(((D0
×D2) ∪f (D1

×D1)) ∪g (D
1

×D1)) ∪h (D2
×D0),

where D0 is a point and Di × Dj is attached to the boundary of the space
preceding it by an embedding of ∂Di ×Dj .

Definition 2.2.1. We will call Di ×Dj an i-handle. We say that it has index i
and denote it by hi, with subscripts used to distinguish different handles of
the same index. A handle decomposition of a surface (with boundary) is a
decomposition of the form

h0
1 ∪ · · · ∪ h0

k0
∪ h1

1 ∪ · · · ∪ h1
k1

∪ h2
1 ∪ · · · ∪ h2

k2
,

where k0 ≥ 1 and ∂Di × Dj is identified with a homeomorphic image in the
boundary of the space (which is a surface with boundary) preceding it in the
decomposition. A surface (possibly with boundary) with a handle decomposition
is called a handlebody.

As an alternate description, a handlebody H is built up inductively from
a disk by attaching handles of nondecreasing index X0 ⊂ X1 ⊂ · · ·Xk ⊂

Xk+1 ⊂ Xp = H, where Xk+1 = Xk ∪ hi, with ∂Di × Dj ⊂ hi identified to
a homeomorphic image in ∂Xk. In the case of the 2-sphere, we have exhibited
a handle decomposition with one 0-handle and one 2-handle. For the torus, we
have given a handle decomposition with one 0-handle, two 1-handles, and one
2-handle.

Note that the above definition assumes implicitly that each Xk is a surface
with boundary. This will be proved later in the chapter as a step in proving the
classification theorem. Basically, the idea is that attaching a 1-handle to a surface
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Figure 2.4. Attaching a 1-handle.

with boundary gives a surface with boundary. This is clear geometrically if we
know that there is a “nice neighborhood” of the part of the boundary where the
handle is attached and the handle is attached in a “nice” manner. See Figure 2.4
for a picture of how the boundary changes when a 1-handle is attached. Two arcs
that were part of the boundary where the 1-handle is attached are no longer in
the boundary, but the two complementary arcs of the boundary of the 1-handle
become part of the boundary.

The index of a handle indicates the way that the handles are attached in
forming the surface inductively. The 0-handles just consist of disjoint disks. The
1-handles are also homeomorphic to disks, but in terms of the handle decom-
position they are best thought of as rectangles D1 × D1. They are attached to
the surface already formed by identifying {−1} × D1 and {1} × D1 with arcs in
the boundary circles. The 2-handles are best thought of as disks D2 and they
are attached to the preceding surface by identifying their boundary circle with
a circle in the boundary of the surface. Attaching a 2-handle can be regarded as
filling in a hole in the surface. There is no choice in how a 0-handle is added to
a surface (just as a disjoint disk) and little choice for the 2-handles (essentially
only which boundary circle one fills in). The interesting operation in forming
the surface is attaching the 1-handles, and the bulk of our work in classifying
surfaces is to understand this.

The existence of a handle decomposition on a compact surface follows from
the existence of a triangulation or a differentiable structure on the surface.
Examples are given in Section 2.8 to show how these structures give rise to
handle decompositions. We will see through examples how handle decomposi-
tions arise naturally for surfaces with boundary in 3-space that come from
embeddings of the circle in 3-space (knots). In 1925, Radó [29] first proved
that surfaces could be triangulated as PL manifolds, and it was later shown
that two PL surfaces were homeomorphic iff they were PL homeomorphic [27].
Moreover, all surfaces arise as differentiable surfaces, and they are homeo-
morphic iff they are diffeomorphic. These results also hold for 3-manifolds,
but are not true in higher dimensions—understanding the distinctions between
topological manifolds, PL manifolds, and differentiable manifolds have provided
some of the most fascinating research problems in topology. Some of the early
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Figure 2.5. Another handle decomposition of the sphere.

foundational papers involving both surfaces and higher-dimensional manifolds
include [23, 4, 8, 26, 33]. See [3, 22, 10, 25] for more expository presentations.

Note that a surface may have many different handle decompositions. The
ones we have exhibited so far are minimal in that they have the minimal number
of handles of each index necessary for a handle decomposition of each surface. We
illustrate by a picture another handle decomposition of the sphere in Figure 2.5.
This is formed with one 0-handle, one 1-handle (starting off like a torus with
an annulus), and then two 2-handles. The role of the first 2-handle is to close
a hole in the annulus to get a disk. Thus the effect of the first three handles is
to give a complicated handle decomposition of a disk. The remaining 2-handle
then completes the disk to a sphere, as in the standard handle decomposition of
the sphere.

Our next two model surfaces are best described in terms of handle decomposi-
tions. Neither of them can be embedded in R3, although one of their fundamental
building blocks—the Möbius band—can be. The first is the projective plane,
which we denote by P . The projective plane has a handle decomposition with
one 0-handle, one 1-handle, and one 2-handle. The 0-handle may be regarded
as [−1, 0] × D1 and the 1-handle as [0, 1] × D1. The 1-handle is attached to the
0-handle by identifying the two copies of 0× D1 via the identity and identifying
(1, y) with (−1,−y). The space obtained so far is the Möbius band, which we
had looked at previously in Section 1.7 as an example of a quotient space. It
can be formed by taking a rectangular strip of paper and joining the ends after
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a b b a

[−1, 0] × D1 [0, 1] × D1

Figure 2.6. Handle decomposition of Möbius band.

making a half twist (see Figure 2.6). Its boundary is one circle, which comes
from [−1, 1] × {±1} by identifying (1,−1) with (−1, 1) and identifying (1, 1)
with (−1,−1). This is homeomorphic to a circle since it is the union of two
intervals with their respective end points identified.

The Möbius band has the interesting property that it is “one-sided”. You
can run your finger around a path on the Möbius band to get from one “side”
to the other without crossing the edge. Practical application of this property
is made in conveyor belts so that they wear out evenly. Another description of
this property, which is called nonorientability, is given by establishing near a
point a direction of counterclockwise rotation as being a positive orientation at
that point. Then there is a path in the Möbius band so that if we carry this
orientation consistently along the path, we will return to the initial point with
the opposite orientation (clockwise) from which we started. See Figure 2.7 for an
illustration of this in the quotient space model. It is also useful to make a paper
model of the Möbius band and confirm this property in the paper model.

It is worthwhile to experiment with a model of the Möbius band to gain some
intuitive feeling for the property of nonorientability. You should also construct a
model of the cylinder by taking a rectangular strip and joining the ends without
making a twist. For each model, try cutting it lengthwise down the middle and
also lengthwise one-third of the way across. Try to predict what will happen
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Figure 2.8. Decomposition of P .

in each case before you cut it. You may find more experiments and further
manifestations of nonorientability discussed in [2]. We will study orientability
more thoroughly in Section 2.4. It plays a key role in the classification of surfaces.
We will give a more advanced treatment of orientability from the viewpoint of
homology in Chapter 6.

Returning to the projective plane, note that the boundary of the Möbius band
is a circle. The projective plane is formed from the Möbius band by attaching a
2-handle D2 × D0 = D2 to the Möbius band by identifying the boundary circle
S1 with the boundary circle of the Möbius band. The projective plane may not
be embedded as a subspace of R3 so that it is difficult to draw a picture of it as
in the case of the 2-sphere and the torus.

Here is a way to see how to embed P in R4. Consider the boundary circle
C of the Möbius band. We can find an embedded disk in R3 with boundary
C as follows—first draw lines L1, L2 connecting points of C, breaking C into
C1, C2, C3, C4 as indicated in Figure 2.8.
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Figure 2.9. Forming a disk from three disks.

Now C1 ∪L1 bounds a disk D1 and C2 ∪L2 bounds a disk D2 that lies above
the paper (like the upper hemisphere of the 2-sphere bounding the equator).
Then L1 ∪ C3 ∪ L2 ∪ C4 bounds a twisted rectangular strip R. To see that
D1, D2, and L fit together to give a homeomorphic copy of the disk, redraw D1

and D2 as rectangles and put the three pieces together in the plane. What we
get is three rectangles laid end on end, which is homeomorphic to a rectangle
and hence to a disk (see Figure 2.9).

Unfortunately, this disk D2 intersects the Möbius band within the strip R.
By perturbing it, we can remove this intersection in R4. Let f : D2 → R3, g :
M → R3 be our embeddings into R3 which agree on the boundary circles. Now
define f̄ : D2 → R4, ḡ : M → R4 by f̄(x) = (f(x), 1 − |x|), ḡ(x) = (g(x), 0).
Here the first entry corresponds to the first three coordinates of R4, and the
last entry corresponds to the fourth coordinate. Now f̄ and ḡ are embeddings
into R4, which intersect only along the common boundary circle, and hence fit
together to give an embedding of P into R4. We are using the extra dimension to
remove the intersection between the original images of f and g. This is analogous
to removing the intersection of a figure 8 in the plane by lifting one piece of the
8 slightly into R3 near the intersection point.

There are useful descriptions of P besides being the union of the Möbius
band and a disk along their boundary circles. For instance, it may be described
as a quotient space of the 2-sphere S2 by identifying x = (x1, x2, x3) with
−x = (−x1,−x2,−x3);−x is called the antipodal point of x. There is a nat-
ural identification map f : S2 → P and we give P the quotient topology using
this map. This description of P is responsible for the name projective plane since
each pair of points {x,−x} which are identified corresponds to a unique line
through the origin. Thus P can be thought of the space of lines through the ori-
gin in R3 with the appropriate topology. Another description of P as a quotient
space can be derived from the above by noting that only the upper hemisphere
is necessary in finding a surjective map onto P . Using the fact that the upper
hemisphere is homeomorphic to the disk, P may be described as the quotient
space of the disk with opposite points (x1, x2) and (−x1,−x2) on the boundary
circle identified. From this description we can see (as illustrated in Figure 2.10)
why P is the union of the Möbius band and the disk. In this figure, B is easily
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Figure 2.10. Two views of the projective plane.
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Figure 2.11. Two homeomorphic half disks.

identified to the Möbius band and D1 and D2 (with the indicated identifications)
together form a disk. Note that we are using the idea of Exercise 2.2.1.

Exercise 2.2.1. Construct a homeomorphism between the lower half of the disk
and the upper half of the disk sending the boundary as indicated in Figure 2.11.
(Hint: Construct homeomorphisms between each half disk and the whole disk.)

Exercise 2.2.2.

(a) Use the quotient map f : S2 → P to show that P is a compact, connected
surface.

(b) Use the handle decomposition description of P to show that P is a
compact connected surface.

Our final model surface is the Klein bottle, which we denote by K. It is the
union of two Möbius bands joined along their boundary circles. We can think of
it as being obtained from two projective planes by removing a disk from each
and gluing along the boundaries of each disk. We will return to this idea in a
more general context of forming connected sums. We can picture K and T at
the same time by taking a rectangle and making certain identifications on the
boundary. Each starts with the space D1 × D1. For the torus and Klein bottle,
we first identify D1 × {−1} with D1 × {1} by identifying (x,−1) with (x, 1).
This forms a cylinder. For the torus we then identify {1}×D1 with {1}×D1 by
identifying (−1, y) with (1, y). For the Klein bottle, we identify {−1} × D1 with
{1} × D1 by identifying (−1, y) with (1,−y). See Figure 2.12 for an illustration.
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Figure 2.12. Constructing the torus and Klein bottle.

We indicate how the Klein bottle is the union of two Möbius bands glued
along their boundary circles in Figure 2.13.

Exercise 2.2.3. Give a description of K as a quotient space of R2 analogous to
our description of T as a quotient space of R2 in Chapter 1. Use this description
to show that K is a surface.

Exercise 2.2.4. Show that K is compact and connected.

We describe two different handle decompositions of K. Each has one 0-handle,
two 1-handles, and one 2-handle. They differ in that in one we have a cylinder
after the first 1-handle is attached, and in the other we have a Möbius band after
the first 1-handle is attached. We will illustrate both decompositions in terms of
our picture of the Klein bottle as a rectangle with identifications.

We have illustrated in Figure 2.14 the decomposition of K as h0 ∪ h1
1 ∪

h1
2 ∪h2. But we could have added the two 1-handles in the other order and got a

decomposition of K as h0 ∪ h1
2 ∪ h1

1 ∪ h2. Note that in the second decomposition
h0 ∪h1

2 is a cylinder and the attaching map for h1
1 identifies {±1}×D1 to part of
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Figure 2.13. The Klein bottle is a union of two Möbius bands.
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Figure 2.14. A handle decomposition of the Klein bottle.

∂(S1 × D1) = S1 × {±1} by identifying {−1} × D1 to an interval in D1 × {−1}
but identifying {1}×D1 to a similar interval in an orientation-reversing fashion.
By this we mean that if f : D1 → S1 is the embedding of [−1, 1] into S1, then
{−1}×D1 → S1×{−1} is given by (−1, x) → (f(x),−1) and {1}×D1 → S1×{1}
is given by (1, x) → (f(−x), 1).
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The four surfaces—S2 (hereafter just called S), T, P,K—are our model sur-
faces. We now describe the model surfaces with boundary. The first will be the
disk D2. Note that the exterior of the disk in the plane is homeomorphic via
(x, y) → (x/(x2 + y2), y/(x2 + y2)) to D2\{(0, 0)}. Hence the exterior of the
disk is also a manifold with boundary. By a disk in a surface we mean the image
f(D2) of the standard disk D2 ⊂ R2 under a homeomorphism f̃ from R2 onto an
open set in the surface, where f̃ |D2 = f . Since the complement of the interior
of the disk in R2 is a surface with boundary, it follows that the complement
of the interior of a disk in a surface is a surface with boundary. The question
then arises whether two such complements M\intD1 and M\intD2 are homeo-
morphic if D1, D2 are disks in M . This is true when M is connected because of
the following important result, which is called the ‘disk lemma’. The lemma is
a basic one in PL or differential topology for manifolds of any dimension and is
based on the idea of a regular neighborhood or tubular neighborhood of a point.
Rourke and Sanderson [31] and Hirsch [15] are good sources for treatments from
these viewpoints. We will give a more refined version as well as relate it to the
Schönflies theorem and the concept of orientation in Section 2.4 and the sup-
plementary exercises at the end of the chapter. The general topological case in
higher dimensions is closely connected to recognizing an annular region enclosed
between one embedded disk and a larger one, which was a difficult question that
was only recently solved by Kirby [16] in dimensions other than 4 and then more
recently by Quinn [28] in dimension 4.

Lemma 2.2.1 (Disk lemma, first version). Let D1, D2 be disks in the
interior of a connected surface (with boundary) M . Then there is a homeomorph-
ism h : M → M (fixed on ∂M) with h(D1) = D2.

Exercise 2.2.5. Show by induction that if D1, . . . , Dk are k disjoint disks in
the interior of a connected surface M , and D′

1, . . . , D
′
k is another collection of k

disjoint disks in the interior of M , then there is a homeomorphism h : M → M
which is the identity on ∂M sending Di to D′

i.

We define M(p) to be the surface obtained from M by removing p disjoint
disks from int M when M is connected. By Exercise 2.2.5 it is well defined
up to homeomorphism independent of the particular disks removed. Our model
surfaces with boundary will be S(p), T(p), P(p), and K(p). Note that S(1) is a
disk and P(1) is a Möbius band.

2.3 Isotopy and attaching handles

In this section we will develop some technical lemmas to understand how the
attaching of 1- and 2-handles depends on the particular attaching homeomorph-
ism used. The important thing for the reader to understand from this section
is the statements of the lemmas and how they reduce the classification problem
to a problem of understanding certain models. The proofs of the lemmas are of
less importance, and it may be useful to omit them on the first reading of the
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section. They are largely an application of ideas of collars, quotient spaces, and
properties of self-homeomorphisms of an interval to itself.

Suppose H is a handlebody; we will show that the boundary of H is a disjoint
union of a number of circles and that there is a (closed) neighborhood of ∂H of
the form ∂H × I. Such a neighborhood is called a collar of the boundary, and we
will be using the existence of such a collar throughout the section. Any compact
manifold with boundary possesses a collar on the boundary. Arguments are given
by Rourke and Sanderson [31] and Hirsch [15] in the PL and differentiable cases
and by Hatcher [13] for topological manifolds. We consider how H ∪f h1 depends
on the particular embedding of f : {±1} × D1 → ∂H. In understanding this, we
will use the concept of an isotopy.

Definition 2.3.1. We say homeomorphisms g0, g1 : B → B are isotopic if
there is a homeomorphism G : B × I → B × I with G(b, t) = (Gt(b), t) and
G0 = g0, G1 = g1. G is called an isotopy between g0 and g1. We say embeddings
f0, f1 : A → B are ambient isotopic if there is an isotopy G : B × I → B × I so
that G0 = id and G1f0 = f1.

We will be dealing with the notion of ambient isotopy of embeddings of D1

in S1 in this section and of embeddings of D2 in surfaces in the next section.
Isotopy of homeomorphisms is an equivalence relation, with transitivity the only
difficult property to verify. If Ft gives an isotopy between f and g, and Gt gives
an isotopy between g and h, then

Ht =

{
F2t if 0 ≤ t ≤ 1

2 ,

G2t−1 if 1
2 ≤ t ≤ 1

gives an isotopy between f and h. Note that the argument is the same one
that we used to show that path connectivity is transitive. An isotopy is a path of
homeomorphisms connecting two homeomorphisms. In terms of ambient isotopy,
there is also an argument in terms of composition. If F,G are ambient isotopies
with F0 = id, F1f = g, and G0 = id, G1g = h, then if H = GF , we have
H0 = id, H1f = G1F1f = G1g = h.

We first review how the circle arises from the interval and from the reals as
a quotient space. Let p : R → S1 be the map given by p(t) = (cos 2πt, sin 2πt).
Then p is a quotient map and we can use it to identify S1 with R/t ∼ t+n, n ∈ Z.
Any closed interval of length <1 will be mapped homeomorphically onto its
image, which will be called an arc in the circle. A homeomorphism f : R → R is
called periodic of period 1 if either f(x+ 1) = f(x) + 1 (for f order preserving),
or f(x + 1) = f(x) − 1 (for f order reversing). Such a homeomorphism f will
then induce a homeomorphism f̄ by the quotient construction: f̄([x]) = [f(x)].
It is also the case that any homeomorphism of S1 arises as f̄ for a periodic
homeomorphism f .

Since the homeomorphism f is periodic, it is actually determined by its
values on any interval of length 1. To discuss this, we will assume that f is
order preserving for simplicity, but the argument is analogous in the order-
reversing case. Choosing an interval [a, a+1], f order-preserving periodic implies



2.3. Isotopy and attaching handles 79

that f(a + 1) = f(a) + 1; thus f gives a homeomorphism by restriction f ′ =
f |[a, a+1] : [a, a+1] → [b, b+1], where b = f(a). Conversely, whenever we have
an order-preserving homeomorphism f ′ : [a, a + 1] → [b, b + 1], it determines
a periodic homeomorphism f : R → R via noting that any x ∈ R can be
expressed as x = t + n, n ∈ Z, t ∈ [a, a + 1) and t unique. Then f is defined by
f(x) = f(t)+n. We leave it as an exercise to check that f is continuous and gives
a periodic homeomorphism. Thus order-preserving periodic homeomorphisms of
R may be identified with order-preserving homeomorphisms f ′ : [a, a+1] → [b, b+
1]. In turn, these are identified with orientation-preserving homeomorphisms of
the circle. A related fact is that the restriction of p to [a, a + 1] or [b, b + 1]
determines a quotient map to the circle, and so f̄ can also be regarded as coming
from f ′ via this quotient construction. We indicate the relationship of these
maps by the following commutative diagram, where ia, ib denote the natural
inclusions.

[a, a + 1]
f ′

��

ia

�����������

p

��
��

��
��

��
��

��
��

��
[b, b + 1]

ib

�����������

p

����
��

��
��

��
��

��
��

R

f
��

p

��

R

p

��

S1
f̄=f̄ ′

�� S1

Exercise 2.3.1. Show that the map f : R → R defined above using f ′ : [a, a +
1] → [b, b + 1] is a periodic homeomorphism.

Because of these relationships, we may deal with maps from the circle to
itself by using periodic maps of R or maps from the interval [a, a+1] to [b, b+1].
This also applies to self-maps of S1 × I in a similar manner.

Lemma 2.3.1. Let I1, I2 (resp., I ′
1, I

′
2) be disjoint arcs in the circle. Then there

is a homeomorphism of the circle sending I1 to I ′
1 and I2 to I ′

2. Moreover, this
homeomorphism may be chosen to be isotopic to the identity.

Proof. Note first that any two arcs I, I ′ in the circle are homeomorphic.
Moreover, there is “standard” homeomorphism between them. For consider
p : R → S1, p(t) = (cos 2πt, sin 2πt). Select intervals J, J ′ ⊂ R so that
p(J) = I, p(J ′) = I ′. Now any two intervals are homeomorphic via the
unique order-preserving affine linear homeomorphism from [a, b] to [a′, b′] sending
ta+(1−t)b to ta′+(1−t)b′, 0 ≤ t ≤ 1. This induces (via p) a “standard” homeo-
morphism from I to I ′. We leave it as an exercise to show that this “standard”
homeomorphism does not depend on the choice of J, J ′.

Regarding S1 as the quotient space of R, we can find intervals J1, J2, J
′
1, J

′
2

which p sends to I1, I2, I
′
1, I

′
2 homeomorphically. Moreover, these can be chosen

so that v1 < v2 < v3 < v4 < v1 + 1, v′
1 < v′

2 < v′
3 < v′

4 < v′
1 + 1, |v1 − v′

1| < 1,
and J1 = [v1, v2], J2 = [v3, v4], J

′
1 = [v′

1, v
′
2], J

′
2 = [v′

3, v
′
4]. We then define a map

f : [v1, v1+1] → [v′
1, v

′
i+1] by requiring that f(vi) = v′

i and f(v1+1) = v′
1+1, as
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Figure 2.15. Isotoping embeddings.

well as making the map affine linear on each subinterval [vi, vi+1] and [v4, v1+1].
This induces the homeomorphism f̄ : S1 → S1 which sends Ij to I ′

j .
To see that it is isotopic to the identity, we construct a map using intervals

which induces the isotopy. The map Ft giving the isotopy will be defined at each
level t by a map like the one above and will be determined by the images of the
vertices. Its graph for a fixed vertex vj and varying t is just the straight line
segment joining vj and v′

j . We show in Figure 2.15 the images of these vertices
as t varies. The subintervals between vertices are then mapped by affine linear
maps. These maps then induce the required isotopy of homeomorphisms of the
circle.

Exercise 2.3.2. Show that the “standard” homeomorphism constructed above
does not depend on the choice of J, J ′.

Note that Lemma 2.3.1 also allows us to move a single interval via an isotopy.
We will use it in both situations. Lemma 2.3.1 is used in conjunction with the
following lemma to say that we may specify without loss of generality the image
arcs without changing the homeomorphism type of H ∪f h1.

Lemma 2.3.2. Suppose H ∪f h1 and H ∪g h1 are handlebodies, and there is a
neighborhood of ∂H in H of the form ∂H ×I where ∂H corresponds to ∂H ×{0}
and an isotopy F : ∂H × I → ∂H × I with F0f = g and F1 = id, the identity.
Then there is a homeomorphism from H ∪f h1 to H ∪g h1 sending h1 to h1

by identification (via the “identity”). The homeomorphism is also the identity
outside the collar of the boundary.

Proof. Define the homeomorphism as follows. First send h1 to h1 via the iden-
tity. Identifying the neighborhood of ∂H with ∂H × I, send ∂H × I → ∂H × I
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Figure 2.16. Using an isotopy on the collar.

via F , and send H\(∂H × I) to H\(∂H × I) via the identity. These maps fit
together to give a homeomorphism.

Figure 2.16 gives an illustration of the above proof.
The way to use this lemma with the preceding one is to define g by F0f ,

where F0(I1) = I ′
1, F0(I2) = I ′

2. This allows us to shift our image arcs of the
attaching homeomorphism up to isotopy without changing the homeomorphism
type of the resulting handlebody.

We now study the dependence of H ∪f h1 on f , after fixing the image set
f({±1} × D1). Because of the argument above, we will assume that f1({−1} ×
D1) = f2({−1}×D1) and f1({1}×D1) = f2({1}×D1) and then compare H∪f1h

1

and H∪f2 h
1. Consider f−1

2 f1; this is a homeomorphism from {±1}×D1 to itself,
sending each copy of D1 to itself. We claim that the only important fact we need
to know to compare the homeomorphism type of H ∪fi

h1 is whether both these
maps preserve order (or reverse it) or whether one preserves order and the other
reverses it. The claim depends on the following lemma, in which we are using I
instead of D1 because we also want to apply it to homeomorphisms of the circle.

Lemma 2.3.3.

(a) Any order-preserving homeomorphism f : I → I is isotopic to the
identity.

(b) Any order-reversing homeomorphism f : I → I is isotopic to r′(t) = 1−t.

Proof. The idea of the proof of (a) is to graph f and the identity and connect
f(s) and s by a straight line. We use the formula G(s, t) = Gt(s) = (1−t)f(s)+ts.
Then Gt(−1) = −1, Gt(1) = 1, G0(s) = f(s), G1(s) = s, and Gt is a homeo-
morphism for each t. We confirm the last fact by noting that if 0 ≤ s1 < s2 ≤ 1,
then

Gt(s1) = (1 − t)f(s1) + t(s1) < (1 − t)f(s2) + ts2 = Gt(s2).

We are using here that 0 ≤ (1− t), t ≤ 1 and both 1− t and t cannot be 0 since
they add to 1. We leave (b) as an exercise.
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Exercise 2.3.3. Deduce part (b) from (a) by composing an order-reversing f
with r′ to get an orientation preserving g = fr′ to which to apply (a).

Here is the version for D1.

Lemma 2.3.4.

(a) Any order-preserving homeomorphism g : D1 → D1 is isotopic to the
identity.

(b) Any orientation-reversing homeomorphism g : D1 → D1 is isotopic to
the reflection r(t) = −t.

Exercise 2.3.4. Use the homeomorphism h : D1 → I, h(s) = 1
2 (s + 1) and

Lemma 2.3.3 to prove Lemma 2.3.4.

We define an embedding of D1 into S1 to be orientation preserving (resp.,
reversing) if it is the composition of an order-preserving (reversing) embedding
of D1 into R and the map p : R → S1, p(t) = (cos 2πt, sin 2πt). We say that
a homeomorphism from S1 to S1 is orientation preserving if it comes from a
periodic homeomorphism of R which is order preserving. The composition of an
orientation-preserving embedding and an orientation-preserving homeomorph-
ism of S1 will be orientation preserving. All isotopies of S1 arise as periodic
isotopies of R. This means that each Ft must be orientation preserving when
F0 = id. We use this for the next proposition.

Proposition 2.3.5.

(a) Suppose f1, f2 : D1 → S1 are orientation-preserving embeddings. Then
they are ambient isotopic.

(b) Suppose f1, f2 : D1 → S1 are orientation-reversing embeddings. Then
they are ambient isotopic.

(c) Suppose f1, f2 : D1 → S1 are embeddings so that f1 preserves orientation
and f2 reverses orientation. Then they are not ambient isotopic.

Proof.

(a) Let I1 = f1(D
1), I2 = f2(D

1). By Lemma 2.3.1, there is an ambient
isotopy Ft so that F0 = id and F1(I1) = I2. By construction, Ft arises
from a periodic order-preserving homeomorphism of R, so will preserve
orientation for all t. Let g1 = F1f1—this is orientation preserving. Hence
g−1
1 f2 : D1 → D1 is order preserving. By Lemma 2.3.4 there is an ambient
isotopy G1 : D1 × I → D1 × I so that G0(x) = x,G1 = g−1

1 f2. Define
H : I2 × I → I2 × I by Ht = g1Gtg

−1
1 . Then H0 = id, H1 = g1G1g

−1
1 =

g1g
−1
1 f2g

−1
1 = f2g

−1
1 . Then H1g1 = f2g

−1
1 g1 = f2. Now the isotopy H is

the identity on {g1(−1), g1(1)} since Gt is the identity on the end points.
Hence we can extend Ht to all of S1 by defining it to be the identity
on S1\I2. Finally, the composition HtFt will give an ambient isotopy
connecting f1 and f2.
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(b) The embeddings f1r, f2r are orientation preserving. By (a), there is an
isotopy Ft : S

1 → S1 with F0 = id, F1f1r = f2r. Composing with r gives

F1f1 = F1f1(rr) = (F1f1r)r = (f2r)r = f2(rr) = f2.

(c) By the comment above, isotopies of S1 are orientation preserving at
each level Ft so ambient isotopic embeddings are either both orientation
preserving or both orientation reversing.

There is a result for homeomorphisms of S1 which is analogous to
Lemma 2.3.3 and follows from it.

Lemma 2.3.6.

(a) Any orientation-preserving homeomorphism f : S1 → S1 sending 1 to
1 is isotopic to the identity, where 1 is sent to 1 at each stage of the
isotopy.

(b) Any orientation-preserving homeomorphism f : S1 → S1 is isotopic to
the identity.

(c) Any orientation-reversing homeomorphism f : S1 → S1 is isotopic to
r(x, y) = (x,−y).

Proof.

(a) The orientation-preserving homeomorphism f is induced from an order-
preserving homeomorphism f ′ : I → I, which by Lemma 2.3.3 is isotopic
to the identity via an isotopy Ft. Then Ft induces an isotopy F̄t : S

1 → S1

between f and the identity.

(b) A rotation Rθ(cosφ, sinφ) = (cos(φ + θ), sin(φ + θ)) is isotopic to the
identity via Ft = Rtθ. First isotope f to a map g = Rθf which sends 1 to
1. Then apply (a).

(c) This is left as an exercise.

Exercise 2.3.5. Prove part (c).

Now consider what happens when we attach a 1-handle to H. The boundary
of H consists of a finite number of circles, each of which has a collar neighbor-
hood. Since D1 is connected, it will be embedded into a single boundary circle.
When we form H ∪f D1 × D1, then the images f({−1} × D1) ∪ f({1} × D1)
will lie in either one or two boundary circles. We identify each of these bound-
ary circles with S1 and the collar with S1 × I. Suppose g is another attaching
map which has f({−1} ×D1) and g({−1} ×D1) lie in the same boundary circle
and f({1} × D1) and g({−1} × D1) lie in the same boundary circle. Denote
by f(−1), f(1) the restrictions of f to the two attaching intervals, with similar
notation for g. Then Lemma 2.3.1 says that there is an ambient isotopy F of
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the relevant circles so that F0 = id and F1f(−1) = f ′
(−1), F1f(1) = f ′

(1), where

f ′
(−1)({−1} × D1) = g(−1)({−1} × D1), f ′

(1)({1} × D1) = g(1)({1} × D1). Then

if (f ′
(−1))

−1g(−1) is order preserving, then there is an ambient isotopy between

f ′
(−1) and g(−1). Composing these ambient isotopies will give an ambient isotopy

between f(−1) and g(−1). On the other hand, if (f ′
(−1))

−1g(−1) is order reversing,

then there will be no ambient isotopy between f ′
(−1) and g(−1), and hence no

ambient isotopy between f(−1) and g(−1). However, in this case, we have the
map (f ′

(−1))
−1g(−1)r order preserving, where r(x, y) = (x,−y) and so we get

f(−1) is ambient isotopic to g(−1)r. Similarly, we either have f(1) ambient iso-
topic to g(1) or to g(1)r. Note that when f(−1), f(1) both attach the handle to
the same boundary circle, the proof of Lemma 2.3.5 will allow us to construct
an ambient isotopy of this circle to achieve these results for both embeddings
simultaneously.

Thus there are four possibilities:

(1) f(−1) is ambient isotopic to g(−1) and f(1) is ambient isotopic to g(1);

(2) f(−1) is ambient isotopic to g(−1)r and f(1) is ambient isotopic to g(1)r;

(3) f(−1) is ambient isotopic to g(−1) and f(1) is ambient isotopic to g(1)r;

(4) f(−1) is ambient isotopic to g(−1)r and f(1) is ambient isotopic to g(1).

In case (1), Lemma 2.3.2 says that there is a homeomorphism between H ∪f

h1 and H ∪g h1: this homeomorphism will be the standard identification on
the handle h1 and the identity on the complement of a collar on the boundary
circle(s) in H, and will use the isotopy on the collar(s). We get similar results
in the other three cases. However, there is a homeomorphism between H ∪g h1

and H ∪gr h1 which is defined by sending H to itself by the identity and sending
h1 = D1×D1 to itself via r. Thus in the first two cases, we get a homeomorphism
between H∪f h1 and H∪gh

1. In the third case, we get a homeomorphism between
H ∪f h1 and H ∪g′ h1 where g′

(−1) = g(−1) and g′
(1) = g(1)r. Case (4) gives the

same space as in case (3) since H ∪g′ h1 ≃ H ∪g′r h1 using the homeomorphism
r on h1. Thus there are at most two different ways to attach a handle up to
homeomorphism. Given one way f , the other way which may be different up to
homeomorphism is to use the same attaching map on one interval and to compose
with r on the other interval. When both intervals are attached to the same circle,
these will be different, as we will see below. When they are attached to two
different circles, they may or may not be different, depending on connectivity
and orientability conditions, which are discussed in the next section.

We next look at how the boundary changes when we attach h1. Because of
the discussion above, we can specify the attaching map on one interval, and
the attaching map up to possible composition with a reflection on the other
subinterval. The only place the boundary will change is for the circles where
the handle is attached. The other circles and their collars will remain after the
handle is attached. First consider the case where the handles are attached to a
single circle. We draw a collar neighborhood and look at two standard ways of
attaching the handle. We can identify the two possibilities in Figure 2.17. In the
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Collar f h1 Collar g h1

Figure 2.17. Attaching a 1-handle to one boundary circle.

Collar h1 Collar h1

Figure 2.18. New boundary neighborhoods.

one on the left, the new boundary will have two components in place of one. For
each component it is easy to find a collar on the boundary that will use part of
the old collar which has been adjusted near where the handle is attached to fit
together with an adjusted collar on the handle. For the case on the right, the new
boundary will still consist of one boundary circle, and there is a Möbius band
embedded in the surface using a piece of the collar and the handle h1. Again, we
can piece together a collar using the old collar and a collar on the handle, where
we adjust each near where the two pieces meet. In each case, the new boundary is
formed from the old by removing the attaching intervals and putting in the new
intervals D1 × {±1}. We picture the new collars in Figure 2.18. Since these two
surfaces have different numbers of boundary circles, they are not homeomorphic.

Exercise 2.3.6. Find the Möbius band that is referred to above on the right
surface in Figure 2.17.

Now consider the case where the handle is attached to two different boundary
circles, each of which has a collar. All of the other boundary circles and their
collars will remain after this handle is attached. We can again reduce to two
cases, which are pictured in Figure 2.19. By examining the two diagrams, we see
that after the handle is attached, the two boundary circles have been replaced
by a single boundary circle, and we can again find a collar of this new boundary
piece which comes from modifying the old collars and the collar on the handle.
We again remove the attaching intervals from the boundary and add in D1×{±1}
to the boundary.
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g(−1)

f(−1)

g(1)

f(1)

h1

h1

Figure 2.19. Attaching a 1-handle to two boundary circles.

Exercise 2.3.7. Show that the result from attaching a 1-handle to the same
boundary circle is never homeomorphic to what you get when it is attached to
two different boundary circles. (Hint: Consider the number of boundary circles
in each case.)

We summarize the main results in this section. To understand how attaching
a 1-handle changes a handlebody, we only need a limited amount of information.
First, we need to know the components of the boundary where the handle is
attached. Within any individual component, we may specify completely what
the image arcs are without changing the homeomorphism type of H ∪ h1. Once
the image arcs are specified, then the result of attaching the 1-handle is described
via one of our standard models. Thus to study the changes in the handlebody
induced by adding a 1-handle, it suffices to study what happens in each of our
model situations.

Theorem 2.3.7. Let H be a handlebody with a handle decomposition with
0-handles and 1-handles.

(a) Then ∂H is homeomorphic to the disjoint union of a finite number of
circles.

(b) There is a neighborhood N(∂H) of ∂H which is homeomorphic to
∂H × I, where ∂H × {0} ⊂ ∂H × I is sent to ∂H ⊂ H via the standard
identification (x, 0) → x.

Proof. We outline the argument, leaving the details as Exercise 2.3.8. For
0-handles, the two claims are easily verified. Thus we prove the result by
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induction on the number of 1-handles, seeing that it holds as each 1-handle
is attached. Let H = H1 ∪ h1. We assume by induction hypothesis that (a) and
(b) hold for H1. Hence ∂H1 is a disjoint union of a number of circles and there
is a neighborhood of ∂H1 of the form ∂H1 × I. Since we have a collar on the
boundary where the 1-handle is attached, our earlier discussion applies. To see
what the new boundary will be, we may choose our attaching maps to be one of
the two standard ones. Only one or two boundary circles and its neighborhood
will be affected by attaching the 1-handle. Thus it suffices to show that the new
boundary and neighborhood as claimed in these two cases. Figure 2.18 can be
used to show that (a) and (b) still hold after the 1-handle is attached when
they are attached to the same boundary component. We leave as an exercise the
case where the two arcs are attached to different boundary components, where
Figure 2.19 may be used to find the required neighborhood.

Exercise 2.3.8. Fill in the details in the proof above.

We next consider what happens when we attach a 2-handle h2 to form H =
H1 ∪f h2. Here f : S1 → ∂H1 is an embedding into the boundary, which consists
of a finite number of circles, each of which has a collar. Such an embedding
has to be sent into a single circle. Its image is connected and compact. If it
missed any point, it would be a closed subarc, which is not homeomorphic to the
circle. Thus the image must be the whole circle. If we identify the two circles,
then the map would have to be isotopic to either the identity or a reflection
by Lemma 2.3.6. But these two give the same result up to homeomorphism,
using a homeomorphism which is the identity on H1 and r on h2 = D2. The
boundary circle to which the handle is attached is removed from the boundary
by this operation. This can be seen by identifying the collar neighborhood to
the annular region S1 × [1, 2] between circles of radius 1 and 2 in the plane and
then attaching the handle via the identity to fill in the unit disk. Thus we get
the following proposition.

Proposition 2.3.8. If f, g : S1 → ∂H1 are attaching maps for a 2-handle which
map to the same boundary circle, then H1 ∪f h2 ≃ H1 ∪g h2. This new surface
will have one fewer boundary circle than H1.

This last proposition says that if we have two handlebodies that are homeo-
morphic, then if we attach corresponding 2-handles to “fill in” these boundary
circles, the resulting surfaces are homeomorphic. There is an alternate proof
which does not use the result on isotopic homeomorphisms of the circle. Instead
it uses the fact that any homeomorphism of the circle extends to a homeomorph-
ism of the disk by coning; that is, given h : S1 → S1, we define H : D2 → D2 by
H(0) = 0 and H(rx) = rh(x), where |x| = 1 and 0 ≤ r ≤ 1. The homeomorph-
ism between H1 ∪f h2 and H1 ∪g h2 is the identity on H1 and the extension of
the homeomorphism g−1f on D2 = h2. If there are multiple 2-handles, we can
use this on each one. In the other direction, the disk lemma and the exercise
which follows it says that if two surfaces are homeomorphic, then the surfaces
obtained by removing k disks from each of them are also homeomorphic. For it
provides a homeomorphism of a surface with itself which sends any connected
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k disks in the interior to any other collection. Because of these results, we will
largely focus our attention on the 1-handles. However, embedded 2-disks in a
surface do play a key role in the concept of orientation, which we will study in
the next section.

2.4 Orientation

We now discuss the concept of orientability of a surface. Orientability is a prop-
erty that is frequently easy to grasp intuitively but is relatively difficult to deal
with precisely. A more advanced means of handling it is to re-express it in terms
of homology conditions and note that the homology computations of orientability
agree with one’s intuition in the usual examples. In Chapter 6 we will pursue this
approach through homology. Here we will deal with it formally through orient-
ing handle decompositions but will discuss other definitions such as embedded
Möbius bands and isotopy classes of embedded disks.

Before giving a more formal treatment, let us discuss some of the more
common intuitive definitions. The models to think of in each case are the cylin-
der (orientable) and the Möbius band (nonorientable). A surface (possibly with
boundary) embedded in R3 is said to be orientable if it has two sides, and nonori-
entable if it has one side. Locally, of course, the surface looks like a plane which
cuts space into two halves. Imagine a point on the surface and a vector pointing
to one side of the surface. To say that the surface has one side means that we
can find a path in M so that if we translate our vector consistently along this
path then it will be pointing to the other side of the surface when we return to
the original point. See Figure 2.20 for an illustration.

Although this idea may seem fairly understandable, it has many pitfalls. One
is that we are implicitly assuming that there is a “normal direction” to the surface
towards which our vector can point. This problem can be handled by restricting
our attention to differentiable surfaces, where the idea of a normal direction is
readily defined. A more serious problem is that we are assuming our surface lies

1

2

34

5

6

Figure 2.20. Orientation-reversing path via normal vector.
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in R3: no compact nonorientable surface without boundary is embeddable in
R3. One way out of this problem is to imagine the surface to be locally a plane
and to orient this plane consistently by choosing a basis v1,v2 at each point. If
the surface sits differentiably in some Rn, there is a tangent plane attached to
each point so that projection onto this plane gives a homeomorphism locally. Any
other basis for the plane w1,w2 is related to v1,v2 via

(

w1 w2

)

=
(

v1 v2

)

A,
where A is an invertible 2×2 matrix. To say the basis w1,w2 determines the same
orientation as v1,v2 means that the determinant of A is positive. If det A < 0,
we say w1,w2 determines the opposite orientation. There are two equivalence
classes of orientations at a point, since det A is either positive or negative. It is
common practice to attach a direction of rotation from v1 to v2 at each point
of M to indicate the choice of an equivalence class of a basis. Now we say that
a surface is orientable if we can do this at each point in a consistent manner.
The consistency can be checked locally since M locally looks like R2 and so
each basis can be referred back to R2 to see whether it is always clockwise or
always counterclockwise as a rotation. If M is path connected and there is a
global choice of orientation which is locally consistent, then it will be globally
consistent in terms of translation along a path in the surface always keeping the
chosen orientation. The nonorientability of the Möbius band under this definition
is illustrated in Figure 2.21.

The above definition resolves the problem of the previous definition in that
the surface need not be embedded in R3. However, it does depend on a well-
defined transition between equivalence classes of bases according to different
local descriptions of M as R2. This can be done if we require our manifold to be
differentiable, since a differentiable map from R2 to R2 has a linear approxima-
tion which can be used to compare bases. In fact, this idea is the basis for the
standard definition of orientability for differentiable manifolds in general.

Motivated by the fact that Möbius band epitomizes nonorientablity, we now
give the first of three equivalent definitions of orientability for a surface.

1
2

3

4
5

6

Figure 2.21. Orientation-reversing path via rotation direction.
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Definition 2.4.1 (Möbius band version). We call a surface nonorientable if
it possesses an embedded Möbius band. If it is not nonorientable, then it is said
to be orientable.

This definition is sometimes useful in establishing that a surface is nonori-
entable, but it can be difficult to use in seeing that it is orientable. The next two
exercises, which use the strength of the Jordan curve theorem and invariance of
domain, show that the plane is orientable with this definition.

Exercise 2.4.1. Show that the complement of the center circle in a Möbius
band is connected but that the complement of the center circle in an annulus is
separated.

Exercise 2.4.2. Use the previous exercise to show that a Möbius band cannot be
embedded in the plane. (Hint: Consider the Jordan curve theorem and invariance
of domain.)

In the statement of the disk lemma, we are focusing more on the image
of the embedding rather than the embedding itself. A refined version of the
disk lemma leads to an equivalent definition for orientability that involves the
notion of an ambient isotopy. As motivation, suppose that f : D2 → R2 is
a standard embedding onto a disk B(x0, r1) ⊂ B(0, r). Let R : B(0, r) be a
rotation of the plane by angle θ; that is, R = Rθ|B(0, r). We can extend R to
a homeomorphism of the plane which is the identity outside of B(0, r + 1) by
defining it on the annulus A(r, r + 1) = {x: r ≤ |x| ≤ r + 1} by R|(r + s)S1 =
R(1−s)θ|(r + s)S1, 0 ≤ t ≤ 1. This just rotates these circles by smaller angles
until we send the circle of radius r + 1 to itself by the identity. Then we can
extend R over the complement of B(0, r + 1) by defining it to be the identity.
The homeomorphism R is isotopic to the identity, where the isotopy again just
moves the amount of rotation on each circle back to the angle 0. The formula
for the isotopy is

Rt(x) =











Rtθ(x) |x| ≤ r,

Rt(1−s)θ(x) |x| = r + s, 0 ≤ s ≤ 1,

x |x| ≥ r + 1.

Thus the embedding Rf is ambient isotopic to f via an ambient isotopy which
is the identity outside a ball. In particular, if f = i is the standard inclusion,
then Ri = i(R|D2) is ambient isotopic to the identity.

Now consider the reflection r : D2 → D2, r(x, y) = (x,−y) and the
embedding f = ir. It turns out that ir is not ambient isotopic to i. This
will be shown in Chapter 6 using homology. We give here an argument that
fr = i is not (continuously) differentiably ambient isotopic to f . For suppose
there were a diffeomorphism F : R2 × I → R2 × I, F (x, t) = (Ft(x), t) with
F0 = id, F1i = ir. The derivative map DFt(x) will vary continuously and has
positive determinant 1 for t = 0. Hence it has positive determinant for all t. But
DF1(0)Di(0) = Di(0)Dr(0) and the left-hand side has positive determinant
while the right-hand side has determinant −1, a contradiction. The homology
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argument is based on the same idea, where we replace the derivative computa-
tion with one based on homology. The same type of argument can be used in the
differentiable case for embeddings f : D2 → M to show f is not isotopic to fr if
M is oriented as a differentiable manifold, which will mean that there will be a
continuously varying way to compute the sign of the derivative of an embedding
by comparing with a choice of basis giving the orientation of the tangent space
at each point. This gives a restriction on when embeddings of disks are ambi-
ent isotopic and it turns out to be the only restriction in a connected oriented
differentiable manifold (see [15]).

We contrast this last example to what happens in a Möbius band, where
there is an isotopy which is the identity on the boundary circle and gives
an isotopy between f and fr for a standard embedding f . We regard the
Möbius band B as a quotient of R × 2D1 ⊂ R2 via the equivalence relation
(x, y) ∼ (x + 1,−y). Now consider the region B1 = R × D1/ ∼⊂ B. For
0 ≤ t ≤ 1, the translation Tt : R × D1 → R × D1, Tt(x, y) = (x + t, y) induces
a homeomorphism Ht : B1 → B1. Moreover, H1 induces the same map as the
reflection r(x, y) = (x,−y) does since T1(x, y) = (x + 1, y) ∼ (x,−y). Thus, if
i : D2 → B1 is a standard embedded disk about (0, 0), then this shows that
ir = ri is ambient isotopic to the identity with isotopy Ht. The boundary circle
of B1 comes from [− 1

2 ,
1
2 ] × {±1}/ ∼. This is homeomorphic to a circle S1

using k(s,−1) = (cosπs, sinπs), k(s, 1) = (cos(π/2 + s), sin(π/2 + s)). Using k
to identify the boundary with S1, then Ht becomes the rotation Rπt; that is,
Rπt = kTtk

−1. In particular, H1 is rotation by π. We can extend k to a homeo-
morphism K : B\intB1 → S1 × [1, 2] by defining K(s, t) = (k(s,−1), |t|), t < 0,
and K(s, t) = (k(s, 1), t), t > 0. Then we can extend Rπ over S1 × [1, 2] →
S1 × [1, 2] by rotating R(z, t) = (Rπ(2−t)(z), t). This map is isotopic to the iden-
tity via Ru(z, t) = (Ruπ(2−t)(z), t). By identifying B\intB1 with S1 × [1, 2];
this allows us to extend H1 to a homeomorphism H1 : B → B which is the
identity on the boundary and is induced by reflection r on B1, and extend
Ht to an isotopy Ht : B → B between the identity and H1. Finally, suppose
g : B → M is an embedding into the interior of a surface M . Then we can define
an isotopy in M which is the identity isotopy on M\g(B) and corresponds to our
isotopy above on g(B). For the embedded disk f = gi, we will have f ambient
isotopic to fr.

When we discussed the Schönflies theorem earlier in the case of polygonal
curves in the plane in Section 1.8, our main concern was to see that the com-
pact region that was bounded was homeomorphic to a disk. However, the proof
that was outlined there actually allows us to find an isotopy which moves the
original polygonal curve to a standard triangle, with the isotopy being the iden-
tity outside a larger ball. This holds since various homeomorphisms used in the
argument can be chosen to be locally based near triangles where they are the
identity outside a neighborhood of the triangle and the action within the neigh-
borhood can be shown to be isotopic to the identity. This form generalizes to
the general case of simple closed curves in the plane. For a proof, see [3]. There
are also other versions which hold in all dimensions. Besides [3], good sources
are [22, 5, 6].
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Theorem 2.4.1 (Strong form of the Schönflies theorem). Let C = f(S1)
be a simple closed curve in the plane and R2\C = A ∪ B as given by the Jordan
curve theorem, with A bounded. Then there is an ambient isotopy G : R2 × I →
R2 × I with G0 = id, so that G1(C) = S1 and G1(A) = D2. The ambient isotopy
can be chosen to be the identity outside a large disk.

We now state a strong form of the disk lemma for embeddings of a disk into
the plane and then in a surface.

Theorem 2.4.2 (Strong form of disk lemma in the plane). Let f : D2 →
R2 be an embedded disk in the plane. Then there is an isotopy G : R2×I → R2×I
with G0 = id and G1f = i or G1f = ir. Here i : D2 → R2 is the inclusion map of
the unit disk and r is the reflection r(x, y) = (x,−y). This isotopy is the identity
outside a large disk. Moreover, there is no such isotopy connecting i and ir.

Theorem 2.4.3 (Strong form of the disk lemma). Let f0, f1 : D2 → M
be embedded disks in the connected surface M with boundary ∂M (which may be
empty). Then there is an isotopy Gt : M → M which is the identity on a collar
neighborhood of the boundary and G0 = id, G1f0 = f1 or G1f0 = f1r.

Note that Theorem 2.4.3 is a two-dimensional analogue of Theorem 2.3.5. In
the supplementary exercises, Exercises 2.9.25–2.9.33 derive Theorem 2.4.3 from
Theorem 2.4.1.

There are two isotopy equivalence classes of embeddings of disks in R2 and
they are represented by the inclusion and the reflection followed by the inclu-
sion. Theorem 2.4.3 extends this for disks in a connected surface M . The basic
idea, which is pursued in the supplementary exercises, is that there is an ambi-
ent isotopy so that the image of the disk is contained in a fixed neighborhood
homeomorphic to R2. This allows us to apply Theorem 2.4.2 to compare with a
standard embedding. Thus there will be either one or two ambient isotopy equi-
valence classes of disks in M . The surface will be orientable when there are two
classes, and nonorientable when there is just one class. If the surface contains
a Möbius band, then we have shown that there is an ambient isotopy between
f and fr, so any two embedded disks are ambient isotopic. Moreover, any sur-
face which is nonorientable in terms of possessing an embedded Möbius band
will have any two embedded disks ambient isotopic to each other. This leads to
the following alternate definition of an orientable surface.

Definition 2.4.2 (Embedded disk version). A connected surface M is ori-
entable iff there are exactly two ambient isotopy equivalence classes of embedded
disks in M . If M is nonorientable, then any two embedded disks are ambient
isotopic. When a connected surface M is orientable, an orientation is a choice of
equivalence class of embedded disks in M . An embedded disk in this equivalence
class will be called positively oriented.

If Ht is an isotopy with H0 = id, H1g0 = g1, then h = H1 is a
homeomorphism with hg0 = g1. We state this form of the disk lemma.

Theorem 2.4.4 (Alternate form of disk lemma). Let M be a compact
connected surface, possibly with boundary.
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(a) Suppose M is oriented, and g1, g2 : D2 → M are positively oriented
embedded disks. Then there is a homeomorphism h : M → M with h the
identity on a collar neighborhood of ∂M and hg1 = g2. Moreover, h is
isotopic to the identity.

(b) If M is nonorientable, and g1, g2 : D2 → M are embedded disks, then
there is a homeomorphism h : M → M with h the identity on a collar
neighborhood of ∂M and hg1 = g2. Moreover, h is isotopic to the identity.

Exercise 2.2.5 can be modified to give the following result.

Corollary 2.4.5. Let M be a compact connected surface, possibly with boundary.
Suppose g1, . . . , gk : D2 → M are k disjoint embedded disks in the interior of a
connected surface M , and g′

1, . . . , g
′
k : D2 → M is another collection of k disjoint

embedded disks in the interior of M .

(a) If M is oriented and all gi, g
′
i are positively oriented, then there is

a homeomorphism h : M → M which is the identity on a collar
neighborhood of ∂M with hgi = g′

i. Moreover, h is isotopic to the identity.

(b) If M is nonorientable, then there is a homeomorphism h : M → M which
is the identity on a collar neighborhood of ∂M with h(gi) = g′

i. Moreover,
h is isotopic to the identity.

Now suppose that M is a surface with p boundary circles. If M is oriented, the
choice of orientation on M will determine an orientation on each boundary circle.
When we identify a collar with S1× [1, 2] with the boundary circle corresponding
to S1 × {1}, then if the orientation on the surface corresponds to the usual
positive orientation, then the orientation on the boundary corresponds to the
usual negative orientation on this circle. This allows us to fill in any boundary
circle with the usual positively oriented disk to get an oriented surface N with
one fewer boundary circle and a embedded disk gi for each boundary circle.
Applying Corollary 2.4.5 to N , there is a homeomorphism of N which permutes
these embedded disks. When we remove the interiors of these disks, this leads to
a homeomorphism of M which permutes the boundary components so that the
orientation of the boundary circles is preserved. If M is not orientable, then N
will also be nonorientable and so we can choose the homeomorphism to achieve
any desired result in terms of orientation of the boundary circles. This leads to
a homeomorphism of M which may preserve or reverse the orientation on each
boundary circle independently.

Corollary 2.4.6. Let M be a compact connected surface with boundary,
C1, . . . , Ck a subcollection of boundary circles of M , and σ a permutation of
{1, . . . , k}. Then there is a homeomorphism h : M → M which is the identity on
a collar neighborhood of ∂M\

⋃

Ci so that h(Ci) = Cσ(i). If M is oriented, then
h will preserve the orientation on the boundary circles. If M is nonorientable,
then h can be chosen to preserve or reverse orientation on each boundary circle
Ci independently.

We now return to handle decompositions and give a definition of orientability
that will be easy to use and will play a key role in the classification theorem. We
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give a more direct approach to Corollary 2.4.6 for handlebodies in Section 2.6
and in Exercises 2.9.37 and 2.9.38.

We examine the handle decomposition of the Möbius band in order to motiv-
ate the definition we will give for nonorientability of handlebodies. First, note
that any handle, being homeomorphic to a disk, has a notion of orientation
attached to it. We can think of this as being given a direction of rotation with
counterclockwise being thought of as positive and clockwise as negative (since
(1, 0), (0, 1) is taken as the standard basis of R2 and rotation from (1, 0) to (0, 1) is
counterclockwise). This sense of rotation on the disk induces a preferred orienta-
tion on the boundary circle. This is usually indicated by an arrow. On any subset
of the circle which excludes at least one point, this preferred direction induces
an ordering on an interval in R using p : R → S1, p(x) = (cos 2πx, sin 2πx).
The positive orientation corresponds to the usual ordering of R. Note that the
direction of rotation on D2 is completely determined by the direction of rotation
on the circle. Since this may be expressed locally in terms of ordering, we will
use it for our definition of orientability of handlebodies.

Definition 2.4.3. An orientation for a handle is an orientation of its boundary
circle. By this we mean a consistent ordering for any arc (an arc is a homeo-
morphic image of an interval in the circle). By consistent, we mean that if two
arcs intersect in an arc, the two orderings agree on the arc of intersection.

Note that this definition allows us to decide on a preferred equivalence class
for an embedded disk into the interior of the handle.

We indicate the two possible orientations for our two models of the disk D2

and D1 × D1 by arrows in Figure 2.22. With this in mind, let us look at the
handle decomposition for the Möbius band. As Figure 2.23 indicates, a Möbius
band has a handle decomposition with one 0-handle and one 1-handle. Note
that when the 1-handle is attached the orientation agrees on one of the arcs and
disagrees on the other. We leave it as an exercise to check that this phenomenon
is not dependent on our choice of orientation for either handle.

Positive

orientation

Positive

orientation

Negative

orientation

Negative

orientation

Figure 2.22. Orienting handles.
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Figure 2.23. Orienting handles on the Möbius band and annulus.

Exercise 2.4.3. Show that no matter how one orients each of the handles in the
Möbius band, the 1-handle is attached to the 0-handle so that the orientation
agrees on one of the arcs and disagrees on the other.

Let us compare this with the corresponding handle decomposition of the
annulus. Note that for the annulus we may choose orientations for each handle
so that they disagree on their intersection (i.e. where the 1-handle is attached)
(see Figure 2.23).

Definition 2.4.4 (Handlebody version). We say that a handlebody is
orientable if we may choose an orientation for each handle so that these ori-
entations disagree on identifications; otherwise, it is said to be nonorientable.
An orientation for a handlebody is a consistent choice of orientations for each
handle, where consistent means that the orientations disagree on identifications
of the boundaries of handles.

The reader may be puzzled by the fact that we want the orientations of the
handles to disagree on the arcs that are identified instead of having them agree
on both arcs. In the example of the annulus above, we could have easily chosen
an orientation of the second handle so that the orientations agree on the identi-
fied arcs. The main reason for the condition of making the orientations of arcs
disagree as we attach a 1-handle is that this is what is required for small embed-
ded disks with counterclockwise orientations of each handle to be isotopic as we
move across the edge where the two handles are joined. Thus the orientation on
the edge must change if we are to have a consistent orientation in the adjoining
handle. This change allows us to extend an embedded disk in the preferred equi-
valence class across the edge into the preferred equivalence class in the adjacent
disk. It is also needed to consistently orient the new boundary. The boundary of
a handlebody will be a disjoint union of circles. If the handlebody is oriented as
we have defined it, then the boundary circles will inherit an orientation from the
orientations of the individual handles. In Figure 2.23, for example, the boundary
of the annulus consists of two circles, each of which is oriented.

Since the structure of a handle decomposition is an inductive one, our defini-
tion of orientability is also inductive. In order to use the definition with three or
more handles, it has to be the case that the boundary circles have an orientation
determined by the orientations of the handles involved at the end of each step.
We now indicate why the boundary will inherit a consistent orientation with
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Figure 2.24. Orienting the boundary.
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Figure 2.25. Some handlebodies.

our definition when a 1-handle is attached. Suppose that we have oriented the
handles consistently so far, so that the boundary has an orientation imposed
on it from the orientations of the individual handles. The new handle will be
attached along two arcs, which will be identified in some way with two arcs in
the boundary so far. If the new handle is attached so that both orientations
disagree, then Section 2.3 shows that the change in the boundary is represented
by the model in Figure 2.24. But in this model, the new boundary is seen to
inherit a consistent orientation.

Exercise 2.4.4. Use the definition to determine whether the handlebodies in
Figure 2.25 are orientable or not.
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Note that the only problem in orienting a handlebody will occur when a
1-handle is attached, since, when 0-handles are attached, we are taking a disjoint
union with a disk, and when 2-handles are attached, they are attached via a
homeomorphism of the circle to one of the boundary pieces. One of the two
possible orientations on the circle will disagree with the orientation so far on the
boundary.

If a handlebody is orientable and connected, then there are precisely two
ways to orient the handles consistently (we use the word consistently to mean
that orientations always disagree on identified arcs). Note that an individual
handle has exactly two choices of orientation. If the handlebody is orientable,
then there is at least one way to orient handles in a consistent manner, which
we now consider fixed. Note that if we change the orientation of every individual
handle from the fixed orientation, then the handles with the new orientations are
oriented consistently. We want to see that these are the only two ways to orient
the connected handlebody. Suppose we change the orientation on one of the
handles h1 in the handlebody from the fixed orientation. Since the handlebody
is connected, this handle must be incident to at least one other handle (where we
call two handles incident if they have boundary arcs which are identified). For
any handle h2 incident to h1, we must change the orientation of h2 from the fixed
orientation in order to be consistent with the new orientation of h1. Similarly, we
would have to change the orientation of any handle h3 incident to h2. Continuing
this argument inductively, we see that whenever we have a chain h1, . . . , hk of
handles with hi incident to hi+i, then changing the orientation of h1 from the
fixed orientation forces us to change the orientations of all of the handles in the
chain in order to be consistent. But a connected handlebody has the property
that given any two handles ha, hb, there is a chain ha = h1, . . . , hk = hb of
handles with hi incident to hi+1. This may be proved inductively on the number
of handles in the handlebody and is left as an exercise. Hence, if one of the
handles has its orientation changed from the fixed orientation, then we have
to change the orientations of all of the handles for the new orientations to be
consistent.

Exercise 2.4.5. Show by induction on the number of handles that in a con-
nected handlebody any two handles ha, hb may be joined by a chain ha =
h1, h2, . . . , hk = hb with hi incident to hi+1.

The discussion above has consequences for nonorientable handlebodies as
well. If a handlebody is nonorientable, then we will be able to orient the first
n handles h1, . . . , hn consistently, but the next handle hn+1 cannot be oriented
consistently with all of these, even if we go back and change orientations on some
of the earlier handles. Suppose that we have a handlebody H and that we have
succeeded in orienting the handlebody H1 = h1 ∪ · · · ∪ hn consisting of the first
n handles of H, but that we cannot orient the next handle hn+1 consistently
with the chosen orientations in H1. Must H be nonorientable, or can we go
back and make better choices of the orientations in H1 so that we can orient
hn+1 consistently with the new orientations? If H1 is connected, then H will
be nonorientable. For H1 is orientable, so the only possibility of changing the
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orientations in H1 is to change all of the orientations of the individual handles, in
which case hn+1 cannot be oriented consistently with all of the new orientations,
since it still must agree with one of the new orientations of the boundary of H1

and disagree with the other in the two intervals where it is attached.

Exercise 2.4.6. Give an example of an oriented handlebody H1 and a handle
h1 attached to H1 so that h1 cannot be oriented consistently with the chosen
orientations of the handles in H1 but that H1 ∪ h1 is orientable.

The condition of orientability of a handlebody is equivalent to the conditions
involving embedded disks or embedded Möbius bands. In Chapter 6 we use
homology to show that a handle-oriented surface is disk-oriented. We show as
one step in the proof of the classification theorem that when a handlebody is
nonorientable, there will be an embedded Möbius band and a corresponding
isotopy between an embedding f and fr. Using these facts, we outline a proof
of the equivalence of the definitions of orientability in Exercise 2.9.39.

2.5 Connected sums

Our classification theorem will be stated in terms of the concept of connected
sum. Actually, there are two different definitions involved, that of ordinary con-
nected sum, denoted #, and boundary connected sum, denoted

∐
. We work

in the context of compact connected surfaces (with or without boundary) for
connected sum, and compact connected surfaces with boundary for boundary
connected sum. The boundary of such a surface will be a union of a finite number
of circles.

We first define boundary connected sum of two surfaces M,N with boundary.
Choose an embedding f of {±1}×D1 which sends {−1}×D1 into an arc in ∂M
and sends {1} × D1 into an arc in ∂N . Then the boundary connected sum of M
and N is

M
∐

N = M ∪f(−1)
D1 × D1 ∪f(1)

N =
(

M
⊔

N
)

∪f D1 × D1.

If M,N are handlebodies, then M
∐

N is a handlebody formed from the disjoint
union M

⊔

N by adding a 1-handle. If M,N are oriented, then there is an
additional restriction imposed on the construction that the 1-handle must be
attached so that its orientation is consistent with that of M,N , and so M

∐
N

will be oriented as well. In terms of handlebodies, this is expressed so the natural
orientation of the 1-handle is such that it disagrees on each attaching boundary
circle with the orientations of the boundaries of the handlebodies M,N . We say
that we are forming the oriented boundary connected sum of the two oriented
handlebodies. See Figure 2.26 for an illustration of the boundary connected sum
of a torus with one hole and a sphere with two holes. Note how the orientations
on the boundaries match up so that the result is still oriented. When forming
boundary connected sum, all components of the boundary except the two where
the 1-handle is being attached are unchanged. For those two components, the
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Figure 2.26. Boundary connected sum T(1)

∐
S(2).

effect of the 1-handle is to exchange the two circles that are part of the boundary
for a single circle.

We need to know that the construction is well defined, independent of choices
made in the embeddings. The first question is dependence on the components
of the boundaries of M,N chosen. It turns out that as long as M,N are con-
nected, we can specify this component without changing the homeomorphism
type of the result. This depends on Lemma 2.4.6, which says that there are
homeomorphisms hM : M → M, hN : N → N sending any one bound-
ary circle to any other, with the restriction that if the surface is oriented,
then this homeomorphism will preserve orientations on the boundary circles.
Using hM and a similar hN on N , we can construct a homeomorphism between
(M

⊔

N) ∪f D1 × D1 and (M
⊔

N) ∪hf D1 × D1 which moves the attaching
circles as we wish. The homeomorphism will use the identity on D1 × D1, hM

on M , and hN on N . In the expression above, we are using h to denote the
restrictions of hM , hN to the boundary circles. If H1 = M and H2 = N are
oriented handlebodies, then our requirements on orientations will allow us to
use Lemma 2.3.4 to show that the result of attaching the 1-handle to form the
oriented boundary connected sum is well defined up to homeomorphism. If one
of H1, H2 is not oriented, then the two ways of attaching the 1-handle will lead
to the same result up to homeomorphism—hence boundary connected sum is
well defined in this case as well. For Lemma 2.4.6 says there is a homeomorph-
ism of a connected nonorientable surface which switches the orientation on a
boundary circle. We use such a homeomorphism, say h : H2 → H2, to identify
(H1

⊔

H2) ∪f h1 and (H1

⊔

H2) ∪f ′ h1, where f ′ is formed from f by compos-
ing with the map h which reverses the orientation on a boundary circle. As an
example, we describe such a homeomorphism for P(1), the Möbius band. Think
of this space as D1 × D1/(1, y) ∼ (−1,−y). Then the needed homeomorphism
is induced as the quotient map from the self-homeomorphism of D1 × D1 given
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Figure 2.27. Homeomorphism reversing the orientation of the boundary circle.

by (x, y) → (−x, y). Figure 2.27 shows what happens to the boundary circle for
this map.

Actually, boundary connected sum for surfaces turns out to be well defined
up to homeomorphism even if we do not put on the orientation restrictions of
how we define it. The reason for this is that every oriented surface possesses an
orientation-reversing homeomorphism. For specific surfaces that are involved in
the classification theorem, this can be seen directly by putting them in 3-space
in a symmetric fashion and using a reflection.

We now give a direct argument why there is a homeomorphism which reverses
orientation on every boundary-circle for an oriented handlebody. The argument
is by induction on the number of handles. If there is just one handle, then the
surface is a disk and we can use a reflection. If we add a disjoint disk as a 0-handle
or cap off a boundary circle with a 2-handle, then we can extend an orientation-
reversing homeomorphism. Thus we restrict to the case where the last handle
which is attached is a 1-handle since this is the substantive case. Assume that it
is true for a connected surface with a handle decomposition with n handles and
suppose H = H1 ∪f h1 has n+1 handles. Whether H1 is connected or not (it will
either have one or two connected pieces since H is assumed connected), we can
still find by the induction assumption an orientation-reversing homeomorphism h
of H1 which reverses the orientation on each of its boundary circles. Writing h1 =
D1×D1, consider the homeomorphism r : D1×D1 → D1×D1, r(x, y) = (x,−y).
This reverses the orientation of the boundary of h1. There is a homeomorphism
k : H1 ∪f h1 → H1 ∪hfr−1 h1 which is defined by using h on H1 and r on h1. The
new attaching map hfr−1 is chosen to make these fit together. By construction,
k will reverse orientation on the new boundary circles. However, it is not a self-
homeomorphism yet. But then we note that the handles are attached to the
same boundary circles as before and since both r and h reverse orientations,
the map hfr−1 attaches the handles with the same orientation convention as f .
Hence there is an isotopy of the boundary circles where the handle is attached
to make these agree. Using this isotopy and a collar within H1 as in the last
section, we get a homeomorphism l : H1 ∪hfr−1 h1 → H1 ∪f h1. The composition
lk : H1 ∪f h1 → H1 ∪f h1 now is a homeomorphism which reverses orientation
on each boundary circle.
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We summarize this discussion. For a connected oriented surface, there is a
homeomorphism which reverses orientation on each boundary circle. If the sur-
face is nonorientable, more is true. For then we could find a homeomorphism
which reverses orientation on a single boundary circle and preserves orientation
on the other boundary circles. If we have two compact connected surfaces with
boundary A,B and we wish attach a handle h1 via f in order to glue {−1}×D1

to ∂A and glue {1} × D1 to ∂B, we can use self-homeomorphisms of A,B to
see that we may specify up to homeomorphism the boundary circle where each
is attached. If A,B are both oriented, then this specifies orientations for each
boundary circle—if not, then we can just choose an orientation for the boundary
circle where each edge is attached. By possibly changing the attaching map using
a reflection of h1, we can assume that {−1}×D1 is mapped into ∂A in an orient-
ation preserving fashion using the standard positive orientation on D1 (which is
the opposite of the orientation it inherits as boundary of D1 × D1 oriented in a
positive fashion). Thus the only variable up to homeomorphism of the result is
how the interval {1}×D1 is attached to ∂B in terms of the orientation. If A and
B are oriented and the boundary circles inherit an orientation from this, then we
would need {1} × D1 to be attached in an orientation-reversing fashion in order
for A∪B∪h1 to inherit an orientation consistent with the orientations of A,B. In
particular, this is necessary in the case of handlebodies to orient the new handle-
body consistently. Nevertheless, as long as B possesses a self-homeomorphism
which reverses the orientation of the circle in ∂B where this edge is attached, the
resulting surface is well defined up to homeomorphism. This will be true when
B is nonorientable using the definition of nonorientability in terms of embedded
disks. For orientable surfaces which are given as handlebodies, it is also true by
the argument above. However, this result, when oriented, will not necessarily
be oriented consistently with both A and B. This justifies the result that A

∐
B

is well defined up to homeomorphism, no matter how h1 is attached, as well as
specifying conditions on the attachment for the orientation of h1 to be consistent
with given orientations on A,B in the new surface A ∪ B ∪ h1.

There is an important special case of boundary connected sum.

Lemma 2.5.1. The boundary sum of two disks is homeomorphic to a disk:

D2
1

∐
D2

2 ≃ D2.

Thus, if H = h0
1 ∪h0

2 ∪h1 is formed from attaching a 1-handle to two 0-handles,
then H is homeomorphic to a disk. If H is oriented, the orientation of ∂H
imposed from the orientation of the three handles imposes an orientation on
the disk.

Proof. We identify h0
1 = D2

1 with [−1, 0]×D1, identify h0
2 = D2

2 with [1, 2]×D1,
and h1 with [0, 1] × D1, with the usual orientations. The attaching map of h1

can be assumed (after isotopy) to map {0} × D1 to h0 via the identity and the
map {1}×D1 → h0

2 via either the identity or the reflection r(1, y) = (1,−y). For
H to be oriented, we have to have the first case. Then H is homeomorphic to
[−1, 2]×D1 with the standard induced orientation. If we have h0

1, h
0
2, h

1 given to
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us as above and the attaching map is r, then these are not consistently oriented.
Then we can extend r to a homeomorphism of [1, 2] × D1 to itself via r(x, y) =
(x,−y) to give a homeomorphism of [−1, 0]× D1 ∪id [0, 1]× D1 ∪r [1, 2]× D1 to
[−1, 0]×D1 ∪id [0, 1]×D1 ∪id [1, 2]×D1 which uses the identity on the first two
pieces and r on the last piece. Informally, this corresponds to reorienting h0

2 so
that this piece is now oriented.

We now discuss the connected sum of M,N . Here M,N could be surfaces
or surfaces with boundary. The construction will only use the interior of M,N .
Intuitively, what we do is remove a disk from M and N and then add a cylinder
D1×S1 by identifying {−1}×S1 with the boundary of the disk removed from M
and {1}×S1 with the boundary of the disk removed from N . Thus the connected
sum

M#N = M\f({−1} × D2) ∪f |{−1}×S1 D1 × S1 ∪f |{1}×S1 N\f({1} × D2).

If M and N are oriented surfaces, we require our attaching homeomorphisms to
preserve the orientation in M and reverse it in N . This allows the orientation
on D1 × S1 arising as part of the boundary of D1 × D2 to fit together with the
orientations of M and N to give an orientation on the connected sum. If the disks
we remove each represent an oriented 2-handle, then in M the circle {−1}×S1 is
identified with the same orientation of the handle and, in N, {1}×S1 is identified
with the opposite orientation of the handle.

Another way to phrase connected sum for orientable surfaces is to embed
iM : D2 → M in an orientation-preserving fashion and embed a disk iN : D2 →
N in an orientation-reversing fashion. This means that the embedding iM is in
the preferred isotopy class of embedded disks for the orientation of M and iN
is not in the preferred isotopy class for embedded disks for its orientation. Then
remove the points iM (0) and iN (0) from M and N and identify iM (intD2\{0})
with iN (intD2\{0}) via the orientation-preserving homeomorphism iNRi−1

M

where R : D2\{0} → D2\{0} is the orientation-reversing homeomorphism
R(reiθ) = (1 − r)eiθ. In terms of the earlier description, the embeddings of
iM (D2\int 1

2D
2) and iN (D2\int 1

2D
2) are fitting together to give the cylinder

that was used in forming the connected sum. This last description is a bit more
difficult to understand, but it is most useful for verifying that connected sum
is independent of the choice made up to homeomorphism. For if we choose dif-
ferent embeddings i′M , i′N , then the orientation conventions and Theorem 2.4.2
say that there are isotopies of M,N which connect iM , i′M via a path of homeo-
morphisms of M and connect iN , i′N by a similar path. In particular, there are
orientation-preserving homeomorphisms hM : M → M, hN : N → N with
hM iM = i′M , hN iN = i′N . Then these induce a homeomorphism between the
two ways of forming connected sum by sending M\{iM (0)} to M\{i′M (0)} via
hM and sending N\{iN (0)} to N\{i′N (0)} via hN . We leave it as an exercise
to check that this is consistent with the identifications being made to form the
connected sums.
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Exercise 2.5.1. Verify that our description of the homeomorphism in pieces
does fit together to give a homeomorphism between the two ways of forming
connected sum with iM , iN and i′M , i′N .

If one (or both) of the surfaces is nonorientable, we do not have to make
any restrictions on the embeddings into a nonorientable piece by Theorem 2.4.4.
Then the same argument shows that the connected sum is well defined in this
case. Since any orientable surface given as a handlebody possesses an orientation-
reversing homeomorphism, the connected sum will still be well defined for two
orientable surfaces without these restrictions as in the boundary connected
sum case.

Note that in our description above of the connected sum, we can write
M#N = M\iM (int 1

2D
2) ∪

iM i
−1
N

|
1
2S1

N\iN (int 1
2D

2). Thus we are embedding

disks into each surface, removing their interiors and gluing the boundaries using
the embeddings. Note that since the embeddings iM , iN are ambient isotopic to
their restrictions to 1

2D
2 (see Exercise 2.9.30) we could alternatively phrase this

as M#N = M\iM (intD2) ∪iM i
−1
N

|S1 N\iN (intD2). This means that we embed

two disks, remove their interiors, and glue the boundaries using the embed-
dings on the boundaries. When both M,N are oriented, we will embed iM in an
orientation-preserving fashion and iN is an orientation-reversing fashion in order
to get the oriented connected sum with an orientation consistent with the orienta-
tions on M,N . That this is well defined for different choices iM , i′M , iN , i′N uses
the existence of homeomorphisms hM , hN with hM iM = i′M , hN iN = i′N so that
hM : M\iM (intD2) → M\i′M (intD2) and hN : N\iN (intD2) → N\i′N (intD2)
fit together with identifications to give a homeomorphism. If one of M,N is not
oriented, then the existence of a self-homeomorphism of the nonorientable sur-
face which reverses orientation allows us to see that the construction is still well
defined, independent of the embeddings chosen. Finally, the fact that an ori-
ented surface possesses a self-homeomorphism which reverses orientation is used
to show that the connected sum is well defined generally for surfaces without the
orientation restrictions on the embeddings.

We illustrate the connected sum of a torus and a sphere with two holes
in Figure 2.28. An important example of a connected sum is P#P ≃ K. This
follows since removing a disk from a projective plane gives the Möbius band, and

Figure 2.28. The connected sum T#S(2).
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the Klein bottle is formed from two Möbius bands by identifying their boundary
circles.

We can reformulate M#N in terms of the boundary connected sum. Denote
by Q(1) the result of removing a disk from Q when Q is a surface without
boundary.

Lemma 2.5.2. (M#N)(1) ≃ M(1)

∐
N(1).

Proof. We first remove a disk from each of M,N , then take the boundary
connected sum along arcs in boundary circles, and then fill in with a disk. This
is illustrated in Figure 2.29.

If M and N are oriented handlebodies and the disks removed are 2-handles,
then M#N will be an oriented handlebody with one more 1-handle and one
fewer 2-handle. The cylinder we are adding will give a 1-handle and a 2-handle,
as the figure shows.

To illustrate another aspect of handle decompositions, we show how to form
the connected sum in the handlebody situation when there are no 2-handles in
M , say, to remove. In this case, we can give a new handle decomposition for
M so that there will be a 2-handle to use. To do this, we take a small arc in a
boundary circle and add a 1-handle to it as illustrated in Figure 2.30. Now attach
a 2-handle to fill in the rectangle that was created by the 1-handle. We claim that
the result is homeomorphic to what we started with. Use a collar on the boundary
circle containing the arc to get a new rectangle and construct a homeomorphism
(see Exercise 2.5.2) to push the union of two rectangles into the lower rectangle,
leaving the part of the boundary in the original space fixed. Finally, extend

M \ D N \ D

(M \ D(M ) (N \ D(N ) h1

(M \ D(M ) (N \ D) h
1

h
2

Figure 2.29. Relating the connected sum and the boundary connected sum.
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M h1 M h 1 h2

push to

Figure 2.30. Creating an extra 1- and 2-handle.

this homeomorphism by the identity outside a collar neighborhood of our arc.
Another way of saying this is that if M,N do not have 2-handles, then we can
first attach trivial 1-handles to each to create new boundary circles, then add
another 1-handle to form a boundary connected sum, and then finally fill in with
a 2-handle. If the surfaces are oriented, then we will be using attaching maps
consistent with the orientation at each stage.

Exercise 2.5.2. Construct a homeomorphism from [−1, 1]×[−1, 1] onto [−1, 1]×
[−1, 0] which fixes pointwise {−1} × [−1, 0] ∪ [−1, 1] × {−1} ∪ {1} × [−1, 0].

Exercise 2.5.3. Show that M
∐

N ≃ N
∐

M .

Exercise 2.5.4. Show that (M
∐

N)
∐

Q ≃ M
∐
(N

∐
Q).

Exercise 2.5.5. Show that M#N ≃ N#M .

Exercise 2.5.6. Show that (M#N)#Q ≃ M#(N#Q).

Exercise 2.5.7. Show that M
∐

D2 ≃ M . (Hint: Write M
∐

D2 as M ∪ R1 ∪ R2,
where R1, R2 are rectangles joined along a segment in their boundaries, and use
the idea of Exercise 2.5.2.)

Exercise 2.5.8. If N is a surface without boundary, show that N(p)

∐
S(q) ≃

N(p+q−1). (Hint: Consider first the case q = 1.)

Exercise 2.5.9. Show that M#S2 ≃ M . (Hint: Think of what is removed and
what is filled in when we form the connected sum with S2, or use Exercise 2.5.7
and M#N = M(1)

∐
N(1) ∪ h2.)

Exercise 2.5.10. If K is the Klein bottle, use K ≃ P#P to show that K(1) ≃
P(1)

∐
P(1).

Exercise 2.5.11. Show that A#B#C ≃ A(1)

∐
B(1)

∐
C(1) ∪h2. Use this to show

that the boundary connected sum of k copies of A(1) is homeomorphic to the
connected sum of k copies of A with one disk removed. Denoting the connected

sum of k copies of A by A(k), you are to show that A
(k)
(1) ≃ A(1)

∐
· · ·

∐
A(1)
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(k copies). Then show that A(k)#S(p) ≃ A(1)

∐
· · ·

∐
A(1)

∐
S(p). We will use the

notation A
(k)
(p) for this space.

2.6 The classification theorem

In this section we will prove the classification theorem for surfaces. Actually,
what we prove is that any connected handlebody is homeomorphic to one of a
certain collection of handlebodies. The distinct handlebodies in our collection
are in fact not homeomorphic to one another, although the proof of that fact
will require results on the fundamental group in the next chapter.

Let M
(k)
(1) denote the boundary connected sum of k copies of M(1), which,

by Exercise 2.5.11, is the same as the connected sum of k copies of M with
one disk removed. For a surface M without boundary, we denote by M (k) the

connected sum of k copies of M , and by M
(k)
(p) the result of removing p disks from

M (k). By Exercise 2.5.11, this is the same surface as is obtained by taking the

M
(k)
(1) and taking the boundary sum with S(p). The classification theorem says

that each compact connected surface (possibly with boundary) is homeomorphic

to S(p), T
(k)
(p) , or P

(k)
(p) , where p = 0 corresponds to no boundary. Figure 2.31

illustrates some of these surfaces.
We will show below that we can assume that the 1-handles are attached

disjointly and that there is a single 0-handle. Given this, we ignore the 2-handles
for the moment (they are only filling in the boundary circles with disks) and think
of the surface as given by attaching some 1-handles disjointly to the disk. If we
then take the boundary connected sum of two such surfaces and use Lemma 2.5.1,
we can get a picture of boundary connected sum in terms of putting together the
sum of all of the 1-handles for the two surfaces attached along separate arcs on
the boundary of the disk. See Figure 2.32, which illustrates the boundary sum
T(1)

∐
P(1). The left-hand side gives the boundary sum using standard handle

=

T

P(1)P(

(3)

(2)
S(2)

Figure 2.31. Examples of surfaces.
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Figure 2.32. Boundary sum with a single 0-handle.

Figure 2.33. Models for T
(2)
(2) and P

(3)
(3) .

decompositions of T(1) and P(1). The right-hand side gives the handle decomposi-
tion of T(1)

∐
P(1) with a single 0-handle with the same 1-handles from the two

surfaces attached to a single 0-handle.

We give standard model handle decompositions for S(p), T
(g)
(p) , P

(h)
(p) when p ≥ 1

as coming from attaching 1-handles to a disk, which is the 0-handle. We will
show that there is a homeomorphism of our handlebody to one of these model
surfaces. There are three types of subfigures—a trivial handle, a torus pair, and
a twisted handle. The trivial handles have the effect of removing a disk from a
surface, creating another boundary circle—when attached to the disk it forms
an annulus. The torus pair is a pair of linked 1-handles attached which creates
T(1) when it is attached to a disk. The twisted handle is a handle attached to a
single boundary circle which does not change the number of boundary circles—it

creates a Möbius band from the disk. The standard model for T
(g)
(p) will have g

torus pairs and p−1 trivial handles, each attached within disjoint intervals along
the boundary of the disk. For S(p), there will just be p − 1 trivial handles. For
P

(h)
(p) , there will be h twisted handles and p − 1 trivial handles, each attached

within disjoint intervals along the boundary of the disk. We picture T
(2)
(2) and

P
(3)
(3) in Figure 2.33.

We will be working with these types of diagrams and manipulating them
by isotoping the attaching of 1-handles. We will call this operation “sliding
handles”. Some of these isotopies will use the existence of another handle to
slide one handle over another one. This will usually mean that the isotopy drags
an attaching arc of a handle over a boundary arc created by another 1-handle,
although sometimes we will slide both attaching arcs over another handle just to
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1

K

2 1 2

P(1) (1)
(2)

Figure 2.34. Sliding handles to get P
(2)
(1) ≃ K(1).

put it in a better position. We use this now to illustrate in Figure 2.34 another
viewpoint on the homeomorphism K(1) ≃ P(1)

∐
P(1) from Exercise 2.5.10. Here

we have slid one attaching arc for handle 1 over a boundary arc for handle 2 in
the direction of the arrows to go from a standard picture for K(1) to the standard
picture for P

(2)
(1) .

The classification theorem says that each nonorientable surface is homeo-
morphic to P

(k)
(p) for some k, p. In particular, T(1)

∐
P(1) is nonorientable. The

next result identifies this surface as P
(3)
(1) and is a critical step in classifying

nonorientable surfaces.

Lemma 2.6.1 (Fundamental lemma of surface theory). T(1)

∐
P(1) ≃

P(1)

∐
P(1)

∐
P(1) ≃ K(1)

∐
P(1) and T#P ≃ P#P#P ≃ K#P .

Proof. First note that the two statements are equivalent since T(1)

∐
P(1) ≃

(T#P )(1) and P(1)

∐
P(1)

∐
P(1) ≃ (P#P#P )(1). A homeomorphism T(1)

∐
P(1) ≃

P(1)

∐
P(1)

∐
P(1) extends by coning over the disk to a homeomorphism T#P ≃

P#P#P . Conversely, if we have a homeomorphism from T#P to P#P#P , then
by the disk lemma we can specify the image of a disk and get a homeomorphism
from T(1)

∐
P(1) to P(1)

∐
P(1)

∐
P(1). The statements involving K just use K ≃

P#P .
We will prove this important result from the viewpoint of each type of con-

nected sum. The first proof comes from sliding handles and is what is used in our
proof of the classification theorem. Figure 2.35 illustrates the homeomorphism

T(1)

∐
P(1) ≃ K(1)

∐
P(1) ≃ P

(3)
(1) . The first diagram has a pair of 1-handles for T(1)

and a twisted 1-handle for P(1). When we slide handle 2 over handle 3, it twists
handle 2 and links it with handle 3. We next slide handle 3 over handle 1. This
unlinks handles 2 and 3 and leaves the diagram for K(1)

∐
P(1). We then slide

handle 1 over handle 2 and get the diagram for P
(3)
(1) .

We now show that T#P ≃ P#P#P from another viewpoint. This viewpoint
will be useful in a different proof of the classification theorem and some other
exercises in the supplementary exercises at the end of the chapter discussing
surgery. Since P#P ≃ K, we have to show that T#P ≃ K#P . For this, we
need a slightly different description of the torus and Klein bottle. The torus can
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1

2
3

1

2
3

1

2

31

2
3

Figure 2.35. Proving the fundamental lemma via handle slides.

=
T

=

K

Figure 2.36. Surgery descriptions of T,K.

first be described as the union of two cylinders. Since a cylinder is formed from
a sphere by removing two disks, we can think of a torus as being obtained from
a sphere by removing two disks and gluing back in a cylinder. There is a similar
description for the Klein bottle (the cylinder is put back in a different way).
This construction is a special case of a general construction called surgery (see
Figure 2.36).

If we remove the bottom hemisphere and flatten the upper hemisphere, we
get the view in Figure 2.37 of T\D2 and K\D2. Now taking connected sum of
P with T (resp., K) entails removing a disk from P and gluing back in T\D2

(resp., K\D2). We now remove another disk from P away from the first disk to
get a Möbius band. Figure 2.38 illustrates what we get in the two cases.

That these are homeomorphic can be demonstrated physically with a model:
cut the two models along the line segments in Figure 2.38 and after straightening
each will be a strip with a cylinder attached on one side, and the same iden-
tifications of the edges. This indicates how to construct the homeomorphism.
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T \ D K \ D 22

Figure 2.37. T\D2 and K\D2.

(T # P) (K # P)(1) (1)

Figure 2.38. Surgery on a Möbius band.

A B
b a a b

A
b aa b b

B

Figure 2.39. Breaking the homeomorphism into pieces.

Alternatively, we can just slide one of the attaching circles for the Klein bottle
around the Möbius band so that both circles are attached “on the same side” in
a small disk on the Möbius band. The extra intersection we see in 3-space of the
cylindrical handle of the Klein bottle with the Möbius band is easily avoided.
Figure 2.39 gives another means of getting the homeomorphism. Turn B over
and move it to the other side to go from one to the other.

Here is another explanation in terms of isotopy classes of embedded disks.
What we are doing when we are forming the connected sum with T or K is
taking the boundary of a cylinder ∂(D2 ×D1) = ∂D2 ×D1 ∪D2 ×{±1}, which is
oriented so that D2 × {1} has the standard positive orientation and D2 × {−1}
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has the standard negative orientation (draw a picture and check this). We embed
the part of the boundary D2 × {±1} into the surface, remove it, and add in the
cylinder ∂D2 × D1. If the original surface is oriented, the new surface will be
oriented if, for the given orientations (from our orientation of ∂(D2 × D1)),
the embeddings both reverse orientations on the disks. Note that another way of
describing these embeddings of the disks is that, if we orient both disks D2×{±1}
so that they have the standard positive orientation (which is not how they were
oriented above), then for the torus, we are embedding D2 × {−1} to preserve
orientation and embedding D2 × {1} to reverse it. In the case of taking the
connected sum of the sphere with the torus, this will be true. But when we
are taking the connected sum of the sphere with the Klein bottle, the disk
D2 × {1} is embedded with a different orientation. However, when we perform
the same operation within a larger disk in a Möbius band (and hence within
any nonorientable surface), there is no distinction between these two types of
embeddings since they are isotopic, and hence the results of performing these
two constructions are homeomorphic.

Exercise 2.6.1. Construct a model of B#T and show that it is B#K. It will
help if the cylinder is attached symmetrically one-fourth and three-fourths of the
way across the strip.

Exercise 2.6.2. Show that P(1)

∐
T

(k)
(1) ≃ P

(2k+1)
(1) . Conclude from this that

P
(l)
(1)

∐
T

(k)
(1) ≃ P

(2k+l)
(1) .

We are now ready to state and prove the classification theorem for the
case of handlebodies with 0- and 1-handles. We first make a definition. Let
H be a handlebody with a given handle decomposition. Let ni be the num-
ber of i-handles. Define the Euler characteristic χ(H) of the handlebody H by
χ(H) = n0 − n1 +n2. We will denote by p the number of boundary circles of H.

Theorem 2.6.2. Let H be a connected handlebody with a handle decomposition
with 0-handles and 1-handles, Euler characteristic χ(H), and p boundary circles.

(a) If H is orientable, then H is homeomorphic to a standard model handle-
body for S(p) or T

(g)
(p) , where χ(H) = 2 − 2g − p. The case of S(p)

corresponds to g = 0 in this formula; that is, T
(0)
(p) is alternative notation

for S(p).

(b) If H is nonorientable, then H is homeomorphic to a standard-model

handlebody for P
(h)
(p) , where χ(H) = 2 − h − p.

We will simplify the handle decomposition to either remove a copy of T(1) or
P(1) and apply an inductive argument. We use extensively the idea of simplifying
the handle-attaching maps by an isotopy—we will refer to this as sliding. We
first note that we may assume that the 1-handles are always attached disjointly
to the boundaries of the 0-handles.

Lemma 2.6.3. For any handle decomposition H, there is a homeomorphic H ′

with corresponding handles so that the 1-handles are attached disjointly to the
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0-handles. The handlebody H ′ has the same number of handles, and if H is
oriented, then H ′ will have a corresponding orientation.

Proof. The argument is by induction on the number of 1-handles, being trivi-
ally true when there is one 1-handle. We suppose that it is true for fewer than k
1-handles and that H has k 1-handles, writing H = H1∪f h1, where by induction
we assume that the 1-handles for H1 are attached disjointly. The 1-handle h1

might be attached so that it intersects part of the boundary created from pre-
vious 1-handles. However, we can isotope the attaching region off of that part
of the boundary and not change the space up to homeomorphism, giving a new
handlebody H ′ where the new 1-handle is disjoint from the previous 1-handles.
Since the isotopy preserves orientation of boundary circles, the new handlebody
will have an orientation corresponding to the former one.

Lemma 2.6.4. If H is a connected handlebody with 0-handles and disjointly
attached 1-handles, then H is homeomorphic to a handlebody H ′ with a single
0-handle. If H is oriented, then so is H ′ with corresponding orientations.
Moreover, χ(H) = χ(H ′).

Proof. We work by induction on the number of 0-handles. This is trivially true
if there is a single 0-handle. If there is more than one, then H being connected
implies that there is a 1-handle h1 attached to two different 0-handles h0

1 ∪ h0
1.

Then h0
1∪h0

2∪h1 is homeomorphic to a disk by Lemma 2.5.1, and if H is oriented,
then this disk inherits a consistent orientation with the remaining handles. We
can then replace these three handles with a single 0-handle corresponding to this
disk. This does not change the Euler characteristic and will have fewer 1-handles.
The result then follows by induction.

From now on, we will assume that the 1-handles are attached disjointly and
there is a single 0-handle.

We first treat the oriented case. We show inductively that H is homeomorphic

to the standard model for T
(k)
(p) , where for k = 0 this means S(p). For each of

the two 1-handle pairs corresponding to T(1), note that the new part of the
boundary after attaching plus the three old interior segments enclosed within
the attaching interval form an arc of one of the boundary circles. We can use
an isotopy to move other handles off of this arc. A picture of what happens to
points during this isotopy is given in Figure 2.40. The induction starts with the
case of no 1-handles, which is just the disk S(1). Assuming that it is true with
k 1-handles, and H has k + 1 1-handles, we express H as H1 ∪ h1, where by
induction we can assume that H1 is already in standard form. If h1 is attached
to the outer boundary circle, we may isotope its attaching intervals into a small
interval away from an enclosing interval for the other handles and get a standard
diagram where there is one more trivial handle. If it is attached within an inner
circle for one of the trivial handles, we can then slide one attaching arc of that
handle over it (see Figure 2.41 for this slide). In each case, we get a standard

diagram for T
(g)
(p+1). Note that the χ(T

(g)
(p+1)) = χ(T

(g)
(p) )− 1 = 2− 2g − (p+1), as

claimed.
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Sliding off
interval for
torus pair1

1

2

2

3

3

4

4

5
5

6
6

Figure 2.40. Isotoping away from a torus pair.

1

1
2

2

Figure 2.41. Freeing an inner handle by isotopy.

Suppose h1 is attached to connect the two different circles. This then gives a
standard picture for a torus pair using this handle and one of the trivial handles
that created a boundary circle to which it was originally attached. We can slide
the other handles over this new torus pair to separate it from other trivial handles
and use induction to put the torus pairs and trivial handles back in standard
position. Thus we have changed the standard model for T

(g)
(p) to T

(g+1)
(p−1) here

and the new Euler characteristic is χ(T
(g+1)
(p−1) ) = χ(T

(g)
(p) ) − 1 = 2 − 2g − p − 1 =

2− 2(g +1)− (p − 1) as claimed. This completes the argument in the orientable
case.

We show in Figure 2.42 an illustration of this. There is already one torus pair
and two trivial handles labeled 1,2. We attach a new handle 3, which connects
two boundary circles, and then handles 1 and 3 form a new torus pair. The
attaching arc of handle 2 inside this new torus pair is slid to the right and over
three of the boundary arcs in the torus pair (inner 3, inner 1, outer 3) so that it
is displayed as a trivial 1-handle attached away from an interval containing all
of the attaching subintervals for the torus pair.



114 2. The classification of surfaces

1

3

2

1

3

2

Slide 2 off of
torus pair 13

Figure 2.42. Sliding handles to put into normal form.

Now suppose that H is nonorientable, there is a single 0-handle, and the
1-handles are attached disjointly. Then we claim that H is homeomorphic to the
standard handlebody with h twisted 1-handles and p−1 trivial handles attached
to the boundary. Here p is the number of boundary circles and χ(H) = 2−h−p.
Since the handlebody is nonorientable, at least one of the 1-handles is attached
to the disk in a twisted fashion.

The argument is again by induction, with the starting case when there is
one 1-handle, which is necessarily twisted to give the standard diagram for P(1).
We assume that the result is true when there are k 1-handles, and our H has
(k+1) 1-handles. We select a 1-handle which is twisted. Since the 1-handles are
disjoint, we can consider it the first 1-handle h1

1. Then if any other 1-handles are
attached in the region in the interval used to attach the two attaching regions for
h1

1, we first slide them over the handle h1
1 to free them from this handle interval.

Note that if only one of the subintervals needs to be slid over the region, then
this leads to “twisting” or “untwisting”. In a picture within 3-space, we will
get some double-twisted handles and linked 1-handles, but this is just a feature
of the ambient space and not of the surface—the only important thing up to
homeomorphism of the surface is whether the intervals are attached to preserve
or reverse orientation. After this sliding, the picture will be one twisted handle on
one interval in the circle and the other handles in the remaining interval. We now
regard the original twisted handle h1

1 as the last handle. We can then ignore this
handle and note by the induction hypothesis that the others can be isotoped to
be either in the standard orientable form or in the standard nonorientable form.
This rewrites H as H1 ∪ h1

1, where H1 is standard. In case H1 is nonorientable,

it will be P
(h)
(p) , and there will be h twisted handles and p − 1 trivial handles.

Here χ(H1) = 2 − h − p. Then adding h1
1 to form H just adds one more twisted

handle, giving the standard diagram for P
(h+1)
(p) , and χ(H) = 2 − (h + 1) − p.

When H1 is orientable, then we can assume that H1 is the standard form for

T
(g)
(p) and χ(H1) = 2 − 2g − p. Then our diagram for H will have h1

1 attached

as a twisted handle on the outer circle, with p − 1 trivial handles and g torus
handle pairs. We then use the fundamental lemma of surface theory to do handle
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Figure 2.43. Sliding handles to get P
(4)
(3) .

slides to exchange a torus pair plus a twisted handle for three twisted handles,
showing T(1)

∐
P1 ≃ P

(3)
(1) . Repeating this procedure for each torus pair will change

our diagram for T
(g)
(p)

∐
P1 to that for P

(2g+1)
(p) . Moreover, χ(H) = χ(H1) − 1 =

2− 2g − p − 1 = 2− (2g + 1)− p, as required. This completes the inductive step
in the nonorientable case.

We consider an example to illustrate our argument (see Figure 2.43). We
first identify handle 1 as a twisted handle and move handles 3 and 4 off of an
interval containing it by sliding. Note that this has twisted each of these handles
and linked them. We then redraw handle 3 and slide the attaching interval for
handle 4 over the outside of handles 5 and 6. Now the handle 1 is isolated and
the other five handles represent some nonorientable surface. We then use the
inductive step to move those into standard position, so that with handle 1 the

diagram is a standard diagram for P
(4)
(3) .

In our model surfaces, the outer boundary circle seems different from the
inner circles. We show directly without using the equivalence of the different
definitions of orientability that there is a homeomorphism of the handlebody
which interchanges the outer circle with the inner circle or interchanges any two
inner circles. This will be consistent with the orientations in the orientable case.
We use the set E which is the union of a collar neighborhood of each circle and
a rectangular strip joining them (see Figure 2.44). The figure on the top left
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A

A

AB B

B

Figure 2.44. Permuting boundary circles of handlebodies.

represents a homeomorphic image of E when we join the outer and inner circles
and the figure on the top right represents a homeomorphic image of E when
we join two inner circles. There is a homeomorphism between them which is
described by being the standard identification of the right annuli and rectangles
and then sending the annulus with boundary circle B on the left to the one on the
right. If we think of each as a standard annulus between circles of radii 1 and 2,
the homeomorphism we want is the composition of an inversion (r, θ) → (2−r, θ)
in polar coordinates, which switches the outer and inner circles with a reflection
(x, y) → (−x, y). This will exchange the circles but adjust the orientations so
that this composition is consistent with how the rectangle is glued on in each
case. The figure on the top right is homeomorphic to the lower figure. The outer
circle is mapped in a standard fashion to the outer radius of the disk and the two
inner circles are identified. The map on some intermediate circles is pictured in
Figure 2.45. Finally, we can describe the homeomorphism which interchanges the
two circles using the bottom diagram. We basically just want to use a rotation,
but we want the map to be the identity on the boundary. We take a slightly
smaller disk and use a rotation there. On the annular region between the two
disks, we damp out the amount of rotation on these circles from π on the inner
circle to 0 on the outer circle. Using the homeomorphisms of our original regions
E with this figure, this gives us a homeomorphism of E which interchanges the
two circles and is the identity on the other boundary circle of E. This then
extends by the identity outside of E to get the required homeomorphism which
interchanges the two boundary circles. An alternate view of this last step is to
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A AB B

Figure 2.45. Constructing the homeomorphism.

do a slide of one trivial handle over the outer arc of an adjacent one and then
slide back to the original position to switch the two boundary circles.

We now deduce the general case from Theorem 2.6.2.

Theorem 2.6.5. Suppose H is a compact connected surface with a handlebody
decomposition having p boundary circles, where p = 0 if there is no boundary.

(a) If H is orientable, then H is homeomorphic to a standard-model handle-

body for S(p) or T
(g)
(p) . Using g = 0 for the case of S, g is given by the

formula χ(H) = 2 − 2g − p.

(b) If H is nonorientable, then H is homeomorphic to a standard-model

handlebody for P
(h)
(p) , where χ(H) = 2 − h − p.

Proof. Suppose h has n2 2-handles. We remove the 2-handles from H to get
H1, which has no 2-handles but n2+p boundary circles and χ(H1) = χ(H)−n2.
By Theorem 2.6.2, H1 is homeomorphic to one of our model handlebodies for:

T
(g)
(n2+p) in case (a) and P

(h)
(n2+p) in case (b), where χ(H1) = 2 − 2g − (n2 + p) in

case (a) and 2−h− (n2+p) in case (b). Hence χ(H) = 2−2g−p in case (a) and
2−h−p in case (b). Since homeomorphisms of circles extend to homeomorphisms
of disks they bound, this homeomorphism extends to the 2-handles we removed
to give homeomorphisms from H to models where the 2-handle is attached in a
standard manner to one of the boundary circles in the model. When the circle
is an inner circle on a trivial handle, then the argument from Exercise 2.5.2 says
that filling in the circle with a 2-handle gives a handlebody that is homeomorphic
to one without the trivial 1-handle and 2-handle. Thus, as long as we are using
n2 2-handles attached to inner circles, we get standard models for T

(2g)
(p) (which

means S(p) when g = 0) or P
(h)
(p) in the two cases. If a 2-handle is attached to an

outer circle, our discussion above says that up to homeomorphism we can regard
it as attached to an inner circle. Thus we can use inner circles except for the
case when p = 1, and attaching it gives the standard handle decomposition for

the closed surfaces S, T (g), P (h) based on those for S(1), T
(g)
(1) , P

(h)
(1) .

Exercise 2.6.3. For each of the orientable surfaces in Figure 2.46, use handle
sliding to put it in standard form and identify the surface. Check your answer
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Figure 2.46. Surfaces for Exercise 2.6.3.

(a)
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Figure 2.47. Surfaces for Exercise 2.6.4.

by using Theorem 2.6.2. (Hint: First find a torus pair and slide other handles off
of it.)

Exercise 2.6.4. For each of the nonorientable surfaces in Figure 2.47, use handle
sliding to put it in standard form and identify the surface. Check your answer by
using Theorem 2.6.2. (Hint: First find a twisted handle and slide other handles
off of it.)

The next six exercises give different arguments for certain steps in the proof
of Theorem 2.6.2.

Exercise 2.6.5. Consider the step in the argument for the orientable case where
a new torus pair is created by adding a new 1-handle. Show that, if we regard the
0-handle and the torus pair as giving us T(1), then we can remove this from the
surface and replace it by a consistently oriented disk with the same boundary to
which the other handles are attached. Considering this disk as the new 0-handle
and the other 1-handles as attached to its boundary to form a handlebody H1,

show that H ≃ H1#T . Then use induction to show that H ≃ T
(g+1)
(p) when

H1 ≃ T
(g)
(p) .
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Exercise 2.6.6. Consider the step in the argument for the orientable case where
the new 1-handle is attached to a single boundary circle to form H from H1.

Show that if H1 is homeomorphic to T
(g)
(p) , then we can add a 2-handle to H, so

H ∪ h2 ≃ H1. Thus, removing this 2-handle shows that H ≃ T
(g)
(p+1).

Exercise 2.6.7. Consider the step in the argument for the nonorientable case
where we attach a new 1-handle h1 to form H from H1, which, we can assume

by induction, is either T
(g)
(p) or P

(h)
(p) and is in standard form. Show that we can

assume in either case that it is attached away from the torus pairs or twisted
handles so we can just consider it as being attached to S(p). In the case where H1

is orientable, h1 will necessarily be attached to S(p) so S(p) ∪h1 is nonorientable.
However, this is not neccesarily the case when H1 is nonorientable.

Exercise 2.6.8. Show that if h1 is attached to a single boundary circle of
H1 ≃ S(p) as a twisted handle to form H, then the union of the 0-handle and h1

forms a Möbius band P(1). We form a new handlebody H2 by replacing h0 ∪ h1

by a disk with the same boundary and then attaching the other 1-handles to it.
Show that H2 ≃ S(p) and H ≃ P#H2 ≃ P(p).

Exercise 2.6.9. Show that if h1 is attached to two boundary circles of S(p) in a
twisted fashion to form H and we choose another 1-handle h1

2 so that h0∪h1
2 forms

an annulus whose boundary consists of these two circles, then H1 = h0 ∪h1
2 ∪h1

is a Klein bottle with a disk removed K(1). Form a new handlebody H2 so that
H2 is formed from removing h0 ∪ h1

2 ∪ h1 and replacing it with a disk (the new
0-handle) and then adding in all of the other handles of the original standard
handle decomposition of S(p). Show that H2 ≃ S(p−1) and H ≃ K#S(p−1).

Exercise 2.6.10. Deduce the general induction step for the nonorientable case
by the last three exercises.

2.7 Euler characteristic and the identification

of surfaces

Now that we have a list of possible compact connected surfaces up to homeo-
morphism, how do we identify a given surface in practice? We first need to find
a handle decomposition and determine whether the surface is orientable or not.
Second, we need to count the number of boundary components. Finally, we need
to compute the Euler characteristic. Orientability and the number of bound-
ary circles are topological invariants since homeomorphic surfaces have the same
number of boundary circles and are either both orientable or nonorientable (in
terms of embedded Möbius bands or isotopy classes of embedded disks). That the
Euler characteristic is a topological invariant (i.e. homeomorphic surfaces have
the same Euler characteristic) is most easily justified using homology theory and
a result from homological algebra. This approach will be used in Chapter 6.

Showing Euler characteristic is an invariant up to homeomorphism is equival-

ent to showing that no two surfaces in our collection of surfaces S(p), T
(g)
(p) , P

(h)
(p)
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with the same orientability and number of boundary circles are homeomorphic
to each other. For Theorem 2.6.5 can be interpreted as saying that these three
quantites determine the surface up to homeomorphism, so if two of them are not
homeomorphic and have the same orientability and number of boundary circles,
then they would have to have different Euler characteristics. We will relate our
definition of Euler characteristic to the fundamental group, which we study in
the next chapter, and the fundamental group will provide a proof that the Euler
characteristic is a topological invariant.

We now collect our results into the main classification theorem for surfaces.

Theorem 2.7.1 (Classification theorem for surfaces). A compact connec-
ted surface (possibly with boundary) is homeomorphic to either a sphere with p

disks removed, S(p), a connected sum of g tori with p disks removed, T
(g)
(p) , or

a connected sum of h projective planes with p disks removed, P
(h)
(p) . Orientabil-

ity, the number p of boundary components, and Euler characteristic χ form a
complete set of invariants. If the surface M is orientable with p boundary com-
ponents and Euler characteristic χ, then M ≃ T

(g)
(p) with g = (2− χ − p)/2 (here

S(p) = T
(0)
(p) ); if the surface is nonorientable with p boundary components and

Euler characteristic χ, then M ≃ P
(h)
(p) , with h = 2 − χ − p. If p = 0 in either

case (a surface with no boundary), then the term (p) may be omitted.

Exercise 2.7.1. Verify the formulas given for g, h in terms of χ, p in the
statement of Theorem 2.7.1.

Once we know that χ is a topological invariant, we can note certain facts
about it that can make it easier to calculate. For example, if we get from A to
B by filling in p boundary circles of A with disks, then χ(B) = χ(A) + p. We
could start with a handle decomposition of A and add p 2-handles. Conversely,
we can get from B to A by removing p disks, and we have the same relation.
Now consider taking the boundary sum of two surfaces with boundary. From the
handle viewpoint, we are adding a 1-handle, so we get χ(A

∐
B) = χ(A)+χ(B)−1.

When we form the connected sum of two surfaces, we can write it as A#B =
(A(1)

∐
B(1)) ∪ h2, so

χ(A#B) = χ(A(1)

∐
B(1)) + 1 = χ(A(1)) + χ(B(1)) = χ(A) + χ(B) − 2.

Exercise 2.7.2. (a) Show that χ(A1
∐

· · ·
∐

An) = χ(A1)+ · · ·+χ(An)− (n−1).
(b) Show that χ(A1# · · ·#An) = χ(A1) + · · · + χ(An) − 2(n − 1).

For any orientable surface T (g), the number g is usually called the genus of
the surface. When this surface is thought of as the boundary of a solid, then the
genus is measuring the number of holes in this solid. However, the word “hole” is
being used in a different way than we have been using it, which is the number of
boundary circles for a surface with boundary. For a nonorientable surface P (h),
the number h is sometimes called the number of crosscaps in the surface, or
the nonorientable genus. Interpretations of these numbers will be pursued in the
supplementary exercises.
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Figure 2.48. Identifying a surface.

Figure 2.49. New view of a filled-in surface.

We now look at a few examples. Suppose we have a nonorientable surface
with one boundary component and Euler characteristic −5. What is it? Since

p = 1 and h = 2 − χ − p = 6, the surface is P
(6)
(1) .

Consider the surface in Figure 2.48. What is it? First note that it is nonorient-
able due to the existence of a Möbius band. We count its boundary components.
We have numbered them in the figure. Thus p = 4. It has a handle decomposi-
tion with one 0-handle (the rectangle) and five 1-handles. Hence χ = −4. Thus

h = 2, and our surface is P
(2)
(4) .

To see this without the computation, first fill in the holes on the boundary
circles 1, 2, and 3. Now our surface looks like the left surface in Figure 2.49.
Pushing the bumps back into the rectangles (see Exercise 2.5.2), we get the
figure on the right. This is a Möbius band with a 1-handle attached (which can
be used to get another Möbius band). In Exercise 2.7.3 you are to show that this

is P
(2)
(1) . Then our original surface is a Klein bottle with four holes, which is P

(2)
(4) ,

as we showed above.

Exercise 2.7.3. Show directly that the surface in the right hand side of

Figure 2.49 is P
(2)
(1) = P(1)

∐
P(1) by finding two Möbius bands which are attached

together by a 1-handle.
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Figure 2.50. Handle decomposition.
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Figure 2.51. Surface bounded by a knot.

Consider the shaded surface depicted in Figure 2.50. Its boundary consists of
a circle embedded in R3 (a knot). The figure shows a projection of the knot
in the plane with an overcrossing (in terms of this projection) indicated by
having one segment pass over another. In order to clarify it, we divide it into
seven pieces (which also gives a handle decomposition). Here h0

1, h
0
2, h

0
3 denote

0-handles (disks) corresponding to the three shaded regions (cut off by line seg-
ments joining parts of the knot). Then h1

1, h
1
2, h

1
3, h

1
4 denote the twisted (in R3)

rectangular strips used to join these three disks. Thus, our surface has Euler
characteristic χ = 3 − 4 = −1. It has one boundary component. Let us try to
orient the handles. We can orient h0

1 in a counterclockwise fashion and h0
2, h

0
3

in clockwise fashion, and orient the 1-handles h1
1, h

1
2, h

1
3 consistently with these.

However, it is impossible to orient the last handle h1
4 consistently with all of the

other handles, and so the surface is nonorientable. We can find a Möbius band
in the surface as a neighborhood of a circular path running through h1

2, h
1
4, h

1
3.

By the classification theorem, our surface is homeomorphic to P
(2)
(1) ; that is,

a Klein bottle with one hole in it or a boundary sum of two Möbius bands. We
show this more directly. The 0-handles and 1-handles h1

1, h
1
3 together give five

rectangles laid end on end, which is equivalent to a single rectangle. Adding
h1

4 then gives a Möbius band. Finally, adding h1
2 gives the Klein bottle with

one hole.
We show in Figure 2.51 another surface that has the same knot as boundary.

This surface is orientable and is obtained by an algorithm due to Seifert, which
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produces an orientable surface with boundary a given knot. The bold lines in
the second drawing give the boundaries of the three 0-handles. The handle h0

1

is supposed to lie above the plane that contains most of the knot like the upper
hemisphere of the sphere. The three 0-handles are connected by the 1-handles
h1

1 and h1
3. As in the last example, these five handles fit together to give one

rectangle. The handles h1
2 and h1

4 are then able to be oriented consistently with
these to give an orientable surface. There is one boundary circle given by the
knot, and the Euler characteristic is −1. The classification theorem then says
that the surface is T(1).

Exercise 2.7.4. By looking at Figure 2.51 as a rectangle with two 1-handles,
mimic the argument of the preceding example to show directly that the surface
is T(1).

Exercise 2.7.5. Determine which of our models the two surfaces in Figure 2.52
are homeomorphic to. For (b), the exterior region depicts a disk lying over the
plane, which can be taken as a 0-handle. The knot which they bound is called
the trefoil knot. Use the classification theorem and then give simpler handle
decompositions to exhibit these regions more clearly in analogy to our example
above. For each surface give handle decompositions with the minimal number of
handles.

Consider the surface obtained by taking a hexagon (including the inside) and
identifying edges as indicated in Figure 2.53. The identifications on the edges
(small letters) induce identifications on the vertices (capital letters) as indicated.
We indicate a Möbius band in the surface to show that it is nonorientable.

Although we could find a handle decomposition for this surface, we will
identify it by other means. In general, a polygon with some edges identified in
pairs will be nonorientable iff there is a pair of identified edges which have orient-
ation (given by arrows) in the same direction (i.e. either both clockwise or both
counterclockwise). In such a situation it is easy to find a Möbius band as above; it
is harder to show (but true) that, if all identified pairs have opposite orientations,
then the surface is orientable. There is one boundary component corresponding
to each of the unidentified edges b and d. The question of Euler characteristic

(a) (b)

Figure 2.52. Surfaces to identify for Exercise 2.7.5.
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Figure 2.53. Möbius band within identified polygon.
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Figure 2.54. Geometrical identification of the surface.

remains. It turns out that there is an easy way to compute the Euler charac-
teristic here. Just count the vertices A,B (2) and the edges a, b, c, d (4) and the
one face given by the hexagon and take the alternating sum V − E + F = −1.
This formula V − E + F for a polyhedron divided into polygons is named after
Euler who proved results concerning it but dates back at least to Descartes in
some circumstances. That this computation agrees with our earlier definition in
terms of handle decompositions can be shown using homology theory. Thus we

can identify this surface with P
(1)
(2) .
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Figure 2.55. Polygon with identifications.

To see this more geometrically, consider Figure 2.54. First note that we can
push the boundary circles into the polygon and form a diamond (with identifica-
tions) with two holes. Fill in the holes (keeping track of their existence) and then
start folding the edges labeled c. As we do so, we can make the edges labeled
a deform to halves of a disk as the two copies of c come together to form one
interior edge. We are left with a disk with opposite edges identified, which is
a description of the projective plane. Recalling the two holes we filled in, our

original surface is P
(1)
(2) .

Figure 2.55 gives another example of a polygon with identified edges.
First we find out which vertices are identified. We do this by identifying the

initial vertex of a with the initial vertex of a in its other occurrence and the
corresponding terminal vertices. We then get the following vertices: A = in a =
term g = in d = term e;B = term a = in b = term c = term h; C = in c =
term b = term d = in h; D = in g = in i = term i; E = in e = in f = term f .

Thus we get five vertices, nine edges, and one face. The Euler characteristic
is −3. The free edges (not identified to another edge) are c, f, h, i. The edges f
and i each give a boundary circle, and c and h together give a boundary circle.
Hence the number of boundary components is three. The surface is orientable
since each pair of edges that are identified occurs with the opposite orientations.
Hence the surface is T(3).

The classification theorem can be developed from the point of view of poly-
gons with identifications. For a treatment from this point of view, see the books
by Cairns [7] and Massey [18]. We prefer the handlebody approach both because
it is of a more geometrical rather than combinatorial flavor and because the idea
of a handlebody decomposition is of such importance in the study of manifolds.
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a sphere with two holes and
      a 1-handle attached

(a) (b)

a disk with two holes and
    a 1-handle attached

Figure 2.56. Surfaces for Exercise 2.7.7.

Figure 2.57. Surface for Exercise 2.7.8.

Exercise 2.7.6. Identify the following surfaces:

(a) M has χ = −5, is nonorientable, and has three boundary components.

(b) N is orientable, has χ = −2, and has empty boundary.

Exercise 2.7.7. Identify the surfaces depicted in Figure 2.56.

Exercise 2.7.8. Identify the surface depicted in Figure 2.57. (Hint: First fill in
the obvious holes. Then find a handle decomposition of what is left. Also, you
might try breaking it into a connected sum of pieces that are easier to identify.)

Exercise 2.7.9. Identify the surfaces in Figure 2.58.

2.8 Simplifying handle decompositions

This section concerns the structure of handle decompositions of a surface or
surface with boundary. It may be approached as a project as we will outline
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Figure 2.58. Surfaces for Exercise 2.7.9.

proofs of important facets of handle decompositions, including their existence
and how they may be simplified. We also relate the handle decomposition to
matrices and handle operations to matrix manipulations.

We have already made one simplification in our very definition of a handle
decomposition, since we defined a handle decomposition so that the handles
are attached in order of increasing index; that is, we first attached 0-handles,
then 1-handles, and finally the 2-handles. From some methods that generate
handle decompositions, this property may not be satisfied. However, it is easy
to arrange. Show that if we have a handle decomposition of a surface where the
handles are not necessarily attached in order of increasing index, then there is a
directly corresponding handle decomposition where they are attached this way.
The key idea is that a 0-handle does not interfere with any handles that were
attached before it is attached and no handle attached after a 2-handle interferes
with the 2-handle.

This justifies our assumption that a handle decomposition starts with the
0-handles, then the 1-handles, and finally the 2-handles. From this point, we
showed in the proof of the classification theorem that we could find a different
handle decomposition for the surface where the 1-handles were attached dis-
jointly and there was a single 0-handle. For each 1-handle, call the arcs where
the 1-handle is attached to the 0-handle the attaching arcs, and the other two
arcs of the boundary of the 1-handle the transverse arcs. In terms of the structure
of a 1-handle as D1 × D1, the attaching arcs are {±1} × D1 and the transverse
arcs are D1 × {±1}. These transverse arcs become part of the boundary at
the stage after the 1-handle is attached, and each 2-handle will intersect some
of them.

Now consider a surface without boundary with a handle decomposition with
a single 0-handle and disjoint 1-handles. As we attach the 2-handles, show that if
the attaching circle of the 2-handle intersects the transverse region of a 1-handle,
then the intersection must be one of the two arcs or both of the arcs. Then show
that when we attach a 2-handle, its boundary circle is divided into subarcs which
alternately run over transverse arcs for 1-handles and arcs on the boundary of the
0-handle. Show that this means that we can form a “dual” handle decomposition
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where the original 2-handles are now considered 0-handles, the original 0-handle
is now considered a 2-handle, and the 1-handles take the role of 1-handles but
with the role of the attaching and transverse arcs reversed. That is, what were
previously transverse arcs become attaching arcs and what were attaching arcs
are now transverse arcs. By reversing the roles of 0-handles and 2-handles, show
that there is a handle decomposition for the surface without boundary with a
single 0-handle and a single 2-handle.

Here is another approach to eliminating excess 0-handles and 2-handles
without isotoping the 1-handles to be disjoint. Suppose that we have a handle-
body H and then we attach a 0-handle h0 and a 1-handle h1 so that one attaching
arc is attached to a circle in ∂H and the other attaching arc is attached to h0.
Show that H ∪ h0 ∪ h1 is homeomorphic to H. Then any handle decomposition
which is built up from H∪h0∪h1 can be simplified to give a handle decomposition
without these two handles. Similarly, show that if we have a handle decomposi-
tion where H = H1∪h1 and then attach a 2-handle h2 to H so that it is attached
along one transverse arc of h1 with the remainder of the attaching circle being
identified to points in ∂H coming from ∂H1, then H∪h2 = H1∪h1∪h2 is homeo-
morphic to H1. Note that the other transverse arc of h1 remains in the boundary
after h2 is attached, so h2 is not filling in the last hole in the boundary. For each
of these you should think of these homeomorphisms as arising from adding a
rectangle to a surface with boundary with an edge of the rectangle being identi-
fied with an interval in the boundary. A collar neighborhood of the boundary is
useful here, as is the argument in Section 2.5 on how to create an extra 1-handle
and 2-handle for a surface with boundary. You should investigate where the other
transverse arc is sent under the homeomorphism between H1 ∪ h1 ∪ h2 and H1.
The handles h0, h1 in the first case and h1, h2 in the second case which we elim-
inate in the new handle decompositions are called canceling handles. Using this
idea, give another argument that any handle decomposition for a surface without
boundary can be simplified to have a single 0-handle and a single 2-handle.

A connected surface must have at least one 0-handle, and if it has no bound-
ary, it must have at least one 2-handle. Use the Euler characteristic to show
that the Euler characteristic and the number of 0- and 2-handles determines
how many 1-handles there must be. Use this to show that the minimal number
of handles in a handle decomposition of T (g) is 2 + 2g and it has 2g 1-handles
to go with a single 0-handle and single 2-handle. Show that the minimal num-

ber of handles for T
(g)
(p) , p > 0, is 2k + p and give a handle decomposition with

exactly that number of handles. Determine the minimal number of handles in

handle decompositions of S(p) and P
(h)
(p) , giving handle decompositions with these

numbers of handles.
There is an algebraic means of quantifying the twisting and linking of a

handle decomposition with 0- and 1-handles with a matrix with entries in the
integers mod 2. We consider the handles as being attached disjointly to the
boundary of a disk. We say a 1-handle has self-linking 1 or is twisted if when
it is attached to the disk, then the result is the Möbius band P(1). If attaching
the handle to a disk adds a boundary circle to form S(2), then we say it has
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self-linking number 0. We say that two 1-handles have linking number 1 if the
attaching arcs of one of them lie in two separate components of the complement
of the attaching arcs of the other on the boundary of the disk. If they lie in the
same component, then the linking number is 0. An example of when this occurs
is in forming the handle decomposition of T(1). We then associate a matrix to
the handle decomposition as follows: the ii-entry of the matrix is the self-linking
number of the i-th handle, and the ij-entry of the matrix will be the linking
number of the i-th handle with the j-th handle. For the case of the standard
handle decompositions of P(1), T(1),K(1), the corresponding matrices are

(

1
)

,

(

0 1
1 0

)

,

(

0 1
1 1

)

.

The matrix obtained does depend on the ordering of the handles, but chan-
ging the order changes the matrix by a congruence using a permutation matrix
corresponding to the reordering.

We now want to investigate algebraically what is happening to this matrix
for handlebodies formed from attaching disjoint 1-handles to a disk during steps
in the proof of the classification theorem.

1. Show that the matrix of a handle decomposition is a symmetric matrix.
2. Show that when we take the boundary connected sum A

∐
B and amal-

gamate the two original 0-handles and the one handle to form the 0-handle of
the sum, then the matrix M(A

∐
B) is

(

M(A) 0
0 M(B)

)

; (2.8.1)

that is, it is the block matrix formed from the individual matrices for A
and B.

3. Show that when we change the handle decomposition by sliding one attach-
ing arc of handle h1

i over one transverse arc of handle h1
j , the new matrix

entries m′
pq change from the old one mpq as follows: (1) if neither p, q is i,

then m′
pq = mpq; (2) if q �= i, then m′

iq = miq + mjq,m
′
qi = mqi + mqj ; (3)

m′
ii = mii + mjj and m′

kk = mkk, k �= i. Note that all of these additions are
being done modulo 2. Verify that algebraically we are getting from M to M ′ by
adding row j to row i and then adding column j to column i. This is just the
step in the symmetric simplification of a matrix changing M to M ′ = EMEt,
where E is the elementary matrix which differs from the identity by a 1 in the ij-
position. You should check that this step occurs in the proof of the fundamental
lemma via handle sliding and use what happens there as a model for your proof.
Verify that when we slide both arcs over a single arc of another handle, it does
not change the matrix.

4. Consider the operation of sliding other handles off of an interval for a
torus pair that occurs in the proof of the orientable case. Determine how this
changes the matrix. For simplicity, consider these two handles for the torus
pair as handles 1 and 2 (this just corresponds to conjugation by a permutation
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matrix). You should consider how this operation affects any two other handles
which have an attaching arc in the interval we are sliding off of. In particular,
how does it affect rows and columns 1 and 2 and the diagonal entries.

5. Consider the operation of freeing an inner hole that occurs in the proof.
What does that correspond to in terms of the matrix?

6. Consider the operation of sliding an attaching arc off of the interval
enclosed by the two arcs of a twisted handle. What does this correspond to
in terms of the matrix? In particular, if the twisted handle is labeled as handle
1, then what happens to row and column 1 during this operation.

7. Show that the proof of the classification theorem leads to a proof that
the symmetric matrix for a handle decomposition can be reduced to the stand-

ard matrix for S(p), T
(g)
(p) , P

(h)
(p) via congruence with elementary matrices and

permutation matrices.
8. Show that if the matrix for the handle decomposition is the one for the

standard decomposition of S(p), T
(k)
(p) , or P

(k)
(p) , then the surface is in fact homeo-

morphic to one of these standard surfaces. One approach to doing this is using
induction and splitting off a piece of the surface corresponding to a block in the
matrix decomposition.

We now leave the topic of simplifying handle decompositions and address
their existence. From various examples relating to figures from knots and links,
we have seen how handle decompositions may arise. The proof of the existence of
a handle decomposition for a surface typically involves some other structure on
the surface such as a triangulation or a smooth structure for the surface. Pursuing
either approach involves a number of technicalities. We content ourselves with
looking at illustrative examples. The most basic example is that of the torus
embedded in 3-space as pictured in Figure 2.59. Here the height function has
the property that near each critical point the Hessian matrix of second-order
partial derivatives is nondegenerate; that is, it is in one of the following forms
in local coordinates given by the first two coordinates: (1) x2 + y2 + p (local
minimum); (2) −x2 + y2 + p or x2 − y2 + p (saddle point); (3) −x2 − y2 + p
(local maximum). The number of minus signs gives the index of the critical
point. We can think of the surface as being built up from the empty set by
looking at the part of it beneath a given height. As we pass each critical point,
the surface changes up to homeomorphism by adding a handle whose index is
that of the critical point, and then adding a collar on the boundary (which does
not change the homeomorphism type). For the torus in Figure 2.59, we indicate
the handles that are added. In Morse theory (see [19, 20, 11, 15]) it is shown
that each differentiable surface has a function that is qualitatively similar to the
height function in the case of the torus, and this may be used to give a handle
decomposition for the surface just as the height function was used to give a
handle decomposition for the torus.

Use the height function to find handle decompositions for the surfaces in
Figure 2.60. Determine which of the model surfaces each surface is homeomorphic
to. Then show how to modify the handle decomposition so that it is standard if
it is not already.
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Figure 2.59. Handle decomposition for the torus.
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Figure 2.60. Finding handle decompositions for surfaces.

Another way that a handle decomposition may arise is from a triangulation
of a surface. Here we decompose the surface into (homeomorphic images of)
triangles which have to fit together according to prescribed rules to form the
surface. The 0-handles will correspond to the vertices, the 1-handles correspond
to the edges, and the 2-handles correspond to the triangles. In order that we can
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Figure 2.61. Handle decomposition for an identified polygon.

draw this more easily, we will assume that the surface is formed from a polygon
with identifications as we discussed before. This will not necessarily give an obvi-
ous triangulation, but it does determine a fairly simple handle decomposition.
The identifications of edges in pairs will induce identifications of vertices. For
each class of identified vertices, their neighborhood will fit together to form a
0-handle. Then the neighborhoods of the identified edges fit together to form a
1-handle. The remainder of the surface will then give a 2-handle. For example,
consider Figure 2.61. We pull apart the surface to illustrate the 0- and 1-handles
in the corresponding handle decomposition. By sliding C over B we can change
the handle decomposition to a standard one for T (2).

Give a picture of the 0- and 1-handles corresponding to the expression of the
sphere as a tetrahedron and as a cube. Indicate the boundary circles where the
2-handles will be attached. Give a picture of the 0- and 1-handles corresponding
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Figure 2.62. Finding handle decompositions for identified polygons.

to the surfaces in Figure 2.62 given as a polygon with identifications. Use this
to identify the surfaces in terms of the standard models.

These examples show how to go from a polygon with some pairwise identific-
ations to a handle decomposition. Suppose we have a handle decomposition of a
surface which has a single 0-handle and 1-handles which are attached disjointly.
Now consider cutting each handle open along {0}×D1 to get some “half-handles”
sticking out from the disk. Getting the handles back involves identifying these
two central edges. Before doing this, show that we can push the half-handles
back into the disk and then think of the result as a disk. Then we are getting
the surface from this disk with some arcs on its boundary identified in pairs
corresponding to the arcs {0} × D1 for each 1-handle. We picture this process
in Figure 2.63. We are starting with a figure (a) from Exercise 2.6.3. Use Exer-
cises 2.6.3 (figure (b)) and 2.6.4 as examples to work out what polygons with
identifications they become. Then determine an algorithm which describes the
pattern of identifications you will get. Consider the process of handle sliding
and determine how this changes the pattern of identifications. Use this to give
another proof of the classification theorem, where the goal is to get the pattern
of identifications to be a standard pattern.

2.9 Supplementary exercises

Exercises 2.9.1–2.9.8 outline an argument that a compact connected 1-manifold
is homeomorphic to S1.
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Figure 2.63. Expressing a handlebody as a polygon with identifications.

Exercise 2.9.1. Verify that the circle S1 is a compact connected 1-manifold.
Show that S1 can be covered by two open sets U, V , each homeomorphic to R,
so that U ∩ V is homeomorphic to the union of two disjoint open rays.

Exercise 2.9.2. Show that a compact 1-manifold is not homeomorphic to an
open set in R.

Exercise 2.9.3. Show that a proper open set in R may be decomposed
(uniquely) as the union of a disjoint (countable) collection of intervals and rays.
(Hint: For x ∈ U , find the largest interval Ix ⊂ U containing x.)

Exercise 2.9.4. Suppose Ui, Uj are two open sets in a 1-manifold M with
homeomorphisms hi : Ui → R, hj : Uj → R, and hji = hjh

−1
i : hi(Ui ∩ Uj) →

hj(Ui ∩Uj) is the homeomorphism between the two images of Ui ∩Uj . Show that
if a finite interval (a, b) is in the decomposition of Exercise 2.9.3 for hi(Ui ∩ Uj),
then hji(a, b) = R. (Hint: Suppose hji(a, b) = (c, d) and hji is order preserving.
If {ak} is a sequence in (a, b), converging to a, then {h−1

i (ak)} will be a sequence
in M converging to both h−1

i (a) and h−1
j (c), which is impossible in a metric

space. Similar reasoning will show that the only possibility is hji(a, b) = R.)

Exercise 2.9.5. Show that one of the three cases must occur:

(a) hi(Ui ∩ Uj) or hj(Ui ∩ Uj) is R;

(b) hi(Ui ∩ Uj) and hj(Ui ∩ Uj) are each a ray;

(c) hi(Ui ∩ Uj) and hj(Ui ∩ Uj) each consists of two rays.

Exercise 2.9.6. Show that in cases (a) and (b) above, Ui ∪Uj is homeomorphic
to R.

Exercise 2.9.7. Show that in case (c) above, Ui ∪ Uj is homeomorphic to S1.

Exercise 2.9.8. Use induction on the number of open sets in a covering of M
by open sets homeomorphic to R and the two previous exercises to conclude
that a compact connected 1-manifold is homeomorphic to S1. (Hint: Show that
if U1 ∪ U2 already falls into case (c), then any more Ui are superfluous; that is,
Ui ⊂ U1 ∪U2 by using an argument similar to the one outlined in Exercise 2.9.4.)
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Exercise 2.9.9. Show that connected n-manifold is path connected. (Hint:
Mimic the proof that a connected open set in Rn is path connected or use
Exercise 1.9.51.)

Exercise 2.9.10. Show that a compact n-manifold has only a finite number of
path components, each of which is a compact, connected n-manifold. Conclude
that a compact 1-manifold is the disjoint union of a finite number of circles.

Exercise 2.9.11. Show that in a compact connected 1-manifold with nonempty
boundary, if hi(Ui) = [0,∞) and hj(Vj) = R and we do not have Vj ⊂ Ui, and
Ui ∩ Vj �= ∅, then hi(Ui ∩ Vj) and hj(Ui ∩ Vj) must each be rays, and Ui ∪ Vj is
homeomorphic to [0,∞).

Exercise 2.9.12. Show that in a compact connected 1-manifold with nonempty
boundary, if hi(Ui) = [0,∞) and hj(Uj) = [0,∞) with h−1

i (0) �= h−1
j (0), and

Ui ∩ Uj �= ∅, then hi(Ui ∩ Uj) = (a,∞), a > 0 and hj(Ui ∩ Uj) = (b,∞), with
hji : (a,∞) → (b,∞) an orientation-reversing diffeomorphism, and U1 ∪ U2 is
homeomorphic to a closed interval.

Exercise 2.9.13. Show that a compact connected 1-manifold with nonempty
boundary is homeomorphic to [0, 1].

Exercise 2.9.14. Show that Exercise 2.9.13 implies Exercise 2.9.8. (Hint:
Remove an open interval (a, b) in a neighborhood homeomorphic to R from the
given compact connected 1-manifold.)

Exercise 2.9.15. Show that Figure 2.64 does not represent a 1-manifold. (Hint:
Look at a small neighborhood of one of the points where three segments come
together. Show that if it were a 1-manifold, there would have to be a standard
neighborhood that is homeomorphic to a connected open subset of the line, and
derive a contradiction from this.)

Exercise 2.9.16. Show that the map f : S → P, f(x) = [x], arising from
considering P as a quotient space of S by identifying x with −x, has the property
that given y ∈ P , there is a neighborhood U of y so that f−1(U) = U1

⊔

U2 and
p|Ui is a homeomorphism of Ui onto U .

Figure 2.64. Not a 1-manifold.
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Figure 2.65. Collapsing a wedge in a torus.

Exercise 2.9.17. Construct a continuous map p : T → K so that, given x ∈
K, there is a neighborhood U of x so that p−1(U) = U1

⊔

U2 and p|Ui is a
homeomorphism of Ui onto U . (Hint: Consider T and K as quotient spaces of
R2, or alternatively, consider T as a quotient space of [−1, 3]× [−1, 1] and K as
a quotient space of [−1, 1] × [−1, 1].)

Exercise 2.9.18. Construct a homeomorphism between the complement of two
points in a sphere S and the complement of one circle (properly chosen) in T .

Exercise 2.9.19. Construct a continuous map from the torus T = S1
a × S1

b

onto the sphere S which sends S1
a × {p} ∪ {p} × S1

b to the south pole and is a
homeomorphism on T\(S1

a × {p} ∪ {p} × S1
b ). (Hint: Consider a rotating family

of planes through the south pole and the intersection with S (see Figure 2.65).
Alternatively, think of both S and T as arising from a disk by making certain
identifications on the boundary circle.)

Exercise 2.9.20. Remove a small neighborhood of the center circle in the
Möbius band which is itself a smaller Möbius band. Show that the resulting
space is homeomorphic to a cylinder (see Figure 2.66).

Exercise 2.9.21. Show that there is a circle embedded in T\D2 which, when

removed, has connected complement. Use this fact to show that T
(k)
(p) cannot be

embedded in the plane, where k ≥ 1, p ≥ 0.

Exercise 2.9.22. Show that a 2-sphere S cannot be embedded in the plane.
(Hint: Use invariance of domain.)

Exercise 2.9.23. Use Exercises 2.9.21, 2.9.22, 2.4.1, and the classification the-
orem to characterize the compact connected surfaces (with or without boundary)
that can be embedded in the plane.

Exercise 2.9.24. Construct an embedding of the Möbius band into the solid
torus S1 × D2 so that the boundary curve in the Möbius band is embedded on
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Figure 2.66. Removing a smaller Möbius band.

the boundary torus S1 × S1. Describe the composition of the embedding of the
boundary circle with the projections of T = S1

a × S1
b onto the circles S1

a and S1
b .

The next four exercises use Theorem 2.4.1 to prove Theorem 2.4.2.

Lemma 2.9.1. Any embedded disk f : D2 → R2 is ambient isotopic to g : D2 →
R2 with g(D2) = D2 and g(S1) = S1. The ambient isotopy can be chosen to be
the identity outside a large disk.

Exercise 2.9.25. Use Theorem 2.4.1 to prove Lemma 2.9.1.

If f : D2 → D2 is a homeomorphism, then we say that f is orientation
preserving (reversing) if f |S1 is. We extend Lemma 2.3.6 from circles to disks.

Lemma 2.9.2.

(a) An orientation-preserving homeomorphism f : D2 → D2 is isotopic to
the identity.

(b) An orientation-reversing homeomorphism f : D2 → D2 is isotopic to the
reflection r(x, y) = (x,−y).

Exercise 2.9.26. Prove Lemma 2.9.2. (Hint: (b) will follow from (a) by using
a composition of r and the isotopy. The key idea for (a) is to first extend f |S1

to a homeomorphism F : D2 → D2 by coning at 0, and extend the isotopy Ft

between the identity and f |S1 to an isotopy Gt between the identity and this
extension. Then g = G−1f will be isotopic to f and will be the identity on
S1. Then show that g is isotopic to the identity via an isotopy that gradually
increases the annular region near the boundary which is sent via the identity and
compresses the action of g to smaller and smaller disks about the origin.)

Exercise 2.9.27. Suppose f : D2 → D2 is isotopic to the identity with the
restriction to S1 given by Ft : S1 → S1, with F0 = id and F1 = f |S1. We can
extend f to a homeomorphism f̃ : R2 → R2 as follows. For 1 ≤ r = |x| ≤ 2,
define f̃(x) = rF2−r(x/r). This is just using the isotopy Ft on each circle. Then
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f̃(x) = x for |x| = 2. We then define f̃(x) = x when |x| ≥ 2. Give an isotopy
between f̃ and the identity which extends the isotopy between f and the identity.

Exercise 2.9.28. Deduce all but the last statement of Theorem 2.4.2 from the
preceding exercises. That i and ir are not isotopic will be shown in Chapter 6
as an application of homology.

The next five exercises will outline the proof of Theorem 2.4.3 that there are
at most two isotopy classes of embedded disks in a surface by reducing it to the
strong form of the disk lemma for embedded disks in the plane, Theorem 2.4.2.

Exercise 2.9.29. For ǫ < 1, define cǫ : [0,∞) → [0,∞) to be (i) the identity on
[2,∞), (ii) the affine linear map sending [0, 1] to [0, ǫ] by multiplying by ǫ, and
(iii) the unique affine linear map sending [1, 2] to [ǫ, 2]. Give a formula for cǫ and
show that cǫ is isotopic to the identity with an isotopy kt which is the identity
on [2,∞).

Exercise 2.9.30. Using cǫ of the last exercise, define Cǫ : R2 → R2 by Cǫ(x) =
cǫ(|x|)x/|x|, x �= 0, Cǫ(0) = 0.

(a) Show that Cǫ is isotopic to the identity with identity isotopy outside 2D2

via an isotopy Kt.

(b) For an embedded disk f : D2 → M , which is the restriction of an embed-
ding f̃ : R2 → M , let f̃ ǫ = f̃Cǫ. Show that f = f̃ i is ambient isotopic to
f ǫ = f̃ ǫi, where the ambient isotopy is the identity off of f(2D2).

(c) Show that if V ⊂ M is an open set about f(0), then f is ambient isotopic
to g with g(D2) ⊂ V .

Exercise 2.9.31. Show that given x,y ∈ intD2, there is a homeomorphism
h : D2 → D2, with h(x) = y and h(z) = z for z ∈ S1. Show that h is isotopic
to the identity where the isotopy Ht|∂D = id. (Hint: Use coning.)

Exercise 2.9.32. Suppose that M is a connected surface with (possibly empty)
boundary and x, y ∈ intM . Show that there is an isotopy Ht of M which is the
identity on ∂M with H0 = id and H1(x) = y. If C is a collar of the boundary
and x, y ∈ M\C, show that we can assume that H is the identity on C. (Hint:
Fix x ∈ intM . Let U = intM , and consider the set A of those points y ∈ U so
that there is an isotopy Ht of M which is the identity on ∂M with H0 = id and
H1(x) = y. Show that A is both open and closed in U . Use the connectedness of
U to show that A = U .)

Exercise 2.9.33. Use the preceding exercises and the strong form of the disk
lemma in the plane, Theorem 2.4.2, to show that given any two embedded disks
f1, f2 : D2 → intM , there is an isotopy Ht of M which is the identity on a collar
neighborhood of the boundary so that H0 = id and H1f1 = f2 or H1f1 = f2r,
which is Theorem 2.4.3. (Hint: Let U = f̃2(R

2) be an open set about f2(0).
Show that there is an ambient isotopy H1 in M with H1(f1(0)) = f2((0) and
f1(D

2) ⊂ U . Then use Theorem 2.4.2.)
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Exercise 2.9.34. A space M is called homogeneous if, given x, y ∈ M , there is
a homeomorphism h : M → M with h(x) = y. Use Exercise 2.9.32 to show that
a connected manifold without boundary is homogeneous.

Exercise 2.9.35. Show that if a homeomorphism f : R2 → R2 satisfies
f |R2\RD2 = id, then f is isotopic to the identity.

Exercise 2.9.36. Use Lemma 2.9.1 to show that given any two 2-disks D1, D2

embedded in the plane, there is an isotopy Ht : R2 → R2 which is the identity
outside of a large disk so that H0 = id and H1(D1) = D2.

Exercise 2.9.37. From our proof of the classification theorem for handlebodies,
a nonorientable surface possesses an embedded Möbius band which we can think
of as arising inside a twisted handle and a collar of the 0-handle. For any bound-
ary circle C, we can take a collar of this circle, the Möbius band, and a rectangle
joining them to form a subset W which is homeomorphic to the left diagram of
Figure 2.67. Explain why this region is homeomorphic to a Möbius band with a
disk removed as pictured on the right side of Figure 2.67. Use this homeomorph-
ism to find a homeomorphism of the handlebody which is the identity outside of
W and reverses the orientation of C.

Exercise 2.9.38. Use the previous exercise and the discussion preceding
Theorem 2.6.5 to give an independent proof of Corollary 2.4.6 for handlebodies.

Exercise 2.9.39. In Chapter 6, it is shown that handle-oriented surfaces are
disk-oriented. Use this to show that the three definitions of being orientable for
handlebodies are equivalent. (Hint: Call these three definitions handle-orientable,
Möbius-orientable, and disk-orientable. Show handle-nonorientable implies
Möbius-nonorientable implies disk-nonorientable implies handle-nonorientable.)

Figure 2.67. Using a Möbius band to reverse orientation on a boundary circle.
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(a) (b)

Figure 2.68. Orientable handlebodies.

(a) (b)

(c)

Figure 2.69. Finding a Möbius band.

Exercise 2.9.40. Give a handlebody decomposition for each of the surfaces in
Figure 2.68 and orient the handles consistently to show that the surfaces are
orientable.

Exercise 2.9.41. Show that the surfaces in Figure 2.69 are nonorientable by
finding an embedded Möbius band. Then find a handle decomposition in each
case and show that the handles cannot be oriented consistently.

Exercise 2.9.42. Show that a handlebody with only one 0-handle is connected.
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Figure 2.70. Decompositions with a single 0-handle.

Exercise 2.9.43. In the connected handlebodies of Figure 2.70, find a new
decomposition with exactly one 0-handle.

Exercise 2.9.44. Find a new handle decomposition for Figure 2.70(c) so that
the 1-handles are all attached to the boundaries of the 0-handles.

Exercise 2.9.45. What is the minimal number of 1-handles required for a
handle decomposition of T#T . Construct a handle decomposition of T#T with
this minimal number of 1-handles. (Hint: Consider the Euler characteristic.)

Exercise 2.9.46. Construct a handle decomposition of (T#T )(1) with three
0-handles, seven 1-handles, and one 2-handle.

Exercise 2.9.47. Write the surfaces in Figure 2.71 as connected sums, or bound-
ary connected sums, of other surfaces, none of which is a disk or a sphere. Indicate
in the figure what the two pieces are and which of the standard surfaces (with
boundary) each is homeomorphic to.

Exercise 2.9.48. In each of the surfaces with boundary in Figure 2.72, find an
arc A joining two points on the boundary so that if we cut the surface along the
arc and open it up (equivalently, remove a neighborhood A× (−1, 1) of the arc),
we get two surfaces, neither of which is homeomorphic to a disk. Relate this to
a boundary connected-sum decomposition.

Exercise 2.9.49. In each of the surfaces in Figure 2.73, find an embedded
circle C which separates the surface so that if we cut the surface along the
circle (equivalently, remove a neighborhood C × (−1, 1) of the circle), we get two
surfaces, neither of which is homeomorphic to S(p). Relate this to a connected-
sum decomposition.
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(a) (b)

(c)

Figure 2.71. Connected sums.

(a) (b)

Figure 2.72. Separating arcs and boundary sums.

(a) (b)

remove four disks from boundary of
the cube and connect with tubes

Figure 2.73. Separating circles and connected sums.

Exercise 2.9.50. Show that the disk with the upper semicircle identified to the
lower semicircle as indicated in Figure 2.74(a) is homeomorphic to S. (Hint: Send
the arc a to an arc in the xz-plane joining (−1, 0, 0) to (1, 0, 0) going through the
south pole and send vertical lines to the intersection of S with planes parallel to
the yz-plane.)

Exercise 2.9.51. Show that the disk with the upper semicircle identified to the
lower semicircle as indicated in Figure 2.74(b) is homeomorphic to P .
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Figure 2.75. Connected sum and words.

Exercise 2.9.52. Show that the disk with identifications on the boundary circle
as indicated in Figure 2.74(c) is homeomorphic to T .

Exercise 2.9.53. If the boundary of a disk is divided into 2n edges and the
edges are identified in pairs, show that the quotient space represents a compact
connected surface.

Exercise 2.9.54. Suppose a surface S comes from a disk by dividing its bound-
ary into 2n edges and identifying the edges in pairs. Associate to S the word
given by starting at a vertex and reading counterclockwise around the circle (and
reading a−1 whenever the arrow on a is clockwise). For example, we get words
aa−1, aa, and aba−1b−1 for Figure 2.74(a), (b), and (c), respectively. Show that
if w(X) represents the word associated to X in this fashion and similarly w(Y )
(using different letters) is associated to Y , then the juxtaposition w(X)w(Y ) is
associated to X#Y . (e.g. bbcdc−1d−1 is associated to P#T ). (Hint: Form the
connected sum as indicated in Figure 2.75).

Exercise 2.9.55. Show that T (k) may be represented as a disk with identifica-
tions on the boundary associated to the word a1b1a

−1
1 b−1

1 . . . akbka
−1
k b−1

k . Show
that P (k) may be represented as a disk with identifications on the boundary
associated to the word a1a1 · · · akak.
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Figure 2.76. Orienting a triangulation.

Exercise 2.9.56. Show that the words a1a1a2a2a3a3, a1a1a2a3a
−1
2 a3, a1a1a2a3

a−1
2 a−1

3 are associated to homeomorphic surfaces.

Exercise 2.9.57. Suppose T1, . . . , Tn are triangles in RN so that: (i) any two
triangles are disjoint or they intersect in a common edge or vertex; (ii) every
edge is the edge of precisely two triangles; (iii) for any vertex v, the triangles
containing v may be ordered cyclically Tv,1, Tv,2, . . . , Tv,k, Tv,1 so that subsequent
triangles intersect along an edge with only the vertex v in common as in right
figure in Figure 2.76. Show that X = ∪n

i=1Ti is a surface (called a triangulated
surface).

Exercise 2.9.58. Find homeomorphic images of S and T in R3 that are
triangulated surfaces.

Exercise 2.9.59. A triangulated surface is orientable if we can orient each
triangle (by giving a clockwise or counterclockwise direction to its edges) so that
for any edge, the two triangles containing the edge impose opposite orientations
on the edge (see Figure 2.76). Show how to orient your triangulations of S and
T in this manner.

Exercise 2.9.60. Indicate how a triangulated surface which cannot be oriented
(in terms of orienting the triangles consistently) will contain a Möbius band.

In the problems below, you are asked to identify surfaces; that is, tell which

one of the surfaces S(p), T
(g)
(p) , P

(h)
(p) the given surface is homeomorphic to.

Exercise 2.9.61. Which surface is the surface of a coffee cup homeomorphic to?

Exercise 2.9.62. Identify the following surface. Take an empty box (with thick-
ness) and poke a small hole in each face. The surface is the surface of the box
after the holes are poked.

Exercise 2.9.63. Identify the surfaces in Figure 2.68.

Exercise 2.9.64. Identify the surfaces in Figure 2.69.

Exercise 2.9.65. Identify the surfaces in Figure 2.70.

Exercise 2.9.66. Identify the surfaces in Figure 2.71.

Exercise 2.9.67. Identify the surfaces in Figure 2.72.
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a

a

b

b c

dd

Figure 2.77. Quotient of a hexagon.

Figure 2.78. Surface for Exercise 2.9.70.

Figure 2.79. Surface for Exercise 2.9.71.

Exercise 2.9.68. Identify the surfaces in Figure 2.73.

Exercise 2.9.69. Identify the surface formed from a hexagon by identifying
edges as indicated in Figure 2.77.

Exercise 2.9.70. Identify the surface in Figure 2.78.

Exercise 2.9.71. Identify the surface in Figure 2.79.

Exercise 2.9.72. Identify the surface in Figure 2.80.
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Figure 2.80. Surface for Exercise 2.9.72.

Figure 2.81. Surface for Exercise 2.9.73.

Exercise 2.9.73. Identify the surface in Figure 2.81.

Exercise 2.9.74. Identify the surface obtained by taking the connected sum of
two disks. Identify the surface obtained by taking the boundary connected sum
of two disks.

Exercise 2.9.75. Using a model of T in R3 which is symmetric with respect
to the yz-plane and reflection through that plane, construct a homeomorphism
from T(1) to T(1) which reverses orientation on the boundary circle.

Exercise 2.9.76. Using a model for general orientable surface M = T
(g)
(p) in R3,

construct a homeomorphism of M which reverses orientation on each boundary
circle.

Exercise 2.9.77. Construct a homeomorphism between T\{p} and the surface
in Figure 2.82 (without the boundary circle).

Exercise 2.9.78. Describe a homeomorphism between the two surfaces in
Figure 2.83.

Exercise 2.9.79. Recall that an isotopy F : A×I → B×I between embeddings
f0, f1 : A → B is called ambient if there is an isotopy H : B × I → B × I with
Ft = Htf0. Show that if A = I and B = S1, then every isotopy of embeddings
of I into S1 is ambient.

Exercise 2.9.80. A homotopy between continuous maps f0, f1 : A → B is a
continuous map F : A × I → B,F (x, t) = Ft(x) with F0 = f0F1 = f1 (f0 and f1
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Figure 2.82. T\{p}.

Figure 2.83. Constructing a homeomorphism.

are said to be homotopic). If f0, f1 are embeddings and each Ft is an embedding,
then F (x, t) = (Ft(x), t) will be an isotopy. Thus a homotopy is a generalization
of an isotopy. Show that f0(x) = x and f1(x) = −x are homotopic embeddings
from D1 to D1 but they are not isotopic. (Hint: Construct a homotopy F so
that F maps {x} × I to the straight line between (x, 0) and (−x, 1). Show that
no isotopy exists because f0 preserves order and f1 reverses order.)

Exercise 2.9.81. Give a homeomorphism between D1×D1∪f h1 and D1×D1∪g

h1 where f(−1, x) = (−1, x), f(1, x) = (1, x), and g(−1, x) = (1, x), g(1, x) =
(−1, x).

Exercise 2.9.82. Give a homeomorphism h between D1 × D1 ∪f h1 and D1 ×
D1 ∪g h1 where f(−1, x) = (−1, x), f(1, x) = (1, x), g(−1, x) = (x, 1), g(1, x) =
(x,−1), and, moreover, h restricts to the identity on a small disk in the interior
of D1 × D1 as well as on h1.

In the next group of exercises, we give an outline of another proof of the
classification theorem. It is modeled on a proof given by Hirsch [15]. We will
be working with a surface without boundary here, which is given to us with a
handle decomposition. The argument is based on an inductive argument which
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uses induction on the number of 1-handles. The idea is to simplify the surface by
finding within it a torus or projective plane and then writing the given surface
M as N#T or N#P , where N has fewer 1-handles and is known by induction;
or to write M as N1#N2 where N1, N2 each have fewer 1-handles and are known
by induction; or to just show that M has a handle decomposition with fewer
1-handles and so is known already by induction.

The result we wish to prove by induction on the number of 1-handles is the
following: If M is a connected handlebody without boundary and is oriented,
then M is homeomorphic to T (2g), where χ(M) = 2 − 2g. If M is a connected
handlebody without boundary and is nonorientable, then M is homeomorphic
to P (h), where χ(M) = 2 − h.

Exercise 2.9.83. Show that, if M has no 1-handles, then M ≃ S2. (Hint: First
show that it has a single 0-handle and a single 2-handle by connectivity.)

Exercise 2.9.84. Show that, if M is nonorientable and there is exactly one
1-handle, then M has exactly three handles and is homeomorphic to P .

We assume that the result is known when M has fewer than k 1-handles and
M has a handle decomposition with k 1-handles. Let h1 denote the first 1-handle
which is attached. Then it is attached to either one or two 0-handles.

Exercise 2.9.85. Show that, if h1 is attached to two 0-handles h0
1 ∪ h0

2 via f ,
then h0

1 ∪ h0
2 ∪f h1 is homeomorphic to a disk. Thinking of this disk as a new

0-handle to replace h0
1, h

0
2, h

1, show that M has a handle decomposition with
fewer 1-handles and use induction to prove the result.

Suppose that h1 is attached to a single 0-handle h0. Then either h0 ∪ h1 is
a cylinder S1 × I or is a Möbius band B. Suppose first that the original handle
decomposition is oriented. Then h0 ∪ h1 = C is a cylinder. Now remove the
interior of the cylinder and glue in two disks D2

1, D
2
2 to N ′ = M\intC along the

boundary circles, oriented so that they form a new oriented handle decomposition
of N = N ′ ∪ D2

1 ∪ D2
2 where we now think of D2

1, D
2
2 as 0-handles to which the

remaining handles of M are attached to form N .

Exercise 2.9.86. Show that, if N ′ is connected, then M ≃ T#N , where N is
an oriented surface and we are forming oriented connected sum. Conclude from
this that M ≃ T (g) with χ(M) = 2 − 2g.

Exercise 2.9.87. Show that, if N ′ is not connected, then it is the union of
two connected oriented surfaces N1, N2 and M is the oriented connected sum
of N1#N2. Conclude from this that M ≃ S and χ(S) = 2 or M ≃ T (g) with
χ(M) = 2 − 2g.

Next suppose that the handle decomposition for M is not orientable, but
h0 ∪ h1 is a cylinder. We remove intC as before and attach the two disks which
impose the same orientations on their boundaries as C to form N from N ′.
Suppose first that N is connected.

Exercise 2.9.88. Show that, if the handle decomposition for N is orientable,
then N ≃ T (k) for some k and M ≃ T (k)#K ≃ P (h). Moreover χ(M) = 2 − h.
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Exercise 2.9.89. Show that, if the handle decomposition for N is nonorientable,
then N ≃ P (k) for some k and M ≃ P (k)#K ≃ P (h) with χ(M) = 2 − h.

Exercise 2.9.90. Next suppose that N is not connected and write N = N1∪N2,
where these are each connected. Then show that one of N1, N2 is nonorientable
and so is homeomorphic to P (k). Show that the other piece is either T (p) or P (l).
Show that M ≃ P (h) with χ(M) = 2 − h.

Exercise 2.9.91. The remaining case is when h0 ∪ h1 ≃ B. Then replacing it
by a disk with the same boundary gives N which has one fewer 1-handle, and
so by induction is homeomorphic to either T (k) or P (l), depending on whether
the handle decomposition is orientable or not. Show that this implies that M is
homeomorphic to P (h) with χ(M) = 2 − h.

Consider the following operation on a surface, called a surgery of index 1.
Embed {−1, 1} × D2 into M via f , remove f({−1, 1} × intD2), and replace
it by D1 × S1 (gluing via f |{−1, 1} × S1). We write the result as χ(M,f) =
(M\f({−1, 1} × intD2) ∪f D1 × S1. This is the operation performed in getting
T and K from S and in forming a connected sum when M = M1

⊔

M2. For an
oriented surface, we can guarantee that the result of the surgery is oriented by
choosing the embeddings of the disks to have one preserve orientation and the
other reverses it. Basically, we are using a fixed orientation on ∂(D1 × D2) =
∂D1 ∪ D2 ∪ D1 × ∂D2 and arranging that the orientation on D1 × ∂D2 fits
together with the orientation on the complement of f(∂D1 × D2) in M . That
the two disks should be embedded with opposite orientations just comes from
the fact that they inherit opposite orientations as part of ∂(D1 × D2).

A related operation is a surgery of index 2 where we embed D1×S1 into N via
g, remove g(intD1 ×S1), and replace it by {−1, 1} ×D2 (gluing via g|{−1, 1} ×
S1). Here χ(N, g) = (M\ intD1 × S1) ∪g {−1, 1} × D2. We do this in a fashion
consistent with the orientation in the case of an oriented surface. Note that these
operations (properly done) are inverses of one another: χ(χ(M,f), g) = M when
g embeds D1 ×S1 into the second factor of χ(M,f) = M\f({−1, 1}× intD2)∪f

D1 × S1. Similarly, χ(χ(N, g), f) = N for properly chosen f . In a connected
manifold, any two embedded disks lie in a larger disk.

Exercise 2.9.92. Suppose H : M × I → M × I is an isotopy in a connected
surface with H0 the identity and H1f = f ′. Show that χ(M,f) is homeomorphic
to χ(M,f ′).

Exercise 2.9.93. Using the fact that χ(S, f) is homeomorphic to either T or
K depending on the embedding f , show that for any connected M,χ(M,f) is
homeomorphic to either M#T or M#K.

Exercise 2.9.94. Use the preceding two exercises to give another proof that
P#T is homeomorphic to P#K.

Exercise 2.9.95. Figure 2.84 shows χ(T, g) for one g : D1 × S1 → T . What
surfaces do we get if we perform surgeries using the three embeddings of D1 ×S1

indicated in Figure 2.85.
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g

χ(T, g)

~_~_

S

D
1 1
× S

Figure 2.84. Surgery on the torus to get a sphere.

(a) (b) (c)

Figure 2.85. Other surgeries on the torus.

Exercise 2.9.96.

(a) Construct a homeomorphism from T to T which sends the center curve
g({0}×S1) in Figure 2.84 to the center curve g({0}×S1) in Figure 2.85(a).

(b) Show that there does not exist a homeomorphism from T to T sending
g({0} × S1) in Figure 2.84 to g({0} × S1) in Figure 2.85(b).

(c) Construct a homeomorphism from T to T which sends the center curve
g({0} × S1) in Figure 2.84 to g({0} × S1) in Figure 2.85(c).

Exercise 2.9.97. Show that if g : D1 × S1 → T is an embedding so that
g({0}×S1) does not separate T (i.e. removing it leaves a path connected surface),
then χ(T, g) is homeomorphic to S. (Hint: Note that χ(T, g) = M , for some
compact connected surface and the inverse surgery will give T back. But it
also gives us either M#K or M#T by the discussion of 1-surgery. Use the
classification theorem.)

Exercise 2.9.98. Suppose g1, g2 : D1 × S1 → T are two embeddings, g1({0} ×
S1) = C1, g2({0} × S1) = C2, and C1, C2 do not separate T . Show there is a
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homeomorphism h : T → T with h(C1) = C2. (Hint: Use the preceding exercise
and the disk lemma.)

Define the genus g(M) of a connected surface M to be the maximal number k
of disjoint circles C1, . . . , Ck that can be embedded in M so that M\(C1∪· · ·∪Ck)
is connected.

Exercise 2.9.99. Show that the genus is a topological invariant of the surface;
that is, homeomorphic surfaces have the same genus.

The following facts are useful in the next exercises. If C = f({0} × S1) is
an embedded circle in an orientable surface M , then f extends to an embedding
of D1 × S1 into M , and M\C is connected iff M\f(D1 × S1) is connected. If
C = f({0} × S1) is an embedded circle in a nonorientable surface, then either
there is an extension of f to an embedding of D1×S1 into M as above or there is
an embedding of the Möbius band B into M with C corresponding to the center
circle. In either case, the connectivity of M\C is equivalent to the connectivity
of the complement of the neighborhood of C (either f(D1 × S1) or f(B)). If
C1, . . . , Ck are disjoint embedded circles, then we can choose the extensions so
that the neighborhoods fi(D

1 × S1) or fi(B) are disjoint.
In the following group of exercises we will use the classification theorem to

find the genus of all surfaces. A different approach to the classification theorem
is to use the idea of nonseparating curves, surgeries, and the Euler characteristic
to give a proof of the classification theorem. This is usually done within the
context of triangulated surfaces and uses the relation of surgery operations and
the Euler characteristic. This is the approach taken in the book by Armstrong
[1], for example.

Exercise 2.9.100. Show that the genus of S is 0 and the genus of T is 1. (Hint:
To see that 2 is not the genus of T , note what happens when we do a surgery on
the first circle.)

Exercise 2.9.101. Show that the genus of T (k) is ≥ k by exhibiting k disjoint
circles in T (k) which do not separate T (k).

Exercise 2.9.102. Show that the result of doing surgery in T (k) via g : D1 ×
S1 ⊂ T (k) such that g({0} × S1) does not separate T (k) is T (k−1).

Exercise 2.9.103. Show that the genus of T (k) is k. (Hint: Use induction on k,
and the previous exercise.)

Exercise 2.9.104. Show that, for any nonorientable M , there is a curve C
which does not separate so that there does not exist g : D1 × S1 → M with
g({0} × S1) = C.

Exercise 2.9.105. Show that the genus of P is ≥ 1.

Consider the following operation on a surface M . Embed D2 in M via f ,
remove f(intD2), and sew in a Möbius band B via f on the boundary circle. Let
η(M,f) = M\f(D2)∪f B. Note that in a nonorientable surface there is an inverse
of this operation. First embed a Möbius band via g : B → N , remove g(intB),
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and sew in a disk, η(N, g) = (N\g(intB))∪g D2. Done properly, η(η(N, g), f) =
N, η(η(M,f), g) = M . These two operations are sometimes called nonorientable
surgeries of index 1 and 2.

Exercise 2.9.106. Show that η(M,f) is homeomorphic to M#P .

Exercise 2.9.107. Show that the genus of P (k) is ≥ k.

Exercise 2.9.108. Show that the genus of P is 1. (Hint: If a curve does not
separate P , show that its neighborhood is B and not D1 × S1.)

Exercise 2.9.109. Show that the genus of P (k) is k.



3

The fundamental group

and its applications

3.1 The main idea of algebraic topology

In this chapter we study, through the example of the fundamental group, the gen-
eral method of algebraic topology. We give a means of associating to a geometric
problem a (hopefully easier) algebraic problem to solve. Consider the problem
of distinguishing between two surfaces. How can we tell, for example, that there
is no homeomorphism between the sphere and the torus? According to algebraic
topology, to solve this problem we should transform it into an algebraic problem
that is readily solved. To each topological space X, associate to it some algeb-
raic object, say a group g(X). Do this in such a way that homeomorphic spaces
have isomorphic groups associated to them. Thus one way of telling that X is
not homeomorphic to Y is by showing that g(X) is not isomorphic to g(Y ). Of
course, this works only when we can readily compute g(X) and g(Y ) and decide
whether or not they are isomorphic. This method is successful in distinguishing
between surfaces.

We now formalize the informal discussion above. In this section, we start
by discussing briefly the concept of a group. Readers with a previous course in
abstract algebra should just skim over the group theory material in this section to
become familiar with our notation and viewpoint. We then apply these ideas to
discuss how algebraic topology uses group theory to answer topological questions.
In later sections and chapters, we will introduce more sophisticated results from
group theory as it is needed.

Definition 3.1.1. A group (G, ·) is a set G together with a binary operation
G×G → G, (a, b) → a · b, which we will call multiplication, satisfying:

(1) there is an element e ∈ G, called the identity of the group, so that

g · e = e · g = g for all g ∈ G;

153
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(2) for each g ∈ G, there is an element g′ ∈ G with g · g′ = g′ · g = e. The
element g′ is called the inverse of g and is denoted g−1;

(3) given g1, g2, g3 ∈ G, then (g1 · g2) · g3 = g1 · (g2 · g3). This property is
called associativity.

Example 3.1.1. Let us look at some examples.

• The simplest possible group is the group with only one element {e}. This
is called the trivial group.

• The integers (Z,+) with the operation of addition form a group. The iden-
tity is 0 and the inverse of a is −a. Similarly, the rationals Q, the reals R,
and the complex numbers C also form groups under addition.

• Note that the set of natural numbers N does not form a group under
addition since there is no identity element. Even after adding 0,N ∪ {0}
still does not form a group under addition since there are no inverses.
The integers do not form a group under multiplication since there are
no inverses (1 does act as an identity). The rationals almost form a group
under multiplication except for the fact that 0 has no multiplicative inverse.

• The rationals with 0 deleted, Q\{0}, form a group under multiplication—
the identity is 1 and the inverse of p/q is q/p. Similarly, R\{0} and C\{0}
form groups under multiplication.

• An example of a finite group is Zp, the integers modulo p. The elements of
the group are 0, 1, . . . , p−1. We add two elements as if they were integers; if
the sum is greater than or equal to p, then we subtract off p from the sum;
that is, a ·b = a+b if a+b < p, and a ·b = a+b−p if a+b ≥ p. The identity
is 0 and the inverse of a is p− a if a �= 0. For example, Z3 = {0, 1, 2}, with
multiplication table as follows:

· 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

We can also regard Zp as equivalence classes of integers where a ∼ b if
p divides a− b. Then the group operation on Zp is induced from addition
in the integers. Of course, we have to check that it is well defined; that is,
if a ∼ b, c ∼ d, then a+ b ∼ c+ d. But a ∼ b implies a− b = mp, and c ∼ d
implies c− d = np; hence (a+ c)− (b+ d) = (m+ n)p, so a+ c ∼ b+ d.

• A somewhat more complicated example is given by the permutation group
Sn. An element of Sn is a permutation of {1, 2, . . . , n}; that is, is a bijection
of {1, 2, . . . , n} onto itself. The identity for the group is the identity per-
mutation. Since each permutation is a bijection, it has an inverse, which
will be the inverse in the group. The multiplication involved is just the
composition of functions. For example, S3 is the group of permutations of
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{1, 2, 3}. If our permutation f : {1, 2, 3} → {1, 2, 3} is denoted by [abc],
where f(1) = a, f(2) = b, f(3) = c, then S3 has six elements: [123], [132],
[213], [231], [312], and [321]. Some sample products are [213] · [132] = [231],
[132] · [213] = [312], [213] · [213] = [123]. We are using functional notation
in computing these compositions, working from right to left. Note that it
is not always the case that a · b = b · a. A group where a · b = b · a for all
a, b is called abelian. Thus S3 is not abelian.

Exercise 3.1.1. Find the inverse of each element of S3.

The circle S1 can be regarded as a subset of the complex numbers C by
identifying the complex number a + ib with the point (a, b) in the plane. The
length |z| = |a + ib| is defined by |z|2 = a2 + b2; it agrees with the length of
(a, b) ∈ R2. The circle then represents the complex numbers of length 1. Since
|z1 · z2| = |z1 · z2|, complex multiplication restricts to give a group operation on
S1. Multiplication satisfies (cos θ+i sin θ)(cosφ+i sinφ) = cos(θ+φ)+i sin(θ+φ),
so that it corresponds to addition of angles. The identity is 1 = 1 + i0 and the
inverse of a+ ib is a− ib.

If (G, ·) is a group and H ⊂ G is a subset of G so that the multiplication in
G restricts to give a multiplication in H (i.e., h1, h2 ∈ H for h1, h2 ∈ H), the
identity e of G is in H, and the inverse of any element of H is in H, then (H, ·)
will form a group, called a subgroup of G. In the example above, the circle (S1, ·)
is a subgroup of (C\{0}, ·), where the dot denotes complex multiplication. (Z,+)
is a subgroup of (Q,+) and (R,+). If we regard R as a subset of C, then each
of these is a subgroup of (C,+).

The set of all homeomorphisms of a topological space X forms a group with
operation the composition of homeomorphisms, denoted Homeo(X). The iden-
tity element is given by the identity homeomorphism, and f−1 is the inverse of
f in this group. Subgroups of Homeo(X) are important to both topology and
other forms of geometry. For example, the set of rigid motions of the plane stud-
ied in Chapter 1 forms a subgroup m(R2) of Homeo(R2). Recall that a rigid
motion is a homeomorphism f : R2 → R2 so that d(f(a), f(b)) = d(a, b), where
d denotes Euclidean distance. Any rigid motion can be written as a composition
of a translation, a rotation, and a reflection. The translations T (R2) = {Ta : a ∈
R2}, Ta(x) = x + a}, form a subgroup of m(R2) (and Homeo(R2)), as do the
rotations R(R2) = {Rθ : θ ∈ R}, Rθ(r cosφ, r sinφ) = (r cos(θ+ φ), r sin(θ+ φ)).
The reflections do not form a subgroup since they do not contain the identity
homeomorphism. Both the translations T (R2) and the rotations R(R2) form
abelian groups, but m(R2) is not abelian.

In the late nineteenth century Felix Klein advocated studying the geometry of
a space X in terms of subgroups of Homeo(X). Traditional Euclidean geometry
of the plane can be studied in terms of m(R2), whereas the topology of the plane
is expressible in terms of Homeo(R2). In Euclidean geometry, we are interested
in subsets of the plane which are transformed to each other via rigid motions
of the plane. For example, two triangles T1, T2 are congruent if there is a rigid
motion f with f(T1) = T2. The Schönflies theorem says that any two simple
closed curves in the plane are equivalent under the group of homeomorphisms



156 3. The fundamental group and its applications

of the plane; that is, if C1, C2 are simple closed curves in the plane, then there
is a homeomorphism f of the plane with f(C1) = C2. Part of Klein’s viewpoint
was that the algebraic structure of these groups of homeomorphisms is useful
in studying the geometry. In particular, any general fact known about groups
(or special classes of groups) could then be applied to these particular groups of
homeomorphisms.

Exercise 3.1.2. Verify that m(R2) is not abelian. (Hint: Compute TaRθ(0) and
RθTa(0)).

In order to familiarize ourselves somewhat with the definition of a group, let
us verify that the identity element is unique and that inverses are unique. Suppose
that there are two elements e1, e2 with g · ei = ei · g = g for all g ∈ G, i = 1, 2.
Taking g = e1, we get e1 · e2 = e1; taking g = e2, we get e1 · e2 = e2. Hence
e1 = e2. We now show that if g1 is a left inverse for g (i.e. g1 · g = e), and if g2
is a right inverse for g (i.e. g · g2 = e), then g1 = g2 and so is an inverse for g
[g1 = g1 · e = g1 · (g · g2) = (g1 · g) · g2 = e · g2 = g2]. This same argument shows
that inverses are unique; we leave the details as an exercise.

Exercise 3.1.3. Show that inverses are unique.

We want to put an equivalence relation on groups, called isomorphism. We
will regard two groups as being the same if there is an isomorphism between them;
they are then called isomorphic. Isomorphism is the group theoretic analogue
of homeomorphism for topological spaces. The analogue of a continuous map is
called a homomorphism. As a continuous map is consistent with the topologies
of the two spaces involved in the sense that inverse images of open sets are open,
a homomorphism is consistent with the multiplications of the two groups in that
the image of a product of two elements is the product of the images of the two
elements.

Definition 3.1.2. Let (G1, ·) and (G2,×) be groups. Then a function f : G1 →
G2 is called a homomorphism if f(a · b) = f(a)× f(b).

Example 3.1.2. Here are some examples.

• f : (Z,+) → (Z,+), f(x) = 2x, is a homomorphism [f(a+ b) = 2(a+ b) =
2a+ 2b = f(a) + f(b)].

• Another example of a homomorphism is given by f : (Z,+) →
(Zp,+), f(x) = [x]. For f(a + b) = [a + b] = [a] + [b] = f(a) + f(b),
since addition in Zp is defined in terms of addition in Z.

A property that any homomorphism must have is that it must send the
identity to the identity. Let e1 denote the identity of G1 and e2 that of G2. Then,
if f : (G1, ·) → (G2,×) is a homomorphism, f(e1) = f(e1 · e1) = f(e1) × f(e1).
Multiply both sides f(e1)

−1 to get e2 = f(e1).

Exercise 3.1.4. Decide whether the following maps are homomorphisms:

(a) f : Zp → Z, f([n]) = n;

(b) f : Z4 → Z2, f([n]) = [n];
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(c) f : Z2 → Z4, f([n]) = [2n];

(d) f : Z2 → S3, f(0) = [123], f(1) = [213];

(e) f : (C,+) → T (R2), f(a) = Ta;

(f) f : S1 → R(R2), f((cos θ, sin θ)) = Rθ;

(g) p : (R,+) → (S1, ·), p(t) = (cos 2πt, sin 2πt);

(h) fa : (R,+) → (R,+), fa(b) = ab.

Definition 3.1.3. f : G1 → G2 is an isomorphism if f is a bijective homo-
morphism and the set inverse f−1 is a homomorphism as well; equivalently, a
homomorphism f : G1 → G2 is an isomorphism if there is a homomorphism
g : G2 → G1 with fg = 1G2

, gf = 1G1
, where 1X denotes the identity function

of X. We will denote an isomorphism by ≃: G1 ≃ G2 means that there is an
isomorphism between G1 and G2; we say that G1 is isomorphic to G2.

Example 3.1.3. Here are some examples.

• f : (Z,+) → (Z,+), f(x) = 2x, is not an isomorphism since it is not
surjective. However, if we denote by (2Z,+) all multiples of 2 with the
usual addition, then f̄ : (Z,+) → (2Z,+), f̄(x) = 2x is a 1–1, surjective
homomorphism. Moreover, f̄−1(y) = y/2 is also a homomorphism, so f̄ is
an isomorphism.

• Z is not isomorphic to Zp since they have a different number of elements,
and an isomorphism is a bijection.

• S3 is not isomorphic to Z6 even though they each have six elements (for
Z6 is abelian and S3 is not). If we choose a, b ∈ S3 with a · b �= b · a, and
f : S3 → Z6 were a homomorphism, then f(a · b) = f(a) + f(b), which
equals f(b) + f(a) = f(b · a) since Z6 is abelian. But this means that f is
not 1–1 and hence is not an isomorphism.

• Consider the set {−1, 1} with operation the usual multiplication of integers.
This group is isomorphic to (Z2,+). An isomorphism from (Z2,+) to
({−1, 1}, ·) is given by sending 0 to 1 and 1 to −1. We leave the details as
an exercise.

Exercise 3.1.5. Show that the map from (Z2,+) to ({−1, 1}, ·) defined above is
in fact an isomorphism. In the future we will denote {−1, 1} with the operation
of multiplication by Z2 as well because of this isomorphism.

Exercise 3.1.6. Decide whether the following groups are isomorphic. Either
construct an isomorphism and prove it is an isomorphism or show why there is
no isomorphism.

(a) S2 = permutations of {1, 2} and Z2,

(b) (Z,+) and (Q,+),

(c) (C,+) and T (R2),

(d) (S1, ·) and R(R2),

(e) (R,+) and (S1, ·).
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In Chapter 1 we showed that sometimes (but not always) a bijective con-
tinuous map is a homeomorphism. The following proposition is an analogue of
this.

Proposition 3.1.1. A bijective homomorphism f : (G1, ·) → (G2,×) is an
isomorphism.

Proof. We have to show that f−1, which exists since f is bijective, is a
homomorphism. Thus we must show that f−1(a × b) = f−1(a) · f−1(b). But
f(f−1(a) · f−1(b)) = f(f−1(a))× f(f−1(b)) = a× b and f(f−1(a× b)) = a× b.
Since f is a bijection, the result follows.

Another property of homomorphisms that is useful in conjunction with the
above proposition is the following.

Proposition 3.1.2. A homomorphism f : (G1, ·) → (G2,×) is 1–1 iff f(a) = e2
implies a = e1. (Here ei denotes the identity of Gi.)

Proof. Suppose f is 1–1 and f(a) = e2. Since f(e1) = e2 as well, then f 1–1
implies that a = e1. Conversely, suppose that f(a) = e2 implies that a = e1.
Let a, b be given with f(a) = f(b). Then f(a · b−1) = f(a)× f(b)−1 = e2. Hence
a · b−1 = e1 and thus a = b.

There are two important subgroups related to a homomorphism f : G1 → G2.
First, the kernel of f is the subgroup ker f = {g ∈ G1 : f(g) = e2}. The last
proposition says that f is 1–1 precisely when ker f is the trivial group. Another
subgroup related to f is the image of f, im f = {h ∈ G2 : h = f(g) for some g ∈
G1}. By definition, f is surjective precisely when im f = G2.

Exercise 3.1.7. Verify that ker f and im f are subgroups.

Here is another useful definition and group theoretical result. A subgroup
H ⊂ G is called normal if whenever g ∈ G, h ∈ H, then ghg−1 ∈ H. Note that
subgroups of abelian groups are automatically normal. When H is normal, we
can form a new group, called the quotient group G/H of right cosets of H. The
elements of this group are the sets Hg = {hg : h ∈ H}. They are multiplied by
(Hg1)(Hg2) = Hg1g2. The condition of normality is what is needed to see that
this makes sense and forms a group. There is naturally a surjective homomorph-
ism Q : G → G/H. The kernel of Q is just H. Thus a normal subgroup is the
kernel of a homomorphism. We leave it as an exercise to check that the kernel
of a homomorphism is always normal. A basic isomorphism theorem in group
theory states that whenever f : G1 → G2 is a homomorphism, then there is an
induced isomorphism f̄ : G1/ ker f → im f .

Exercise 3.1.8. Show that if f : G1 → G2 is a homomorphism, then ker f is a
normal subgroup.

Exercise 3.1.9. Show that if S3 denotes the permutations of {1, 2, 3}, then the
subgroup consisting of the two permuations [123], [213] is not normal.
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Here is a general construction by which we can form a new group from two
groups A and B. We will denote all multiplications by a centered dot. The direct
sum of A and B, denoted A ⊕ B, is the set of pairs of (a, b), with a ∈ A, b ∈ B.
The multiplication is defined componentwise using the multiplications in A and
B. That is, (a, b) · (c, d) = (a · c, b · d). For example, we could form Z ⊕ Z where
(a, b) ·(c, d) = (a+c, b+d). Similarly, we could form Z⊕Zp. A group G is finitely
generated if there exist g1, . . . , gn ∈ G so that every element of G is expressible
as products of these elements. It is an important theorem in group theory that
all finitely generated abelian groups are formed (up to isomorphism) by taking
direct sums of copies of Z and Zp for various p; thus a general finitely generated
abelian group “looks like” Z⊕· · ·⊕Z⊕Zp1

⊕· · ·⊕Zpk
. The number of copies of

Z (called the rank of the group) and the various pi (called the torsion coefficients
of the group) distinguish these groups up to isomorphism. For example, Z is not
isomorphic to Z⊕ Z, even though they each have the same number of elements;
that is, they are not isomorphic even though there is a bijection between them.
For a homomorphism, f : Z → Z⊕Z is determined completely by f(1). Suppose
f(1) = (a, b). Then f(n) = (na, nb) = n(a, b) and cannot be surjective. An
important subclass of finitely generated groups are those which are isomorphic
to the direct sum of n copies of Z; these groups are called finitely generated free
abelian groups.

With this bit of group theory as a background, we describe more precisely
the method of algebraic topology. We wish to assign to each topological space a
group in a “consistent” manner. The precise name for the correspondence is a
(covariant) functor. We denote the functor by F. If we denote topological spaces
by T and groups by G, then F is a special type of function from T to G. For
each topological space X,F (X) will be a group. Next, suppose that f : X → Y
is a continuous map between topological spaces X and Y . Then to f we wish
to associate a homomorphism F (f) : F (X) → F (Y ). Moreover, we wish this
correspondence to obey two rules:

(1) F (1X) = 1F (X), where 1A denotes the identity on A;

(2) F (fg) = F (f)F (g).

Together these imply that if f : X → Y is a homeomorphism, then F (f) :
F (X) → F (Y ) is an isomorphism. For f being a homeomorphism implies that
there is a continuous function g : Y → X with fg = 1Y and gf = 1X . Then
1F (Y ) = F (1Y ) = F (fg) = F (f)F (g) and 1F (X) = F1X

= F (gf) = F (g)F (f).
Hence F (f) is an isomorphism, and so homeomorphic spaces have isomorphic
groups associated to them.

Let us return to the classification of surfaces to see how this works in prac-
tice. We showed in Chapter 2 that each compact connected surface (without
boundary) is homeomorphic to either a sphere, a connected sum of g tori, or a
connected sum of h projective planes. We quoted a result involving Euler char-
acteristic to say that these possibilities were distinct. Another proof involves
algebraic topology as indicated above. That is, to each surface S, T (g), P (h), we
associate via a functor F a group F (S), F (T (g)), F (P (h)) and note that no two
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of the groups obtained are isomorphic. Hence no two of the surfaces are homeo-
morphic. We will use the fundamental group in Section 3.4 to show that S, T ,
and P are not homeomorphic. The fundamental group will be used to distinguish
completely between compact connected surfaces (i.e. nonhomeomorphic surfaces
have nonisomorphic fundamental groups), once we have proved the Seifert–van
Kampen theorem so that we can compute the fundamental group of each surface.

Exercise 3.1.10. Suppose F is a functor from topological spaces and continu-
ous maps to finitely generated abelian groups and homomorphisms so that for
compact connected surfaces (without boundary) A,B, F (A#B) = F (A)⊕F (B).
For finitely generated abelian groups, it is true that G1 ⊕ G2 is isomorphic to
G1 iff G2 = {e}. Show that this implies that F (S) is the trivial group. Show
that if F (T ) is not {e}, then F distinguishes T (g), g ≥ 0; that is, F (T (p)) is not
isomorphic to F (T (q)), for p �= q, p, q ≥ 0.

3.2 The fundamental group

In this section we define a group, called the fundamental group, which we associ-
ate in a functorial manner to a topological space. Its definition requires not only
a topological space X but also a point x ∈ X, called the base point. If X is path
connected, the group obtained does not depend up to isomorphism on the base
point x. We will denote the fundamental group by π1(X,x). Its elements will be
equivalence classes of paths in X which run from x to x (loops at x).

Intuitively, two loops are equivalent if we can continuously deform one loop
to the other. The precise definition involves the notion of a homotopy. What
the fundamental group measures is the “distinct” (up to homotopy) loops in
a space. Any space has the constant loop that stays at x. The question is:
are there any loops in the space that cannot be continuously deformed to the
constant loop, and, if so, how many distinct ones up to homotopy? To give some
feel for this, here are some answers that we will derive. For the sphere S2, the
answer is that there are none, so π1(S

2, x) ≃ {e}. For the circle, there are an
infinite number and π1(S

1, x) ≃ Z. A loop corresponding to the integer n is
pn(t) = (cos 2πnt, sin 2πnt); it wraps around the circle n times. For the torus
T, π1(T, x) ≃ Z ⊕ Z. This comes from regarding the torus as S1 × S1. A loop
representing (m,n) is (pm(t), pn(t)). It wraps around the first circle m times and
the second circle n times. In particular, these calculations furnish a proof that
the sphere is not homeomorphic to the torus since their fundamental groups are
not isomorphic.

We now define π1(X,x). First, its representatives are loops at x, f :
(I; {0, 1}) → (X,x). By this notation we mean that f is a continuous func-
tion from I = [0, 1] to X with f(0) = f(1) = x. Two loops f0, f1 are called
homotopic if there is a continuous function F : (I × I, {0, 1} × I) → (X,x) with
F (s, 0) = f0(s), F (s, 1) = f1(s), F (0, t) = F (1, t) = x. F is called a homotopy (of
loops at x) between f0 and f1. To denote that f0 and f1 are homotopic with a
homotopy F , we write f0 ∼F f1. If the particular homotopy is unimportant, we
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write f0 ∼ f1. Sometimes F (s, t) is denoted by Ft(s); note that Ft is a loop at x.
Intuitively, f0 and f1 are homotopic if there is a path Ft of loops at x connecting
f0 and f1. Figure 3.1 illustrates a homotopy between two loops in the plane.

We show that homotopy gives an equivalence relation on loops at x. First,
note that f ∼ f . Define F : I × I → X by F (s, t) = f(s). We are just taking
the constant path of loops, each loop being f . Second, f ∼ g implies g ∼ f . For
if F is a homotopy between f and g, then G(s, t) = F (s, 1 − t) is a homotopy
between g and f . Here we are just traversing the path of loops connecting f and
g in the opposite direction. Next, suppose f ∼F g and g ∼G h. Then we must see
why f ∼H h. The idea is pictured in Figure 3.2. What we want to do is just put
the homotopies together one on top of the other. To get the appropriate domain
space, we have to reparametrize.

Instead of having F defined on I × [0, 1], we would like to redefine it
on I × [0, 1

2 ]. This is easily done by using the unique linear order-preserving

F

F

F

F

0

1/2

1/4

1

3/4

F

Figure 3.1. Homotopic loops.
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h
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Figure 3.2. Transitivity of homotopy.
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homeomorphism [0, 1
2 ] → [0, 1], t → 2t, and then taking the composition

I × [0, 1
2 ]

(s,2t)
��I × I

F
��X . We also want G defined on I × [ 12 , 1] instead

of I × I. Thus we take the unique affine linear order-preserving homeo-
morphism [12 , 1] → [0, 1], t → 2t − 1, and then take the composition

I × [1/2, 1]
(s,2t−1)

�� I × I
G

�� X . Piecing these together at I × { 1
2} gives the

required homotopy H. Formally,

H(s, t) =

{
F (s, 2t) if 0 ≤ t ≤ 1

2 ,

G(s, 2t− 1) if 1
2 ≤ t ≤ 1.

H is well defined since F (s, 1) = g(s) = G(s, 0) and these are giving H(s, 1
2 )

in the two parts of the definition. Thus homotopy of loops ∼ is an equivalence
relation; we will denote the equivalence class of f by [f ]. The equivalence classes
are the elements of the group π1(X,x).

Next, we need to define a multiplication on equivalence classes. We first define
a multiplication on loops at x, denoted by ∗. We then define a multiplication on
equivalence classes of loops from this, which we denote by ∗̄, using the formula
[f ]∗̄[g] = [f ∗ g]. We have to show that if f0 ∼ f1, g0 ∼ g1, then f0 ∗ g0 ∼
f1 ∗ g1 to see that the definition of the multiplication ∗̄ does not depend on the
representative chosen from an equivalence class.

Intuitively, f ∗g is defined by first going along the loop f and then going along
the loop g. The problem again is the domain of definition. We first reparametrize
f to be defined on [0, 1

2 ] and reparametrize g to be defined on [12 , 1] and then put
them together. Formally,

f ∗ g(s) =
{
f(2s) if 0 ≤ s ≤ 1

2 ,

g(2s− 1) if 1
2 ≤ s ≤ 1.

This is the composition [0, 1
2 ]

2s
�� [0, 1]

f
��X for 0 ≤ s ≤ 1

2 , and is the

composition [ 12 , 1]
2s−1

�� [0, 1]
g

��X for 1
2 ≤ s ≤ 1. The continuity of f ∗ g

follows from the piecing lemma. To see that ∗ induces a well-defined operation
on equivalence classes, we need to see that f0 ∼ f1, g0 ∼ g1 implies that f0 ∗g0 ∼
f1 ∗ g1. The idea is that if F is the homotopy between f0 and f1 and G is the
homotopy between g0 and g1, then we can form F ∗G by composing homotopies
as we have composed loops to get a homotopy between f0∗g0 and f1∗g1. The idea
of the argument for independence of representatives for addition up to homotopy
is illustrated in Figure 3.3. We leave the details as an exercise.

Exercise 3.2.1. Fill in the details of the above argument to show that ∗̄ is well
defined.

To show that π1(X,x) is a group, we have to show that f is associative
and that there is an identity and inverses. The identity equivalence class will be
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f0

xx

f1

F

g0

xx

g1

G

f0

xx

f1

F

g0

G

g1

Figure 3.3. Addition of homotopies.

f ex

f

f ex

ex f

f

fex

Figure 3.4. f ∗ ex ∼ f ∼ ex ∗ f .

represented by ex : I → X, ex(s) = x; that is, the constant loop at X. Thus we
need to see why f ∗ ex ∼ f ∼ ex ∗ f . Basically, f ∗ ex goes along the loop f from
0 to 1

2 and then stays at x from 1
2 to 1. The idea of the homotopy is to gradually

increase the time it takes to traverse the path f until we go along f from 0 to 1.
More formally, what we need is a one-parameter family of maps pt : [0, st] → [0, 1]
so that s0 = 1

2 and s1 = 1, and p0(s) = 2s, p1(s) = s. The simplest maps to take
come from making t → st affine linear and making pt affine linear. That t → st

is affine linear and 0 → 1
2 , 1 → 1 means that st = 1

2 + 1
2 t since the affine linear

map sending a1 to b1 and a2 to b2 is given by t → b1+(b2−b1)(t−a1)/(a2−a1).
Then the order-preserving affine linear map pt : [0, 1

2 + 1
2 t] → [0, 1] is given by

using the same formula, pt(s) = 2s/(1 + t). Thus the homotopy is given by

F (s, t) =

{
f(2s/(1 + t)) if 0 ≤ s ≤ (1 + t)/2,

x if (1 + t)/2 ≤ s ≤ 1.

A picture of this homotopy (actually the reparametrization of f at various
levels of t) is depicted in Figure 3.4. Since we are always using affine linear maps
determined by their values on the end points, we will tend to emphasize the
pictures that lead to the formulas, rather than the formulas themselves, which
follow directly, though sometimes tediously, from the pictures.

Note that F is continuous by the piecing lemma since it is defined on
the union of two closed sets, and restricts to a continuous function on each,
with the definitions agreeing on the intersection. Note also that F (s, 0) =
f ∗ ex(s), F (s, 1) = f(s).
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Figure 3.5. The inverse of a loop.

We leave it as an exercise to use the right half of Figure 3.4 and our method
above to write down a homotopy between ex ∗ f and f .

Exercise 3.2.2. Write down a formula for a homotopy between ex ∗ f and f .

We next attack the problem of finding an inverse for [f ] ∈ π1(X,x). The
idea is to just go along f in the opposite direction; that is, f̄(s) = f(1− s) will
represent the inverse. The homotopy between f ∗ f̄ and ex is found by going less
and less along f and then retracing our steps, changing the parametrization so
that at the end we are just staying at x. Figure 3.5 depicts this for a loop in the
plane.

The main problem in writing down a formula for this homotopy is just getting
the reparametrization correct. During the first half of the time interval, we want
Ft to go through the first tth part of f , and during the last half we want it to
go through the last tth part of f̄ . We use the affine linear functions [0, 1

2 ] →
[0, t], s → 2st, and [12 , 1] → [1− t, 1], s → (1− t) + 2t(s− 1

2 ) = 2t(s− 1) + 1. The
formula is

F (s, t) =

{
f(2st) if 0 ≤ s ≤ 1

2 ,

f̄(2t(s− 1) + 1) if 1
2 ≤ s ≤ 1.

F will be continuous since f(2st) and f̄(2t(s − 1) + 1) are continuous on their
domains and when s = 1

2 , f(t) = f̄(1 − t). Note that F (s, 0) = x = ex(s) and
F (s, 1) = f ∗ f̄(s).

We leave it as an exercise to give a homotopy between f̄ ∗ f and ex.
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Exercise 3.2.3. Write down a homotopy between f̄ ∗ f and ex.

Finally, to show that the group operation is associative, we have to show that
(f ∗g)∗h is homotopic to f ∗ (g ∗h). Here are the formulas for each composition:

(f ∗ g) ∗ h(s) =

{
(f ∗ g)(2s) if 0 ≤ s ≤ 1

2

h(2s− 1) if 1
2 ≤ s ≤ 1

=





f(4s) if 0 ≤ s ≤ 1
4 ,

g(4s− 1) if 1
4 ≤ s ≤ 1

2 ,

h(2s− 1) if 1
2 ≤ s ≤ 1,

f ∗ (g ∗ h)(s) =
{
f(2s) if 0 ≤ s ≤ 1

2

(g ∗ h)(2s− 1) if 1
2 ≤ s ≤ 1

=





f(2s) if 0 ≤ s ≤ 1
2 ,

g(4s− 2) if 1
2 ≤ s ≤ 3

4 ,

h(4s− 3) if 3
4 ≤ s ≤ 1.

Getting a homotopy is just a matter of homotoping the parametrization.
Figure 3.6 is supposed to be suggestive of how to get the formula. Here is
another way to see that the maps are homotopic. Each is a composition of
k : ([0, 3], {0, 3}) → (X,x) with an order-preserving linear homeomorphism
m : [0, 1] → [0, 3]. Here

k(s) =





f(s) if 0 ≤ s ≤ 1,

g(s− 1) if 1 ≤ s ≤ 2,

h(s− 2) if 2 ≤ s ≤ 3.

Now f ∗ (g ∗ h) = km1 where the map m1 is the piecewise affine linear map
sending [0, 1

2 ] to [0, 1], [ 12 ,
3
4 ] to [1, 2], and [34 , 1] to [2, 3]. It is given by the formula

m1(s) =

{
2s if 0 ≤ s ≤ 1

2 ,

4s− 1 if 1
2 ≤ s ≤ 1.

Similarly, (f ∗ g) ∗ h is given by km2 where

m2(s) =

{
4s if 0 ≤ s ≤ 1

2 ,

2s+ 1 if 1
2 ≤ s ≤ 1.

f g h

f g h

f g h

Figure 3.6. Associativity of ∗ up to homotopy.
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The argument used in Chapter 2 to show that self-homeomorphisms of the
interval that preserve order are isotopic can be used here to show that any two
order-preserving homeomorphisms from [0, 1] to [0, 3] are homotopic, fixing the
image of the end points during the homotopy. The homotopy between m1 and
m2 is given by the formula M(s, t) = (1 − t)m1(s) + tm2(s). This is called a
straight line homotopy since for fixed s, we have Mt(s) = M(s, t) moving along
the straight line joining m1(s) to m2(s) in a linear fashion. Now a homotopy
between f ∗ (g ∗h) = km1 and (f ∗g)∗h = km2 is given by H(s, t) = kMt(s): we
just compose the homotopy corresponding to the two parametrizations with k.
Because of this fact, we could divide up the interval any way we want in forming
f ∗ g ∗ h and get the same result up to homotopy; in particular, we could use f
on [0, 1

3 ], g on [13 ,
2
3 ], and h on [23 , 1] if we wanted to.

This completes the verification that π1(X,x) is a group. We now look at
the functorial properties of the correspondence (X,x) → π1(X,x). Suppose f :
(X,x) → (Y, y) is a continuous map. Let p : (I, {0, 1}) → (X,x) represent
[p] ∈ π1(X,x). Then define the homomorphism F (f) = f∗ : π1(X,x) → π1(Y, y)
by f∗([p]) = [fp] ∈ π1(Y, y). To see that this is well defined, we must show
that if p ∼ q, then fp ∼ fq. But, if P : I × I → X is a homotopy between
p and q with P (s, 0) = p(s), P (s, 1) = q(s), P (0, t) = x = P (1, t), then we can
define a homotopy between fp and fq by fP . For fP (s, 0) = fp(s), fP (s, 1) =
fq(s), fp(1, t) = fp(0, t) = f(x) = y. Note that f∗ is a homomorphism. For

f∗([p]∗̄[q]) = [f(p ∗ q)] = [fp ∗ fq] = [fp]∗̄[fq] = f∗[p]∗̄f∗[q].

We next check that F (1X) = 1F (X) = 1Y and F (gf) = F (g)F (f). First,
(1X)∗[f ] = [1Xf ] = [f ]. Also, (gf)∗[p] = [(gf)p] = [g(fp)] = g∗[fp] = g∗f∗[p].
Thus the association of π1(X,x) to (X,x) and F (f) = f∗ to f is a functor
between (pointed) topological spaces with continuous maps and groups with
homomorphisms. Thus homeomorphic spaces will have isomorphic fundamental
groups (with corresponding base points). We depict the functorial properties of
F by the following diagram:

(X,x)
gf

��

f

�����������

F

��

(Z, z)

F

��

(Y, y)

g
�����������

F

��

π1(Y, y)

g∗

�����������

π1(X,x)

f∗

����������� (gf)∗

�� π1(Z, z)
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f

ba

f ′

F

Figure 3.7. f ∼ f ′ rel 0,1.

The role of the base point will be pursued later as a project. Informally, the
main result is that the fundamental group of a path-connected space is independ-
ent of the choice of base point up to isomorphism, and the isomorphism itself
between π1(X,x1) and π1(X,x2) can be chosen to depend on a path connecting
x1 to x2.

We end this section with a calculation. A path-connected space X with
π1(X,x) ≃ {e} is called simply connected. The next proposition says that Rn

and Dn are simply connected.

Proposition 3.2.1. π1(Rn, x) ≃ {e}. If Dn denotes the unit disk in Rn, then
π1(D

n,x) ≃ {e}.

Proof. In either case, we have to show that any loop at x in the space is
homotopic within the space to the constant loop at x. The idea is just to contract
the loop via radial lines to x using a straight line homotopy. The homotopy is
given by F (s, t) = (1 − t)f(s) + tx. Then F (s, 0) = f(s), F (s, 1) = x = ex(s),
and F (0, t) = x = F (1, t) since f(0) = f(1) = x. Note that if f(s) ∈ Dn, then
F (s, t) ∈ Dn as well.

We close this section by noting that many of the constructions involved in
forming the fundamental group apply to paths as well as loops. For example,
if f, g are paths with f(0) = a, f(1) = b, g(0) = b, g(1) = c, then we can form
a product f ∗ g using the same formula as before. For paths f, f ′ : (I, 0, 1) →
(X, a, b), we say that f is homotopic to f ′ rel 0,1, written as f ∼ f ′ rel 0,1, if
there is a continuous map F : I × I → X so that F (x, 0) = f(s), F (s, 1) =
f ′(s), F (0, t) = a, F (1, t) = b. We illustrate such a homotopy with Figure 3.7.
Then f ∼ f ′ rel 0,1, g ∼ g′ rel 0,1 imply f ∗ g ∼ f ′ ∗ g′ rel 0,1. There are also
corresponding statements about associativity, (f ∗g)∗h ∼ f ∗ (g ∗h) rel 0,1 when
these are defined.

3.3 The fundamental group of the circle

In this section we will compute π1(S
1,1), where 1 = (1, 0). Fundamental for

this computation will be the map p : R → S1, p(x) = (cos 2πx, sin 2πx). Recall
from Section 1.7 that p is locally a homeomorphism; that is, given x ∈ R, there
is an interval Ix containing x (any interval of length less than 1 will do) so
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( ( ( ( () ) ) ) )
V−2 V−1 V0 V1 V2

p
U

Figure 3.8. Covering of neighborhood for p : R → S1.

that p | Ix is a homeomorphism onto its image. Moreover, if U = p(Ix), then
p−1(U) =

⊔
n∈Z

Vn, where V0 = Ix and Vn comes from V0 by translating it by n.
Each Vi is mapped homeomorphically to U by p and they are permuted by the
family of translations Tn(x) = x+ n (see Figure 3.8).

Recall also that, if we put the equivalence relation ∼ on R, a ∼ b iff a −
b ∈ Z, then p induces a homeomorphism p̄ between R/∼ and S1. The point 1
corresponds to [0] under this homeomorphism. We divide the circle into two open
sets A and B, where A = S1\{−1}, B = S1\{1}. Then p−1(A) = R\{n+ 1

2 : n ∈
Z} =

⋃
n∈Z

(n− 1
2 , n+ 1

2 ) and p−1(B) = R\{n : n ∈ Z} =
⋃

n∈Z
(n− 1, n). Note

that p | (n− 1
2 , n+ 1

2 ) is a homeomorphism onto A for each n, and p | (n− 1, n)
is a homeomorphism onto B for each n. We call these homeomorphisms pn,1/2

and pn and denote their inverses by qn,1/2 and qn. Note that if f : X → S1 is a
continuous map and f(X) ⊂ A, then qn,1/2f has the property that pqn,1/2f =

pn,1/2qn,1/2f = f . A continuous map f̃ : X → R so that pf̃ = f is called a lifting

of f . We depict the lifting f̃ of f via the following diagram:

R

p

��

X

f̃
���������� f
�� S1

We have seen that if f(X) ⊂ A, then f has a lifting. Of course, f has
many liftings, one for each integer n. If, however, we specify that f̃(x0) ∈ (n0 −
1
2 , n0 + 1

2 ) and X is connected, then we claim that there is a unique lifting

f̃ for f . For f̃ continuous and X connected we have that f̃(X) is connected.
Since f(X) ⊂ A, f̃(X) ⊂ ⋃

n∈Z
(n − 1

2 , n + 1
2 ). Since f̃(X) is connected and

f̃(x0) ∈ (n0 − 1
2 , n0 + 1

2 ), this implies that f̃(X) ⊂ (n0 − 1
2 , n0 + 1

2 ); the details

are left as an exercise. Now qn0,1/2f = f̃ gives a lifting of f . If f̃ ′ were another

lifting with f ′(x0) ∈ (n0− 1
2 , n0+

1
2 ), then pf̃

′(x) = pf̃(x) and p | (n0− 1
2 , n0+

1
2 ) a

homeomorphism imply f̃ ′(x) = f̃(x). Analogously, if f(X) ⊂ B, then qnf gives a
lifting for each n, and there is a unique lifting f̃ = qn0

f with f̃(x0) ∈ (n0−1, n0)
when X is connected.

We can find liftings of continuous maps into A or B, and the lifting is unique
once the image of a single point is specified. We now discuss the general problem
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of finding a lifting of f : (I, {0, 1}) → (S1,1). We note that I is a compact metric
space and {A,B} gives an open cover for S1. Hence {f−1(A), f−1(B)} gives an
open cover for I. Since I is compact, this cover has a Lebesgue number δ > 0.
Thus any set of diameter less than δ has its image under f contained in either A
or B. Choose an integer k with 1/k < δ, and divide the interval I = [0, 1] into k
subintervals of length 1/k, I = I1 ∪ · · · ∪ Ik, Ij = [(j − 1)/k, j/k]. By our choice
of k, f(Ij) ⊂ A or f(Ij) ⊂ B. Thus we can find a lifting of f | Ij ; moreover,

this lifting is unique if we specify the image of one point, f̃((j − 1)/k). We now
claim that f : I → S1 has a unique lifting f̃ with f̃(0) = 0. We first show that
how to get f̃ . Look at f | I1. Since f(0) �∈ B, we must have f(I1) ⊂ A; thus

there is a unique lifting ˜(f | I1) : I1 → R with ˜(f | I1)(0) = 0. We define f̃ | I1 as

˜(f | I1). In particular, this defines f̃ on 1/k. Now look at f | I2. Since f(I2) ⊂ A

or f(I2) ⊂ B, there is a unique lifting ˜(f | I2) with ˜(f | I2)(1/k) = f̃(1/k). We

then define f̃ | I2 = ˜(f | I2). We can continue in this fashion to define a unique
lifting of f over successive subintervals, yielding the unique lifting f̃ . Uniqueness

follows inductively from the uniqueness properties of each of the liftings ˜(f | Ij).
We leave the details as an exercise.

Exercise 3.3.1. Let g : X → ∪Jn be continuous, where {Jn} are pairwise
disjoint open intervals, n ∈ Z, and X is connected. Show that if g(x0) ∈ Jn0

,
then g(X) ⊂ Jn0

.

Exercise 3.3.2. Modify the argument outlined above to prove the unique path
lifting property, Theorem 3.3.1.

Theorem 3.3.1 (Unique path lifting property). If f : I → S1 is a continu-
ous map with f(0) = x0 and p(x̃0) = x0, then there is a unique lifting f̃ : I → R
(i.e. f̃ is continuous and pf̃ = f) with f̃(0) = x̃0.

We now want to use the unique path lifting property to define a homomorph-
ism h̄ : π1(S

1,1) → Z, which we will show is an isomorphism. Since π1(S
1,1)

consists of equivalence classes of loops, we will actually define a function h from
loops at 1 to Z and show that h gives the same value to homotopic loops,
hence determining a function h̄ : π1(S

1,1) → Z. We then show that h̄ is a
homomorphism, is 1–1, and is onto, and so is an isomorphism.

Suppose f : (I, {0, 1}) → (S1,1) is continuous. By Theorem 3.3.1 there is
a unique lifting f̃ : I → R with f̃(0) = 0. We define h(f) = f̃(1) ∈ Z. f̃(1)
is an integer since pf̃(1) = f(1) = 1 and p−1({1}) = Z ⊂ R. We then define
h̄ : π1(S

1,1) → Z by h̄([f ]) = h(f).
Well defined : To see that h̄ is well defined, we have to show that if f ∼ f ′,

then h(f) = h(f ′); that is, f ∼ f ′ implies f̃(1) = f̃ ′(1). Denote a homotopy
between f and f ′ by F : I × I → S1 with F (s, 0) = f, F (s, 1) = f ′, F (0, t) =
1 = F (1, t). We claim that there is a unique lifting F̃ of F with F̃ (0, 0) = 0,
for {F−1(A), F−1(B)} is an open cover of the compact metric space I × I, and
hence has a Lebesgue number δ > 0. Choose n so that any square of side length
1/n has diameter less than δ. Now subdivide I× I into n2 squares Ij × Ik of side
length 1/n, 1 ≤ j, k ≤ n. Hence F (Ij × Ik) ⊂ A or F (Ij × Ik) ⊂ B. Now consider
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F | I1 × I1. Since F (0, 0) �∈ B, we must have F (I1 × I1) ⊂ A, and so q0,1/2(F |
I1×I1) = ˜F | I1 × I1 = F̃11 gives a lifting of F11 = F | I1×I1 with F̃11(0, 0) = 0.
Moreover, Exercise 3.3.1 may be used as in the discussion preceding it to show
that F̃11 is the unique lifting of F11 sending (0, 0) to 0. Next consider F21 = F |
I2×I1 (in general, let Fjk = F | Ij×Ik). Since F21(I2×I1) ⊂ A or F21(I2×I1) ⊂
B, there is a unique lifting F̃21 : I2 × I1 → R with F̃21(1/n, 0) = F̃11(1/n, 0).
We may inductively define F̃11, F̃21, . . . , F̃n1, F̃12, . . . , F̃n2, . . . , F̃1n, . . . , F̃nn with
F̃jk(j/n, (k−1)/n) = F̃(j+1)k(j/n, (k−1)/n) and F̃1k(0, k/n) = F̃1(k+1)(0, k/n).
That any two of these agree on their common interval of intersection follows
from the fact that they agree at one point and the unique path lifting property.
Call the map that they define F̃ ; that is, F̃ | Ij × Ik = F̃jk. It is continuous

by the piecing lemma. F | {0} × I maps 0 × I to 1 and F̃ (0, 0) = 0; hence
unique path lifting shows that F̃ (0, t) = 0 since this is one lifting of F | 0 × I.
Unique path lifting also implies F | I × {0} = f̃ and F | I × {1} = f̃ ′. Finally,
F̃ | {1}×I is a lifting of F | {1}×I, which sends 1×I to 1. Since F̃ (1, 0) = f̃(1),
unique path lifting implies that F̃ (1, t) = f̃(1). But these statements imply that
F̃ (1, 1) = f̃ ′(1) = f̃(1). Thus h is well defined. We illustrate how the map F̃ is
defined when n = 3 in Figure 3.9.

Exercise 3.3.3. Use the argument given above to prove the homotopy lifting
theorem 3.3.2.

Theorem 3.3.2 (Homotopy lifting theorem). Suppose F : I × I → S1 is
a continuous map. Then there is a continuous lifting F̃ : I × I → R satisfying
pF̃ = F . Moreover, this is unique if we also require F̃ (0, 0) = x̃0, where p(x̃0) =
F (0, 0).

F̃11 F̃21 F̃31

F̃12 F̃22 F̃32

F̃13 F̃23 F̃33

1

f̃

f̃ ′

f̃(1) = f̃ ′(1)

Figure 3.9. Lifting a homotopy.
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Homomorphism: We now show that h̄ is a homomorphism. Suppose h̄([f ]) =
m, h̄([g]) = n. Then we have to show that h̄([f ]∗̄[g]) = m + n. But h̄([f ]∗̄[g]) =

h̄([f ∗g]) = h(f ∗g). Thus we need to find a lifting f̃ ∗ g of f ∗g with f̃ ∗ g(0) = 0

and evaluate f̃ ∗ g(1). But f̃ and g̃ (after we translate g̃ to begin at f̃(1) = m)
together give a lifting. Define g̃m(t) = g̃(t) +m. Then

f̃ ∗ g(t) =

{
f̃(2t) if 0 ≤ t ≤ 1

2 ,

g̃m(2t− 1) if 1
2 ≤ t ≤ 1

is the required lifting of f ∗ g. Note that f̃ ∗ g(1) = g̃m(1) = g̃(1) +m = m+ n.

Exercise 3.3.4. Check that f̃ ∗ g as defined above is a lifting of f ∗ g with

f̃ ∗ g(0) = 0.

Onto: Next we have to show that h̄ is onto. We do this by exhibiting
[f ] ∈ π1(S

1,1) with h̄([f ]) = n. We first define f̃ as f̃(t) = nt. Then we define
f = pf̃ . Since f̃ is a lifting of f and f̃(0) = 0, f̃(1) = n, then h̄([f ]) = f̃(1) = n
as required. Note that f just wraps around the circle |n| times (in the counter-
clockwise direction for positive n, clockwise for negative n). It is given by the
formula f(t) = (cos 2πnt, sin 2πnt).

1–1: By Proposition 3.1.2 we only have to show that if h̄([f ]) = 0, then [f ] =
[e1]. But h̄([f ]) = 0 means that f̃(1) = 0, where f̃ is the unique path lifting of f
with f̃(0) = 0. Hence f̃ : (I, {0, 1}) → (R, 0) and thus represents an element of
π1(R, 0) ≃ {e}. Thus [f̃ ] = [e0] and p∗([f̃ ]) = p∗[e0] = [e1] since a homomorphism
must send the identity to the identity. Thus [f ] = [pf̃ ] = p∗([f ]) = [e1].

We have proved the following theorem.

Theorem 3.3.3. π1(S
1,1) ≃ Z. This isomorphism is given by the function

h̄ : π1(S
1,1) → Z which sends [f ] to f̃(1) where f̃ is the unique lifting of f with

f̃(0) = 0.

Much of the remainder of this chapter will consist of applications of this
computation and its underlying ideas.

Exercise 3.3.5. Show that if f, f ′ are homotopic loops (rel 0,1) at 1, and f̃ , f̃ ′

are the unique lifts with f̃(0) = f̃ ′(0) = 0, then there is G : I × I → R, G(s, t) =
Gt(s), with G0 = f̃ , G1 = f̃ ′, G(0, t) = 0, G(1, t) = f̃(1) = f̃ ′(1). (Hint: Examine
the proof of Theorem 3.3.3.)

Exercise 3.3.6. Define a new multiplication on loops at 1 in S1 by f ◦ g(s) =
p(f̃(s) + g̃(s)) where f̃ , g̃ are the unique lifts of f, g with f̃(0) = 0 = g̃(0). Show
that this multiplication is well defined on homotopy classes, that is, f ∼ f ′, g ∼ g′

implies f ◦ g ∼ f ′ ◦ g′. (Hint: Use Exercise 3.3.5.)

Exercise 3.3.7. With the definition of the last exercise, show that the operation
[f ] ◦̄ [g] = [f◦g] makes the set of homotopy classes of loops at 1 in S1 into a group,
which we will denote by π′

1(S
1,1). (Hint: Utilize the group structure in R: for

example, to define the inverse of [f ], we want a [g] with p(f̃(s)+ g̃(s)) homotopic
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to the constant map at 1. But, if g̃(s) = −f̃(s), then p(f̃(s) + g̃(s)) = p(0) = 1.
So choose g(s) = p(−f̃(s)).)
Exercise 3.3.8. Using the notation of the preceding exercises, show that
π1(S

1,1) ≃ π′
1(S

1,1). (Hint: As sets, they are the same, so try to use the iden-
tity map and show that it is a homomorphism using the two group structures.
It is useful, although not necessary, to use Theorem 3.3.3.)

3.4 Applications to surfaces

In Chapter 2 we used the Euler characteristic to give an argument that the

surfaces S(p), T
(k)
(p) , and P

(k)
(p) are pairwise nonhomeomorphic for distinct (k, p).

However, the justification of the invariance of Euler characteristic for homeo-
morphic surfaces was not given there. Distinguishing these surfaces can be based
instead on the computations of their fundamental groups. The general case is
deferred to later in the chapter when we discuss the Seifert–van Kampen the-
orem which facilitates more efficient calculation. However, we will do some of the
easier calculations in this section to at least show that S, T , and P have distinct
fundamental groups.

The easiest case to handle is the computation of the fundamental group of
the torus. For this, we regard T as S1 × S1 and we choose (1,1) as base point.
The result π1(T, (1,1)) ≃ Z ⊕ Z follows from the following proposition on the
fundamental group of a product space.

Theorem 3.4.1. π1(X × Y, (x, y)) ≃ π1(X,x)⊕ π1(Y, y).

Proof. Let p1 : X×Y → X, p2 : X×Y → Y be the projections. Then note that
(p1)∗ : π1(X × Y, (x, y)) → π1(X,x) and (p2)∗ : π1(X × Y, (x, y)) → π1(Y, y) are
homomorphisms. Define a homomorphism P : π1(X × Y, (x, y)) → π1(X,x) ⊕
π1(Y, y) by P (α) = ((p1)∗(α), (p2)∗(α)). It is a homomorphism since (p1)∗ and
(p2)∗ are and multiplication in a direct sum is done coordinatewise. Define a
homomorphism Q : π1(X,x) ⊕ π1(Y, y) → π1(X × Y, (x, y)) by Q([f ], [g]) =
[h], where h(t) = (f(t), g(t)). We leave it to the reader to check that Q is a
homomorphism and Q is an inverse to P .

Exercise 3.4.1. Show that Q is a homomorphism and is an inverse for P .

We now compute π1(S
2,1), where 1 denotes (1, 0, 0) here. We show that

π1(S
2,1) is the trivial group; that is, each loop at 1 is homotopic to the constant

loop. The idea of the proof is that S2\{−1} ≃ R2, and this allows us to homotope
any loop that misses {−1} (via the image of a straight line homotopy in R2) to
the constant loop. The argument reduces to this situation by first homotoping
the loop in S2, which may hit −1 = (−1, 0, 0), to a loop which misses this point.

Our argument will be similar to the argument computing π1(S
1,1). We

first write S2 as A ∪ B, where A = S2\{1} and B = S2\{−1}. We saw in
Chapter 2 that A,B ≃ R2 (via rotation and stereographic projection). Suppose
f : (I, {0, 1}) → (S2,1) is a loop at 1. Our goal is to homotope f to f ′ so
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that f ′(I) ⊂ B. Since B is homeomorphic to R2 and π1(R2, c) ≃ {e}, then
f ′ is homotopic to the constant loop. First note that if g0, g1 : [a, b] → R2

are paths with gi(a) = x, gi(b) = y, then g0 is homotopic to g1 relative
to the end points; that is, there is a homotopy F : [a, b] × I → R2 with
F (a, t) = x, F (b, t) = y, F (s, 0) = g0(s), F (s, 1) = g1(s). Just use the straight
line homotopy; the details are left as an exercise. In particular, any g is homo-
topic relative to the end points to the straight line path joining g(a) to g(b).
Next note that if we take a loop g : [0, 1] → X with [a, b] ⊂ [0, 1] and if g | [a, b]
is homotopic relative to the end points to g′ | [a, b], then g is homotopic to g′′

with g′′ | [a, b] = g′ | [a, b] and g′′ | [0, 1]\(a, b) = g | [0, 1]\(a, b). The idea is to
use the constant homotopy on [0, 1]\(a, b) and the homotopy between g | [a, b]
and g′ | [a, b] on [a, b]; the details are left as an exercise.

Now consider the cover f−1(A), f−1(B) of I. Let δ be a Lebesgue number of
this cover and choose n so that 1/n < δ. Subdivide [0, 1] into n equal subintervals
with 1/n < δ, so that f([k/n, (k + 1)/n]) is a subset of either A or B. Let m(f)
be the number of subintervals containing a point x with f(x) = −1. If m(f) = 0,
then f(I) ⊂ B as desired, and so f is homotopic to the constant loop. Our proof
is by induction on the number m(f). Since we know the result for m(f) = 0,
we have started our inductive proof. We have to give a means of homotoping
the given f to f ′ so that m(f ′) < m(f), for then knowing our statement for
m(f) ≤ p implies it for m(f) ≤ p + 1. Note that the first and last subintervals
are sent to B (since f(0) = f(1) = 1), so they contain no points sent to −1.
Note also that any subinterval containing a point sent to −1 is sent entirely
to A. Now, moving from left to right, select the first subinterval [a, a + 1/n]
containing a point sent to −1, and let [a, b] denote the interval formed from
[a, a+ 1/n] together with all the consecutive subintervals containing points sent
to −1. Note that f(a) �= −1, f(b) �= −1: if f(a) = −1, then [a, a+ 1/n] would
not be the first subinterval containing a point sent to −1; if f(b) = −1, then we
could have included at least one more subinterval in our consecutive subintervals
containing points sent to −1. Note that f [a, b] ⊂ A. Using the fact that A is
homeomorphic to R2, we can show that f | [a, b] is homotopic to f ′[a, b] relative
to the end points, where f(a) = f ′(a), f(b) = f ′(b), and f ′([a, b]) ⊂ B; that is,
the image of this interval misses the point −1. Then f is homotopic to f ′′ with
f ′′ | [a, b] = f ′ | [a, b] and f ′′ | [0, 1]\(a, b) = f | [0, 1]\(a, b). But m(f ′′) < m(f)
and so by induction f ′′ (hence f) is homotopic to a loop in B as required.

Exercise 3.4.2. Show that if g0, g1 : [a, b] → R2 are maps with g0(a) =
g1(a), g0(b) = g1(b), then g0 is homotopic to g1 relative to the end points.

Exercise 3.4.3. Using the notation of the previous proof, show that if g :
[a, b] → A has g(a), g(b) �= −1, then g is homotopic to g′ relative to the end
points, where g′([a, b]) ⊂ B. (Hint: Just choose g′ with g′([a, b]) ⊂ A ∩ B and
show that there is a homotopy since A ≃ R2.)

Exercise 3.4.4. Show that if g | [a, b] is homotopic to g′ | [a, b] relative to the
end points (where g : [0, 1] → X is a loop at x), then g is homotopic (as loops)
to g′′ where g′′ | [a, b] = g′ | [a, b] and g′′ | [0, 1]\(a, b) = g | [0, 1]\(a, b).
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We give another approach to this calculation of π1(S
2,1). As before, start

with f : (I, {0, 1}) → (S2,1) and find a Lebesgue number δ for the cover
{f−1(A), f−1(B)}. Partition the interval into subintervals of length 1/n < δ.
If we consider the path fi = f | [i− 1, i], then we can consider f as the product
of the paths f = f1 ∗ f2 ∗ · · · ∗ fn. This is a product of paths, not of loops. Now
amalgamate the subintervals which are sent to A and the subintervals which
are sent to B so that we can regard f = g1 ∗ h1 ∗ g2 ∗ h2 ∗ · · · ∗ gk+1, where gi

is sent to B and hi is sent to A. The first and last subintervals are sent to B
since the end points are sent to 1 ∈ B. We alternately name the interior vertices
v1, w1, v2, w2, . . . . Now each interior vertex vi of the subdivision of I will be sent
to a point v′

i of A ∩ B and the interior vertex wi is sent to w′
i of A ∩ B. Since

A ∩ B is path connected, we can choose a path pi in A ∩ B from v′
i to 1 and a

path qi in A∩B from w′
i to 1. Note that the paths pi∗ p̄i and qi∗ q̄i are homotopic

relative to the end points to the constant paths ci, di that stay at v′
i, w

′
i. Also,

the compositions α ∗ ci, α ∗ di are homotopic to α for any path α where this
composition makes sense. We can use these homotopies to homotope f to

g1 ∗ c1 ∗ h1 ∗ d1 ∗ · · · ∗ hk ∗ dk ∗ gk+1 ∼ g1 ∗ p1 ∗ p̄1 ∗ h1 ∗ q1 ∗ · · · ∗ q̄k ∗ gk+1.

Now let g′
1 = g1 ∗ p1, h

′
i = p̄i ∗ hi ∗ qi, g

′
i = q̄i−1 ∗ gi ∗ pi, i �= 1, k + 1, g′

k+1 =
q̄k ∗ gk+1. Then f is homotopic relative to the end points to the composition
g′
1 ∗ h′

1 ∗ · · · ∗ h′
k ∗ g′

k+1. The advantage of this new composition is that each of
g′

i, h
′
i is a loop at 1. The loops g′

i are loops in B, and the loops h′
i are loops in

A. Since each of A,B is homeomorphic to R2, then these loops are homotopic
relative to the end points to constant loops at 1. Thus f is homotopic to the
constant loop at 1. Since f was an arbitrary loop at 1, this shows that π1(S

2,1)
is the trivial group.

The argument above can be used to prove the following theorem. We leave
the details as an exercise.

Theorem 3.4.2. Suppose that A,B, and A∩B are path connected open sets in
X = A∪B and c ∈ A∩B. Then if π1(A, c) and π1(B, c) are trivial groups, then
π1(X, c) is also the trivial group.

Exercise 3.4.5. Prove Theorem 3.4.2.

We now show that π1(P, [1]) ≃ Z2. We will just outline the argument and
leave the details as an exercise. We use the description of Z2 as {−1, 1} with the
usual multiplication in R. Recall the map p : S2 → P given by regarding P as
the quotient space of S2, where x ∼ −x. For a small open set V about x ∈ S2,
we have V ∩ T (V ) = φ, where T (x) = −x. Note that pT = p. Then the two sets
V, T (V ) will each map homeomorphically via p to an open set U about [x] ∈ P ,
and the map T interchanges these two preimages p−1(U) = V ∪ T (V ). All that
is necessary for U is that it has small enough diameter that it is contained in
an open hemisphere. We will choose U so that it is path connected. We can
then use compactness of P to get a cover U1, . . . , Un of P of open sets with
p−1(Ui) = Ui1∪Ui2, where p | Uij : Uij → Ui is a homeomorphism, T (Ui1) = Ui2.
Now suppose [f ] ∈ π1(P, [1]). Then {(f−1(Ui)} gives an open cover of I, and so
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has a Lebesgue number δ > 0. Choose k so that 1/k < δ and subdivide I into
k equal subintervals of length 1/k, I = I1 ∪ · · · ∪ Ik. Then f(Im) always lies in
some Ui. Thus f | Im lifts to S2; that is, there is a map (p | Uij)

−1f = qijf = f̃

so that pf̃ = f . Of course, there are two possibilities for j, but we can argue as
in the computation of the fundamental group of the circle that if we specify f̃
on one point, then the lifting is unique. We can then piece together the liftings
as in the proof that π1(S

1,1) ≃ Z to show that there is a unique lifting f̃ of f
with f̃(0) = 1. Now define h̄ : π1(P, [1]) → Z2 = {−1, 1} by

h̄([f ]) =

{
−1 if f̃(1) = −1,

1 if f̃(1) = 1.

Seeing that h̄ is well defined requires an argument similar to the one used
in showing π1(S

1,1) ≃ Z. If f ∼ f ′, then let F : I × I → P be a homotopy.
Then F can be lifted to F̃ : I × I → S2 with F̃0 = f̃ , F̃1 = f̃ ′, F̃0(0, t) = 1.
Then the unique path-lifting property (as applied to a lifting to S2 using the
unique liftings of maps to Ui once one point is specified) is applied to show that
F̃ (1, t) = f̃(1) = f̃ ′(1).

To see that h̄ is a homomorphism, we need to piece together lifts f̃ , g̃ of f, g to
get a lift of f ∗g. If f̃(1) = 1, then f̃ ∗ g̃ will be such a lift. However if f(1) = −1,
then f̃ and g̃ do not fit together since f̃ ends at −1 and g̃ begins at 1. In our proof
that π1(S

1,1) ≃ Z, a similar problem was surmounted by translating g̃; that
is, replacing it by g̃n(t) = g̃(t) + n. The important fact about g̃n used was that
g̃n(0) = n and pg̃n(t) = pg̃(t) = g(t). The map g̃n is formed from g̃ by composing
with Tn : R → R, Tn(s) = s+ n. Since pTn = p, p(Tng̃) = (pTn)g̃ = pg̃ = g. For
p : S2 → P , the map T : S2 → S2, T (x) = −x, plays the same role as Tn above.
For pT = p, p(T g̃) = (pT )g̃ = pg̃ = g. Thus if f̃(1) = −1, we may lift f ∗ g to
f̃ ∗ (T g̃), and use this lifting to verify that h̄ is a homomorphism.

We can show that h̄ is onto by explicitly constructing a path f̃ : I → S2

which connects 1 to −1 and then getting f as pf̃ . To see that h̄ is 1–1, we use
the calculation π1(S

2,1) = {e} and an analogous argument to the proof used for
computing π1(S

1,1).

Exercise 3.4.6. Fill in the details to show that π1(P, [1]) ≃ Z2.

As the reader may suspect, it is not just a coincidence that there are parallel
proofs to show that π1(S

1,1) ≃ Z and π1(P, [1]) ≃ Z2. For S
1, our proof used

the map p : R → S1, and for P it used the map p : S2 → P . Both of these maps
are examples of covering maps and (R, p, S1), (S, p, P ) are called covering spaces.

Definition 3.4.1. We will assume that in our treatment of covering spaces in
this book that each of A,B are path-connected, locally path-connected Hausdorff
spaces. If p : A → B is a continuous surjective map, we say p is a covering map
and (A, p,B) (or just A if p,B are clear by the context) is a covering space
if, for each b ∈ B, there is a path-connected open set U containing x so that
p−1(U) is the disjoint union

⊔
k∈K

Uk of open sets and p | Uk : Uk → U is a
homeomorphism. The set U is said to be evenly covered. Thus the requirement
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can be rephrased as saying that there is a covering of B by path-connected,
evenly covered open sets.

Definition 3.4.2. Two covering spaces (A1, p1, B) and (A2, p2, B) are said to
be equivalent (or isomorphic) if there is a homeomorphism h : A1 → A2 so that
p2h = p1.

A1

h
��

p1
���

��
��

��
A2

p2
����

��
��

�

B

Exercise 3.4.7. Verify that (R, p, S1), (S2, p, P ) are covering spaces.

In the two examples in the last exercise, the base spaces S1, P arise as quo-
tients of the spaces R, S2 via actions of groups. In the case of p : R → S1, we get
S1 ≃ R/x ≃ Tnx where Tnx = x+ n. For the second example, P ≃ S2/x ∼ Ax,
where Ax = −x generates a group isomorphic to Z2 = (±1, ·) consisting of A
and the identity. There is a similarly constructed covering space p : T → K. If
we regard T = S1×S1, then there is a homeomorphism h : T → T which is given
by T (z, w) = (−z, w̄), where we regard z, w as complex numbers and w̄ is the
complex conjugate of w. The quotient space is the same as formed from D1×S1

by identifying (−1, w) to (1, w̄). When we look at a small disk neighborhood of
a point, then h will rotate it half way around the first circle but reverse its ori-
entation as it maps it to a disjoint disk. In the quotient T/(z, w) ∼ h(z, w),
these two disks get identified to a single disk. This image disk in the quo-
tient is then evenly covered by the two original disks in T and so the map
p : T → T/(z, w) ∼ h(z, w) ≃ K is a covering map.

Exercise 3.4.8. Verify that T/(z, w) ∼ h(z, w) is homeomorphic to K where
we use our original definition of K as a quotient of D1 ×D1.

Just as we are interested in topological spaces up to homeomorphism or
groups up to isomorphism, we are interested in covering spaces up to equivalence,
regarding equivalent covering spaces as being essentially the same. One of the
most important facts about covering spaces is the unique path lifting property.
That is, if we are given a path f : I → B with f(0) = x and p(x̃) = x, then
there is a unique lifting f̃ : I → A with f̃(0) = x̃; that is, f̃ is a path in A with
pf̃ = f . This is proved by a Lebesgue number argument together with the fact
that it is easy to lift paths whose images lie in an evenly covered open set in the
definition.

It turns out that there is an intimate connection between covering spaces and
the fundamental group. In particular, if we have a covering space (A, p,B) with
π1(A, a) ≃ {e} (such covering spaces do exist for “nice” B) such as p : R → S1

and p : S2 → P , then we can use A to compute π1(B, b) by a path-lifting
scheme analogous to the ones used for S1 and P . Much more is true, however. It
turns out that equivalence classes of covering spaces may be classified in terms
of subgroups of π1(B, b). This interplay between topology and algebra is one



3.4. Applications to surfaces 177
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Figure 3.10. Generating loops for π1(T#T, x).

of the most beautiful in mathematics. Theorems about covering spaces may be
deduced from purely algebraic results, and, conversely, covering space theory
may be used to give topological proofs of theorems in algebra.

In Chapter 4, we give a development through a set of exercises of some of
the most important features of covering spaces. For excellent fuller treatments
of covering space theory (as well as the fundamental group), we recommend [18]
and [13].

We indicate why T is not homeomorphic to T #T without giving the full
computation of the fundamental groups which would distinguish them. An argu-
ment showing T (k) �≃ T (p) for k �= p could be given by generalizing this argument.
Basically, the idea is that in T , there are two generating loops for the fundamental
group, but in T #T , at least four loops are required to generate it. Figure 3.10
shows these generating loops, first without taking base points into account and
then with a common base point.

There is a continuous function g : T\D2 → T arising as follows. Take a
disk D2

1 ⊂ T and a smaller disk D2
2 ⊂ D2

1. We can regard the pair (D2
1, D

2
2) as

being homeomorphic to the pair (D2, ( 1
2 )D

2) of standard disks of radii 1 and
1
2 , respectively. Then there is a map (D2, ( 1

2 )D
2) → (D2,0) which takes each

radial line from x/2 to x ∈ S1 and sends it to the radial line from 0 to x. Note
that this map is the identity on S1. Using the homeomorphism between (D2

1, D
2
2)

and (D2, ( 1
2 )D

2), there is a corresponding map (D2
1, D

2
2) → (D2

1, x0) where x0

corresponds to the center of the disk. The map from T\D2
1 onto T which we

want is the identity outside of D2
1 and then uses the map (D2

1, D
2
2) → (D2

1, x0).
This has the property that there are loops in T\D2

1 which get mapped to the
generating loops in π1(T,1) as in Figure 3.11.

This map can be extended to give a continuous map f1 : T #T → T
by regarding T #T as (T\D2)1 ∪ (T\D2)2 and just sending (T\D2)1 to T as
above and sending (T\D2)2 to 1. There is an analogous map f2 which collapses



178 3. The fundamental group and its applications
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l 1
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l 1g( )
g( )g

Figure 3.11. Collapsing T\D to T .

Collapse shaded 
regions to point 1

f

f

1

2

1

Figure 3.12. Two collapses of T #T to T .

(T\D2)1. Figure 3.12 illustrates these maps. Now ((f1)∗, (f2)∗) : π1(T#T ) →
π1(T )⊕ π1(T ) (with appropriate base points) is surjective since there are loops
in T#T which are sent to each of the generating loops in each factor of T . Hence
π1(T#T ) maps onto Z⊕Z⊕Z⊕Z. But it is a fact from group theory that there
is no surjective homomorphism from Z ⊕ Z onto Z ⊕ Z ⊕ Z ⊕ Z. Basically, this
follows from the fact that Z ⊕ Z has two generators and Z ⊕ Z ⊕ Z ⊕ Z requires
four generators.

Exercise 3.4.9. Give a formula for the map (D2, 1
2D

2) → (D2,0) sending S1

to S1 via the identity and the circle of radius 1
2 to 0 as described above which

sends radial lines to radial lines. (Hint: Use polar coordinates.)

Exercise 3.4.10. In linear algebra, it is shown that there is no surjective vector
space homomorphism from R2 onto R4 (since the dimension of the image space
of a homomorphism is always less or equal to the dimension of the domain
space). Use this to show that there is no group homomorphism from Z ⊕ Z
onto Z ⊕ Z ⊕ Z ⊕ Z. (Hint: A group homomorphism from Z ⊕ Z is completely
determined by its values on (1, 0) and (0, 1). A homomorphism to Z⊕Z⊕Z⊕Z
is surjective iff (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) are in the image of the
homomorphism. Go from an assumed group homomorphism to a corresponding
vector space homomorphism.)
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3.5 Applications of the fundamental group

In this section we will prove a number of results which use our calculation of
π1(S

1,1) ≃ Z. Our first application will be to show that any continuous map
f : D2 → D2 has a fixed point; that is, there is x ∈ D2 with f(x) = x. An
analogous result is true for maps from Dn to Dn. For n = 1, it can be proved
using the intermediate value theorem and the map g(x) = f(x)− x. For n > 2,
there is a proof which utilizes homology theory in a role analogous to the way
we will use the fundamental group. First we need a couple of results which will
be useful in other applications as well.

Lemma 3.5.1. If f : S1 → A extends to a continuous map F : D2 → A,
then f∗ : π1(S

1,1) → π1(A, f(1)) is the trivial homomorphism, that is, f∗(α) =
[ef(1)].

Proof. We have f = Fi where i is the inclusion of S1 into D2. Hence f∗ = F∗i∗,
and i∗ is the trivial homomorphism since π1(D

2,1) ≃ {[e1]}. Thus f∗(α) =
F∗i∗(α) = F∗([e1]) = [ef(1)].

Proposition 3.5.2. There does not exist a continuous map f : D2 → S1 with
fi = 1S1 .

Proof. If there were, then (fi)∗ = 1π1(S1,1). But 1S1(α) = α and (fi)∗(α) =
f∗(i∗(α)) = [ef(1)].

Definition 3.5.1. If A ⊂ X and i : A → X is the inclusion, then a continuous
map r : X → A with ri = 1A is called a retraction.

Proposition 3.5.2 is saying that there is no retraction from D2 onto S1. The
following result generalizes Proposition 3.5.2.

Theorem 3.5.3 (No-retraction theorem).

(a) If there is a retraction r : X → A, then the homomorphism r∗ :
π1(X, a) → π1(A, a) is surjective.

(b) If π1(A, a) is not the trivial group and π1(X, a) is the trivial group, then
there is no retraction from X onto A.

Exercise 3.5.1. Prove Theorem 3.5.3.

We now apply Proposition 3.5.2 to prove that any continuous map of the disk
to itself must fix at least one point.

Theorem 3.5.4 (Fixed point theorem for D2). Let f : D2 → D2 be
continuous. Then there exists x ∈ D2 with f(x) = x.

Proof. Suppose not. Then x − f(x) is never zero. Consider the ray going from
f(x) in the direction of x. There is a unique point different from f(x) on this ray
that is on the unit circle; call this point g(x). Since g(x) lies on the line through
x and f(x), the point g(x) has the form x + t(x − f(x)), for some t ≥ 0. See
Figure 3.13 for an illustration of the construction of g. Calculation shows that t
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f(x)

x

g(x)

Figure 3.13. Constructing g : D2 → S1.

depends continuously on x (see Exercise 3.5.2) and hence g(x) is a continuous
function from D2 to S1. But, if x is already on the unit circle, we have g(x) = x.
Thus the existence of g contradicts Proposition 3.5.2.

Exercise 3.5.2. Show that the correspondence from x to t in the last proof is
continuous.

Exercise 3.5.3. Show that a continuous map f : D1 → D1 must have a fixed
point.

For our next applications, we need to introduce the notion of the degree of a
map from S1 to S1. Although this could be approached using the fundamental
group, this involves technical difficulties involving the role of the base point, so
we will just introduce degree using the ideas behind the computation of π1(S

1,1)
rather than the fundamental group itself.

First we need to define a homotopy of maps from A to B.

Definition 3.5.2. We say that f : A → B is homotopic to g : A → B if there is
a continuous map F : A× I → B with F (x, 0) = f(x), F (x, 1) = g(x).

This is essentially the same definition that we gave for a homotopy of loops in
defining the fundamental group, with the principal difference being that in that
case we had requirements on where the points 0, 1 go during the homotopy. The
definition is also reminiscent of the concept of an isotopy, which is a special type
of homotopy where all of the maps involved are embeddings or homeomorphisms.

Let f : S1 → S1 be a continuous map, and consider the composition f ′ =
fp : I → S1, where p(t) = e2πit. Then using the unique path-lifting property,
there is a lift f̃ ′ : I → R with f ′ = pf̃ ′ once we choose the lift f̃ ′(0). Uniqueness
implies that any two lifts f̃ ′

1, f̃
′
2 of f ′ differ by f̃ ′

2(s) = f̃ ′
1(s) + n for the integer

n = f̃ ′
2(0) − f̃ ′

1(0). For both f̃ ′
2(s), g

′
2(s) = f ′

1(s) + n are lifts of f ′ which satisfy
f̃ ′
2(0) = g̃′

2(0). Since f̃
′ is a lift of f ′ and f ′(0) = f ′(1), we have pf̃ ′(1) = pf̃ ′(0),

and so f̃ ′(1) − f̃ ′(0) is an integer. Our argument above that two lifts differ by
addition of an integer then implies that the difference f̃ ′(1)− f̃ ′(0) is an integer
which is independent of the lift chosen. This leads to the definition of the degree
of the map f .
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Definition 3.5.3. Let f : S1 → S1 be a continuous map, with f ′ = fp : I → S1.
Choose a lift f̃ ′ : I → R with pf̃ ′ = f ′, and define the degree of f by

deg f = f̃ ′(1)− f̃ ′(0).

The discussion before the definition shows that deg f is well defined, inde-
pendent of the lift chosen. We next show that homotopic maps have the same
degree.

Proposition 3.5.5. If f, g : S1 → S1 are homotopic, then deg f = deg g.

Proof. Let F : S1 × I → S1 be the homotopy. Define F ′ : I × I → S1 by
F ′s, t) = F (p(s), t). Note that F ′(s, 0) = f ′(s), F ′(s, 1) = g′(s). Theorem 3.3.2
then says that there is a unique lift F̃ ′ : I × I → R of F ′ once we specify
F̃ ′(0, 0) lying above F ′(0, 0) = f(0). Then F̃ ′(s, 0) = f̃ ′ is a lift of f ′ and
F̃ ′(s, 1) = g̃′ is a lift of g′. Moreover, F̃ ′ | {0} × I and F̃ ′ | {1} × I are lifts
of F ′ | {0} × I, F ′ | {1} × I, respectively, and these maps satisfy F ′(0, t) =
F (1, t) = F ′(1, t). Thus they are lifts of the same map from I to S1, and so
they differ by an integer constant (which is F̃ ′(1, 0)− F̃ ′(0, 0)). This means that
F̃ ′(1, 1)− F̃ ′(1, 0) = F̃ ′(0, 1)− F̃ ′(0, 0); call the common value N . We get

F̃ ′(1, 1)− F̃ ′(0, 0) = (F̃ ′(1, 1)− F̃ (0, 1) + (F̃ (0, 1)− F̃ (0, 0))

= (g̃′(1)− g̃′(0)) +N = deg(g) +N,

F̃ ′(1, 1)− F̃ ′(0, 0) = (F̃ ′(1, 1)− F̃ (1, 0)) + (F̃ (1, 0)− F̃ (0, 0))

= N + (f̃ ′(1)− f̃ ′(0)) = N + deg(f).

Hence deg f = deg g.

The constant map f : S1 → S1, f(z) = c ∈ S1, has f ′ being constant and so
lifts to a constant map to R. This gives the following lemma.

Lemma 3.5.6. A constant map f : S1 → S1 has degree 0.

The following lemma is the analog of Lemma 3.5.1.

Lemma 3.5.7. If f : S1 → S1 extends to a map F : D2 → S1, then the degree
of f is zero.

Proof. Let G : S1 × I → D2 be the continuous map G(z, t) = tz. This sends
S1×{1} to the circle by (z, 1) → z and sends S1×{0} to the center point of the
disk, sending {z} × I to the radial line joining the origin to z. The composition
FG : S1 × I → S1 is a homotopy between f and the constant map that sends
the circle to F (0). Hence the degree of f is zero.

It is useful to use the language of complex numbers in dealing with this.
To a point (x, y) in the plane, we associate the complex number x + iy,
thereby identifying R2 with C. Then S1 corresponds to the complex numbers
of length 1. The pair (cos 2πt, sin 2πt) is associated to the complex number
e2πit = cos 2πt + i sin 2πt. Our covering map p : R → S1 becomes p(t) = e2πit
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in this notation. The notation is convenient because of the key property of the
exponential function, ez+w = ezew. This gives

p(t+ s) = e2πi(t+s) = e2πite2πis = p(t)p(s).

To compute deg k, we first form k(p(t)) = k(e2πit). Lifting this to R means

finding k̃ : I → R with e2πik̃(t) = k(e2πit). We then take k̃(1)− k̃(0) = deg k.

Exercise 3.5.4. Suppose f : S1 → S1 factors as f(z) = f1(z) · f2(z), where
the center dot denotes complex multiplication and fi : S1 → S1. Show that
deg f = deg f1 + deg f2. (Hint: To compute deg fi, lift f

′
i = fip to f̃ ′

i so that
pf̃ ′

i = fip. Use p(x+y) = p(x) ·p(y) to show that f̃ ′(s) = f̃ ′
1(s)+ f̃ ′

2(s) is a lifting
of f ′ = fp.)

For our next results, we need a couple of lemmas concerning the degrees of
certain maps from S1 to S1.

Lemma 3.5.8. The degree of the map f(z) = zn, where z denotes a complex
number of length 1 and zn denotes z multiplied by itself n times, is n.

Proof. The map f ′ : I → S1 is f ′(t) = e2πint, which lifts to f̃ ′(t) = nt. Then

deg f = f̃ ′(1)− f̃ ′(0) = n.

Lemma 3.5.9. Let f : S1 → S1 be a continuous map with f(−x) = −f(x).
Then f has odd degree.

Proof. We need to find a lifting of fp : [0, 1] → S1. Suppose f(1) = a. Let f1

denote the restriction of f to the upper half of the unit circle. Note that this
determines f completely since f(−x) = −f(x). Let p1 denote the restriction of
p to the first half of the unit interval. Let h denote a lifting of f1p1 to a map
into R and denote by ã the image of 0. Since f(−1) = −f(1), h( 1

2 ) will be of
the form ã+k+ 1

2 . Denote by f2, p2 the restrictions of f, p to the last half of the
unit interval. Since f(−x) = −f(x), we have f2p2(t) = −f1p1(t − 1

2 ), which is
equal to

eπif1p1

(
t− 1

2

)
= eπie2πih(t−1/2) = e2πi(1/2+h(t−1/2)) = e2πi(h(t−1/2)+k+1/2).

This means that b(t) = h(t− 1
2 ) + k + 1

2 will be a lifting of f2p2. Then h(t) and
b(t) fit together to give a lifting of c of fp with c(0) = ã and c(1) = ã+ 2k + 1.
This means that the degree of f is 2k + 1, which is odd.

We next note that whenever we have a map f : rS1 → R2\{0}, there is a
standard way to get a corresponding map f̄ : S1 → S1. Here rS1 denotes the
circle of radius r about the origin in the plane. We just define f̄ = ufmr, where
mr(z) = rz, u(z) = z/|z|. This allows us to define deg f as deg f̄ . Here are
some properties of deg f which follow from the properties of deg f̄ by taking
compositions of homotopies with u,mr.
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Proposition 3.5.10. If f, g : rS1 → R2\{0} are continuous, then

(1) if f is homotopic to g, then deg f = deg g;

(2) if f extends to a continuous map F : rD2 → R2\{0}, then deg f = 0;

(3) if A(r1, r2) = {z : r1 ≤ z ≤ r2}, and F : A(r1, r2) → R2\{0} is
continuous, then

deg F | r2S1 = deg F | r1S1;

(4) when restricted to any circle rS1, r > 0, the map f(z) = zn has degree n
as a map of rS1 to R2\{0}.

Exercise 3.5.5. Prove Proposition 3.5.10.

We now use the degree to prove the fundamental theorem of algebra, which
says that a polynomial must have a complex root.

Theorem 3.5.11 (Fundamental theorem of algebra). Let P (z) = zn +
an−1z

n−1+ · · ·+a1z+a0 be a polynomial of the complex variable z with complex
coefficients ai. Then P has a root; that is, there is a complex number z0 with
P (z0) = 0.

Proof. Suppose not. Let M = max(|a0|, . . . , |an−1|). Choose k ≥ 1, 2nM .
Then on the circle kS1 about the origin of radius k we have P (z) = zn(1 +
an−1/z+ · · ·+a0/z

n) = zn(1 + b(z)), where |b(z)| ≤ 1
2 by our choice of k. Since

P (z) is never zero, P maps the plane into the set R2\{0}. P (z) is homotopic to
zn as maps on kS1 via the homotopy F (z, t) = zn(1 + tb(z)), and so has degree
n. But this contradicts the fact that P must have degree 0 since it extends to a
map of kD2.

We now state a slightly more refined version of this result.

Corollary 3.5.12. A polynomial P (z) = zn + an−1z
n−1 + · · · + a1z + a0 with

complex coefficient factors as P (z) = (z − r1) · · · (z − rn).

Proof. By the theorem, we can find one root, which we will call r1. Then
P (r1) = 0 means that P factors as (z − r1)Q(z), where the degree of Q(z) is
n− 1. The result now follows by induction.

Exercise 3.5.6. Suppose that P (z) = (z−r1) · · · (z−rn) and R1 < R2 are radii
of circles on which P (z) �= 0.

(a) Show that if deg P | R1S
1 �= deg P | R2S

1, then there is a root r of P
with R1 < |r| < R2.

(b) Show that if |ri| < R for all i, then deg P | RS1 = n.

Exercise 3.5.7. Suppose P (z) = P1(z)P2(z) is a polynomial with no roots on
the circle of radius R. Show that

deg P |RS1 = deg P1|RS1 + deg P2|RS1.

(Hint: Use Exercise 3.5.4.)



184 3. The fundamental group and its applications

Exercise 3.5.8. Suppose P (z) = (z − r1) · · · (z − rn), where |ri| < R for i ≤
k, |ri| > R for i > k. Show that deg P | RS1 = k. (Hint: Let P1(z) = (z −
r1) · · · (z − rk), P2(z) = (z − rk+1) · · · (z − rn).)

Exercise 3.5.9. Show that deg P | R2S
1 − deg P | R1S

1 counts the number
of roots (counting multiplicity) of the polynomial P in the annulus A(R1, R2).
Note that we are assuming there are no roots on the boundary of the annulus so
this will be defined.

Our next result is known as the Borsuk–Ulam theorem. It has a generalization
in higher dimensions. Two points on a sphere of the form x = (x1, . . . , xn)
and −x = (−x1, . . . ,−xn) are called antipodal points. Lemma 3.5.9 says that a
continuous map from S1 to S1 which sends antipodal points to antipodal points
must have odd degree. We use it to prove a version of the Borsuk–Ulam theorem.

Theorem 3.5.13 (Borsuk–Ulam theorem). There does not exist a continu-
ous map f : S2 → S1 which sends antipodal points to antipodal points.

Proof. Suppose there were such a map. Consider its restriction to the equator
of the sphere, which is S1. Since the map extends over the upper hemisphere
(which is homeomorphic to the disk), Lemma 3.5.1 implies that it has degree 0.
However, Lemma 3.5.9 implies that it has odd degree; hence we are led to a
contradiction.

Here is another version of this result.

Theorem 3.5.14 (Borsuk–Ulam theorem). A continuous map f : S2 → R2

must send some pair of antipodal points to the same point.

Exercise 3.5.10. Prove Theorem 3.5.14 by using

g(x) =
f(x)− f(−x)

|fx)− f(−x)|

to get a map to S1 where we can apply Theorem 3.5.13 if f did not send any
pair of antipodal points to the same point.

Here is an amusing corollary, where we are regarding the earth as being a
sphere, and our function f as measuring temperature and pressure.

Corollary 3.5.15. At any time there will be two antipodal points on the surface
of the earth with the same temperature and the same barometric pressure.

Our next result is another popular corollary of the Borsuk–Ulam theorem,
although it is somewhat more complicated to set up as such. It is known as the
ham sandwich theorem, where the three regions referred to are imagined to be
two pieces of bread and a piece of ham.

Theorem 3.5.16 (Ham sandwich theorem). Let R1, R2, R3 be three
connected open regions in R3, each of which is bounded, with finite volume. Then
there is a plane which cuts each of them in half by volume.
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Proof. We will only give a sketch of the proof, leaving most of the details to
the reader. First choose a large ball about the origin which encloses the three
regions. For each point x on the boundary sphere, consider the family of planes
perpendicular to the line joining x to the origin. Since our regions are connected
and open, there will be a unique one of these planes that cuts the region Ri in
half by volume. Let di(x) denote the directed distance of this plane from the
origin, calling it positive if the plane is on the same side of the origin as x and
negative if it is on the opposite side. It can be shown that the functions di are
continuous and that they satisfy di(−x) = −di(x). Let f : S2 → R2 be given
by f(x) = (d1(x) − d2(x), d1(x) − d3(x)). By Theorem 3.5.14 there is a point
x with f(−x) = f(x). But this implies that d1(x) = d2(x) = d3(x). This then
gives a plane which cuts all three regions in half.

Exercise 3.5.11. Fill in the details to prove the ‘ham sandwich theorem’.

Exercise 3.5.12. Give an example to show that the analog of the ‘ham sandwich
theorem’ is not true if there are four regions; that is, we cannot always slice a
ham and cheese sandwich in half by volume without positioning the ingredients.

3.6 Vector fields in the plane

In this section, we will study vector fields in the plane. In the next section,
we will extend our results to vector fields on surfaces, and prove a theorem of
Poincaré (later generalized by Hopf) relating the index of the vector field to the
Euler characteristic of the surface. These sections provide nice applications of
the ideas developed in this chapter to surfaces as well as introducing some ideas
of differential topology. They are independent of the remainder of the chapter
following them, and so may be studied before or after the remaining sections.

We first consider the case of a vector field defined on a subset X of the plane.

Definition 3.6.1. A vector field onX ⊂ R2 is a continuous function v : X → R2.

We will think of a vector at x as emanating from x; that is, it will be thought
of as a vector with initial point x and terminal point x + v(x). We give some
examples with corresponding pictures.

Let X = R2 and v(x) = x. Then each vector points out from the origin in
the direction of the initial point. Its length increases in terms of the length of the
initial point. Figure 3.14(a) illustrates this vector field. For our next example, we
again let X = R2 but now v(x) = (1, 0). This is a constant vector field pointing
to the right. See Figure 3.14(b). Our third example again uses X = R2, and
we consider each z ∈ R2 as a complex number; that is, we identify R2 with C.
We now define v(z) = z3, where we are using complex multiplication. We depict
this vector field in Figure 3.14(c). Our final example is a vector field defined on
X = R2\{0}; this vector field blows up at the origin and does not extend over
the origin. Using the same convention as the last example, it is v(z) = 1/z. It is
illustrated in Figure 3.14(d).
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(a) (b)

(c) (d) 

Figure 3.14. Examples of planar vector fields.

We now restrict each of the vector fields in our four examples to the unit
circle and describe how the vector moves as we move once around the circle
in the counterclockwise direction. In the first example, the vector moves once
around the circle since v(x) = x. In the second example, the vector field is
constant at (1, 0). In the third example, the vector field moves around the circle
three times in the counterclockwise direction. In the last example, it moves once
around the circle in the clockwise direction. In each of these examples, the vector
field restricted to the circle is a function from S1 to itself. The degrees of these
four functions are, respectively, 1, 0, 3,−1. The degrees tell how many times the
vector field moves around the circle as we move around the circle once. Of course,
these examples are rather special in that each has unit length on the unit circle.
However, we could still define the notion of degree of a vector field on the unit
circle as long as the vector field does not vanish (i.e. it is not equal to 0) on the
circle. Recall that we defined the degree of a map v : S1 → R2\{0} by using the
composition uv, where u(z) = z/|z| maps R2\{0} by radial projection. This is
equivalent to considering the normalized vector field v(z) = v(z)/|v(z)| and its
degree. We can also consider the degrees for vector fields defined on other circles
about the origin besides the unit circle. We can then use Proposition 3.5.10 in
Section 5 to show that as long as the vector field v does not vanish in the region
between the two circles, the degree defined through the composition vmr will be
the same on any circle of radius r about the origin. In the examples we gave, it
is the case that vmr is the same map as v|S1 instead of just homotopic to it as
we would expect. This reflects the symmetry of these vector fields.
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Suppose we are interested in the behavior of the vector field on some other
circle besides one centered at the origin, say a circle about a point x. Then we
could get a function from S1 to S1 by first using mx,r(z) = x + rz from S1 to
the circle about x of radius r and then composing with v. To do this, we only
need to know that the vector field does not vanish on the circle of radius r about
x. The degree that we get does not depend on the particular radius chosen if the
vector field v does not vanish on the annular region between the two circles.

If we do this at an x where v(x) �= 0 and choose a disk containing x over
which v(x) �= 0, then properties of the degree imply that the restriction to the
boundary of the disk has degree 0. Thus the only situation where the computation
of the degree of vmx,r for small r is of interest is where the vector field vanishes
inside the disk B(x, r). In this case, suppose that for a small disk about x, the
only point where the vector field vanishes is at x itself. Then if we take any circle
about x in this disk and compute the degree of the map vmx,r for this circle,
then the answer does not depend on the particular circle chosen.

Exercise 3.6.1. Give the details for the claims made in the the preceding argu-
ment that the degree of vmx,r does not depend on the choice of radius r as long
we are inside a disk where v only vanishes at x.

Definition 3.6.2. A point x where a vector field v vanishes is called a sin-
gularity of the vector field. A singularity is called isolated if there is a deleted
neighborhood of the singularity where the vector field in nonzero. For an isolated
singularity x, we define the index of the singularity by first choosing a small disk
about x of radius r so that the only zero inside this disk occurs at x, and then
define i(x) as the degree of vmx,r. If the vector field has only a finite number of
singularities, all of which are isolated, then the index of the vector field is defined
to be the sum of the indices of the singularities; that is

I(v) =
∑

i(x),

where the sum is taken over all of the singularities of v. If a vector field has no
singularities, then we define the index of the vector field to be zero.

We look at some examples. For our first three examples, each has only one
singularity, and the indices are 1,0,3. The last example had a different type of
singularity, one where the vector field blew up rather than vanished, and so the
definition does not strictly apply. We now consider an example with two isolated
singularities. Suppose our vector field is given by v(z) = z(z − 2). Then the
vector field vanishes only at 0 and 2 = (2, 0), and each of these singularities is
isolated. We first choose a circle of radius 1 about 0. Note that z − 2 extends to
a map of the unit disk into R2\{0}. Let H(z, t) = tz− 2. Then H is a homotopy
into C\{0} between z−2 and the constant map −2. Consider V (z, t) = zH(z, t)
and V (z, t) = V (z, t)/|V (z, t)|. Then V (z, t) gives a homotopy between v(z),
whose degree we wish to compute, and −z, as maps from S1 to S1. But −z is
homotopic to z as maps of S1 to S1, via the homotopy k(z, t) = eπitz, 0 ≤ t ≤ 1.
Hence the degree of the map is 1, and thus the index of the singularity at 0 is
1. We now consider the index of the singularity at 2. We restrict to the circle of
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radius 1 about 2 in order to compute it. We first look at vm2,1(z) = (2 + z)z.
As before, we can homotope the (2+ z) term to 2 and so get a homotopy of this
to 2z. When we normalize, this gives a homotopy of vm2, 1(z) to z, so the index
of the singularity at 2 is also 1. Then the index of this vector field is 2.

Exercise 3.6.2. Give an explicit construction to the homotopy of vm2,1 to z
that is described in the preceding argument.

In our next example, we will not write down an explicit formula, but will give
a description of it in pieces, referring to Figure 3.15. The vector field has isolated
singularities at −2 and 2. On the circle of radius 1 about −2, the vector field
spins once about the circle in the counterclockwise direction as we traverse the
left half of the circle and is constantly vertical on the right half of the circle. On
smaller concentric circles to this one, the vector field behaves similarly except
that the length of the vectors goes to 0 as we approach the singularity at −2. On
the left half of the circle about 2, the vector field points upward. On the right
half, it moves once around the circle in the clockwise direction as we move from
the bottom to the top. Again, the vector field is defined similarly on concentric
circles with the lengths of the vectors approaching 0 as we go to the singularity
at 2. The index of the vector field at −2 is 1, and the index of the vector field
at 2 is −1. Hence the index of this vector field is 0. In the region between the
two circles indicated in Figure 3.15, the vector field is vertical. On concentric
oblong curves going to infinity, the vector field repeats its behavior on the oblong
curve joining the two circles. This example shows how a vector field can have
two singularities which cancel each other off as far as their contribution to the
index.

We now draw another example with canceling singularities in Figure 3.16.
This vector field will be constantly (1, 0) outside an oblong region where all of
the action is taking place. The index of the two singularites is 1 and −1, and the
total index is 0. This last vector field is useful in modifying a given vector field so
that the number of singularities is increased but the index remains unchanged.
What we will do is first modify the vector field near a nonsingular point to be
constant there. Then we remove the constant vector field and replace it by a

-2 2

Figure 3.15. Example of canceling singularities.
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Figure 3.16. Another example of canceling singularities.

(a) (b)

Figure 3.17. Vector fields for Exercise 3.6.3.

copy of the one in Figure 3.16 near the selected point. By doing this, we can get
examples of vector fields with arbitrarily high numbers of singularities but with
a prescribed index.

Exercise 3.6.3. Each part of Figure 3.17 depicts the vector field on a circle
about an isolated singularity. Determine the index of each of the singularities.

Exercise 3.6.4. Give an example of a vector field in the plane which has two
singularities of index 1 and one singularity of index −1. (Hint: Start with a vector
field with one singularity of index 1 and then introduce two new singularities that
look like Figure 3.16.)

Exercise 3.6.5. Show that f : S1 → S1, f(z) = c, is homotopic to g(z) = 1.

Exercise 3.6.6. Show that, if f : S1 → C\{0} satisfies f(z) = f1(z)f2(z)
(complex multiplication of f1 and f2) and f2 is homotopic to f3, then f is
homotopic to g(z) = f1(z)f3(z).

Exercise 3.6.7. Show that, if f(z) : S1 → C\{0} extends over the unit disk
to F : D2 → C\{0}, then f(z) is homotopic to g(z) = 1. (Hint: Use the map
G : S1 × I → D2, G(z, t) = tz composed with F to get a homotopy to F (0).
Then use path connectivity in C\{0} to move F (0) to 1.)
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Exercise 3.6.8. Give an explicit homotopy between f(z) = 2z−5 and g(z) = 1
as maps from S1 to C\{0}.
Exercise 3.6.9. Suppose v(z) = v1(z)v2(z) (complex multiplication) is a vector
field with an isolated singularity at x. Suppose v1(x) = 0, v2(x) �= 0, and the
only singularity of v inside B(x, r) is at x. Show that the index of v at x as
computed on the circle of radius r about x is the same as the index of v1 as
computed on the same circle.

Exercise 3.6.10. Suppose v(z) = (z − x1) · · · (z − xn) is given as a factored
polynomial. Show that v has isolated singularities x1, . . . ,xn and that each has
index 1, so the index of the vector field is n. (Hint: Use the preceding exercise.)

We have already seen that if a nonzero vector field v extends over a disk,
then the degree of the map used in defining the index on the boundary circle
is 0. We prove a partial converse; that is, when a vector field v has an isolated
singularity at x and the index of this singularity is 0, then there is a vector field
w with w = v outside of a disk about x, and w has no singularity within the
disk. This is equivalent to showing that a vector field which is defined on a circle
of radius r about x and has vmx,r with degree 0 may be extended to a vector
field which is nonzero over the disk of radius r about x.

Lemma 3.6.1. Let f : S1 → R2\{0} be a continuous map with the composition
of a map of degree 0. Then f extends to a continuous map from D2 to R2\{0}.
Proof. Note that ui is the identity on S1. The map iu is homotopic to the
identity on R2\{0}, via the homotopy H(z, t) = (1− t)z+ tz/|z|. This homotopy
pushes radially back to the boundary circle. That the degree of uf is zero means
that ufp, p(t) = e2πit is homotopic to the constant loop at uf(1). Hence (iu)fp
is homotopic to a constant map, and using H, we see that fp is homotopic to a
constant map. Call this homotopy K : I× I → (R2\{0})× I. It will send {0}× I
and {1}× I to a path α(t) joining uf(1) to f(1). Then K induces (regarding S1

as a quotient space of I via p) a homotopy K̄ : S1×I → R2\{0} with K̄|1×I = α
and K̄(z, 0) = uf(1), K̄(z, 1) = f ,

I × I

p×1

��

K

�����������

S1 × I
K̄

�� R2\{0}

But D2 is a quotient space of S1×I via the map r : S1×I → D2, r(z, t) = tz,
so K̄ induces an extension of f to the disk.

S1 × I

r

��

K̄

�����������

D2
K̄′

�� R2\{0}
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Exercise 3.6.11. Verify that r : S1 × I → D2 is a quotient map and that K̄ ′

gives an extension of f .

By using the standard identification of the unit disk with a disk of radius r
about x, this lemma impies that if vmx,r has degree 0, then it will extend over
the disk of radius r about x to a map of R2\{0}. When we piece this together
with v, we get the vector field w as claimed.

We next study the situation where we have a vector field v which has all
of its singularities inside a disk D1. We first look at the case where v has only
singularities at z1 and z2. Consider a straight line joining z1 and z2, and an
oblong neighborhood about this line formed by taking small disks of the same
radius about z1 and z2 together with lines connecting the right side of the one of
the disks and the left side of the other, as depicted in Figure 3.18(a). Now replace
the vector field with one which agrees with v outside of the oblong neighborhood
and is defined inside the neighborhood by “radial damping”; that is, on smaller
concentric oblong curves, the vectors will be in the same direction as at the
corresponding point on the boundary curve but with decreasing length tending
to 0 at the center point. See Figure 3.18(b) for an illustration.

We compare the degree of the restriction of the normalized vector field on
the large circle boundary of D1 to the indices of the vector field at z1 and z2.
We claim that this degree is just the sum of the indices. First note that there
is a homotopy between the standard map of S1 to the boundary of D1 and the
homeomorphism onto the boundary of the oblong region. This homotopy can be
thought of as arising from a description of both the oblong region and the disk
D1 as unions of line segments from their boundaries to a center point x0 which
lies inside the oblong region. During the homotopy the line segment going to
the boundary of the oblong region is stretched to the larger segment going from
x0 to the boundary circle of the disk. See Figure 3.19 for an illustration of the
image of the boundary circle during the homotopy.

We need a way to compare the degree of the composition of v with the
standard map of the circle to the boundary of the oblong region (in terms of the
construction above) and the sum of indices of the singularities at the two points.

z

z

1

2

(a) (b)

Figure 3.18. Merging two singularities.
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Figure 3.19. Homotoping the boundary circle.

H

H

H

0

1/2

1

Figure 3.20. Computing the degree on the boundary.

We do this by deforming, by a homotopy, the map of S1 to the boundary of the
oblong region to the map which traverses each of the disks about z1 and z2 once
in the counterclockwise direction and also goes back and forth along the line
joining the centers of these disks. See Figure 3.20. The final map can be thought
of as sending the circle to the union of the two circles and the line segment by
sending the first quarter of the circle once around the circle C1 about z1, sending
the second quarter of the circle to the line segment from C1 to C2, sending the
third quarter once around C2, and then sending the last quarter back along the
line segment to our starting point. To compute the degree of this map, we first
wrap the interval around the circle via p, then compose this map with the map
described above. We compose with v to get a map of the interval into the circle.
We then lift the map to a map of I into R and compare the lifting of 0 with
that of 1. The difference gives the degree. We denote the composition we have
formed by f and the lifting by f̃ , with f̃(0) = a. Then f̃( 1

4 ) = a + n1, where

n1 is the index of the singularity at z1. Now suppose f̃( 1
2 ) = a + n1 + b. The

number b tells us how the image of the path joining the two circles lifts. Next
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suppose f̃( 3
4 ) = a+n1+b+n2. Since we went around C2 once as went from 1

2 to
3
4 , the number n2 = i(z2). From

3
4 to 1, we are going backwards along the same

path that we used from 1
4 to 1

2 , and thus the lifting will be a reparametrization
of that lifting (going backwards) shifted along the reals by some integer. This
means that as we go from 3

4 to 1, the image points will be moved backwards by

b units. Thus f̃(1) = f̃( 3
4 )− b = a+ n1 + n2 = a+ i(z1) + i(z2), and the degree

of the map is i(z1) + i(z2).
We are now ready to prove our main result concerning indices of vector fields

in the plane.

Proposition 3.6.2. Suppose v is a vector field defined on the disk B(x, r)
centered at x which has isolated singularities at z1, . . . , zk. The degree of the
map vmx,r is the sum of the indices of the singularities; that is, the index of the
vector field may be computed by computing the degree using the vector field on
the boundary circle.

Proof. We prove this by induction on the number k of singularities. If k = 1,
then we may use a homotopy between the map mx,r and the map mz1,r1

onto a
small circle around the singularity analogous to that in Figure 3.19 to show that
the degree of vmx,r is the same as the degree of vmz1,r1

. The details are left as
an exercise.

Now suppose that we know the result when there are k isolated singularities
inside D and our vector field has k+1 singularities inside D. Choose two singu-
larities at z1 and z2, so that the line joining z1 and z2 does not intersect the other
singularities. Replace the vector field v by a vector field w which agrees with v
outside of the oblong neighborhood but is changed inside by radial damping as
in Figure 3.18(b). This replaces two singularities by one singularity at the center
point of this oblong region, and the argument just preceding this proposition
shows that the index of this new singularity will be the sum of the indices of
v at z1 and z2. The vector field w only has k singularities, and the induction
hypothesis shows that the sum of the singularities for w is equal to the degree
of the map vmx,r. Since the sum of the indices for w is the same as the sum of
the indices for v, the result follows.

Exercise 3.6.12. Verify the claim made in the first paragraph of the proof that
the degree of vmx,r is the same as the degree of vmz1,r1

.

We will need a slight refinement of this proposition. Consider the region R
formed from the disk B(x, r) by removing k small disks about points z1, . . . , zk

in D. Suppose we have a vector field v defined in R. Then we claim that I(v)
is given by the difference between the degree of the map vmx,r and the sum of
the degrees of the map on the small circles about zi. We could define a vector
field on D by making it equal to v in R and extending it over the small disks
about the points zi by radial damping. This new vector field will have all of the
old singularities of v as well as new singularities at zi. The sum of the indices of
the new singularities will be the sum of the degrees of the maps vmzi,ri

. Hence
the difference of the degree on the outer circle and the sum of the degrees on the
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small circles will be the sum of the indices of the original vector field. We state
this result for future reference.

Proposition 3.6.3. Let v be a vector field on a region R in the plane formed
from a disk D by removing k small disks about points of zi of radii ri. Then the
index of v may be calculated by taking the difference of the degree of vmx,r and
the sum of the degrees of the maps vmzi,ri

.

3.7 Vector fields on surfaces

We now discuss vector fields on surfaces and their indices. We first need to
discuss the notion of a differential structure on a surface. Recall that a surface
can by covered by open sets {Ui} so that there are homeomorphisms hi : Ui →
Vi, where Vi is an open set in R2. We impose a differential structure on the
surface by finding a cover so that if Ui ∩ Uj �= ∅, then the homeomorphism
hih

−1
j : hj(Ui ∩Uj) → hi(Ui ∩Uj) is a diffeomorphism. This means that hih

−1
j is

required to be differentiable with differentiable inverse. By differentiable, we will
mean infinitely differentiable here for simplicity. We will say that {(Ui, hi)} gives
a differential structure on the surface. A surface M together with a differential
structure S will be called a smooth surface, and will be denoted by (M,S)
whenever we want to emphasize the differential structure or just by M alone
when the differential structure is implicitly clear. We say that two differential
structures S1 = {(Ui, hi)},S2 = {(Vj , gj)} on M are equivalent if, whenever
Ui∩Vj �= ∅, the composition hig

−1
j : gj(Ui∩Vj) → hi(Ui∩Vj) is a diffeomorphism.

We are only interested in equivalence classes of differential structures.
Suppose we have selected equivalence class differential structures on the sur-

faces M,N with structures coming from {(Ui, hi)} on M and {(Vj , gj)} on N .
We say that a map f : M → N is a diffeomorphism if f is a homeomorphism
and the maps gjfh

−1
i (where they are defined) are diffeomorphisms. This does

not depend on the particular representative of the differential structure since
corresponding local descriptions of the surface are related by diffeomorphisms.
Basically, we are determining whether a map is differentiable by referring it back
to a local description of the domain and range as being open sets in R2. We get
the same answer independent of the particular local description we take because
the two local descriptions are related by a diffeomorphism.

Although our definition of a differential structure is rather abstract, differ-
ential structures frequently arise in rather concrete ways, such as having the
surface embedded smoothly in some Rn with well-defined tangent planes. In this
case the local descriptions can come from projections onto these tangent planes,
together with identifying the tangent plane with R2.

Exercise 3.7.1. Suppose S1,S2 are equivalent differential structures on M .
Show that f : M → R is differentiable in terms of S1 iff it is differentiable
in terms of S2. Thus equivalent differential structures have exactly the same
differentiable maps to R.
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There are two important questions to be asked about differential structures on
surfaces. The first is whether every surface possesses a differential structure. The
answer is yes, and this is easy to see for the compact, connected surfaces that we
have classified. For the orientable ones, we can use an embedding of the surface
into R3 to get our differential structure. For the nonorientable ones, we could
either use an embedding into R4 or break it up into pieces and impose consistent
differential structures on the pieces. We could get a differential structure on the
Möbius band (e.g. by using an embedding into R3) and then impose a consistent
structure on a disk which overlaps the Möbius band slightly so that their union is
the projective plane. Our answer is relatively easy for compact connected surfaces
since we know that each one is homeomorphic to one of our model surfaces and
so we can just work with the concrete models.

The next question is whether (M,S) and (N, T ) being homeomorphic implies
that they are in fact diffeomorphic. The answer to this question turns out
to be yes as well. That is, if M and N are considered as smooth surfaces,
then M is homeomorphic to N iff M is diffeomorphic to N . The subject of
differential topology studies smooth manifolds up to diffeomorphism. Some ref-
erences for an introduction to differential topology at a beginning graduate level
are [5,15,21,25]. One of the big breakthroughs in topology happened when it was
shown that the answers to the corresponding questions of existence and unique-
ness of differential structures above were sometimes no in higher dimensions.
That is, there exist manifolds which do not possess differential structures as well
as differentiable manifolds which are homeomorphic but not diffeomorphic. This
last result was discovered first and is due to John Milnor in 1956. Shortly after
Milnor’s discovery, Michael Kervaire produced an example of a manifold which
has no differential structure. These two results led to a great flourishing in differ-
ential topology in the late 1950s and 1960s. Later, Robion Kirby and Laurence
Siebenmann produced similar results for PL structures on a manifold which arise
from nice triangulations of the manifold. A PL structure can be thought of as
lying somewhere between the structure as a manifold and a differential structure.
There has been a great deal of work in comparing the notions of a topological
manifold structure, a PL structure, and a differential structure. Much of the
analysis has relied on constructions in algebraic topology. Most of the results
obtained early on concerned manifolds of dimension ≥ 5. More recently, in the
1980s and 1990s, there has been another explosion of results in studying similar
questions about four-dimensional manifolds. Here it turns out that “most” com-
pact, connected 4-manifolds do not have differential structures, and, of those
that do, there are frequently infinitely many distinct differential structures. A
surprising result, completely different from what happens in any other dimension,
is that R4 itself has uncountably many distinct differential structures. These last
results arise out of gauge theory, which is a part of differential topology which
was motivated by ideas in physics.

For surfaces, all three types of structures turn out to lead to the same res-
ults. This is in itself useful, however, since it means that we are allowed to use
techniques in differential topology and PL topology to study questions about
surfaces, and our results do not depend on the particular structure used. This
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can lead to an exciting interplay between ostensibly very different ideas. We will
see this interplay as we discuss vector fields on surfaces.

We indicate how differential structures on M and N can be used to get a
differential structure on M#N . We earlier defined the connected sum in terms
of removing disks from M and N and sewing in a cylinder. Suppose DM , DN

are the disks whose interiors to be removed, and hM : D → M,hM (0) = p, hN :
D → DN , hN (0) = q are diffeomorphisms (in terms of the given differential
structures). Now intD\{0} is homeomorphic to the interior S1 × (0, 1) of a
cylinder S1×I, so sewing in the cylinder is equivalent to identifying int DM\{p}
and intDN\{q} to what will be the sewed-in cylinder. Note that S1 × {0} is
supposed to correspond to ∂DM and S1 × {1} is supposed to correspond to
∂DN . Hence the identification required is to identify int DM\{p} to intD\{0}
via h−1

M , compose with a diffeomorphism r : int D\{0} → int D\{0}, r(tx) =
(1 − t)x, 0 < t < 1, and then identify intD\{0} to intDN\{q} via hN . Note
that hNrh

−1
M is a diffeomorphism in terms of the differential structures onM\{p}

and N\{q} coming from those on M,N . Hence these differential structures piece
together to give a differential structure on M#N = (M\{p}) ∪ (N\{q})/x ∼
hNrh

−1
M (x), where x ∈ intDM\{p}. A picture of this construction is given in

Figure 3.21.
Note that a radial line segment (in terms of hM ) running from ∂DM toward

p is being identified with a radial line segment (in terms of hN ) running from

M N

D

D

p q

M

N

M # N

int \ p

D
M

=

S x (0,1) = int D\0 =

int \ qDN

1

Figure 3.21. Forming connected sum differentiably.
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q out to ∂DN . This is illustrated in Figure 3.22. The circle hM ( 1
2S

1) is iden-
tified to hN ( 1

2S
1) by identifying hM (x) to hN (x). We can think of M#N as

M\hM (int1
2D)∪hM h−1

N
N\hN (int1

2D). The curve ℓ (which is differentiable) then

becomes the union of two curves ℓ1, ℓ2 as indicated in Figure 3.23. Thus we can
think of M#N as being formed by removing the disks hM (int1

2D), hN (int1
2D)

and gluing their boundary circles.
We comment briefly on orientation conventions. To form oriented connected

sums consistent with given orientations onM and N , it is necessary for one of the
embeddings hM , hN to preserve orientation and the other to reverse orientation.
Then we can extend the orientations on M\ 1

2D and N\ 1
2D to M#N as the

orientations on the circles hM ( 1
2S

1) and hN ( 1
2S

1) will disagree as required. From

l

l

l

p q

D
M

DN

M N
M # N

Figure 3.22. Identified radial lines.
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M N

M #N
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D DND1/2 1/2

\ \hM h N(1/2 D) (1/2 D)

Figure 3.23. Connected sum via gluing along a circle.
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the point of view of r, it reverses orientation and so the map hNrhM will preserve
orientations as the two manifolds are glued together.

We now define the notion of a tangent vector field on a surface. If the surface
already sits differentiably in some Rn so that there is a well-defined notion of a
tangent plane to the surface at each point on it, then a tangent vector field is just
a continuous selection of a tangent vector at x for each point x on the surface. By
a tangent vector at x, we mean a vector in Rn (thought of as emanating from x)
which is tangent to a differentiable curve in the surface which passes through x;
that is, it is f ′(0), where f : R → M ⊂ Rn is differentiable and f(0) = x. The set
of all tangent vectors at x (usually thought of as elements of the plane of points
x+ tf ′(0) for f as above and t ∈ R) is called the tangent plane at x. Suppose we
have a tangent vector field in this sense, and that Ui is an open set in M and hi

is a homeomorphism from U1 onto an open set in R2 that is part of the differ-
ential structure imposed on M via its embedding into Rn from projection onto
the tangent plane. This last condition means that hi extends to a differentiable
function from an open set in Rn to hi(Ui). The differential of this function will
then map tangent vectors at x ∈ Ui linearly to vectors in R2 at hi(x). Thus a
vector field on M determines through the differential a related vector field on
hi(Ui) for all i. These vector fields are related as follows: if vk represents the vec-
tor field on hk(Uk), then vj(hj(x)) = D(hjh

−1
i )(hi(x))vi(hi(x)). Here Df(a) is

the differential of the differentiable map f evaluated at a. It is a linear map from
R2 to R2 and is represented by the matrix of partial derivatives. Since hjh

−1
i is

a diffeomorphism, the differential D(hjh
−1
i )(a) is an invertible linear transform-

ation for all values of a where it is defined. Thus we may regard a vector field
on M as being given by consistent vector fields in each of the open sets hi(Ui),
where consistent means that the equation vj(hj(x)) = D(hjh

−1
i )(hi(x))vi(hi(x))

holds. Given a vector field in this latter sense, we can use the differential struc-
ture maps to reconstruct a vector field in the sense of an embedded surface. We
will work with the local definition since it will allow us to refer our questions
back to questions about vector fields in R2 where we can apply the results of the
last section.

We need an alternate description of the induced differential. Suppose f :
U ⊂ R2 → V ⊂ R2 is a differentiable map and v is a tangent vector to U at x.
Then there is a differentiable curve g : R → U with g(0) = x, g′(0) = v. Then
Df(x)v = w means that w = (fg)′(0). Thus, to determine the differential, we
just have to see what f does to certain curves through a point. Moreover, the
fact that the differential is a linear map means that we only have to determine
what is happening to the two curves g1, g2 with gi(0) = x and g′

i(0) = vi, with
v1,v2 linearly independent.

We look at what this means for M#N where we glue the two circles together.
Then the curve ℓ is differentiable. In terms of h−1

M , it is sent to a curve that cuts
1
2S

1 perpendicularly going inward. In terms of h−1
N , it is sent to a curve that cuts

1
2S

1 perpendicularly going outward. Thus the differential will identify an exterior
normal vector to ∂(M\hM ( 1

2 intD)) to an interior normal to ∂(N\hN ( 1
2 intD)).

Since the circle 1
2S

1 is identified to itself via the identity, a tangent vector
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hM

M \ hM (1/2 D) N \ h N
(1/2 D)

h N

-1-1
(l)(l)

Figure 3.24. Identifying vectors for a connected sum.

to ∂(M\hM ( 1
2 intD)) will be identified to the corresponding tangent vector to

∂(N\hN ( 1
2 intD)). See Figure 3.24.

We now apply these ideas to study vector fields on the sphere. We will take
our covering of the sphere to be given by S2\{S}, S2\{N}, where S,N denote
the south and north poles. We then take the homeomorphism hS , hN to be
given by stereographic projection from the appropriate poles. Using our earlier
computations of hS , hN , we may compute hNh

−1
S (a, b) = (1/s2)(a, b), where

s2 = a2 + b2. The map sends the circle of radius r to the circle of radius 1/r via
rz → (1/r)z, where z ∈ S1. In particular, it sends the unit circle identically to
itself. Qualitative features of this calculation can be found geometrically using
the projection maps. For example, if C denotes a circle formed from the sphere by
intersecting it with a plane parallel to the xy-plane, then stereographic projection
from either pole will send C to a circle in the plane. If C lies in the southern
hemisphere, then projection from the south pole sends C to a circle of radius
greater than 1 and projection from the north pole sends C to a circle of radius
less than 1. Moreover, starting from a point in the plane, hNh

−1
S will send the

point x in the same plane containing x, N,0, so it will preserve radial lines. What
our calculation does is make precise how the radii of these circles correspond.

We compute the differential of the map hNh
−1
S by computing the matrix of

partial derivatives, giving

A =
1

s4

(
b2 − a2 −2ab
−2ab a2 − b2

)
.

It is easiest to see how this matrix works on a vector by choosing an appropriate
basis. The most useful basis is v1 = (a, b),v2 = (−b, a). The first vector is an
exterior normal to the circle of radius s, and the second is a tangent vector to the
circle. Computation gives Av1 = −(1/s2)v1, Av2 = (1/s2)v2. Again, we could
have seen this geometrically except for the exact eigenvalues. Our map sends
a circle to a circle along radial lines, so a tangent vector to the circle must be
sent to a tangent vector to the image circle and hence to a multiple of itself.
The fact that a ray perpendicular to the circle is sent to a ray perpendicular to
the image circle with its orientation reversed implies that an exterior normal to
a circle is sent to an interior normal to the image circle. A vector field on S2
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corresponds to two related vector fields on R2, where they are related by matrix
A at corresponding points. Note that we can retain all of the information just
by looking at the vector fields on the two unit disks, and their relationship via
A restricted to the unit circle, which hNh

−1
S sends identically to itself. For each

z ∈ S1, what A(z) does is reflect each vector through the line perpendicular to
the line from the origin to z. A useful way to describe this reflection is that it is
the composition of first rotating the circle to send z back to 1 (which is achieved
by multiplying by z̄ = z−1 where z̄ denotes complex conjugation), then reflecting
in the vertical line (which sends z to −z̄), and then rotating back to z (which
is achieved by multiplying by z). The composition, which is A(z)v(z), sends the
vector field v(z) to the vector field −z2v(z).

We will assume that our vector field has already been normalized to have
length 1 where we are doing our computations since we will be doing this nor-
malization as part of computing the index. Suppose that our initial field has
degree n. Then v(z), considered as a map from S1 to S1, is homotopic to the
map zn. Hence the map −z2v̄(z) is homotopic to the map −z2z−n = −z2−n,
which is homotopic to z2−n, and hence has degree 2 − n. Thus multiplication
by A(z) converts a unit vector field of degree n on S1 to a vector field of degree
2−n. Thus a vector field on S2 with no singularities on the equator corresponds
to two different vector fields on the unit disk, say v1, v2, where v1 and v2 are
related on the unit circle in such a way that if n is the degree of the normalized
vector field v1 on the circle, then 2 − n is the degree of the normalized vector
field v2.

We now describe what we mean by the index of a (tangent) vector field on a
surface. We first define the index of a singularity; that is, the index at a point
where the vector field vanishes. The way that this is done is to refer the vector
field back to a vector field in an open set of the plane via one of the defining
homeomorphisms giving the differential structure, and compute the index of the
singularity there. For this to be well defined, we have to show that the result
is independent of the particular homeomorphism hi chosen. This turns out to
be true, and the proof is an interesting exercise in advanced calculus using the
differential as a linear approximation to hjh

−1
i . It works by showing that up to

homotopy (which is all right for the purpose of calculating the degree) we can
assume that the map hjh

−1
i is linear and orthogonal (so that it maps circles to

circles) in a neighborhood of the singularity. This leads to comparing the degrees
of v(z) and the composition AvA−1(z). The fact that the degrees of compositions
multiply and the degrees of A,A−1 are ±1 since they are orthogonal shows that
the two degree computations give the same result. Thus we can compute the
index of the singularity by referring the problem back to the plane. We then
define the index of the vector field on the surface with a finite number of isolated
singularities to be the sum of the indices of those singularities. We will show by
expressing the vector field in terms of related planar vector fields that the index
of a vector field on a compact, connected surface without boundary is just the
Euler characteristic of the surface.

We now consider the index of a vector field on the sphere which has only a
finite number of isolated singularities. After a small perturbation of the vector
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field that does not change the index, we can assume that the vector field has no
singularities on the equator. Then we can regard the vector field as two vector
fields v1, v2 on the unit disk related as we described above. But we showed
in the last section that for a vector field on the unit disk, the degree of the
normalized vector field on the boundary circle gives the sum of the indices of the
singularities inside the disk. Thus the index I(v) of the vector field v on S2 will
be the sum of the indices I(v1) and I(v2) of the two vector fields on the disk.
Our discussion above shows that these are related by I(v2) = 2 − I(v1). Hence
I(v) = I(v1)+ (2− I(v1)) = 2, independent of the particular vector field chosen.
In particular, this means that there does not exist a vector field on S2 which
never vanishes. We state this as a theorem.

Theorem 3.7.1. Let v be a (tangent) vector field on S2 with a finite number
of isolated singularities. Then the index I(v) is 2. In particular, this means that
there does not exist a nonvanishing tangent vector field on S2.

Exercise 3.7.2. Draw a picture to show the effect on the vector field v(z) = z2

on the unit circle when we reflect v(z) through the line perpendicular to the line
from the origin to z. Your picture should show the images of the vectors pictured
in Figure 3.25. Verify from your picture that the degree of the new vector field
is 0.

Exercise 3.7.3. An orthogonal linear transformation from S1 to S1 is the com-
position of the reflection r(z) = z̄ with multiplication by a number in S1 (i.e.
g(z) = az, where a ∈ S1) or a map of the form of g itself. Show that the degree
of r is −1. Show that the degree of an orthogonal linear transformation is ±1.
Determine the inverses of g and r, and show that they have the same degree as
the original map g or r.

Exercise 3.7.4. Prove that any continuous map f : S1 → S1 is homotopic to
zn for some n. (Hint: Use the information that it has degree n for some n and
reinterpret what that means in terms of certain maps from the interval being
homotopic to show that f and zn are homotopic.)

Figure 3.25. The vector field v(z) = z2.
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Exercise 3.7.5.

(a) Give an example of a vector field on the sphere with one singularity.

(b) Give an example of a vector field on S2 with one singularity at the north
pole and one singularity at the south pole.

(c) Give an example of a vector field on S2 with four isolated singularities
of indices 1, 1, 1,−1.

Exercise 3.7.6. Show that, if f : S2 → R3 is continuous, then there must be
some x ∈ S2 so that f(x) = kx, where k ∈ R and x is thought of as a point
in R3. (Hint: Reinterpret f as a (not necessarily tangent) vector field on S2 and
get a tangent vector field from it by projection onto the tangent plane at x.)

We now consider vector fields on the torus. This time we will start with a
description of the torus and its differential structure that is akin to the descrip-
tion of the sphere as the union of two disks. This comes from thinking of the
torus as sitting in R3 symmetrically with respect to the xz-plane and then sli-
cing it into two halves by that plane. The two halves are each homeomorphic
to annuli and the two pieces are glued together by identifying points on the
boundary circles. We need to understand how tangent vectors on the circles in
the two pieces correspond. Since the circles are sent identically to each other,
vectors tangent to the circles must be sent to the corresponding tangent vector
on the other circle. The more interesting phenomenon occurs for vectors that
are normal to each of the circles. To see what happens there, we must consider
a curve on the torus that goes from the front half to the back half and cuts the
equator circles perpendicularly. In terms of our description of the torus as the
union of two annuli, this curve is represented by the union of two radial lines. As
the curve leaves one of the annuli, it enters the other one at the corresponding
point. Hence an exterior normal to one of the annuli must get identified to an
interior normal at the corresponding point of the other annulus. We picture this
identification in Figure 3.26.

The way these vectors are being identified on corresponding circles is exactly
the same way they were identified for the equator of S2. Our work there tells us
the relationship between the degrees of the vector fields on the circles which get
identified: “the sum of the degrees must be equal to 2”.

v1 v1

v2 v2

v3
v3

v4 v4

Figure 3.26. Corresponding vectors in the torus.
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Suppose we have a vector field on the torus with no singularities on the
two equator circles coming from cutting the torus in half as described. This
can always be arranged without changing the index by a slight change in the
vector field if there are only a finite number of singularities. This vector field
can be thought of as being given by two related vector fields on two annuli,
where the vector fields on corresponding boundary circles are related so that
the sum of their degrees is 2. Suppose that our vector field on the torus has
only a finite number of isolated singularities so that we can define the index. We
call the vector field v and denote the vector fields on the two annuli by v1, v2.
We call the degrees of the vector fields on the annuli as djo, dji, where o, i are
used to denote the outer and inner circles and j = 1, 2 denotes the copy of the
annulus. Then we have I(v) = I(v1) + I(v2) and I(vj) = djo − dji. We also have
d1o + d2o = 2 = d1i + d2i. Putting these together gives

I(v) = I(v1) + I(v2) = (d1o − d1i) + (d2o − d2i) = (d1o + d2o)− (d1i + d2i) = 0.

Theorem 3.7.2. Let v be a tangent vector field on the torus T with a finite
number of isolated singularities. Then the index I(v) = 0.

Note that by this theorem it is possible to have a vector field on T with no
singularities. We leave it as an exercise to construct such a vector field.

Exercise 3.7.7. Give an example of a vector field on T with no singularities.
(Hint: First find a nonvanishing vector field on a circle.)

We next consider vector fields on the projective plane P . We use the map
p : S2 → P to impose a differential structure on P . We saw earlier that there
was a cover {Ui} of P so that p−1(Ui) = Ui1 ∪ Ui2, and p|Uij : Uij → Ui

is a homeomorphism with inverse qij . Also, T (x) = −x is a homeomorphism
interchanging Ui1 with Ui2. In terms of the differential structure on S2, T is
in fact a diffeomorphism since it is the restriction of a diffeomorphism of R3.
We could impose the differential structure on S2 by taking diffeomorphisms
hi1 : Ui1 → Ūi onto open subsets of R2 (diffeomorphisms in terms of the given
differential structure on S2) together with diffeomorphisms hi2 : Ui2 → Ūi given
by hi2 = hi1T . We then use this to impose a differential structure on P by using
the maps h̄i : Ui → Ūi, h̄i = hi1qi1 = hi2qi2. Because of this correspondence of
differential structures on S2 and P , a vector field on P can be thought of as a
vector field on S2 which is equivariant with respect to T . Equivariance means
v(T (x)) = DTx(v(x)).

Suppose we have a vector field on P with a finite number of isolated sin-
gularities at x1, . . . , xk. Then the vector field determined on S2 will have
isolated singularities at x11, . . . , xk1, x12, . . . , xk2, where p(xij) = xi. To com-
pute the index at xi and the index at xij , we refer both vector fields to the
same vector field in Ūi and so i(xi) = i(xij), j = 1, 2. But this implies that
2 =

∑
i(xij) = 2(

∑
i(xi)), and hence the index of our vector field is 1.

We have thus shown the following theorem.

Theorem 3.7.3. Let v be a tangent vector field on the projective plane P with
a finite number of isolated singularities. Then the index I(v) = 1.
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Exercise 3.7.8.

(a) Show that the map p : S2 → P is differentiable in terms of the differential
structures on S2 and P as defined above.

(b) Show that the map p : S2 → P is locally a diffeomorphism.

(c) Show that a map f : P → R is differentiable iff the composition fp :
S2 → R is differentiable.

Note that in the last three theorems, we have shown that for S, T, P , the
index of a vector field is equal to the Euler characteristic of the surface on which
it lies. We might conjecture that this is true for any compact connected surface.
In fact, this is true and was first proved by Henri Poincaré in 1885 and extended
to n-manifolds by Heinz Hopf in 1926. We will prove this by comparing the index
of a vector field on the connected sum M#N with the indices on M and N . This
approach is fruitful since all compact connected surfaces are homeomorphic to
connected sums of S, T, P . Suppose that we know that for any vector field on
M,N , its index is given by the Euler characteristic. We want to show that the
same is true for M#N . The connected sum M#N is formed from M,N by
removing a disk from each and gluing together corresponding boundary points.
There are two important curves we need to examine on M#N . The first is just
the curve that runs around the circle that is formed when the circle in M\intD2

is identified to the boundary circle in N\intD2. If we consider a vector field on
M#N as determining vector fields on M\intD2 and N\intD2, then the tangent
vectors to this circle in M\intD2 will be identified with corresponding tangent
vectors to the boundary circle in N\intD2. The second curve we need to con-
sider is one which runs from M\intD2 into N\intD2 and cuts the identified
circles perpendicularly. This curve will have its tangent vector on the bound-
ary circle of M\intD2 an exterior normal and it will be an interior normal for
the boundary circle of N\intD2 at the corresponding point. The vector field
on DM\intD2 extends to a vector field on M by radial damping of the vector
field over the disk, so that this new vector field will have all of the old singular-
ities as well as a singularity at the center point of the disk. We may similarly
extend the vector field on N\intD2 to a vector field on N . Denote the original
vector field on M#N by v and the restrictions of the extended vector fields on
M,N to M\intD2, N\intD2 by vM , vN . We assume as before that v has only a
finite number of isolated singularities and that none of them occur on the circle
where the connected sum is formed. Let dM , dN denote the degrees of the vector
fields vM , vN on their boundary circles. Then by our initial assumption we have
I(vM ) + dM = χ(M), I(vN ) + dN = χ(N). The vector fields on the two disks
are related on their boundaries on the same way that they were for the sphere.
Hence dM + dN = 2. This implies that

I(v) = I(vM )+I(vN ) = χ(M)−dM+χ(N)−dN = χ(M)+χ(N)−2 = χ(M#N).

This proves the following lemma.

Lemma 3.7.4. Suppose M,N are surfaces so that the index of any vector field
on each is given by the Euler characteristic. Then the same is true of M#N .
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We may use this lemma together with our results for S, T, P to show by
induction that the index of a vector field on any compact connected surface is
given by the Euler characteristic.

Theorem 3.7.5. The index of a vector field on a compact connected surface is
given by the Euler characteristic.

Exercise 3.7.9. Prove Theorem 3.7.5 as outlined above.

Exercise 3.7.10. Give an alternate proof of Theorem 3.7.5 for the surface T (k)

as being formed from two regions in the plane with k holes in it, by identifying
points on the boundary circles. Such a description arises from thinking of T (k)

as sitting in R3 symmetrically with respect to the xz-plane and then slicing it
by that plane and flattening out the two halves. Give an analysis of how tangent
vectors on identified circles correspond similar to our analysis for T to relate the
indices of the vector fields on the two halves. See Figure 3.27 for a picture of this
decomposition in the case of T (3).

Our result above is indicative of the interplay between topological ideas and
ideas from analysis provided by a differential structure on a surface. The exist-
ence of a vector field requires a differential structure. Somehow the index still
manages to measure something topological on the surface, independent of what
vector field is chosen. Thus we can use topological ideas to say something about
vector fields on the surface from the Euler characteristic, and we can use differ-
ential notions to actually compute the Euler characteristic by imposing a vector
field on the surface and computing the index of that vector field. We could use
this last method to identify an unknown surface. Interplay of this type leads to
many exciting areas of research in differential topology. A very nice introduction
to differential topology can be found in [21].

Exercise 3.7.11. Suppose M is a compact, connected oriented surface with a
vector field of index −2. Identify M .

Exercise 3.7.12. Show that there are vector fields on D2 with a prescribed
integer as index and so Theorem 3.7.5 does not apply to surfaces with boundary
without some additional hypothesis.

v1

v1

v2

v2

v3 v3v4

v4

Figure 3.27. Corresponding vector fields from T (3).
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Exercise 3.7.13. By adding disks to a surface with boundary, find a formula
for the index of a vector field on a surface with boundary where the vector field
is required to be an exterior normal vector field on each boundary circle.

3.8 Homotopy equivalences and π1

We showed earlier that the fundamental group was invariant under homeo-
morphisms. It has the stronger property that it is invariant under homotopy
equivalences as well. We first need to define some terminology.

Definition 3.8.1. Two continuous maps f0, f1 : X → Y are homotopic if there is
a continuous map F : X×I → Y, F (x, t) = Ft(x), so that F0(x) = f0(x), F1(x) =
f1(x). If f0, f1 both sendX ′ ⊂ X to Y ′ ⊂ Y , then we say that they are continuous
maps of the pair fi : (X,X ′) → (Y, Y ′). They are called homotopic as maps of
pairs if Ft : X ′ → Y ′. If, in addition, both of them send X ′ by the same map
(i.e. f0|X ′ = f1|X ′), we say that they are homotopic relX ′ if the additional
condition Ft|X ′ = f0|X ′ = f1|X0 is satisfied.

Note that our definition of homotopy of loops in forming the fundamental
group is using homotopy rel {0, 1} of maps of pairs (I, {0, 1}) → (X,x0). An
important special case of a homotopy of maps of pairs is when X ′ = {x0} and
Y ′ = {y0}. Homotopy of maps of pairs behaves nicely under composition.

Proposition 3.8.1. Let f0, f1 : (X,X ′) → (Y, Y ′) be homotopic maps with
homotopy F , and g0, g1 : (Y, Y ′) → (Z,Z ′) be homotopic maps with homotopy
Gt. Then g0f0, g1f1 : (X,X ′) → (Z,Z ′) are homotopic maps.

Proof. The composition GtFt gives the homotopy as maps of pairs.

We specialize the last proposition to get a result on the induced map on the
fundamental group.

Proposition 3.8.2. If g0, g1 : (X,x0) → (Y, y0) are homotopic continuous maps
of pairs, then (g0)∗ = (g1)∗ : π1(X,x0) → π1(Y, y0).

Proof. Equality means that, if f : (I, {0, 1}) → (X,x0) represents an element
of π1(X,x0), then g0f is homotopic to g1f as maps of pairs. This follows from
the last proposition using the constant homotopy for f .

We now introduce the concept of a homotopy equivalence, which is a
generalization of a homeomorphism.

Definition 3.8.2. The continuous map g : X → Y is called a homotopy equival-
ence if there is a continuous map h : Y → X with hg homotopic to the identity
1X on X and gh homotopic to the identity 1Y on Y . The map h is called the
homotopy inverse of g. If g : (X,X0) → (Y, Y0) and h : (Y, Y0) → (X,X0) and the
homotopies are homotopies of maps of pairs, then we say that g is a homotopy
equivalence of pairs. A special case of importance is where g : (X,X0) → (X0, X0)



3.8. Homotopy equivalences and π1 207

and g|X0 is the identity, h : (X0, X0) → (X,X0) is the inclusion, and the homo-
topies are the identity on X0. Then we say that g is a deformation retraction
of X onto X0, or that X deformation-retracts onto X0 with deformation retrac-
tion g. In the case when X0 = {x0} is a point in X and X deformation-retracts
to x0, we say that X is strongly contractible to x0. A deformation retraction to
a point is a homotopy between the identity map and the constant map to the
point. When X is homotopy equivalent to a point (but with no condition on
what happens to the point during the homotopy to the identity), then we say
that X is contractible. When two spaces are homotopy equivalent, we say that
they have the same homotopy type. We can also talk of the homotopy type of a
pair (X,X0).

We give some examples.
Any convex set in Rn deformation-retracts to a point x0 in it. The deforma-

tion retraction uses the straight line homotopy Ft(x) = (1 − t)x + tx0. This
homotopy also works if the set X ∈ Rn is star shaped at x0, which means that
line segments joining x0 to any x ∈ X lie in the set.

Sets can be contractible but not deformation-retract to every point in them.
A standard example is the comb space C = {(x, y) ∈ R2 : x = 0 or 1/n, n ∈
Z, y ∈ [0, 1]}. This is depicted in Figure 3.28. The figure is deceptive, however,
as the collection of vertical line segments approaching x = 0 which are getting
closer and closer together appear as a black area there due to the resolution. If
we zoomed in, they would look more like the line segments to their right. The
comb space deformation-retracts to any point on the interval [0, 1] on the x-axis
by first deforming to the interval via Ft(x, y) = (x, (1− 2t)y) on the first half of
the time interval, 0 ≤ t ≤ 1

2 , and then contracting via a straight line homotopy
on the last half of the time interval via Ft(x, y) = ((2− 2t)x+(2t− 1)x0, 0),

1
2 ≤

t ≤ 1. However, there is no deformation retraction to the point (0, 1). For this
point would have to stay fixed during the homotopy, requiring points (1/n, 1)
converging to it to stay nearby by a continuity argument. The fact that C is not
locally path connected at (0, 1) can be used to show that this is not possible. The
details are left as an exercise. Hatcher [13], p. 18 gives an example of a space X
which is contractible but does not deformation-retract to any of its points.

Figure 3.28. Comb space.
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Figure 3.29. Deformation retraction of Möbius band onto the center circle.

Exercise 3.8.1. Show that the comb space C is contractible but does not
deformation retract to the point (0, 1).

An important example of a space that deformation-retracts to a subset is
where C\{0} deformation-retracts to S1. The deformation retraction is given
by Ft(x) = (1 − t)x + t(x/|x|). Another example is where the Möbius band
deformation-retracts to its center circle (see Figure 3.29). If we think of the
Möbius band as a quotient space M = D1 × D1/(−1, y) ∼ (1,−y), then the
deformation retraction is the map F̄t induced from the map Ft : D1 × D1 →
D1 ×D1 given by Ft(x, y) = (x, (1− t)y).

We give an example of a homotopy equivalence of pairs, where the full space
is the same and the subspace changes. Let X = R, Y = {x ∈ R : |x| ≥ 1

2}, Z =
{x ∈ R : |x| ≥ 1}. Let f : (X,Y ) → (X,Z) be given by f(x) = 2x and
g : (X,Z) → (X,Y ) by g(x) = x. Then f is a homotopy equivalence of pairs since
Ft(x) = (1 + t)x is a homotopy between the identity on (X,Y ) and gf(x) = 2x
and also a homotopy between the identity on (X,Z) and fg(x) = 2x. Now form
the quotient spaces of all of these spaces by identifying the points of Z to a single
point. Then the map h : X → S1,

p(t) =

{
eπit if |t| ≤ 1,

(−1, 0) if |t| ≥ 1,

induces homeomorphisms of (X/Z, Y/Z,Z/Z) to (S1, A, (−1, 0)) where A is the
subset of S1 with nonpositive first coordinate. The homotopy equivalence of pairs
above induces a homotopy equivalence of pairs (S1, A) to (S1, (−1, 0)). Note that
A deformation-retracts to (−1, 0) and our homotopy equivalence is an extension
of this to a homotopy equivalence of pairs.

Exercise 3.8.2. By using a rotation of the circle, use the example above to
show that there is a homotopy equivalence of pairs (S1, B) → (S1, (1, 0)), where
B is the subset of points in S1 with nonnegative x-coordinate.

For another example involving surfaces, consider the torus with one point
removed. We think of the torus as a quotient space of D1×D1, where we identify
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(−1, y) ∼ (1, y), (x,−1) ∼ (x, 1). We remove the point p = (0, 0) and then push
points radially to the boundary of D1 × D1. This uses the map F̄t induced by
Ft : D

1×D1 → D1×D1 given by Ft(x, y) = ((1− t)x+ tx/|x|, (1− t)y+ ty/|y|).
This deformation-retracts the torus minus a point onto the one point union of
two circles. In general, the one point union of two spaces is called the wedge
product, and is denoted by ∨. Thus we have a deformation retraction of T\{p}
onto S1 ∨ S1. Using the exact same map but different identifications to give the
Klein bottle results in a deformation retraction of K\{p} onto S1 ∨ S1 as well.
Instead of removing a point, we could also remove a disk from the middle and use
the same maps to give deformation retractions from T(1) and K(1) onto S1 ∨S1.

Any surface can be expressed as a disk with identifications on the
boundary (see Exercise 2.9.57). The surface T (k) results from a disk with
the boundary divided into 4k equal edges and identified by the pattern
a1b1a

−1
1 b−1

1 . . . akbka
−1
k b−1

k . We depict this in Figure 3.30 for k = 2. Then the
radial deformation retract of a disk minus a point (or a disk minus a smaller disk)
radially onto its boundary circle induces a deformation retraction of T (k)\{p} or

T
(k)
(1) onto S1

1 ∨ · · · ∨ S1
2k, the one point union of 2k copies of the circle, which

is what we get as a quotient space of the boundary circle when we make these
identifications there. Similarly, P (k) is expressed as the quotient space of the
disk with the boundary circle divided into 2k equal edges and identified in the

pattern a1a1 . . . akak = a2
1 . . . a

2
k. Then P (k)\{p} or P

(k)
(1) deformation retracts

onto S1
1 ∨ · · · ∨ S1

k.
If we look at S(p), then this deformation-retracts onto the one-point union

(wedge) Wp−1 of p−1 circles when p > 1. For p = 2, this is just pushing an annu-
lus out onto a boundary circle radially. For p > 2, it is a little more difficult to
write down a formula, but we will give a description in terms of a handle decom-
position with one 0-handle and then (p − 1) 1-handles attached symmetrically
about the boundary. In Figure 3.31 we show this for p = 3. For each 1-handle, we
extend the attaching arcs radially into the center of the 0-handle. The union of
the core arcs D1 ×{0} with this extension from the two attaching points give us

a1

a1

a2

a2

b1
b1

bb2 b2

Figure 3.30. The surface T (2)\{p} as a quotient space.
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Figure 3.31. Deformation-retracting S(3) onto S1 ∨ S1.

an embedding of W2 = S1 ∨ S1 into S(3) here. Then we can deformation-retract
this as illustrated in the figure onto a thickened version of W2. We then deform-
ation retract this to W2 by collapsing the orthogonal line segments that extend
into the coning regions the deformation retraction of D1 × D1 onto D1 × {0}.
Putting together these deformation retractions (and reparametrizing) gives a
deformation retraction from S(3) onto the wedge W2 of two circles. The general
case is analogous and gives a deformation retraction of S(p) onto the one-point
union Wp−1 of p− 1 circles.

The idea of the last example can be modified to show that whenever we attach
k 1-handles disjointly to the boundary of a 0-handle, then the result deformation
retracts onto a homeomorphic copy of the wedge product Wk of k circles. Note

that T
(k)
(p) can be described in this way with 2k 1-handles used to form T

(k)
(1) and

p − 1 more 1-handles used to form T
(k)
(p) . Similarly, we can form P

(k)
(p) using a

single 0-handle and k + p− 1 1-handles. Thus we get the following result.

Proposition 3.8.3. If p ≥ 1, then there is a deformation retraction of:

(a) S(p) onto a subset which is homeomorphic to the wedge Wp−1 of p − 1
copies of the circle;

(b) T
(g)
(p) onto a subset which is homeomorphic to the wedge W2g+p−1 of 2g+

p− 1 copies of the circle;

(c) P
(h)
(p) onto a subset which is homeomorphic to the wedge Wh+p−1 of h+

p− 1 copies of the circle.

Here is another approach; it gives a homotopy equivalence of pairs instead
of a deformation retraction, but has the advantage that the maps are easier to
understand. We take X to be a surface with boundary with a handle decompos-
ition with a single 0-handle and k 1-handles attached disjointly. We look at the
pair (X, p), where p is the center of the 0-handle. The other pair is (Y, p), where
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Y is the subset of X which consists of radial lines from p out to the attaching
spheres of the 1-handles together with the cores D1 × {0} of the 1-handles. We
first take the deformation retraction of the disk to its center and let the attaching
regions follow along. At the end of this retraction, the image of the 1-handles
is stretched into cone-shaped regions emanating out from the center together
with the 1-handles. Then use a deformation retraction from the 1-handles to
their cores extended over the cone-shaped regions to get to Y . Note that p stays
fixed over the homotopy but Y moves within itself with the part within the disk
moved to p and the rest of Y stretched to fill up Y .

Note that the number of copies of the circle that we have can be rephrased
as 1− χ, where χ is the Euler characteristic of the handle decomposition. If we
started with another handle decomposition of the surface, then the methods of
Section 2.10 can be used to show that we can deform the handle decomposition
to another one so that the Euler characteristic does not change (e.g. by merging
a pair of 0-handles and a connecting 1-handle to get a new 0-handle) so that
the new handle decomposition is of the type used above and has the same Euler
characteristic. Thus the Euler characteristic of a surface codes the homotopy
type of the surface in terms of the wedge product of 1−χ copies of the circle. To
see that the Euler characteristic is an invariant that can be used to distinguish
surfaces, we need to see that the wedge product of k copies of S1 is not homotopy
equivalent to the wedge product of l copies of S1 when k �= l. To do this, we
will use the fundamental group. First we will need to see that how a homotopy
equivalence of pairs relates to the fundamental group.

Proposition 3.8.4. Let g : (X,x0) → (Y, y0) be a homotopy equivalence of
pairs with homotopy inverse h. Then g∗ induces an isomorphism on fundamental
groups.

Proof. We apply Proposition 3.8.1 to gf , which is homotopic to the identity.
It says that g∗f∗ = id. Similarly, f∗g∗ = id. Thus f∗ is an isomorphism with
inverse g∗.

In the next section we will compute the fundamental group of the wedge
product of k copies of the circle, showing that it is the free group Fk on k
letters. We will also show in Section 3.10 that the fundamental group of a path-
connected space does not depend on the choice of base point and the conclusion
of the proposition holds whether the homotopy equivalence is one of pairs or not.

Exercise 3.8.3.

(a) Show that the relation of homotopy equivalence is an equivalence relation.

(b) Show that the relation of homotopy equivalence of pairs is an equivalence
relation.

Exercise 3.8.4. Show that there is a homotopy equivalence between the letter
θ and the symbol 8. (Hint: The map g from θ to 8 collapses the middle line to
the center point of 8. The map h from 8 to θ sends the center point of 8 to the
midpoint of the central segment. Then nearby parts of 8 are mapped to the rest



212 3. The fundamental group and its applications

Figure 3.32. R2\{x1 ∪ x2 ∪ x3} deformation-retracts to W3.

of the central segment and the remainder of the 8 is mapped to the top and
bottom parts of θ. You need to show that hg is homotopic to the identity on θ
and gh is homotopic to the identity on 8. Just give a clear description of your
homotopies—exact formulas are not required.)

Exercise 3.8.5. Show that the complement of p points in the plane is homotopy
equivalent to the wedge Wp of p copies of S1. (Hint: Draw p teardrop-shaped
circles joined at the center point of the plane and use a radial homotopy from the
outside and inside of these circles to describe a deformation retraction onto this
set. Here the p points removed are in the inside of the teardrop-shaped circles.
See Figure 3.32 where p = 3. Again, a geometric description of the homotopy in
terms of radial homotopies is being sought, not a formula.)

Exercise 3.8.6. For the letters of the alphabet as typed below, classify each
letter as homotopy equivalent to either a point, a circle, or the wedge of two
circles:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

We next look at the union X of the unit circle Y and the segment s from
x = ( 1

2 , 0) to y = (1, 0). We claim that there is a homotopy equivalence of pairs
f : (X,x) → (Y, y). The map f sends the segment s to y and is the identity
on Y . The homotopy inverse g : Y → X takes a small arc A = A+ ∪ A− onto
s∪A. Here A+ is the arc from 1 to e2iǫ and A− is its reflection in the x-axis. Now
A+ can be identified as the union of two arcs, each of which is homeomorphic
to a line segment and parametrized by the angle A+ ≃ [0, ǫ] ∪ [ǫ, 2ǫ]. The union
s ∪ A+ can be identified as the union of the two intervals s ∪ [0, 2ǫ]. The map
g from A+ to s ∪ A+ then comes from sending [0, ǫ] homeomorphically onto
s using an affine linear map from [0, ǫ] to [12 , 1] and sending [ǫ, 2ǫ] to [0, 2ǫ].
Putting all of these together we get a homeomorphism from A+ to s ∪A+. The
map from A− to s ∪ A− is described similarly; it is just the conjugate of this
map using reflection. The definition of g on Y \intA is the identity. Now look at
the map gf : (X,x) → (X,x). This sends X\(s ∪ A) via the identity. It sends
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s ∪ A+ → s ∪ A+ to itself. This set is homeomorphic to an interval [0, 1] where
s ≃ [0, 1

2 ] and A+ ≃ [ 12 , 1]. The self-map is equivalent under this homeomorphism
to the map that sends [0, 1

2 ] to 0, sends [ 12 ,
3
4 ] to [0, 1

2 ], and sends [34 , 1] to [ 12 , 1].
But any self-map [0, 1] to [0, 1] which sends 0 to 0 and 1 to 1 is homotopic
to the identity. Going back to gf : s ∪ A → s ∪ A, this implies that this is
homotopic to the identity. This then leads to a homotopy between the identity
and gf : X → X. This homotopy preserves x so is a homotopy of pairs (X,x).
Now consider fg : Y → Y . This is the identity on Y \intA. If we identify A+

with [0, 2ǫ] ≃ [0, 1], then this map preserves 0 and 2ǫ, so is homotopic to the
identity. Hence fg : (Y, y) → (Y, y) is homotopic to the identity. We record this
result for future use.

Proposition 3.8.5. Let X denote the union of the unit circle and the line
segment s from ( 1

2 , 0) to (1, 0). Then the map f : (X, ( 1
2 , 0)) → (S1, (1, 0)) that

collapses s to (1, 0) and is the identity on S1 is a homotopy equivalence of pairs.
In particular, it induces an isomorphism f∗ : π1(X, (

1
2 , 0)) → π1(S

1, (1, 0)).

A loop which corresponds to the generator is the composition α∗γ ∗ ᾱ, where
γ(s) = e2πis is a standard generator for π1(S

1, (1, 0)) and α is the path running
along s from ( 1

2 , 0) to (1, 0). This path is sent to the constant path in Y at (1, 0)
and so α ∗ γ ∗ ᾱ is sent to c ∗ γ ∗ c which is homotopic to γ.

Exercise 3.8.7. Show that the proposition can be extended to prove that if
we take the wedge Wk of k circles and add an interval I joined by identifying
1 to the wedge point, the pair (X, 0) = (I ∪1 Wk, 0) is homotopy equivalent to
(Wk, w) where w is the wedge point.

Now consider D2\{0}. This space deformation-retracts to Z = D2\int 1
4D

2.
Then the space Z deformation-retracts to X = s ∪ S1 from Proposition 3.8.5.
To see the latter deformation retraction, consider Figure 3.33. It shows that
there is an arc on 1

4S
1 and each point on the arc can be joined via a straight

line to a point on s. The deformation retraction maps these line segments along
themselves to points on s. The rest of Z then is described via line segments from

Figure 3.33. A deformation retraction.
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the remaining arc in 1
4S

1 to S1 as illustrated in Figure 3.33. This part then
deformation retracts onto the circle along these line segments. Putting these
together, we get the following result.

Proposition 3.8.6. If X = s∪S1 is the union of the unit circle and the segment
from ( 1

2 , 0) to (1, 0), then there is a deformation retraction from D2\{0} onto X.

When we look at the circle at radius 1
2 , then the image of a loop running

around it once under the deformation retraction is a loop of the form α ∗ γ ∗ ᾱ
which gives a generator of π1(X, (

1
2 , 0)).

Now we look at the case of a surface without boundary again. We regard it
as coming from a disk with identifications on the boundary, such as forming T (k)

by identifying edges via the pattern a1b1a
−1
1 b−1

1 · · · akbka
−1
k b−1

k . Earlier in this
section we saw how this led to a deformation retraction from D2\{0} onto the
quotient space of the boundary, which we identified to the wedge W2k. We want
to point out here that there is another deformation retraction of this quotient
space minus the center point to the space X = s ∪W2k where we add to the
boundary an edge s connecting ( 1

2 , 0) to (1, 0), which we choose as one of the
identified vertices. We just take the argument in Proposition 3.8.6 and use it for
this quotient space of the disk. This also works for P (k) and gives the following
result.

Proposition 3.8.7. (a) Consider the surface T (k) as given by the quo-
tient of the disk under identifications on the boundary circle with the pattern
a1b1a

−1
1 b−1

1 . . . akbka
−1
k b−1

k . Let p be the center point in the disk and q = (1, 0) a
vertex on the boundary where a1 begins, and r = ( 1

2 , 0). We denote the identified
boundary as W2k. Let s be the linear edge joining r to q and X = s∪W2k. Then
T (k)\{p} deformation retracts onto X.

(b) Consider P (k) as given by the quotient of the disk under identification on
the boundary circle with the pattern a1a1 . . . akak. Let p be the center point in
the disk and q = (1, 0) a vertex on the boundary where a1 begins, and r = ( 1

2 , 0).
We denote the identified boundary as Wk. Let s be the linear edge joining r to q
and X = s ∪Wk. Then P (k)\{p} deformation-retracts onto X.

Although the first deformation retraction we gave onto the quotient of the
boundary is much simpler, it has a disadvantage in computations of the fun-
damental group involving the Seifert–van Kampen theorem of the next section
which the above deformation retraction avoids. If we look at the interior of
the disk, it is embedded into this quotient space. When we delete the center
p, this deformation-retracts onto the circle 1

2S
1. The loop β(s) = 1

2e
2πis which

runs around this circle once generates the fundamental group of the circle and
hence the fundamental group of the interior of the disk with p deleted, which
deformation retracts to it. When we look at its image under the deformation
retraction onto s ∪W2k, this loop β is mapped to a loop α ∗ γ ∗ ᾱ where α runs
along s from r to q and γ gives a loop in the wedge W which is described by
a1b1a

−1
1 b−1

1 . . . akbka
−1
k b−1

k in the case of T (k) and by a1a1 . . . akak in the case
of P (k).
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Exercise 3.8.8. (a) Show that the boundary connected sum of two surfaces
with boundary is homotopy equivalent to the union of the two surfaces with a
line segment joining their boundaries. (Hint: The line segment is the core of the
1-handle forming the boundary connected sum. Reduce the problem to finding
a deformation retraction from D1 ×D1 onto {±1} ×D1 ∪D1 × {0}.)

(b) Show that the boundary connected sum of two surfaces with boundary is
homotopy equivalent to the wedge product of two surfaces.

3.9 Seifert–van Kampen theorem and its

application to surfaces

We return to calculating the fundamental group. The most powerful technique
besides using covering spaces is the Seifert–van Kampen theorem, which com-
putes the fundamental group of a path-connected space X which is expressed as
the union of two path-connected open sets A,B with path-connected intersection.
A great deal of difficulty in stating the theorem is understanding the algebraic
construction of a free product with amalgamation used in describing the result.
If G1, G2 are groups, then the free product G1 ∗G2 is the group which is formed
from words in the elements of G1, G2, where the only relations involved are rela-
tions in G1, relations in G2, and identifying the identity of G1 with the identity
of G2. That is, an element of G1 ∗ G2 can be written as a product x1x2 · · ·xn

where xi ∈ G1 or xi ∈ G2. When elements of Gi are adjacent, they may be
replaced by the product in Gi. In this way, we can always represent an element
as an alternating product of elements in G1 and G2: this expression is called a
reduced word. The only relation between elements of the two groups is that we
identify the identity element of G1 with the identity element of G2 and may inter-
change these to change the word. There are natural injective homomorphisms
i1, i2 from G1, G2 to G1 ∗G2. The free product is characterized algebraically up
to isomorphism by the universal property that whenever there are homomorph-
isms φi from G1, G2 to another group H, then there is a homomorphism φ from
G1 ∗G2 to H satisfying φij = φj .
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φ1
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If we write an element of G1 ∗G2 as a reduced word w = x1y1 · · ·xkyk, then
φ(w) = φ1(x1)φ2(y1) · · ·φ1(xk)φ2(yk). Here xi ∈ G1, yi ∈ G2, and the first and
last elements could be missing.

For our purposes, one of the most important examples of a free product is
formed when G1 = G2 = Z. Here G1 ∗G2 is the free group F2 on two letters. By
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iterating the construction, we can take the free product of k copies of Z, giving
the free group Fk on k letters. Elements are just words in these k letters, with
the group operation being juxtaposition. There are some delicate algebraic issues
in the construction of free products. We will treat this somewhat informally and
refer the reader to more advanced texts such as [5,13] for details.

A more refined algebraic construction uses a pair of homomorphisms ψ1 :
K → G1, ψ2 : K → G2 to form the free product with amalgamation G1 ∗K

G2. This can be defined as the quotient group of the free product where we
take the quotient by the normal subgroup generated by elements of the form
ψ1(k)ψ2(k)

−1. There is a natural homomorphism īj : Gj → G1 ∗K G2 which
is induced by the composition ij : Gj → G1 ∗ G2 with the quotient map G1 ∗
G2 → G1 ∗K G2. These homomorphisms no longer are injections in general.
More informally, we are allowed to change a word by replacing the element
ψ1(k) ∈ G1 with the element ψ2(k) ∈ G2 as well as the earlier operations of
replacing an element ofGi by an equivalent expression of the element as a product
and identifying the two identity elements. Note that the free product itself is
a special case of the free product with amalgamation where K is the trivial
group with one element. A special case of importance is when G2 is the trivial
group. If N denotes the normal subgroup generated by the image of ψ1(K),
then G1 ∗K G2 ≃ G1/N . The amalgamated free product is characterized by the
following universal property. Suppose φ1 : G1 → H,φ2 → H are homomorphisms
so that φ1ψ1 = φ2ψ2. Then there is a unique homomorphism φ : G1 ∗K G2 → H
with φīj = φi.
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We now state the Seifert–van Kampen theorem.

Theorem 3.9.1 (Seifert–van Kampen theorem). Let X be a path-connected
space with base point x0. Suppose X = A ∪ B, where A,B are path-connected
open sets in X with path-connected intersection A ∩ B containing x0. Let ψA :
π1(A∩B, x0) → π(A, x0), ψB : π(A∩B, x0) → π1(B, x0) be the homomorphisms
induced by the inclusions. Then π1(X,x0) is isomorphic to the amalgamated free
product π1(A, x0) ∗π1(A∩B,x0) π1(B, x0).

Corollary 3.9.2.

(a) If π1(A ∩ B, x) is the trivial group, then π1(X,x) is the free product of
π1(A, x) ∗ π1(B, x).
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(b) If π1(B, x) is the trivial group, then π1(X,x) ≃ π1(A, x)/N where N
is the normal subgroup of π1(A, x) which is generated by the image of
π1(A ∩B, x) → π1(A, x).

We want to note some important special cases of this result. Before doing so,
however, we need to introduce some more algebraic terminology. If we start with
a free product Fk, with generators x1, . . . , xk, we will write Fk = 〈x1, . . . , xk〉.
Suppose we pick a finite number of elements r1, . . . , rm ∈ Fk. They are express-
ible as words in the symbols x1, . . . , xk. Let N(r1, . . . , rm) denote the smallest
normal subgroup of Fk which contains r1, . . . , rm. Elements of N(r1, . . . , rm) are
expressible as finite products of conjugates grig

−1 of the elements r1, . . . , rm.
Then we denote by 〈x1, . . . , xk|r1, . . . , rm〉 the quotient Fk/R(r1, . . . , rm). We
call this the finitely presented group with generators x1, . . . , xk and relations
r1, . . . , rm.

We first look at a wedge of circles W2. When k = 2 and W2 = S1
1 ∨ S1

2 , let x
be the wedge point. We can decompose this into two open sets A∪B, where A is
the union of S1

1 and a small arc about x in S1
2 . Similarly, let B be the union of S1

2

and the union of a small arc about x in S1
1 . Then A∩B deformation-retracts to

x, so case (a) of Corollary 3.9.2 applies. Also, A deformation-retracts to S1
1 and

B deformation-retracts to S1
2 . This means that π1(W2, x) ≃ π1(A, x)∗π1(B, x) ≃

π1(S
1
1 , x)∗π1(S

1
2 , x) ≃ F1∗F1 = F2. This argument can then be adapted to prove

the following proposition.

Proposition 3.9.3. π1(Wk, x) ≃ Fk.

Exercise 3.9.1. Prove Proposition 3.9.3.

Applying Proposition 3.8.3, which says that surfaces with boundary
deformation-retract to wedges of circles, and Proposition 3.8.4, which says that
a deformation retraction induces an isomorphism on the fundamental group, we
get the following theorem.

Theorem 3.9.4.

(a) π1(S(p), x) ≃ Fp−1, p ≥ 1.

(b) π1(T
(g)
(p) , x) ≃ F2g+p−1, p ≥ 1.

(c) π1(P
(h)
(p) , x) ≃ Fh+p−1, p ≥ 1.

Strictly speaking, this only applies as indicated to some base point in the
wedge where we are deformation-retracting the surface. However, we will show
in Section 3.10 that the fundamental group of a path-connected surface is
independent of the base point up to isomorphism.

We have already shown that π1(S, x) ≃ {e}. To deal with another surface
without boundary, we regard it as the quotient of a disk with identifica-
tions. For T (g), the identifications on the boundary are given by the word
a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g . For P (h), the identifications on the boundary are
given by the word a1a1 . . . ahah. The Seifert–van Kampen theorem then leads to
the following result.
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Theorem 3.9.5.

(a) π1(T
(g), x) ≃ 〈a1, b1, . . . , ag, bg|a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g 〉.

(b) π1(P
(h), x) ≃ 〈a1, . . . , ah|a2

1 . . . a
2
h〉.

Proof. We prove part (a). The argument for (b) is essentially the same. In
writing T (g) as a quotient of a disk, let A be the complement of the center point
p of the disk, and let B be the interior of the disk. Let q be the point (1, 0)
which is taken as the vertex of a1 and r = ( 1

2 , 0). We take the point r as our
base point for the calculation. Note that since B is contractible to r, π1(B, r) is
trivial. Then A∩B deformation retracts onto the circle at radius 1

2 , and so we can
identify π1(A∩B, r) to π1(

1
2S

1, r) ≃ Z. The generator is represented by the loop
β(s) = 1

2e
2πis. The set A deformation retracts onto the union of the boundary

of the disk, which is a wedge W2g of circles, with the segment s running from r
to q by Proposition 3.8.7. By Proposition 3.8.7, there is a homotopy equivalence
of pairs between (s ∪ W2g, r) and (W2g, q). This induces an isomorphism of
fundamental groups and so this fundamental group can be identified with F2g. By
part (b) of the corollary to the Seifert–van Kampen theorem, π1(T

(2g), r) is the
quotient of π1(A) by the normal subgroup generated by the image of π1(A∩B, r).
This last group is generated by β. When we look at the image of β under the
deformation retraction of A onto s∪W2g, it is sent to α∗γ ∗ ᾱ. Here α runs along
s from r to q and γ runs once around the unit circle and considers the image in
the quotient space. But the pattern of identifications means that γ represents the
word a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g ∈ π1(W2g, q) ≃ F2g = 〈a1, b1, . . . , ag, bg〉. Note
that under the isomorphism π1(A, r) ≃ π1(s ∪W2g, r) ≃ π1(W2g, q), the class
[β] maps to the class [γ] = a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g , so π1(A, r)/N(imπ1(A ∩
B, r)) ≃ 〈a1, b1, . . . , ag, bg|a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g 〉.

The above proof is complicated by having to deal with the base point r in
the intersection. In the next section we will show that if X is path connected and
a, b ∈ X with α a path from a to b, then there is an isomorphism from π1(X, b) to
π1(X, a) given by sending [γ] ∈ π(X, b) to [α∗γ∗ᾱ]. This is just the inverse of the
isomorphism that we were using in the argument above, which we found existed
because there was a homotopy equivalence of pairs. Let us use this isomorphism
instead in the argument and use the standard deformation retraction of A to the
boundary W2g. We start with π1(T

(2g), r) ≃ π1(A, r)/N(imπ1(A ∩ B, r)). But
now we use the isomorphism of π1(A, r) with π1(A, q) and see where the class
[β] maps to under this isomorphism. It is sent to the class [ᾱ ∗ β ∗ α]. Thus we
can identify the fundamental group as π1(A, q)/N([ᾱ ∗ β ∗ α]). We then use the
radial deformation retraction of A onto the quotient W2g of the boundary circle.
The path α just maps to a constant path at the base point q here and β maps
to the loop γ which goes once around the boundary circle, which in the quotient
space represents a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g ∈ F2g = π1(W2g, q).
In general, this last argument proves the following result.

Theorem 3.9.6. Suppose X is a quotient space of D2 where we divide the
boundary up into p edges and make identifications of edges in a pattern so that all
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vertices are identified. The quotient of the boundary will be a wedge product Wk.
Call this common vertex q and write π1(Wk, q) = F (a1, . . . , ak), where we use
the same notation for generators as edges after identifications. Let w be the word
in these generators which is the image of the standard generator [γ] ∈ π1(S

1, q)
under the quotient map π1(S

1, q) → π1(Wk, q). Then π1(X, q) ≃ 〈a1, . . . , ak|w〉.

Proof. From the proof, the Seifert–van Kampen theorem applies to compute
π1(X, r) ≃ π1(A, r)/N([β]). We then use the isomorphisms from π1(X, r) ≃
π1(X, q), π1(A, r) ≃ π1(A, q) to reduce the problem of computing π1(A, q) and
the image of ᾱ ∗ β ∗ α within it. Using the radial deformation retraction of A
onto the boundary, we can identify π1(A, q) with π1(Wk, q), and so need to see
where what element ᾱ ∗ β ∗ α represents. As before, this represents the image of
a generating loop γ of π1(S

1, q) which we have defined as the word w.

We used above the result from Section 3.10 that the fundamental group
of a path-connected space does not depend on the base point chosen up to
isomorphism as well as the specific description of the isomorphism. It is also
shown in Section 3.10 that a homotopy equivalence f : X → Y induces an
isomorphism f∗ : π1(X,x) → π1(Y, f(x)) whether it is a homotopy equivalence
of pairs or not.

The fundamental groups that are occurring are complicated since they are
nonabelian in general. In particular, it is a nontrivial problem to distinguish
such groups up to isomorphism. One way of dealing with this is to abelianize
the fundamental groups by taking their quotients πab

1 by the commutator sub-
group, which is the smallest normal subgroup which contains each commutator
ghg−1h−1 of elements g, h of the group. For T (g), this abelianization is 2gZ, the
direct sum of 2g = 2 − χ copies of Z. The Euler characteristic is detected as
2−2g in this abelianization. For P (h), the abelianization is (h−1)Z⊕Z2. To see
this, rechoose the generators to be g1 = a1 . . . ah, a2, . . . , ah, and the abelianized
relation to be g2

1 = 1. Thus nonorientability can be detected by the presence of
Z2 in the abelianized fundamental group, and the Euler characteristic χ = 2−h
is detected through the occurrence of h − 1 in the number of copies of Z in
the fundamental group calculation. Since the fundamental group is an invariant
of homeomorphism type (in fact, of homotopy type), this can be used to show
that the Euler characteristic is also an invariant under homeomorphism and is
independent of the handle decomposition as claimed earlier. Alternatively, we
can just use the abelianization of the fundamental group in the same manner
that we used the Euler characteristic to prove that the abelianized π1 and the
number of boundary circles will distinguish a surface up to homeomorphism.

Exercise 3.9.2. Apply the Seifert–van Kampen theorem to compute the
fundamental group of the following spaces:

(a) S1 ∨ S2;

(b) Sn, n ≥ 3;

(c) S1 ∨ Sn, n ≥ 3.
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a

aa

Figure 3.34. Dunce hat.

Exercise 3.9.3. Consider the dunce hat D, which is made from a triangle by
making identifications of its three edges via the pattern aa−1a−1 as indicated in
Figure 3.34.

(a) For a point x in the interior of the triangle, compute π1(D\{x}, y), where
y is also in the interior of the triangle.

(b) Using the decomposition of D with A = D\{x}, B = interior of triangle,
compute π1(D, y).

(c) For a standard neighborhood N of a point x on the edge of the triangle,
compute π1(N\{x}, y). Note that N is the union of three standard half-
disk neighborhoods of the three points that are being identified where
the small edge segments near those points are also being identified.

(d) For a vertex x of the triangle (note all three vertices are being identified
to one point) and a standard neighborhood N , compute π1(N\{x}, y).
Here N is formed from three wedges of disk neighborhoods with certain
identifications.

Exercise 3.9.4. The projective plane can be considered as the quotient of the
disk, where we identify x ∼ −x for x ∈ S1. The pseudoprojective plane Pk is the
quotient of the disk, where we identify x ∼ e2πi/kx for x ∈ S1.

(a) Show that S1/x ∼ e2πi/kx is homeomorphic to S1.

(b) Use the Seifert–van Kampen theorem to compute π1(Pk, x). (Hint: Use
A to be the complement of the center of the disk in Pk and B to be the
interior of the disk.)

Exercise 3.9.5. Consider the torus T = S1 ×S1 = A∪B, where A = S1 ×C ∪
{1}×S1 and B = S1×D∪{1}×S1. Here C = {x ∈ S1 : x1 ≤ 1

2}, D = {x ∈ S1 :
x1 ≥ − 1

2}. Use the Seifert–van Kampen theorem to compute π1(T, (1, 0)). (Hint:
In computing the induced maps, see where generators are sent geometrically.)

Exercise 3.9.6. Compute πab
1 (M) for the surfaces in Figure 3.35, and use your

results and the number of boundary components, to classify the surfaces.

Exercise 3.9.7. Compute πab
1 (M) for the surfaces in Figure 3.36, and use your

results and the number of boundary components, to classify the surfaces.
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(a) (b)

attach 2-handle as indicated

Figure 3.35. Surfaces for Exercise 3.9.6.

(a) (b)

attach 2-handle as indicated

Figure 3.36. Surfaces for Exercise 3.9.7.

In order to prove the Seifert–van Kampen theorem, we will need some
preliminaries.

Lemma 3.9.7. Suppose that f is a loop in X = A ∪ B, where A,B open in
X and A,B,A ∩ B are path-connected sets containing x0. If the interval I is
subdivided into subintervals, each of which is mapped to A or to B in order to
express f = f1 ∗ · · · ∗ fn as a product of paths in A or B, then we can homotope
f relative to the end points to re-express it as f = f ′

1 ∗ · · · ∗f ′
n, where f ′

i is a loop
in A or B at x0.

Proof. Let vj = f(j/n), j = 1, . . . , n− 1. If vj is in the intersection A∩B, then
we can find a path pi in A ∩ B which runs from vj to x0. If it is in A (resp.,
B) but not in the intersection, we can choose such a path in A (resp., B). We
first compose f : (I, {0, 1}) → (X,x0) with a map I → I which sends a small
subinterval about j/n to j/n and stretches out the intervening subintervals via
affine linear maps to cover [(j − 1)/n, j/n]. The composition of this map with f
will give f1 ∗ c1 ∗ f2 ∗ · · · ∗ cn−1 ∗ fn. Here cj denotes the constant map at vj .
This is homotopic to f relative to the end points by the argument we used in
proving the constant map serves as the identity in π1. Up to homotopy, we can
replace the maps on the small subintervals mapped to vj by the composition
pi ∗ p̄i. Then f is homotopic to f ′

1 ∗ · · · ∗ f ′
n, with f ′

1 = f1 ∗ p1, f
′
j = p̄j−1 ∗ fj ∗ pj ,

j = 2, . . . , n− 1, f ′
n = p̄n−1 ∗ fn.
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Lemma 3.9.8. Let X = A ∪ B as in the statement of the Seifert–van Kampen
theorem. Then the map φAB : π1(A, x0)∗π1(B, x0) → π1(X,x0) which is determ-
ined from induced maps from the inclusions φA : π1(A, x0) → π1(X,x0) and
φB : π1(B, x0) → π1(X,x0) is surjective.

Proof. Let f represent an element of π1(X,x0). Then {f−1(A), f−1(B)} is an
open cover of I. Since I is a compact metric space, there is a Lebesgue number
δ > 0 for this cover. Choose n so that 1/n < δ and subdivide the interval into n
subintervals of length 1/n. Each subinterval is mapped to A or B, so Lemma 3.9.7
says that f is homotopic relative to the end points to a product f ′

1 ∗ · · · ∗ f ′
n,

where each f ′
j is a loop at x0 on the jth subinterval. Then [f ′

1] ∗̄ · · · ∗ ∗̄ [f ′
n] is an

element of π1(A, x0) ∗ π1(B, x0) which maps to [f ].

Since φAψA = φBψB , the map φAB induces a surjective map

φ̄AB : π1(A, x0) ∗π1(A∩B,x0) π1(B, x0) → π1(X,x0).

To show that this map is an isomorphism, we show that any element
[f ′

1] ∗̄ · · · ∗̄ [f ′
n] which maps to the identity element is the identity in the amal-

gamated free product. What this means is that we can reduce the product
[f ′

1] ∗̄ · · · ∗ ∗̄ [f ′
n] to the identity element by using relations in π1(A, x0), rela-

tions in π1(B, x0), and identifying ψA(α) with ψB(α) to transfer an element
from π1(A, x0) to π1(B, x0). The condition that [f ′

1] ∗̄ · · · ∗ ∗̄ [f ′
n] represents the

identity of π1(X,x0) means that there is a homotopy F : I × I → (X,x0) which
satisfies F (s, 0) = f ′

1∗· · ·∗f ′
n(s), F (s, 1) = F (0, t) = F (1, t) = x0. We need to use

F to get the required equivalence of [f ′
1] ∗̄ · · · ∗̄ [f ′

n] to [ex0
] in the amalgamated

free product. We first use F to pull back the cover {A,B} to I × I. Using the
fact that I × I is a compact metric space, we find its Lebesgue number δ > 0
and choose m so that

√
2/mn < δ. Letting k = mn, we then subdivide I×I into

k2 subrectangles of side length 1/k. Each of these subrectangles maps to A or to
B. When adjacent rectangles map to A and B, this means that the edge joining
them maps to A∩B. In the next lemma, we prove the analogue of Lemma 3.9.7
for maps from the square.

Lemma 3.9.9. Suppose that F : I × I → X = A ∪ B, where A,B are open in
X and A,B,A ∩ B are path-connected sets containing x0, and if K = {0, 1} ×
I ∪ I × {1}, then F |K(s, t) = x0. If the rectangle I × I is subdivided into k2

equal subrectangles, each of which is mapped to A or to B, then there is another
map F ′ : I × I → X which agrees with F except in small disk neighborhoods of
the vertices where the rectangles come together, changing the map on those disks
where the vertex is not sent to x0, and F ′|K = F |K. On I × {0}, the new map
F ′

0 represents the same map in the free product as the map F0.

To prove this lemma, we need another technical construction. What we first
do is compose F with a map G : I × I, which is the identity outside small disks
about those vertices that are not sent to x0. On these disks, we use a map which
sends a smaller disk to the center and then stretches the annular region between
the smaller disk and the whole disk onto the whole disk. These maps are modeled
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on the map from D2 to itself which in polar coordinates sends reiθ → 0 if r ≤ 1
2

and sends reiθ → 2(r − 1
2 )e

iθ if 1
2 ≤ r ≤ 1. After composing F with G, disks

about each vertex (i/k, j/k) are sent the single point vij where (i/k, j/k) was
originally sent. If vij ∈ A ∩ B, then choose a path pij in A ∩ B from vij to x0.
If vij �∈ A ∩ B, then select the path to lie in A or in B, depending whether
vij ∈ A or vij ∈ B. Now replace the composition GF on the small disks about
the vertices with a map on the disk about the ij-vertex so that on radial line
segments it is the path pij . This new map will be F ′. Now it will send each vertex
to x0. Note also that on the bottom edge of the rectangle, we will have replaced
each fi by a product of loops in the same set A or B as fi which represents the
same element in π1(A, x0) or π1(B, x0). Hence it represents the same element in
the free product.

On each level I×{j/k}, our subdivision expresses the map restricted to that
level as f1j ∗f2j ∗ · · · ∗fkj , which determines an element in the free product, with
f10 ∗f20 ∗ · · · ∗fk0 determining our original element and each fik always the map
sending the edge to x0. We look at the vertical edge of the rectangle connecting
(i, j) to (i, j − 1). The restriction of F ′ to this edge (directed downward) deter-
mines a loop which we denote as hij . Note that h0j and hkj each send the edge to
x0. We start replacing the element f10∗f20∗· · ·∗fk0 by h01∗f10∗f20∗· · ·∗fk0 using
the fact that h01 represents the identity and so the new product is homotopic
to the old one, using the equivalence in π1(A, x0) or π1(B, x0), depending on
whether the lower left rectangle R11 is sent to A or to B. In general, we denote
by Rij the rectangle in the jth row and ith column when I × I is subdivided;
this notation uses the second index to index the height of the rectangle, with the
height changing from 1 to k as we move upward.

We illustrate in Figure 3.37 the subdivision and component loops when k = 3.

R11 R21 R31

R12 R22 R32

R13 R23 R33

f10 f20 f30

f11 f21 f31

f12 f22 f32

f13 f23 f33

h01 h11 h21 h31

h02 h12 h22 h32

h03 h13 h23 h33

Figure 3.37. Subdivision when k = 3.
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v1 v2 v3

v4v5v6

vx0 x0

h0 f0

f1 h1

FG

w2 w3 = w4

w5w1 = w6

w

f0

h1

f1

h0

F

Figure 3.38. Reparametrizing a homotopy.

Let us suppose R11 is sent to A. We want to replace h01 ∗ f10 by h11 ∗ f11

in this product. Since the first rectangle is sent to A, we can do this in the free
product as long as these represent the same element of π1(A, x0). We now prove
a lemma that says that this is true.

Lemma 3.9.10. Consider a map F from a rectangle I×I → C which sends the
corner points to x0. Let h0, h1 denote the restriction to the vertical edges (directed
downward) and f0, f1 denote the restriction to the horizontal edges (directed to
the right). Then f0 ∗ h0 and h1 ∗ f1 represent the same element of π1(C, x0).

Proof. We need to compose F with an appropriate map G from I × I to itself.
The map we choose will use a subdivision of I × I into six triangles, and we will
map each triangle affine linearly to either a triangle or edge in I×I. The map G is
determined by where the vertices are mapped. The vertices in the domain I×I are
v1 = (0, 0), v2 = ( 1

2 , 0), v3 = (1, 0), v4 = (1, 1), v5 = ( 1
2 , 1), v6 = (0, 1), v = ( 1

2 ,
1
2 ).

Their image vertices under G are given by w1 = w6 = (0, 1), w2 = (0, 0), w3 =
w4 = (1, 0), w5 = (1, 1), w = ( 1

2 ,
1
2 ). The map G sends vj to wj and v to w.

Figure 3.38 depicts the image of vertices under G and the images of edges under
F and the composition FG.

Using the above lemma, we can then say that h01 ∗ f10 represents the same
element of π1(A, x0) as does f11 ∗ h11. This means that h01 ∗ f10 ∗ f20 ∗ · · · ∗ fk0

and f11 ∗ h11 ∗ f20 ∗ · · · ∗ fk0 represent the same elements of the free product.
We then look at the next rectangle R21. If R21 is still sent to the same set A as
R11, then Lemma 3.9.10 can be used to replace the term h11 ∗ f20 with f21 ∗ h21

as elements of π1(A, x0). This allows us to say that f11 ∗ h11 ∗ f20 ∗ · · · ∗ fk0

and f11 ∗ f21 ∗ h21 ∗ · · · ∗ fk0 represent the same element in the free product.
The other possibility is that R21 is sent to B. This means that the common
edge of the two rectangles is sent to A ∩ B. Hence h11 represents an element
of π1(A ∩ B, x0). In R11, we need to consider this as an element of π1(A, x0),
whereas in rectangle R21 we need to consider this as an element of π1(B, x0)
in order to homotope h11 ∗ f20 to f21 ∗ h21 in π1(B, x0). Although this is not
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allowable in the free product, this identification of ψA([h11]) with ψB([h11]) is
precisely what the amalgamated free product allows.

We then proceed across the bottom row of rectangles, using the rectangle
Rj1 that is sent to A (resp., B) to replace the product of terms h(j−1)1 ∗ fj0

with fj1 ∗ hj1 in π1(A, x0) (resp., π1(B, x0)). Whenever there are adjacent rect-
angles R(j−1)1 and Rj1 sent to distinct sets A and B, then we have to work
in the amalgamated free product to identify ψA([h(j−1)1]) with ψB([h(j−1)1]).
At the end of working our way down the bottom row of rectangles, we have an
equivalence within the amalgamated free product of the elements represented by
h01 ∗ f10 ∗ f20 ∗ · · · ∗ fk0 and f11 ∗ f21 ∗ · · · ∗ fk1 ∗ hk1. Since hk1 is the map to the
base point x0, we may omit this term in the amalgamated free product. Thus
we conclude that in the amalgamated free product the loops f10 ∗ f20 ∗ · · · ∗ fk0

and f11 ∗ f21 ∗ · · · ∗ fk1 represent the same element. We then use the same argu-
ment on the jth row of rectangles to show that f1(j−1) ∗ f2(j−1) ∗ · · · ∗ fk(j−1)

and f1j ∗ f2j ∗ · · · ∗ fkj represent the same elements of the amalgamated free
product. In the move from one row to another, there may be some vertically
adjacent rectangles Rj(p−1) and Rjp which are sent to different sets A and B.
In this case, the loop fj(p−1) is in A ∩B, and we will have to use the identifica-
tion of ψA([fj(p−1)]) with ψB([fj(p−1)]) in the amalgamated free product. After
moving over all rows of rectangles, we get an equivalence in the amalgamated
free product between [f10] ∗̄ · · · ∗̄ [fk0] and [f1k] ∗̄ · · · ∗̄ [fkk] = [ex0

]. This says that
φ̄AB is an isomorphism between the amalgamated free product and π1(X,x0).

As an example to clarify and illustrate the proof, we suppose that k = 3 and
the rectangles R11, R13, R21, R23, R33 are sent to A and the others are sent to
B. We then indicate the steps used in getting the equivalence of the classes in
the amalgamated free product represented by the bottom map f10 ∗f20 ∗f30 and
the top map f13 ∗ f23 ∗ f33. We use subscripts A,B to indicate equivalences in
π1(A, x0), π1(B, x0), the symbol id to indicate insertion or deletion of the identity
element, and AB to indicate an identification using ψA, ψB in the amalgamated
free product. Even in this simple case, the complete details become rather com-
plicated; however, they consist of applying the same basic steps over each square
of the subdivision.

[f10]A ∗̄ [f20]B ∗̄ [f30]A ∼id [h01]A∗̄[f10]A∗̄[f20]B ∗̄[f30]A

∼A [f11]A∗̄[h11]A∗̄[f20]B ∗̄[f30]A

∼AB [f11]A∗̄[h11]B ∗̄[f20]B ∗̄[f30]A

∼B [f11]A∗̄[f21]B ∗̄[h21]B ∗̄[f30]A

∼AB [f11]A∗̄[f21]B ∗̄[h21]A∗̄[f30]A

∼A [f11]A∗̄[f21]B ∗̄[f31]∗̄[h31]A

∼id [f11]A∗̄[f21]B ∗̄[f31]A

∼id [h02]A∗̄[f11]A∗̄[f21]B ∗̄[f31]A

∼A [f12]A∗̄[h12]A∗̄[f21]B ∗̄[f31]A
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∼AB [f12]A∗̄[h12]B ∗̄[f21]B ∗̄[f31]A

∼B [f12]A∗̄[f22]B ∗̄[h22]B ∗̄[f31]A

∼AB [f12]A∗̄[f22]B ∗̄[h22]A∗̄[f31]A

∼A [f12]A∗̄[f22]B ∗̄[f32]A∗̄[h32]A

∼id [f12]A∗̄[f22]B ∗̄[f32]A

∼AB [f12]B ∗̄[f22]B ∗̄[f32]A

∼id [h03]B ∗̄[f12]B ∗̄[f22]B ∗̄[f32]A

∼B [f13]B ∗̄[h13]B ∗̄[f22]B ∗̄[f32]A

∼B [f13]B ∗̄[f23]B ∗̄[h23]B ∗̄[f32]A

∼AB [f13]B ∗̄[f23]B ∗̄[h23]A∗̄[f32]A

∼A [f13]B ∗̄[f23]B ∗̄[f33]A∗̄[h33]A

∼id [f13]B ∗̄[f23]B ∗̄[f33]A.

This last product is the product of three representatives of the identity, and
so represents the identity in the amalgamated free product.

3.10 Dependence on the base point

This section is a project which explores the way the fundamental group depends
on the base point. You should verify all of the claims being made during our
discussion. We will have a standard assumption here that our space is path
connected. If a space is not path connected, it can be written as the disjoint
union of its path components, which are path connected. The path component
containing x is just the set of all y ∈ X so that there is a path joining y to x.
Then the fundamental group π1(X,x) will depend only on the path component
containing the base point x and will be unaffected by other path components.

Let α be a path in X which connects α(0) and α(1). This will induce an
isomorphism α∗ : π1(X,α(1)) → π1(X,α(0)), defined by

α∗([f ]) = [α ∗ f ∗ ᾱ].
Here ᾱ(t) = α(1− t) just gives the path from α(1) to α(0) formed by traversing
α backwards. Because of our argument proving associativity, we will adopt the
convention that α ∗ f ∗ ᾱ uses α on [0, 1

3 ], f on [13 ,
2
3 ], ᾱ on [23 , 1]. See Figure 3.39

for an illustration of the path α ∗ f ∗ ᾱ. Verify that the homotopy class of the
result is well defined, independent of the choice of f within [f ] since if f ∼F f ′,
then α ∗ f ∗ ᾱ ∼ α ∗ f ′ ∗ ᾱ. Just use the constant homotopies on the part mapped
via α, ᾱ, and the homotopy F in middle. This is illustrated in Figure 3.40. You
should also verify that the result depends only on the homotopy class of the
path α rel 0, 1. That α∗ is an isomorphism comes from the fact that ᾱ∗ gives its
inverse. One step of verifying this is the equation

ᾱ∗α∗[f ] = [ᾱ ∗ α ∗ f ∗ ᾱ ∗ α] = [ᾱ ∗ α][f ][ᾱ ∗ α]−1 = [eα(0)][f ][eα(0)].
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α(0)

α

α(1)

f

α(0)

α

α(1)

f

= g(1/3)
= g(2/3)

g=α∗f∗ ∗αff
_

= f (0)f
= f (1)ff

Figure 3.39. Isomorphism α∗ : π1(X,α(1)) → π1(X,α(0)).

α

α

α

ᾱ

ᾱ

ᾱ

f

Ft

f ′

Figure 3.40. f ∼ f ′ implies α ∗ f ∗ ᾱ ∼ α ∗ f ′ ∗ ᾱ.

The key idea here is that the parametrization does not affect the result up to
homotopy and running along α and then following that by going back along ᾱ
is homotopic relative to the end points to the constant map at α(0). The details
are analogs of arguments in Section 3.2 and are left as an exercise.

Now suppose that α is a path from x to y and β is a path from y to z. Then
the path α ∗ β from x to z satisfies the functorial property (α ∗ β)∗ = α∗β∗. To
see that use the representative α ∗ β ∗ f ∗ β̄ ∗ ᾱ, and note that, up to homotopy,
we may choose to spread the parametrization within the five maps in whatever
proportion we wish.

Now suppose f, g : A → B are homotopic, and we choose a as the base
point of A. Suppose that F : A × I → B gives a homotopy between f and g.
Let α(t) = F (a, t). Then α(0) = f(a) and α(1) = g(a). The map α induces an
isomorphism α∗ : π1(B, g(a)) → π1(B, f(a)).
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Proposition 3.10.1. Let f, g : A → B be homotopic maps with homotopy F
and α(t) = F (a, t). Then we have the following commutative diagram, which
means that α∗g∗ = f∗.

π1(A, a)
g∗

��

f∗

������������
π1(B, g(a))

α∗

��

π1(B, f(a))

Give a proof of the proposition by following the outline below. Let p : I → A
represent an element [p] ∈ π1(A, a). Then f∗([p]) is represented by fp and g∗([p])
is represented by gp. Now G = F (p×1) : I×I → B has G(s, 0) = f(s), G(s, 1) =
g(s), G(0, t) = α(t) = G(1, t). There is a continuous map Q : I×I → I×I which
sends {0}×I to (0, 0) and {1}×I to (1, 0), sends I×{1} to {0}×I∪I×{1}∪{1}×I,
and sends I×{0} via the identity to itself. Figure 3.41 illustrates how to construct
Q. To construct Q you should divide the region up into triangles and map the
triangles affine linearly so that the maps on triangles are determined by the values
on the vertices. The images of the two “corner triangles” will be intervals—there
is collapsing occurring in Q. Then show that H = GQ : I × I → B provides the
required homotopy to show that the diagram commutes.

Now consider the situation where α, β are paths in S1 connecting a to b. Then
we want to show that π1(S

1, a) ≃ Z being abelian implies that α∗ = β∗. The
key is to understand what happens when we look at γ∗ : π1(S

1, a) → π1(S
1, a)

when γ is a loop at a. Then

γ∗([f ]) = [γ ∗ f ∗ γ] = [γ] ∗̄ [f ] ∗̄ [γ] = [γ] ∗̄ [f ] ∗̄ [γ]−1.

Show that π1(S
1, a) being abelian implies γ∗([f ]) = [f ]. Applying this to γ =

α ∗ β̄, show that this implies β∗ = α∗. This means that we can identify π1(S
1, a)

with π1(S
1,1) using any path from 1 to a. After making this identification, we

will just write π1(S
1) for the fundamental group, ignoring the choice of base

point since this standard identification exists between the fundamental groups
using two different base points. Using this identification, we can consider an

f

G αα

g

x1

x3 x4

x6

x2 x5

Q

y1 = y2 y5 = y6

y3 y4

f

H f(a)f(a)

gα α

Q(xi) = yi

Figure 3.41. Reparametrizing the homotopy.
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induced map f∗ : π1(S
1) → π1(S

1) as being a homomorphism from the integers
to themselves. Any such homomorphism from the integers to the integers is
completely determined by its value on 1 ∈ Z. If we identify π1(S

1) with Z,
then f∗(1) will be some integer, which we will define to be the induced degree
of the homomorphism, or, more informally, the induced degree of the map.
You should formulate this homomorphism as a composition of homomorphisms
involving paths and induced maps. With all of these identifications, then show
how Proposition 3.10.1 says that homotopic maps from the circle to the circle
have the same induced degree. You should then prove that the induced degree
agrees with the degree of the map using our earlier definition of the degree of a
map f : S1 → S1.

We now look at the case of general X. Use the argument above to show that
if α, β are paths connecting x to y, then α∗([f ]) is conjugate to β∗([f ]). This
means that there is an element η ∈ π1(X,x) so that β∗([f ]) = η ∗̄α∗([f ]) ∗̄ η−1.
Form a new group πab

1 (X,x) by abelianizing the fundamental group π1(X,x).
This may be expressed informally as identifying γ with η ∗̄ γ ∗̄ η−1 for any η, or,
more formally, by taking the quotient of π1(X,x) by the commutator subgroup of
π1(X,x), which is the smallest normal subgroup generated by the commutators
η ∗̄ γ ∗̄ η−1 ∗̄ γ−1. Then show that after going to the abelianization, the induced
map α∗ induces a map α′

∗ : πab
1 (X, y) → πab

1 (X,x). Show that this map is
independent of the path α; that is, α′

∗ = β′
∗. This allows us to make a standard

identification of πab
1 (X,x) with πab

1 (X, y) for any x, y ∈ X.
With this identification, denote this common group πab

1 (X). Then show that
any continuous map f : X → Y induces a map f∗ : πab

1 (X) → πab
1 (Y ). Show

that if f is homotopic to f ′, then f∗ = f ′
∗ : πab

1 (X) → πab
1 (Y ). Show that this

map has the functorial properties:

(1) (1X)∗ = 1πab
1

(X);

(2) (gf)∗ = g∗f∗.

Use the functorial properties above to show that, if f is a homotopy
equivalence, then πab

1 (X) ≃ πab
1 (Y ).

Returning to the regular fundamental group, use Proposition 3.10.1 to show
the following result.

Proposition 3.10.2. If X and Y are homotopy equivalent via f : (X,x0) →
(Y, y0) and g : (Y, y0) → (X, z0), then f∗ : π1(X,x0) → π1(Y, y0) is an
isomorphism.

In your proof it will be useful to note that f∗ : π1(X,x0) → π(Y, y0) and
g∗ : π1(Y, y0) → π1(X, z0). You can also use the induced homomorphism f∗ :
π1(X, z0) → π1(Y, f(z0)). It is easiest to first show that g∗ is an isomorphism
and then use this to get the result.
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3.11 Supplementary exercises

Exercise 3.11.1. Check whether the following sets together with their opera-
tions form groups:

(a) irrational numbers under addition;

(b) S3 = {(z1, z2) : |z1|2 + |z2|2 = 1, z1, z2 ∈ C} with the operation

(z1, z2) · (u1, u2) = (z1u1 − z2ū2, z1u2 + z2ū1),

where we are using complex multiplication and ū = a − bi denotes the
complex conjugate of u = a+ bi. (Hint: |z|2 = zz̄.)

(c) ({1, 2, 3}, ·), where 1 ·a = a ·1 = a, 2 ·2 = 3, 3 ·2 = 2 ·3 = 1, and 3 ·3 = 2.

Exercise 3.11.2. Let (R/∼, ·) have as its set the equivalence classes of real
numbers, where a ∼ b if there is an integer n with a = b+ n. The operation on
equivalence classes is given by [a] · [b] = [a+ b]. Verify that this operation is well
defined and that (R/∼, ·) forms a group.

Exercise 3.11.3. Let p̄ : R/∼ → S1 be induced from p : R → S1, p([a]) =
(cos 2πa, sin 2πa). Show that p̄ is well defined and is an isomorphism of groups.

Exercise 3.11.4. Suppose G is an abelian group and H is a nonabelian group
(i.e. there exist h1, h2 ∈ H with h1 · h2 �= h2 · h1).

(a) Suppose f : G → H is a homomorphism. Show that f is not onto H.
(Hint: Show that the image is an abelian group.)

(b) Suppose g : H → G is a homomorphism. Show that g is not 1–1. (Hint:
Look at h1 · h2 and h2 · h1.)

Exercise 3.11.5. Show that if H ⊂ G is closed under multiplication (a, b ∈ H
implies a · b ∈ H) and taking inverses (a ∈ H implies a−1 ∈ H), then H is a
subgroup of G.

Exercise 3.11.6. Find all of the subgroups of (Z,+).

Exercise 3.11.7. Show that the relation f0 homotopic to f1 rel 0, 1 is an
equivalence relation on paths {f : (I, 0, 1) → (X,x, y)} connecting x to y.

Exercise 3.11.8. Denote the set of equivalence classes of paths f : (I, 0, 1) →
(X,x, y), as above, by π1(X,x, y). Suppose X is path connected. Show that there
is a bijection of sets g : π1(X,x, y) → π1(X,x). (Hint: Pick a fixed path α from
x to y and use it to get from a path from x to y to a loop at x.)
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Exercise 3.11.9.

(a) Compute π1(I, 0, 1) and give a representative for each equivalence class.

(b) Compute π1(S
1,1,−1) and give a representative for each equivalence

class.

Exercise 3.11.10.

(a) Show that addition of paths determines a well-defined map A(x, y, z) :
π1(X,x, y)⊕ π1(X, y, z) → π1(X,x, z).

(b) Show that there is associativity; that is, there is a formula

A(x, z, w)(A(x, y, z)([α], [β]), [γ]) = A(x, y, w)([α], A(y, z, w)([β], [γ]))

and that this common value is represented by

h(s) =





α(3s) if 0 ≤ s ≤ 1
3 ,

β(3s− 1) if 1
3 ≤ s ≤ 2

3 ,

γ(3s− 2) if 2
3 ≤ s ≤ 1.

Definition 3.11.1. A topological group is a group (G, ·) which is a topological
space so that the multiplication G × G → G, (g1, g2) → g1 · g2, and the map
taking inverses, G → G, g → g−1, are continuous. Here G × G is given the
product topology.

Exercise 3.11.11.

(a) Show that R with the usual addition forms a topological group.

(b) Show that S1 with multiplication coming from complex multiplication is
a topological group.

(c) Show that p : R → S1, p(t) = e2πit, is a continuous group homomorphism.

Exercise 3.11.12. Consider the group of 2 × 2 real matrices with nonzero
determinant

A =

(
a11 a12

a21 a22

)
.

By identifying these matrices with a subset of R4 using the four coordinates, we
can make this into a topological space. This space is denoted GL(2,R) and is
called the general linear group of 2× 2 real matrices. Show that GL(2,R) forms
a topological group with the operation of matrix multiplication.

Exercise 3.11.13. (a) Continuing with the matrices in the last exercise, con-
sider the matrices O(2) ⊂ GL(2,R) which are the orthogonal matrices Q
satisfying QQt = QtQ = I. Show that O(2) is a subgroup of GL(2,R) and
is itself a topological group.

(b) Use the Gram–Schmidt orthogonalization process which writes a given
element A in GL(2,R) uniquely as a product A = QR, where Q ∈ O(2) and R
is an upper triangular matrix with positive diagonal entries to show that there
is a deformation retraction of GL(2,R) onto O(2).
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(c) Let SO(2) denote the matrices in O(2) with determinant 1. Show that
SO(2) is a topological group. Show that there is a homeomorphism between O(2)
and the product space SO(2)× {±1}.

(d) Show that SO(2) is homeomorphic to S1, and this homeomorphism is a
group isomorphism.

(e) Compute the fundamental groups π1(SO(2), I), π1(O(2), I) and
π1(GL(2,R), I).

Exercise 3.11.14. Consider the set GL(2,C) of 2 × 2 complex matrices with
nonzero determinant. Give it a topology by identifying it with a subset of C4.
Show that GL(2,C) is a topological group.

Exercise 3.11.15. Consider the subset U(2) ⊂ GL(2,C) of unitary matrices U
satisfying U∗U = UU∗ = I, where U∗ = Ū t is the adjoint of the matrix U . Show
that U(2) is a subgroup of GL(2,C) and is a topological group. Use the complex
Gram–Schmidt algorithm which decomposes a complex matrix A = QR with
Q ∈ U(2) and R an upper triangular matrix with positive diagonal entries to
show that GL(2,C) deformation-retracts onto U(2).

Exercise 3.11.16. Consider the subset SU(2) ⊂ U(2) of unitary matrices which
satisfy the additional condition detU = 1. Show that SU(2) is a topological
group and that it is homeomorphic to S3. (Hint: Identify S3 as a subset of C2

of points (z1, z2) with |z1|2 + |z2|2 = 1. For such a point, consider the special
unitary matrix

U(z1, z2) =

(
z1 −z̄2
z2 z̄1

)
.

Show that this correspondence gives a homeomorphism.)

Exercise 3.11.17. Consider the unitary group U(1), which is the set of 1 × 1
complex matrices which satisfy U∗U = UU∗ = I. Show that U(1) is a topological
group which is homeomorphic to S1 via a group isomorphism.

Exercise 3.11.18.

(a) Show that there is a continuous map S1 × SU(2) → U(2) which is also
a group homomorphism given by p(ζ, A) = ζA, where every element of
the matrix A is multiplied by the unit complex number ζ.

(b) Show that the inverse image of I is the pair {(−1,−I), (1, I)}.
(c) Show that the map p is a covering map for the covering space p : S1 ×

SU(2) → U(2).

Exercise 3.11.19. Suppose (G, ·) is a topological group with identity e. Define
an operation on loops at e by (f ◦ g)(s) = f(s) · g(s). Show that this respects
homotopy classes in that if f ∼ f ′, g ∼ g′, then f ◦ g ∼ f ′ ◦ g′. Hence we can
define an operation on homotopy classes of loops by [f ]◦̄[g] = [f ◦ g]. Show that
the homotopy classes of loops with this operation form a group, which we will
denote by π′

1(G, e). (Hint: Use the group properties of G to find identities and
inverses, denoting by E(s) = e the constant loop at e.)
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Figure 3.42. Exercise 3.11.22(a).

C

Figure 3.43. T (2)\C.

Exercise 3.11.20. Use the fact that f ∼ f ∗ E ∼ E ∗ f, g ∼ g ∗ E ∼ E ∗ g to
show that π′

1(G, e) is abelian.

Exercise 3.11.21. Define a map from π1(G, e) to π′
1(G, e) by the identity at

the set level. This is necessarily a bijection since the underlying sets are the same
and only the group operations are different. Prove that this is an isomorphism
and thus the fundamental group of a topological group is abelian. (Hint: By
Proposition 3.1, we need only show that it is a homomorphism, and for this
we need to see why f ∗ g is homotopic to f ◦ g. Consider the facts cited in the
previous exercise for this.)

Exercise 3.11.22.

(a) Show that the region in Figure 3.42 is strongly contractible.

(b) Show that if X is contractible, then it is path connected.

(c) Show that if X is contractible, then π1(X,x) ≃ {e} for any x ∈ X.

Exercise 3.11.23.

(a) Let T = S1
a × S1

b . Show that T\(S1
a × {−1}) deformation-retracts to

S1
a × {1}.

(b) Show that T\(S1
a × {−1}) deformation retracts to a subset which is

homeomorphic to S(2).

Exercise 3.11.24. Consider the curve C in Figure 3.43. Show that T (2)\C
deformation-retracts onto a subset which is homeomorphic to T(2).
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Exercise 3.11.25. Find two disjoint circles C1, C2 in T (2) so that T (2)\(C1∪C2)
deformation retracts onto a subset homeomorphic to S(4). Identify the subset
and give a description of the deformation retraction. (Hint: Use ideas from the
previous two exercises.)

Exercise 3.11.26. Show that there are g disjoint circles C1, . . . , Cg in T (g) so
that T (g)\(C1 ∪ · · · ∪ Cg) deformation-retracts onto a subset homeomorphic to
S(2g). Identify the subset and give a description of the deformation retraction.

Exercise 3.11.27.

(a) If C denotes the center circle in the Möbius band M , then show that
M\C deformation-retracts onto ∂M .

(b) Show that there is a circle C in the projective plane P so that P\C
deformation-retracts onto a disk in P .

Exercise 3.11.28. Show that there is a circle C in the Klein bottle so that
K\C deformation-retracts onto an annulus contained in the Klein bottle. Give
a description of the subset and the deformation retraction.

Exercise 3.11.29. Show that there are h disjoint circles C1, . . . , Ch in P (h)

so that P (h)\(C1 ∪ · · · ∪ Ch) deformation-retracts onto a subset which is
homeomorphic to S(h). Give a description of the subset and the deformation
retraction.

Exercise 3.11.30.

(a) By regarding P (3) as P #T , show that there are two disjoint circles
C1, C2 ⊂ P (3) so that P (3)\(C1 ∪ C2) deformation-retracts onto a sub-
set homeomorphic to S(3). Give a description of the subset and the
deformation retraction.

(b) Generalize the above argument to show that there are k+1 disjoint circles
C1, . . . , C(k+1) so that P (2k+1)\(C1∪· · ·∪Ck+1) deformation-retracts onto
a subset homeomorphic to S(2k+1).

(c) Show that there are k disjoint circles C1, . . . , Ck so that P (2k)\(C1∪· · ·∪
Ck) deformation-retracts onto a subset homeomorphic to S(2k).

Exercise 3.11.31. Two paths f0, f1 : I → X are said to be freely homotopic if
there is a continuous map F : I× I → X,F (s, t) = Ft(s), with F0 = f0, F1 = f1.
Show that any two paths in a path-connected space X are freely homotopic.
(Hint: First show that f : I → X is freely homotopic to the map sending I
to f(0).)

Two loops f, g : I → X are called freely homotopic loops if there exists
a continuous map F : I × I → X with G(s, 0) = f(s), F (s, 1) = g(s), and
F (0, t) = F (1, t) = w(t) is a path between f(0) = f(1) = a and g(0) = g(1) = b.
Note that we are not requiring a = b as in the definition of π1(X, a) and, even
if a = b, we are not requiring the homotopy to keep the image of 0 and 1
fixed at a. We are requiring, however, that the image of 0 and 1 move in the
same way during the homotopy—this distinguishes freely homotopic loops from
freely homotopic paths as in Exercise 3.11.31. Denote by πf

1(X) the set of free
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homotopy classes of loops in X. We can no longer compose loops since they do
not always begin and end at the same point—hence there is no group operation.

Exercise 3.11.32. Define a map r : π1(X,x0) → πf
1(X) by ignoring the base

point; that is, the equivalence class [g] of g : (I, {0, 1}) → (X,x0) in π1(X,x0)
is sent to the equivalence class [g] of g : I → X in πf

1(X). Show that any loop
g is freely homotopic to a loop g′ with g′(0) = g′(1) = x0, and hence r is onto.
(Hint: Suppose g(0) = g(1) = a. Let α : I → X be a path joining x0 and a, so
α(0) = x0, α(1) = a. Let g′ = α∗g ∗ ᾱ. The homotopy should gradually use more
of α and ᾱ.)

Exercise 3.11.33. Suppose f, g : (I, 0, 1) → (X,x0) are freely homotopic loops.
Show that there exists a loop α at x0 with [f ] = [α][g][α]−1 ∈ π1(X,x0). Show
that the converse is also true; that is, [f ] = [α][g][α]−1 in π1(X,x0) implies that
f, g are freely homotopic. (Hint: Let F : I × I → X be the free homotopy, with
F (s, 0) = f(s), F (s, 1) = g(s), F (0, t) = F (1, t) = α(t). Now consider the proof
of Proposition 3.10.1.)

Exercise 3.11.34. Show that r : π1(X,x0) → πf
1(X) is a bijection iff π1(X,x0)

is abelian.

Suppose X,Y are path-connected spaces and they have base points x0 ∈ X,
y0 ∈ Y . Consider the set of homotopy classes of continuous maps from (X,x0)
to (Y, y0) which we denote as [(X,x0), (Y, y0)]. In the equivalence relation here,
homotopies have to preserve the base point. If we ignore the base point, then
there is a corresponding set [X,Y ].

Exercise 3.11.35. By using the identification S1 = I/0 ∼ 1, show that π1(Y, y0)
corresponds bijectively to [(S1,1), (Y, y0)].

Exercise 3.11.36. Show that πf
1(Y, y0) corresponds bijectively to [S1, Y ].

Exercise 3.11.37. Show that if X and Y are homotopy equivalent, then πf
1(X)

and πf
1(Y ) correspond bijectively.

Exercise 3.11.38. Show that the map j : π1(S
1,1) → πf

1(R
2\{0}) is a bijection,

where for f : (I, {0, 1}) → (S1,1), the map j sends [f ] to the equivalence class
of f , considered as a map f : I → S1 ⊂ R2\{0}.
Exercise 3.11.39. Show that a handlebody H = h0∪h1 is homotopy equivalent
to a circle. (Hint: First collapse h0 to a point, then push h1 = D1 × D1 to
D1 × {0}.)
Exercise 3.11.40. Show that H = h0∪h1

1∪· · ·∪h1
k (where we assume that the

h1
i are all attached disjointly to ∂h0) is homotopy equivalent to the one-point

union of k circles (see Figure 3.44).

Exercise 3.11.41. Call a continuous map f : S1 → S1 regular if

(a) f−1{1} = {a1, . . . , ak} consists of a finite number of points;

(b) for each ai ∈ f−1{1}, there is a small arc Ai about ai with Ai∩f−1{1} =
ai and Ai\{ai} = Ai1

⊔
Ai2 so that if f = (f1, f2), we have f2(Ai1) < 0
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is homotopy
equivalent to

Figure 3.44. A homotopy equivalence.

and f2(Ai2) > 0; that is, as we cross ai the image crosses 1. If, when
traversing S1 in a counterclockwise direction, we encounter Ai1 first and
then Ai2, assign e(ai) = 1. If we encounter Ai2 first and then Ai1, assign
e(ai) = −1. In other words, if the image curve goes from the negative
side of 1 to the positive side as we pass ai, then e(ai) = 1; if it goes from
the positive side to the negative side, e(ai) = −1.

Let d(f) =
∑

e(ai). Show that d(f) = deg(f).

Exercise 3.11.42. Call a map f : S1 → S1 quasiregular if (1) above is satisfied.
Generalize the previous exercise to quasiregular maps.

For the next group of exercises we need to review some results from advanced
calculus which we will be using. A differential 1-form w = M(x, y) dx+N(x, y) dy
defined in a region R of the plane is closed if My = Nx. It is exact if there is a
function F : R → R with Fx = M,Fy = N . Exact forms are closed, but closed
forms need not be exact in general. The region R should be an open set, or
at least the functions involved should extend to an open set containing R. The
relationship between closed 1-forms and exact 1-forms measures something about
R which is closely related to π1(R). If γ = (γ1, γ2) : [a, b] → R is a differentiable
curve, then

∫

γ

M dx+N dy =

∫ b

a

M(γ(t))γ′
1(t) +N(γ(t))γ′

2(t) dt.

Thus integrals over curves are evaluated by changing to one-variable integrals.
The change of variables formula in one variable then implies that the integral
does not depend upon the parametrization of the curve other than its orientation.
If we reverse the direction in which we traverse the curve, then the integral
is multiplied by −1. Thus the integral really only depends on the “oriented
curve” γ. Another way to phrase this integral is that we are taking the integral
over the defining interval of the dot product of the vector field (M(γ(t)), N(γ(t)))
with tangent vector γ′(t).
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This definition is extended to piecewise differentiable curves γ by defining

∫

γ

w =

∫

γ1

w + · · ·+
∫

γk

w,

where [a, b] is partitioned into subintervals [ai, ai+1] so that γ|[ai, ai+1] = γi.
Green’s theorem implies that if γ is a loop given by a union of paths which
traverse the boundary of a compact R exactly once (oriented consistently on
boundary circles so the exterior normal followed by γ′ gives the orientation of
the region or its negative), and w is closed on R, then

∫
γ
w = 0. For example, if

R is a disk of radius r and γ(t) = r(cos t, sin t), then
∫

γ
w = 0 if w is closed in R.

This does not apply if R is the disk minus a point, however, as our exercises will
show—R must be a compact region, which is a surface with boundary. However,
when R is an annulus on which the closed form w is defined, it applies to say that
the integral over the outer circle is the same as the integral over the inner circle,
as long as each is oriented in the same way (clockwise or counterclockwise).

If w is exact in R and γ is any piecewise differentiable loop in R, then the
fundamental theorem of integral calculus implies that

∫
γ
w = 0. Conversely, if∫

γ
w = 0 for all differentiable loops γ in R, then w can be shown to be exact.
Suppose f : S → R is differentiable and γ is a differentiable curve in S.

Suppose f is given by x = f1(u, v), y = f2(u, v). If w = M dx + N dy, is
a 1-form in R, let f∗w be the 1-form in S defined by f∗w = P du+Qdv, with

P = (M ◦ f)f1
u + (N ◦ f)f2

u , Q = (M ◦ f)f1
v + (N ◦ f)f2

v .

Then the definitions and the chain rule imply that
∫

f◦γ
w =

∫
γ
f∗w as each

integral is being pulled back to the same integral over the parameter domain.
It is a fact that every continuous loop in R is freely homotopic to a differenti-

able one, and homotopic loops are differentiably homotopic. Henceforth, we will
assume that all loops and paths are (piecewise) differentiable and our homotopies
are differentiable as well.

Exercise 3.11.43. Show that if w = M dx + N dy is closed in R, f : S → R,
then f∗w is closed in S.

Exercise 3.11.44. Suppose γ : [a, b] → R is a loop in R. Show that if α :
[c, d] → [a, b] is an affine linear homeomorphism, and β = γα, then

∫
γ
w =

∫
β
w

if α preserves order, and
∫

γ
w = −

∫
β
w if α reverses order. Use this to show that∫

γ∗δ
=

∫
γ
w +

∫
δ
w, where γ ∗ δ denotes the usual addition of loops. Also, show

that
∫

γ
w = −

∫
γ
w.

Exercise 3.11.45. Suppose that f0, f1 : rS1 → R2 are differentiable maps which
are differentiably homotopic. Let αi = fi(rS

1) be the loops which come from
composing fi with the standard parametrization γr(s) = re2πis of rS1. Show
that if w is a closed form which is defined on an open set containing the image of
the homotopy, then

∫
α0
w =

∫
α1
w. (Hint: Use the homotopy to pull the problem

back to integrals on the boundary circles of an annulus.)
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Exercise 3.11.46. Suppose τ1, τ2 : [0, 1] → R are differentiably homotopic
loops in R and w is a closed 1-form in R. Show that

∫
τ1
w =

∫
τ2
w. (Hint: Use

the homotopy to show that they can be computed as the integrals of a closed
form F ∗w over the boundary circles of an annulus.)

This last exercise says that the integral only depends on the differentiable
homotopy class (hence on the free homotopy class) of the curve. The previ-
ous exercise allows us to define a function d from differentiable maps f from
rS1 → R ⊂ R2 to R given by using a fixed closed 1-form w and defining
d(f) =

∫
γr
f∗(w) =

∫
f◦γr

w. Here R is some open set in R2. This has the

property that if two maps f, g are differentiably homotopic, then d(f) = d(g).
Moreover, if the two maps are defined on the boundary circle of an annulus and
they extend to a differentiable mapping of the annulus into R, then they have
the same value. Also, Green’s theorem also implies that if the map f : rS1 → R
extends to a differentiable map of rD2 to R, then the integral of the closed form
f∗w over rS1 will be zero. These properties of d are similar to those where we
defined the degree. We will see that if we choose R = R2\{0} and choose w
appropriately, we will have d(f) = deg f .

Exercise 3.11.47. Show that

w =
−y

x2 + y2
dx+

x

x2 + y2
dy

is a closed 1-form in R2\{0}.
We will now restrict to R = R2\{0} and

w =
−y

x2 + y2
dx+

x

x2 + y2
dy.

Exercise 3.11.48. Evaluate d(zn) for γr(t) = re2πit = (cos 2πt, sin 2πt).

Exercise 3.11.49. Suppose α̃(t) is a lift for α(t) = f(γr(t)); that is,

α(t) = (r cos 2πα̃(t), r sin 2πα̃(t)).

Show that d(f) = α̃(1) − α̃(0). This integral thus gives the same definition of
degree which we had earlier.

We now look at implications of these results about closed 1-forms in R2\{0}.
Note that all paths are freely homotopic to a multiple of γ1. Thus a 1-form is
exact precisely when it integrates to 0 on this loop since it would then integrate
to 0 over any multiple of the loop and thus over any differentiable loop.

Exercise 3.11.50. Suppose η = M dx+N dy is a closed differential 1-form in
R2\{0}. Let γ(s) = (cos 2πs, sin 2π),

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy.
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Show that if (1/2π)
∫

γ
η = a, then η = aω + ν, where ν is an exact 1-form in

R2\{0}. Thus, modulo exact forms, all closed forms in R2\{0} are multiples of
ω. (Hint: A 1-form ν in R2\{0} is exact iff

∫
δ
ν = 0 for all loops δ in R2\{0}.

Exercise 3.11.38 says that any loop in R2\{0} is freely homotopic to a multiple
of γ.)

Exercise 3.11.51. Show that closed forms in R ⊂ R2 form a vector space C(S)
under addition and scalar multiplication. Show that exact forms form a subspace
E(S).
Exercise 3.11.52. Show that I : C(R2\{0}) → R, I(η) =

∫
γ
η, where

γ(t) = (cos 2πt, sin 2πt) is a surjective vector space homomorphism whose kernel
is E(R2\{0}). Hence I induces a vector space isomorphism from the quotient
vector space C(R2\{0})/E(R2\{0}) to R.

Many of the applications of π1(S
1) rely only on a few basic functorial prop-

erties of the fundamental group. We illustrate this in the following exercises by
asking you to prove analogous theorems in higher dimensions based on the exist-
ence of the appropriate functor. Such a functor is provided by singular homology
theory, which we study in Chapter 6. Suppose hn (hereafter just denoted h since
we will assume n is fixed) is a functor from topological spaces and continuous
maps to abelian groups and group homomorphisms; that is, for any topological
space X, there is a corresponding abelian group h(X), and for each continu-
ous map f : X → Y , there is a homomorphism h(f) : h(X) → h(Y ) so that
h(1X) = 1h(X) and h(gf) = h(g)h(f). Suppose that h also has the following
properties.

(1) h(Sn) ≃ Z via an isomorphism k.

(2) h(p) ≃ {e}, where p is a point.

(3) If f, g : X → Y are homotopic maps, then h(f) = h(g). Define the degree
of f : Sn → Sn by using the composition

Z
k−1

−→ h(Sn)
h(f)−→ h(Sn)

k−→ Z

by
deg f = kh(f)k−1(1).

Thus (3) says that homotopic maps have the same degree.

(4) If f(−x) = −f(x), then deg f is odd. Here −x = −(x1, . . . , xn+1) =
(−x1, . . . ,−xn+1) is the antipodal point of x.

Exercise 3.11.53. Show that if there are maps f : X → Y, g : Y → X so that
gf is homotopic to 1X and fg is homotopic to 1Y , then h(f) : h(X) → h(Y ) and
h(g) : h(Y ) → h(X) are isomorphisms (and h(f) and h(g) are inverses to each
other.) The hypotheses could have been stated in terms of X being homotopy
equivalent to Y .

Exercise 3.11.54. Show that the inclusion 0 → Dn+1 and g : Dn+1 → 0
have gi = 10 and ig homotopic to 1Dn+1 . Conclude that h(Dn+1) ≃ {e}. (Hint:
Contract Dn+1 to 0 along radial lines.)
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Exercise 3.11.55. Show that there does not exist a continuous map g : Dn+1 →
Sn with gi = 1Sn .

Exercise 3.11.56. Show that a continuous map f : Dn+1 → Dn+1 must have
a fixed point.

Exercise 3.11.57. Show that if f : Sn → Sn extends to a continuous map
F : Dn+1 → Sn (i.e. f = Fi), then deg (f) = 0.

Exercise 3.11.58. Show that there does not exist a continuous map f : Sn+1 →
Sn satisfying f(−x) = −f(x).
Exercise 3.11.59. Show that if f : Sn+1 → Rn+1, then there is a point x ∈
Sn+1 with f(x) = f(−x).

Exercise 3.11.60. Assuming f(z) = zk : S1 → S1 has degree k, use h to prove
the fundamental theorem of algebra.
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4

Covering spaces

4.1 Basic examples and properties

This chapter elaborates upon the ideas used in Chapter 3 to compute the fun-
damental group of the circle using the covering space p : R → S1 to develop
the theory of covering spaces. We will show that there is an intimate connection
between the covering spaces of B and the subgroups of the fundamental group
π1(B, b). As before, we are assuming that the spaces A,B in a covering space
p : A → B are each path connected and locally path connected. We start with
some basic examples and properties.

Our first examples and exercises involve making new covering spaces from
old ones. For example, if we start with the covering p : R → S1, p(t) = e2πit,
we can get a covering space of the plane over the infinite cylinder by taking
P : R2 = R×R → S1 ×R with P (t, s) = (p(t), s). To show that this is a covering
space, we note that if U ⊂ S1 is evenly covered so that p−1(U) =

⊔
j∈Z

Uj with

p : Uj → U a homeomorphism, then U × R ⊂ S1 × R is also evenly covered since
P−1(U × R) =

⊔
j∈Z

Uj × R and P : Uj × R → U × R is a homeomorphism. Here

we can choose U to be any arc and get a covering of S1 with two such arcs.

Exercise 4.1.1. Show that whenever p : A → B is a covering map and C is
a path-connected, locally path-connected Hausdorff space, then P : A × C →
B × C,P (a, c) = (p(a), c) is a covering map.

We can also take the product of a covering space with itself and get a new
covering space. For example, we can take the product of the covering space of
the reals over the circle with itself and get the covering space of the plane over
the torus, P : R2 → S1 × S1, P (s, t) = (p(s), p(t)). We just use the fact that if
U, V ⊂ S1 are evenly covered open sets, then U × V ⊂ S1 × S1 is also evenly
covered since P−1(U × V ) =

⊔
(j,k)∈Z×Z

Uj × Uk with P : Uj × Uk → U × V a
homeomorphism. The next exercise generalizes this example.

Exercise 4.1.2. Show that if p1 : A1 → B1, p2 : A2 → B2 are covering maps,
then so is P : A1 × A2 → B1 × B2, P (a1, a2) = (p1(a1), p2(a2)).

243
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The next exercise gives another important cover of the circle where the
covering space is the circle itself.

Exercise 4.1.3. Show that pm : S1 → S1, pm(z) = zm (com-
plex multiplication)—or, equivalently, p(cosx, sinx) = (cosmx, sinmx)—is a
covering map.

We now explore the properties of p−1{x} for different x.

Exercise 4.1.4. Show that if A is compact, and p : A → B is a covering map,
then for any b ∈ B, p−1(b) consists of a finite number of points. (Hint: Use limit
point compactness. See Exercise 1.9.19.)

Exercise 4.1.5. Using the framework of Exercise 4.1.4, show that since B is
assumed path connected, then the number of points in p−1(b) does not depend
on b. (Hint: Show that {y : |p−1(b)| = n} is both open and closed.)

Definition 4.1.1. We define the number of points in the inverse image p−1(x)
to be the order of the cover. When the order is a finite number k, the covering
is called a k-fold cover.

Exercise 4.1.3 can be crossed with another such map of the circle to get
examples of the covering spaces of the torus by itself.

Exercise 4.1.6.

(a) Show that Pm,n : S1×S1 → S1×S1, Pm,n(z, w) = (zm, wn), is a covering
space.

(b) Show that the order of this cover is mn.

Consider the cover P2,1 : T → T given by Exercise 4.1.6. We give a picture of
this cover in Figure 4.1(a). Now we change the base space to T (2) by using the
same construction we used to get T from S2; that is, doing surgery by removing
two disks and replacing them by a cylinder. In the top space T we now do this
twice. This is pictured in Figure 4.1(b).

Exercise 4.1.7.

(a) Show that the construction described above leads to a double covering
P : T (3) → T (2).

(b) By starting with Pm,1, construct an m-fold cover p : T (m+1) → T (2).

Exercise 4.1.8. Continuing with the ideas in the previous exercise and starting
with Pm,1 but now performing n surgeries on the base space, construct an m-fold
cover p : T (mn+1) → T (n+1).

We now consider some covering spaces of nonorientable surfaces. Recall that
in Section 3.4 we discussed the examples of 2-fold covering spaces p : S → P and
p : T → K. We can get new covering spaces from these by doing surgery as in
the preceding exercises.

Exercise 4.1.9. Show that there is a 2-fold covering space pn : T (2n) → P (2n+1).
(Hint: Do n surgeries in small evenly covered disks in P .)
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Figure 4.1. Constructing a cover p : T (3) → T (2).

Exercise 4.1.10. Show that there is a 2-fold covering space pn : T (2n+1) →
P (2n+2). (Hint: Start from the covering space p : T → K and do n surgeries to
K = P (2) in small evenly covered disks in K.)

Here is another example dealing with surfaces which is motivated by a similar
construction as the one forming p : T → K. Start with K = S1 × S1/(z, w) ∼
(−z, w̄). Form a new space Kn with a similar construction Kn = S1×S1/(z, w) ∼
(eπi/n, w̄) when n is odd. Note that for n = 1, this is just the usual construction
of K. There is a natural map from K to Kn which is induced from the identity
map of T to itself. That this does induce a map uses the fact that n is odd so that
(z, w) ∼ (−z, w̄) is part of the equivalence relation in the quotient construction
of Kn. If we take a small disk in Kn, it will be evenly covered by n small disks
in K where we get from one to the next by rotating by eπi/n in the first S1 and
then reflecting via w → w̄ in the second factor. That we get back to the first
disk in n steps uses the equivalence relation in K. The next exercise asks you
to show that Kn is homeomorphic to K, and so the construction gives an n-fold
cover pn : K → K for n odd.

Exercise 4.1.11. Show that Kn is homeomorphic to K. (Hint: Use the function
h : T → T given by h(z, w) = (zn, w) and show that it induces a homeomorphism
h̄ : Kn → K.)

In each of the examples of finite coverings dealing with surfaces, we can
compute for p : A → B how the Euler characteristics of A,B are related. In the
next exercise you are asked to do this calculation to show that χ(A) = kχ(B),
where k is the order of the cover. This is a general result for finite covers of
surfaces (actually much more generally).
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Exercise 4.1.12. Verify in the last four exercises that there is a formula χ(A) =
kχ(B) where k is the order of the cover.

Exercise 4.1.13. Assuming the formula χ(A) = kχ(B) for surfaces, show that
the only surfaces without boundary that can cover themselves with order k > 1
are T and K.

One explanation for the Euler characteristic formula comes from equivariant
handle decompositions. For example, consider the covering of the sphere over the
projective plane. The projective plane is the union of a Möbius band and a disk.
Lying above the Möbius band is an annulus about the equator of the sphere.
Lying above the disk are two disks in the sphere, one in the upper hemisphere
and one in the lower hemisphere. These will take the role of 2-handles in the
equivariant handle decomposition of the sphere. For the Möbius band, it has a
handle decomposition with a 0-handle and a 1-handle. Looking above this in the
sphere, there will be two disks lying above the 0-handle, which can be considered
0-handles there that the antipodal map will interchange. Similarly, lying above
the 1-handles are two disks, which take the role of 1-handles in the cover as well
since they are each attached along a pair of intervals (up to homeomorphism).
The next exercise generalizes this discussion.

Exercise 4.1.14. Suppose that p : A → B is a covering map of finite order k
from one surface to another and we have a handle decomposition of B where
each handle lies within an evenly covered neighborhood.

(a) Then there is an equivariant handle decomposition of A with k i-handles
for each i-handle of B.

(b) Use (a) to show that χ(A) = kχ(B).

We look next at some covering spaces of the wedge W of two circles. We
determine how the covering spaces of order 2 should to look like (up to equival-
ence). We label the circles with a, b and label the cover with a1, a2, b1, b2. We
picture one example of how to do this in Figure 4.2. In this example, each circle
is double covered by a single circle.

Exercise 4.1.15. There are two other nonequivalent 2-fold covering spaces of
W . Give pictures of them. (Hint: Consider cases where one of the circles is
covered by two disjoint circles mapped homeomorphically.)

a
1

a2aa b
1

b2b

Figure 4.2. A double cover of S1 ∨ S1.
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a
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b
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b

1

2aa

3

1

22b

3

Figure 4.3. A three-fold cover of S1 ∨ S1.

Figure 4.3 shows a one 3-fold cover of W . Here the edges labeled a are mapped
to one circle and those labeled b are mapped to the other.

Exercise 4.1.16. Give pictures of two different nonequivalent 3-fold covering
spaces of W from that given in Figure 4.3. (Note: There are more than two
others, so there are many answers possible.)

The ability to lift paths in the base space to the covering space represents one
of the most important properties. We have to first give a version of Theorem 3.3.1
to a general covering space.

Lemma 4.1.1. Suppose p : A → B is a covering map and U ⊂ B is a path-
connected open set which is evenly covered with p−1(U) =

⊔
Ui, b ∈ U . Let

ai ∈ Ui satisfy p(ai) = b. If X is connected and f : X → B is continuous with

f(X) ⊂ U, f(x) = b, then there is a unique lift f̃i of f with f̃i(x) = ai. Moreover,

f̃i(X) ⊂ Ui.

Exercise 4.1.17. Prove Lemma 4.1.1.

Theorem 4.1.2 (Unique path lifting theorem). Suppose p : A → B is a
covering map with p(a) = b. Given a path f : I → B with f(0) = b, there is a

unique path f̃ : I → A with f̃(0) = a and pf̃ = f .

Exercise 4.1.18. Prove Theorem 4.1.2 by mimicking the proof of the unique
path lifting property for the circle, Theorem 3.3.1.

Exercise 4.1.19. Suppose r : I → B is a path in B with r(0) = b1 and r(1) = b2.
Define a map from p−1(b1) to p−1(b2) as follows: For each a ∈ p−1(b1), let r̃a

be the unique path lifting of r with r̃a(0) = a. Then send a to r̃a(1). Show that
this defines a bijection between p−1(b1) and p−1(b2). (Hint: Find an inverse for
this map.)

We now want to extend the unique path lifting property to homotopies.
The idea is to modify the argument given in Chapter 3 during the proof of the
isomorphism π1(S1,1) ≃ Z to get the following result.

Theorem 4.1.3. Suppose that F : (I × I, {0} × I, 1 × I) → (B, b1, b2) is a
homotopy between f0, f1, and p(a) = b1.
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(a) There is a unique lifting F̃ with F̃ (0, 0) = a.

(b) If f̃0, f̃1 are liftings with f̃0(0) = f̃1(0) = a, then f̃0(1) = f̃1(1).

Exercise 4.1.20. Prove Theorem 4.1.3. (Hint: Lift the homotopy F connecting

f0, f1 to F̃ and utilize unique path lifting as in the proof that h̄ is well defined
in Theorem 3.3.3.)

Exercise 4.1.21. Utilize the previous exercise to define a map from π1(B, b) to

p−1(b) as follows. Assign to [f ] the point f̃(1), where f̃ is the unique path lifting

of f with f̃(0) = a.

(a) Use the assumption that A is path connected to show that this map is
onto.

(b) Let G ⊂ π1(B, b) be the subset of [f ] with f̃(1) = a. Show that G is a
subgroup of π1(B, b).

4.2 Conjugate subgroups of π1 and

equivalent covering spaces

In this section we explore the relation between subgroups of the fundamental
group of B and the possible covering spaces of B. We start by showing that
whenever p : (A, a) → (B, b) is a covering map, then the fundamental group of
A injects into the fundamental group of B.

Exercise 4.2.1. Show that p∗ : π1(A, a) → π1(B, b) is 1–1. Thus p∗(π1(A, a))

is a subgroup of π1(B, b) isomorphic to π1(A, a). (Hint: If pf̃ is homotopic to

a constant map at b, then lift the homotopy to a homotopy between f̃ and the
constant map at a.)

Exercise 4.2.2. Combine the ideas of Exercises 4.1.21 and 4.2.1 to show that
p∗(π1(A, a)) ⊂ π1(B, b) is the subgroup of classes of loops [f ] so that the lift of

the loop to a path f̃ with f̃(0) = a satisfies f̃(1) = a. That is, it is the subgroup
of loops at b which lift to loops at a.

We now look at the influence of the base point a chosen in A on the subgroup
p∗(π1(A, a)) obtained. Ideas from Section 3.10 play a key role here. If a different
base point is chosen, we do not necessarily get the same image subgroup, but we
do get a subgroup which is conjugate to the original one.

Definition 4.2.1. Two subgroups H1, H2 ⊂ G are called conjugate if there is
an element g ∈ G so that H1 = gH2g

−1; that is, each element of H1 is of the
form ghg−1, where h ∈ H2.

Exercise 4.2.3. Show that conjugacy is an equivalence relation on subgroups
of G.

Theorem 4.2.1. Suppose that a0, a1 satisfy p(a0) = p(a1) = b. Let α̃ be a path
joining a0 to a1 with α̃(0) = a0, α̃(1) = a1. Let α = pα̃ and g = [α] ∈ π1(B, b).
Let G0 = p∗(π1(A, a0)) ⊂ π1(B, b) and G1 = p∗(π1(A, a1)) ⊂ π1(B, b).
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Figure 4.4. Conjugate loops.

(a) Then the relation between the subgroups G0 and G1 is G0 = gG1g
−1;

that is, the subgroups are conjugate and the element g that induces the
conjugation is represented by the path α which lifts to a path connecting
a0 to a1 in A. See Figure 4.4.

(b) If G = gHg−1 ⊂ π1(B, b) with g ∈ π1(B, b), H = p∗(π1(A, a1)), then
G = p∗(π1(A, a0)) for some a0 with p(a0) = p(a1) = b.

Exercise 4.2.4. Prove Theorem 4.2.1. (Hint: Recall from Section 3.10 that
α̃∗ : π1(A, a1) → π1(A, a0) is an isomorphism.)

Exercise 4.2.5. For the covering map pm : S1 → S1, pm(z) = zm of
Exercise 4.1.3, compute (pm)∗(π1(S1,1)) and (pm)∗(π1(S1, e2πi/m)). Are they
conjugate? Explain.

Exercise 4.2.6. Consider the covering space A of the wedge of two circles
B = S1

x ∨S1
y which is formed from the union of the x-axis and the y-axis together

with copies of the circle attached at each nonzero integer point (n, 0) and (0,m).
Denote these circles as S1

xn and S1
ym. The map p : A → B sends the x-axis to the

circle S1
x by the usual covering map and similarly sends the y-axis to the circle

S1
y . The circle S1

xn is mapped via identification to the circle S1
y and the circle S1

ym

is mapped via identification to the circle S1
x. See Figure 4.5.

(a) Show that p : A → B is a covering map.

(b) Show that p∗(π1(A, (0, 0))) �= p∗(π1(A, (1, 0))) by finding an element of
p∗(π1(A, (1, 0))) which does not lift to a loop starting at (0, 0).

Exercise 4.2.7. Consider the 2-fold covering space of the three tangent circles
A over the wedge of two circles B that is depicted in Figure 4.6. The arcs labeled
ai cover the first circle and the circles labeled bi cover the second circle. Show
that G1 = p∗(π1(A, v1)) = p∗(π1(A, v2)) = G2. (Hint: Consider the rotation
about the center point of the middle circle in A.)
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Figure 4.5. Covering space for Exercise 4.2.6.
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Figure 4.6. Covering space for Exercise 4.2.7.

Exercise 4.2.8. Consider the covering space A of the wedge of two circles
B = S1

a ∨S1
b (with base point v where the two circles are joined) which is shown

in Figure 4.7. In this covering space each arc ai wraps around the circle S1
a once

in the counterclockwise direction and each arc (or loop) bi wraps around the
circle S1

b once in the counterclockwise direction. We will denote the generators
of π1(B, v) by a, b, which are equivalence classes of loops running around each
of the circles once.

(a) Let Gi = p∗(π1(A, vi)). Show that G1 �= G2 by considering how b lifts at
different base points.

(b) Show that G2 �= G3 but there is an isomorphism from G2 to G3

induced by the map sending a → a−1, b → b−1. (Hint: Consider the
homeomorphism from A to itself which is induced by reflection through
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Figure 4.7. Covering space for Exercise 4.2.8.

a horizontal line of symmetry of A that interchanges v2, v3 and leaves v1

fixed.)

Suppose that p : A → B is a covering map and p(a) = b. Let G =
p∗(π1(A, a)). Suppose X is a path-connected, locally path-connected space and
f : (X,x) → (B, b) is continuous. We want to relate various covering spaces of
B in terms of the subgroup G. To do this we first have to discuss lifting of maps
from X into B to maps from X to the covering space A.

Definition 4.2.2. A continuous map f̃ : X → A is called a lifting of f if pf̃ = f .

(A, a)

p

��
(X,x)

f̃
��

�
�

�
�

�
�

�
�

�
f

�� (B, b)

Note that this is a generalization of a lifting of a path. The next theorem
generalizes the path-lifting property to characterize when f has a lifting which
sends x to a.

Theorem 4.2.2 (Lifting criterion). Suppose that p : A → B is a covering
map and p(a) = b. Let G = p∗(π1(A, a)). Suppose X is a path-connected, locally
path-connected space and f : (X,x) → (B, b) is continuous. There is a (unique)

lifting of f : X → B to f̃ : X → A with f̃(x) = a iff

f∗(π1(X,x)) ⊂ p∗(π1(A, a)).

Exercise 4.2.9. Follow the outline below to prove Theorem 4.2.2.

(a) Show that if there is a lifting f̃ with f̃(x) = a, then f∗(π1(X,x)) ⊂
p∗(π1(A, a)).

(b) Show that if there is a lifting f̃ , then it is unique. (Hint: If f̃1, f̃2 are

liftings with f̃1(x) = f̃2(x) = a, show that S = {y ∈ X : f̃1(y) =

f̃2(y)} = X by showing it is open and closed in X.)
Show that the converse of (a) is true by following the outline below.

Try to define a lifting by defining f̃(x) = a and then for each y ∈ X,
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choose a path α from x to y. Look at the image β = fα of this path,
which is a path β in B starting at b. Then use unique path lifting to get
a lifting β̃ of β with β̃(0) = a, and define f̃(y) = β̃(1).

(c) Show that f∗(π1(X,x)) ⊂ p∗(π1(A, a)) implies that if α is a loop at x,

then the lifting β̃ will be a loop at a.

(d) Suppose that α1 and α2 are two paths joining x to y which are homotopic

relative to the end points. Then show that the liftings β̃1 and β̃2 are
homotopic liftings and satisfy β̃1(1) = β̃2(1).

(e) Use the fact that α2 is homotopic relative to the end points to α2∗α1∗α1

and part (d) to show that the liftings β̃1, β̃2 of βi = fαi satisfy β̃1(1) =

β̃2(1). Deduce from this that the map f̃ as defined above is well defined,
independent of the path used to join x to y.

(f) Let {Ui} be a covering of B by path-connected open sets (using local

path connectivity) so that p−1(Ui) =
⊔

j Ũij and p maps each Ũij homeo-
morphically to Ui. Use local path connectivity of X to show that the map
f̃ is continuous at a given point y ∈ X. (Hint: Find a path-connected
neighborhood Vy of y which is mapped into some Ui and show that the

point f̃(y) determines uniquely how that neighborhood Vy lifts and leads
to a continuous function.)

We now apply these results to characterize equivalent covering spaces by
replacing f : X → B by a covering map. We first relate two covering maps in
terms of the image subgroups.

Exercise 4.2.10. Suppose pi : Ai → B are covering maps, pi(ai) = b. Suppose

(p1)∗(π1(A1, a1)) ⊂ (p2)∗(π1(A2, a2)).

Then there is a continuous map P : A1 → A2 with P (a1) = a2, Pp2 = p1, and
P is a covering map. (Hint: Use Theorem 4.2.2 to get P . To show that it is a
covering map, use the fact that we can select evenly covered sets that work for
both p1 and p2.)

A
P ��

p1 ���
��

��
��

A

p2����
��

��
�

B

Exercise 4.2.11. Suppose f : A → A is a continuous map which is a lifting of
p : A → B and f(a) = a. Then f is the identity.

Exercise 4.2.12. Suppose p1 : A1 → B, p2 : A2 → B are equivalent cov-
ering spaces with equivalence h : A1 → A2 and h(a1) = a2. Show that
(p1)∗(π1(A, a1)) = (p2)∗(π1(A2, a2)).

Exercise 4.2.13. Suppose p1 : A1 → B, p2 : A2 → B are covering spaces with
pi(ai) = b. Show that if (p1)∗(π1(A1, a1)) = (p2)∗(π1(A2, a2)), then the covering
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spaces are equivalent via an equivalence F : A1 → A2 with F (a1) = a2. (Hint:
Use Theorem 4.2.2.)

We now put these facts together to give the following characterization of
when covering spaces are equivalent.

Theorem 4.2.3 (Characterization of equivalence of covering spaces).
Two covering spaces p1 : A1 → B, p2 : A2 → B with p(ai) = b are equivalent iff
(p1)∗(π1(A, a1)) and (p2)∗(π1(A, a2)) are conjugate subgroups of π1(B, b).

Exercise 4.2.14. Combine the last exercises with Theorem 4.2.1 to prove
Theorem 4.2.3.

Exercise 4.2.15.

(a) Find all of the subgroups of Z.

(b) Show that any covering space of S1 is equivalent to the covering space
pm : S1 → S1, pm(z) = zm,m ∈ N, or the covering space p : R → S1.

Exercise 4.2.16. Show that there are only two covering spaces of RP
2 up

to equivalence, one of which is the identity covering space and the other
p : S2 → RP

2.

Exercise 4.2.17. Suppose p : A → B is a covering space, A is path connected,
and π1(B, b) = {e}. Show that p is a homeomorphism.

Exercise 4.2.18. Suppose p1 : A1 → B, p2 : A2 → B are covering maps
and the continuous map h : A1 → A2 satisfies p1 = p2h, (p1)∗(π1(A, a)) =
(p2)∗(π1(A2, h(a)). Then show that h is a homeomorphism and so is an
equivalence between the covering spaces.

Exercise 4.2.19. A subgroup G ⊂ F is said to be of index k if the set of right
cosets Gf of G has k elements. Use Exercise 4.1.15 to find all of the conjugacy
equivalence classes of index 2 subgroups G of the free group F2.

Exercise 4.2.20.

(a) Suppose p : A → B is a covering map and the subgroup G =
p∗(π1(A, a)) ⊂ π1(B, b) is of index k, where p(a) = b. Show that p−1(b)
has k points.

(b) Conversely, show that if p−1(b) has k points and p(a) = b, then there
are k cosets Gf of G = p∗(π1(A, a)) ⊂ π1(B, b); that is, the order
|π1(B, b)/G| = k.
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4.3 Covering transformations

Definition 4.3.1. If p : A → B is a covering map, then a homeomorphism
T : A → A with pT = p is called a covering transformation.

A
T ��

p ���
��

��
��

A

p����
��

��
�

B

Exercise 4.3.1. Suppose p : A → B is a covering map, p(a1) = p(a2) = b
and Gi = p∗(π1(A, ai)) ⊂ π1(B, b). Suppose that T : A → A is a covering
transformation with T (a1) = a2. Show that G1 = G2.

Exercise 4.3.2. Suppose p : A → B is a covering map with p(a1) = p(a2) = b.
Show that there is a covering transformation T : A → A with T (a1) = a2 iff
p∗(π1(A, a1)) = p∗(π1(A, a2)). (Hint: Use Theorem 4.2.2.)

Exercise 4.3.3. Show that the set of all covering transformations of p : A → B
forms a group, which we denote Gp, under the operation of composition of
homeomorphisms.

Exercise 4.3.4. Show that if T1, T2 are covering transformations with T1(a) =
T2(a) for some a ∈ A, then T1 = T2. (Hint: Use Theorem 4.2.2.)

Exercise 4.3.5. Consider the homeomorphism Tn : R → R, Tn(x) = x+n, n ∈
Z. Let p : R → S1 be the standard covering map p(t) = e2πit.

(a) Show that pTn = p.

(b) Show that if f̃1, f̃2 are two liftings of a loop f : I → S1, then for n =

f̃2(0) − f̃1(0) we have Tnf̃1 = f̃2.

Exercise 4.3.6. Show that if T : R → R is a covering transformation, then
T = Tn for some n. Conclude that Gp ≃ Z for (R, p, S1).

Exercise 4.3.7. Find the group of covering transformations of the covering
p : S2 → P, p(x) = [x] (where P = S2/x ∼ −x and [x] denotes the equivalence
class of x).

Exercise 4.3.8. Find the group of covering transformations of the covering
pm : S1 → S1, pm(z) = zm (see Exercise 4.1.3).

Exercise 4.3.9. Consider the covering space of S1 ∨ S1 from Exercise 4.2.8.
Show that there is no covering transformation sending v1 to v2. (Hint: Consider
where the loop b1 would have to be mapped.)

Theorem 4.3.1. Suppose p : A → B is a covering space with p(a) = b and
π1(A, a) ≃ {e}. Then the group of covering transformations Gp is isomorphic to
the fundamental group π1(B, b).
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Exercise 4.3.10. Follow the outline below to prove Theorem 4.3.1. Define a
map r : Gp → π1(B, b) as follows. Given T ∈ Gp, let s be a path in A connecting
a and T (a), and let r(T ) = [ps]. Prove that r is an isomorphism as follows.

(a) Show that if s is homotopic rel 0,1 to s′, then ps ∼ ps′.

(b) Use π1(A, a) ≃ {e} to conclude that any two paths connecting a and
T (a) are homotopic rel 0,1 and so r is well defined.

(c) Show that r is a homomorphism.

(d) Show that r is 1–1. (Hint: Show that if r(T1) = r(T2), then T1(a) =
T2(a).)

(e) Show r is onto. (Hint: Let [f ] ∈ π1(B, b). Lift f to f̃ with f̃(0) = a and

let a1 = f̃(1). Then use Exercise 4.3.2.)

Exercise 4.3.11. (a) Suppose p : A → B is a covering space with p(ai) =
b, i = 1, 2. Let Gi = p∗(π1(A, ai)) ⊂ π1(B, b). Show that if there is a covering
transformation T : A → A with T (a1) = a2, then G1 = G2 and if we call this
common subgroup G, there is an element g ∈ π1(B, b) with gGg−1 = G, where
g is represented by a loop which lifts to a path from a1 to a2.

(b) For the converse, suppose that G = p∗(π1(A, ai)), i = 1, 2 and gGg−1 =
G, where g ∈ π1(B, b) is represented by a loop which lifts to a path from a1

to a2. Show that there is a covering transformation T : A → A which sends
a1 to a2.

Exercise 4.3.12. Use the last exercise to give another argument for
Exercise 4.3.9.

Definition 4.3.2. The normalizer N(H) of a subgroup H ⊂ G is the subgroup
{g ∈ G : gHg−1 = H}.

The following theorem generalizes Theorem 4.3.1.

Theorem 4.3.2. There is an isomorphism between the group of covering trans-
formations Gp of p : A → B and the quotient N(H)/H of H = p∗(π1(A, a)) ⊂
π1(B, b).

Exercise 4.3.13. Prove Theorem 4.3.2. (Hint: The argument should mimic the
one given for the special case where π1(A, a) = {e} in Exercise 4.3.10.)

Exercise 4.3.14. Show that there is a bijection between

{c ∈ p−1(b): there is a covering transformation T with T (a) = c}

and N(H)/H. (Hint: Covering transformations are determined by their value at
a by Exercise 4.3.4.)

Exercise 4.3.15. (a) Suppose that H = p∗(π1(A, a)) is a normal subgroup of
π1(B, b). Then show that for every pair of points a1, a2 in the pre-image p−1(b),
there is a covering transformation T with T (a1) = a2.

(b) Show that the converse is true: whenever it is the case that for every pair
of points a1, a2 in the pre-image p−1(b), there is a covering transformation T
with T (a1) = a2, then H = p∗(π1(A, a)) is a normal subgroup of π1(B, b).
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Definition 4.3.3. A covering space is called regular if p∗(π1(A, a)) is a normal
subgroup of π1(B, b). By the previous exercise, this is equivalent to the group of
covering transformations acting transitively on p−1(b).

Transitive actions of covering transformations on regular covering spaces have
a special property. Suppose that U is a neighborhood of b which is evenly covered
and p−1(U) =

⊔
i Ũi, where p : Ũi → U is a homeomorphism. There is one open

set Ũi for each point ai of p−1(b). If the covering space is regular, then there is
a covering transformation T sending ai to aj for each pair i, j; T will then send

Ũi homeomorphically to Ũj .

Definition 4.3.4. A group G of homeomorphisms of a space A is called properly
discontinuous if for every a ∈ A there is an open set Ũ containing a such that
g(Ũ) is disjoint from Ũ whenever g �= e.

Exercise 4.3.16. Show that if G is a group of homeomorphisms which is prop-
erly discontinuous, then for every a ∈ A there is an open set Ũ containing a such
that g0(Ũ) ∩ g1(Ũ) = ∅ for all g0 �= g1 ∈ G. (Hint: Look at g−1

0 g1.)

Exercise 4.3.17. Suppose that A is path connected and locally path connected
and G is a group of homeomorphisms of A. Let A/G denote the quotient space
formed from A, where a ∼ g(a) for g ∈ G.

(a) Show that the quotient map q : A → A/G is a covering map iff the action
of G is properly discontinuous.

(b) Show that when the conditions of (a) are satisfied, then the covering
map q : A → A/G is regular and G is its group of covering transforma-
tions. (Hint: Use uniqueness of covering maps fixing sending one point to
another and the characterization of regularity in terms of transitivity.)

Theorem 4.3.3 (Characterization of regular covering spaces). Suppose
p : A → B is a regular covering space and G is its group of covering transform-
ations. Then p = hq, where q : A → A/G is the quotient covering space and h is
a homeomorphism induced by p via the quotient construction.

Exercise 4.3.18. Prove Theorem 4.3.3.

4.4 The universal covering space and

quotient covering spaces

The previous exercises have shown how equivalence classes of covering spaces are
related to conjugacy classes of subgroups of the fundamental group in terms of
uniqueness. We next want to explore how existence of covering spaces is related
to subgroups. The most basic question is whether there is a covering space
p : A → B where π1(A, a) is the trivial group. Recall that a path-connected
space A with π1(A, a) trivial is called simply connected.

Definition 4.4.1. A universal covering space of B is a simply connected covering
space of B.
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Figure 4.8. Start of universal cover of S1 ∨ S1.

Exercise 4.4.1. Show that if a universal covering space exists, then it is unique
up to equivalence. That is, if pi : A → B are two simply connected covering
spaces of A, then they are equivalent.

Universal covering spaces can be quite complicated, as different homotopy
classes of loops have to lift to distinct end points in the universal cover. Figure 4.8
illustrates of a piece of the universal covering of S1 ∨ S1. Note that the funda-
mental group is the free group on two generators. What the figure actually
shows are paths which correspond to liftings of loops at the wedge point with
word length ≤ 5. Each horizontal segment maps to the first S1 in the counter-
clockwise direction as we move to the right, and each vertical segment maps to
the second S1 in the counterclockwise direction as we move upward. The vertices
of the graph are all mapped to the wedge point. To get the next level in the uni-
versal cover, we would add a T at each end vertex point with the intersection of
the T glued to the point. This pattern is repeated as we go to higher and higher
levels. Note that there are 4 × 34 such T ’s that have to be added to get to the
sixth level.

We next note the following property of a universal covering space p : A → B.
If p(a) = b and U is a path-connected open set containing b which is evenly

covered with a ∈ Ũ and p : Ũ → U a homeomorphism, then the induced map
π1(Ũ , a) → π1(A, a) = {e} is necessarily trivial. But the diagram

π1(Ũ , a)
i∗ ��

p∗ ≃

��

π1(A, a)

p∗

��
π1(U, b)

i∗ �� π1(B, b)

shows that i∗ : π1(U, b) → π1(B, b) is trivial.
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Definition 4.4.2. We say that a space B is semilocally simply connected if,
for each b ∈ B, there is a path-connected open set U containing b with the
homomorphism i∗ : π1(U, b) → π1(B, b) induced by inclusion being trivial.

The discussion above shows that a necessary condition for the existence of
a universal covering space of B is that B is semilocally simply connected. The
next set of exercises show that this condition is also sufficient by constructing a
simply connected covering space for a semilocally simply connected space B.

Theorem 4.4.1 (Existence of universal covering space). Suppose that B
is a semilocally simply connected, locally path-connected, path-connected space.
Then there is a universal covering space p : A → B.

To construct such a space, let b ∈ B and form the space A of homotopy
equivalence classes, relative to the end points, of paths α : I → B with α(0) = b.
We need to put a topology on A, which we do by defining a basis. Let [α] denote
an equivalence class and α(0) = b, α(1) = b′. Choose an open set U containing
b′ that is path connected so that π1(U, b′) → π1(B, b′) is trivial. Such a set will
be shown to satisfy the evenly covered criterion for a covering space p : A → B.

Exercise 4.4.2.

(a) Show that for any two paths β, γ : I → U with β(0) = γ(0) = b′, β(1) =
γ(1) = b′′, β is homotopic to γ relative to the end points as maps to B.

(b) Show that α ∗ β is homotopic to α ∗ γ relative to the end points as
maps to B.

(c) Conclude that if, for each point u ∈ U , we choose a path β in U from
b′ to u, then the equivalence class of α ∗ β determines a unique point of
A. Thus there is a 1–1 correspondence between points of U and points of
the set Ũ[α] of equivalence classes of paths from b which are represented
by the juxtaposition of α with a path in U .

Exercise 4.4.3. Show that if [γ] ∈ Ũ[α], then Ũ[γ] = Ũ[α].

Exercise 4.4.4. Show that if Ũ[α] ∩ Ũ[β] �= ∅, then Ũ[α] = Ũ[β].

Exercise 4.4.5. Show that if c ∈ U , the distinct sets Ũ[α] can be indexed by
the distinct relative homotopy classes of paths from b to c, which is π1(B, b, c)
and thus corresponds bijectively to π1(B, b), by Exercise 3.11.9.

Exercise 4.4.6. Show that if x ∈ V ⊂ U and V is path connected and the
inclusion π1(U, x) → π1(B, x) is trivial, then the inclusion π1(V, x) → π1(B, x)

is trivial. Conclude that Ṽ[α] ⊂ Ũ[α].

Exercise 4.4.7. Show that the sets Ũ[α] constructed above form the basis for a
topology for A.

Exercise 4.4.8.

(a) Consider the function p : A → B given by p([α]) = α(1). Show that p is
well defined and continuous.
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(b) Show that p is a covering map.

(c) Show that there is a bijection between p−1(c) ⊂ A and π1(B, c).

Exercise 4.4.9. Show that A is simply connected. (Hint: Since p : A → B is a
covering space, it suffices to show that the image p∗(π1(A, a)) is trivial, where a
is the equivalence class of the constant path at b. Use the fact that p∗ is injective,
and interpret what it means to be a loop at a. Note that through unique path
lifting we can describe the lifting of a loop s in B at b in terms of the initial
segments s|[0, t].)

Exercise 4.4.10. For the universal covering space A as constructed above, show
how each element of π1(B, b) naturally leads to a covering transformation of the
covering space. Show that this correspondence π1(B, b) → Gp is an isomorphism.

Now suppose that H is a subgroup of the fundamental group G = π1(B, b).
Using the previous exercise, we can identify H as a subgroup of covering trans-
formations of A. Form the topological space A/H which is the quotient space
of A by the equivalence relation that says a ∼ a′ whenever there is a covering
transformation T ∈ H with T (a) = a′.

Exercise 4.4.11.

(a) Show that the map p : A → B factors as p = p2p1, where p1 : A →
A/H, p2 : A/H → B, and both p1, p2 are covering maps.

(b) Show that π1(A/H, [α]) ≃ H and (p2)∗ sends it to H ⊂ G.

Theorem 4.4.2 (Relation of subgroups of π1(B, b) and covering spaces
of B). Let B be a path-connected, locally path-connected, semilocally simply con-
nected space. Then there is a bijection between the conjugacy classes of subgroups
of π1(B, b) and the equivalence classes of covering spaces of B.

Exercise 4.4.12. Put together the previous results to prove Theorem 4.4.2.
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CW complexes

5.1 Examples of CW complexes

In Section 3.8, where we discussed homotopy equivalences, we showed that if
we had a handle decomposition of a surface with one 0-handle and k 1-handles,
then we could find a deformation retraction of this surface down to a wedge of k
circles. This much of the space can be thought of as being built up from a central
point corresponding to the 0-handle and then attaching intervals corresponding
to the 1-handles where their end points are all identified to the central point.
When the 2-handles are attached, we could compose their attaching maps with
this homotopy equivalence and get a space which is built up from a point, some
1-disks attached, and then some 2-disks attached. It turns out that the original
surface is homotopy equivalent to this space, which is an example of a two-
dimensional CW complex. In this chapter we will develop the concepts of CW
complexes and apply them to fundamental group calculations as well as discuss
homotopy-theoretic ideas concerning them. Our discussion will include finite CW
complexes of any dimension, but we will emphasize two-dimensional complexes
where the geometry is easier to visualize. We will also discuss important special
cases of simplicial complexes and ∆-complexes.

A finite two-dimensional CW complex structure for X expresses X as being
built in stages as X0 ⊂ X1 ⊂ X2 = X. Here X0 is the disjoint union of a finite
number of points, called 0-cells and denoted as e0

1, . . . , e
0
k0
, with the discrete

topology. The space X1 is built up from X0 by taking a finite number of 1-disks,
which are called 1-cells and denoted by e1

1, . . . , e
1
k1
, and then forming the quo-

tient space X1 from the disjoint union X0
⊔

e1
1

⊔
· · ·

⊔
e1
k1
by using continuous

functions fi : ∂e
1
i → X0. These functions just identify the boundary points of

a 1-cell to points in X0—geometrically this is forming a one-dimensional graph.
Finally, X = X2 is built up from X1 by taking a finite number of 2-disks,
which are called the 2-cells and denoted by e2

1, . . . , e
2
k2
, and then forming the

quotient space X2 = X from the disjoint union X1
⊔

e2
1

⊔
· · ·

⊔
e2
k2
by identi-

fying the boundary points of a 2-cell to points in X1 via continuous functions
gi : ∂e

2
i → X1. The map gi (resp., fi) is called the attaching map of the cell e

2
i

260
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(resp., e1
i ) The map φα : eα → X from a cell eα to X is continuous, and the

quotient topology has the property that a set A is closed iff the inverse image
φ−1

α (A) of A is closed in the cell eα for each α. The map φα is called the charac-
teristic map of the cell eα. Thus the space X can be regarded as a quotient space
of the disjoint union of cells. The subsets X0, X1 are closed subsets of X, called
the 0-skeleton and 1-skeleton of X, respectively. In a CW complex the cells are
not embedded in general. However, the restriction of a characteristic map φα to
the interior of the cell is embedded and the whole space can be expressed as the
disjoint union of the images φα(int eα) of all of the cells.

In our constructions of cells, we will use homeomorphs of Di for the domains
of our cells and not necessarily Di itself. For example, when discussing simplicial
complexes, our model cells will be simplices ∆i. When we discuss surfaces, we
will use polygons for the domains of our 2-cells. Although the topology is defined
in terms of all of the cells, it is frequently the case that the whole space lies in the
image of top-dimensional cells and the lower cells can be thought of as coming
from first embedding a lower-dimensional cell into the top-dimensional one and
then composing. In this case, the topology on the CW complex can be completely
described in terms of the quotient topology from the map on the top-dimensional
cells. This situation occurs in the CW decompositions we give for surfaces below.

The 2-sphere S2 has the structure of a CW complex by taking X0 as a single
point e0 and X1 = X0 (there are no 1-cells). Then X2 = X0 ∪ e2 is formed by
using the constant map sending ∂e2 to the point X0. This CW complex with
the quotient topology is just the same as taking a 2-disk D2 (the 2-cell) and
identifying all of its boundary points to a single point. This description can be
used to show that the space is homeomorphic to S2.

For the torus T , we can think of it as being formed from a square D1 × D1

by identifying (x, 1) ∼ (x, 0), (1, y) ∼ (0, y). Then the four corners are identified
and determine a single 0-cell. The edge D1 × {0} forms a 1-cell e1

1—note that
it is identified to the edge D1 × {1} in the quotient space. Similarly, the edge
{1}×D1 (which is identified to {0}×D1) forms a second 1-cell e1

2. The space X
1

is homeomorphic to the one-point union of two copies of the circle. The point in
common is e0; the first circle comes from e0 ∪e1

1 and the second one from e0 ∪e1
2.

Finally, D1 ×D1 forms a 2-cell e2 whose boundary is identified to points in X1.
Basically, its boundary is divided into four parts which first run over the first
circle, then run over the second circle, then run backwards over the first circle,
and finally run backwards over the second circle. This can be expressed as the
word aba−1b−1 ∈ π1(S

1 ∨ S1, x).
The surface T (g) can be thought of as coming from a regular 4g-gon whose

boundary is identified via the pattern a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g . T (g) has the
structure of a CW complex with one 0-cell (coming from all of the identified
vertices), 2g 1-cells coming from the edges which are identified in pairs and
whose boundaries are sent to the single 0-cell, and a single 2-cell coming from
the 4g-gon, whose boundary is mapped into X1 according to the identification
pattern. Here X1 is homeomorphic to a wedge W2g of 2g circles. Similarly, there
is a decomposition of P (h) as a CW complex with a single 0-cell, h 1-cells, and a
single 2-cell expressed as a regular 2h-gon whose boundary is identified according
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to the pattern a2
1 . . . a

2
h. Note that X

1 in this case is homeomorphic to the wedge
Wh of h circles.

Exercise 5.1.1. Verify that S2 is homeomorphic to the CW complex e0 ∪ e2.

Exercise 5.1.2.
(a) Verify that T is homeomorphic to the CW complex e0 ∪ e1

1 ∪ e1
2 ∪ e2 as

described above.

(b) Verify that T (g) is homeomorphic to the CW complex with a single 0-cell,
2g 1-cells, and a single 2-cell as described above.

(c) Verify that P (h) is homeomorphic to the CW complex with a single 0-cell,
h 1-cells, and a single 2-cell as described above.

Exercise 5.1.3. The projective plane is formed from a 2-disk by identifying x

to −x on the boundary circle. It has a CW decomposition e0 ∪ e1 ∪f2 e2, where
f2(z) = z2. The pseudoprojective plane Pp is formed from the disk by identifying
x to e2πi/px on the boundary circle. Give a similar CW decomposition for Pp

with one cell in each dimension and identify the attaching map for the 2-cell.

Exercise 5.1.4. Consider the CW complex

X = e0
1 ∪ e0

2 ∪ e1
1 ∪ e1

2 ∪f e2
1 ∪g e2

2.

Here each 1-cell e1
i is attached to X0 by identifying its boundary to e0

1 ∪ e0
2.

We will orient each one cell and identify ∂e1
1 by sending 1 to e0

2 and −1 to e0
1.

Similarly, we identify ∂e1
2 by sending 1 to e0

1 and −1 to e0
2. To attach the 2-cells,

we identify the boundary with S1 and divide it into the upper half arc S1
+ and

lower half arc S1
−. We then identify the boundary of e

2
1 with X1 by identifying

the upper half arc with e1
1 and identifying the lower half arc with e1

2. Similarly,
we identify the boundary of e2

2 using the same map. We express this by saying
that ∂e2

j = e1
1 + e1

2 (see Figure 5.1).

(a) Show that X1 is homeomorphic to S1.

(b) Show that X1 ∪f e2
1 is homeomorphic to D2.

(c) Show that X is homeomorphic to S2.

2

ee

e

e

2

e

e

2
1

1
1

1
0

2
0

1
2

Figure 5.1. A CW decomposition of the sphere.
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So far we have only considered two-dimensional CW complexes. More gener-
ally, a finite CW complex of dimension n is built up in stages X0 ⊂ X1 ⊂ X2 ⊂
X3 ⊂ · · · ⊂ Xn = X, where Xi is obtained from Xi−1 by attaching i-cells. Here
an i-cell ei is a homeomorph of the i-dimensional unit disk in Ri with boundary
∂ei ≃ Si−1 and there is a continuous map f : ∂ei → Xi−1. We then form Xi by
taking the quotient space of the disjoint union of Xi−1 and all of the i-cells and
make identifications using the attaching maps of the i-cells. In the correspond-
ing topology, a set is open (closed) iff its inverse image in each cell is an open
(closed) set. The subset Xk is called the k-skeleton of X.

Exercise 5.1.5. Show that the k-skeleton Xk is a closed subset of X. (Hint:
Use an inductive argument.)

Exercise 5.1.6. Show that a finite CW complex is a compact Hausdorff space.
(Hint: Use an inductive argument to show that X is Hausdorff.)

In this book, we will restrict our attention to finite CW complexes. This
will allow us to avoid discussing more subtle questions about point set topology
which occur for a general CW complex. Thus we will always mean a finite CW
complex when we use the term CW complex here. See [13] for a nice discussion
of the topology of a CW complex with possibly infinitely many cells.

The k-skeleton Xk ⊂ X is an example of a subcomplex of a CW complex. A
subcomplex Y ⊂ X is a collection of cells of X which is itself a CW complex. This
requires that when we are attaching a cell of Y , then the image of the attaching
map is within Y .

Exercise 5.1.7. Using the CW decomposition of S2 from Exercise 5.1.4, show
that the upper hemisphere is a subcomplex.

Exercise 5.1.8. Show that a subcomplex is a closed subset of X. (Hint: Show
that it is compact and use the fact that X is Hausdorff.)

Here are some examples of higher-dimensional CW complexes.
The n-sphere has a CW complex description with one 0-cell and one n-cell,

which is attached by the constant map from Sn−1 to the 0-cell. Under the CW
topology, the space just comes from Dn by identifying all of the boundary points
to a single point.

Exercise 5.1.9. Verify that the n-sphere is homeomorphic to the space with
the CW decomposition described above. (Hint: Construct the homeomorphism
from Dn/∼ to Sn analogously to what is done in the case n = 2.)

For a product space X × Y , where X and Y each has a structure as a CW
complex, X × Y inherits a structure as a CW complex since the product of
an i-cell and a j-cell is homeomorphic to a (i + j)-cell. For example, think of
S1 = e0 ∪ e1 and form the product

S1
1 × S1

2 = (e
0
1 ∪ e1

1)× (e0
1 ∪ e1

2) = (e
0
1 × e0

2) ∪ (e1
1 × e0) ∪ (e0

1 × e1
2) ∪ (e1

1 × e1
2).

The only nontrivial attaching map to understand is for e1
1 × e1

2. Here we use
∂(e1

1 × e1
2) = ∂e1

1 × e1
2 ∪ e1

1 × ∂e1
2. We map ∂e1

1 × e1
2 to e0

1 × e1
2 ⊂ (X × Y )1 =

X1×Y 0∪X0×Y 1 by using the product of the attaching map ∂e1
1 → X0 with the



264 5. CW complexes

identity on the e1
2 factor. Similarly, we map e1

1×∂e1
2 to e

1
1×e0

2 ⊂ (X×Y )1 by using
the product of the attaching map ∂e1

2 → Y 0 with the identity on the e1
1 factor.

This leads to the same CW decomposition for the torus with a single 0-cell, two
1-cells, and a single 2-cell that we had before. Note that X × e0 ⊂ X × Y and
e0 × Y ⊂ X × Y are each subcomplexes of X × Y , as is their union.

Exercise 5.1.10. Give a CW decomposition for S1 × S2 by using the product
decomposition of our CW decompositions of S1 and S2. Your description should
identify how the skeleta are built up in the product. (Hint: You should have a
single cell in each dimension from 0 to 3.)

Exercise 5.1.11. Give a CW decomposition for S1 ×RP
2 by using the product

decomposition of our CW decompositions of S1 and RP
2. Your description should

identify how the skeleta are built up in the product. (Hint: You should have six
cells.)

Exercise 5.1.12. Give a CW decomposition for S1 × S1 × S1 by using the
product decomposition of our CW decompositions of S1 × S1 and S1. Your
description should identify how the skeleta are built up in the product. (Hint:
You should have eight cells.)

Exercise 5.1.13. Give a CW decomposition for S2 × S2 by using the product
decomposition of our CW decomposition of S2. Your description should identify
how the skeleta are built up in the product. (Hint: You should have four cells.)

Exercise 5.1.14. Give a CW decomposition for RP
2×RP

2 by using the product
decomposition of our CW decomposition of RP

2. Your description should identify
how the skeleta are built up in the product. (Hint: You should have nine cells.)

There is an n-dimensional generalization of the projective plane, which is
n-dimensional projective space RP

n. It is formed from the n-sphere by identi-
fying antipodal points x = (x0, . . . , xn) ∼ (−x0, . . . ,−xn) = −x. Since Sn has
trivial fundamental group for n ≥ 2, it serves as the universal cover of RP

n.
From our work on covering spaces, this implies that RP

n has fundamental group
Z2. We want to give a CW decomposition. The key idea is to see how we get
from RP

k−1 to RP
k. In the covering space above, this will correspond to going

from Sk−1 to Sk. We do this by attaching the upper and lower hemispheres. But
these hemispheres are each homeomorphic to Dk via vertical projection. Thus we
could think of getting from Sk−1 to Sk by attaching two k-cells. From the point
of view of forming the quotient space, we want to attach these two cells in a con-
sistent manner. The way to do this is to get the upper hemisphere by attaching
an k-cell corresponding to vertical projection and then attach the lower hemi-
sphere by composing this attaching map with the antipodal map which sends
the upper hemisphere to the lower hemisphere. This leads to the description of
Sk = Sk−1 ∪fk−1

ek ∪akfk−1
ek. Here fk−1 is the identity map of S

k−1 and ak is
the antipodal map of Sk. When we pass to the quotient, the two k-cells get iden-
tified to give RP

k = RP
k−1 ∪pk−1

ek. Here pk−1 : S
k−1 → RP

k−1 is the quotient
map. By a simple inductive argument, this leads to a CW decomposition of Sn

with 2(n+1)-cells, two in each dimension between 0 and n, and a corresponding
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CW decomposition of RP
n with (n + 1)-cells, one in each dimension between

0 and n. The k-skeleton for Sn is Sk and the k-skeleton for RP
n is RP

k.
There is a complex analogue of RP

n, which is called complex projective
n-space and denoted CP

n. To describe it, we start with the description of RP
n as

the quotient space of Sn via {(x0, x1, . . . , xn) ∈ R
n+1:

∑
x2

i = 1}/(x0, . . . , xn) ∼
±(x0, . . . , xn). Note that the numbers ±1 are the real numbers of length 1. For
CP

n, we form a similar quotient, but now we use the complex numbers instead
of the real numbers. We start with S2n+1 = {(z0, . . . , zn) ∈ C

n+1:
∑

|zi|
2 = 1}.

We then introduce the equivalence relation (z0, . . . , zn) ∼ ζ(z0, . . . , zn) =
(ζz0, . . . , ζzn), where ζ ∈ C is a unit complex number: |ζ| = 1. Note that the
set of ζ with |ζ| = 1 is just the unit circle. We then form CP

n as the quotient
space S2n+1/(z0, . . . , zn) ∼ ζ(z0, . . . , zn). When n = 0, the equivalence relation
just identifies all points of the circle to each other, so CP

0 is just a point. When
n = 1, then each point (z0, z1) ∈ S3 is equivalent to a point (w0, r) with r ≥ 0
and |w0|

2 + r2 = 1. These points form the upper hemisphere S2
+ ⊂ S3, which

is homeomorphic to a disk. Moreover, the points of S2
+ not in S1 are mapped

injectively to the quotient, and the boundary z1 = 0 is sent to a single point of
the quotient. But the points where z1 = 0 just correspond to CP

0. Thus we can
express CP

1 = CP
0 ∪p0 S2

+, where p0 : S
1 = ∂S2

+ → CP
0 is the quotient map

p0 : S
1 → CP

0. When we identify CP
0 to a point and S2

+ to D2, we then get the
cell decomposition CP

1 = e0 ∪ e2, which is just the CW decomposition for the
2-sphere. Hence CP

1 is homeomorphic to S2. We can use the same idea to show
that CP

k is built from CP
k−1 by attaching a 2k-cell, and hence inductively get

a handle decomposition for CP
n.

When CP
1 is identified with S2, the map S3 → S2 = CP

1 is called the Hopf
map after Heinz Hopf. This is the lowest-dimensional example of a homotopically
nontrivial (i.e. not homotopic to a constant) map of a sphere to a sphere of lower
dimension, and played an important role in the early development of homotopy
theory. The map S2k+1 → CP

k is sometimes called a generalized Hopf map.

Exercise 5.1.15. Fill in the details of the above argument to show that CP
n

has a CW decomposition with one cell in each even dimension between 0 and 2n.

We close this section with another example, which is a different type of gen-
eralization of a projective space. We give a three-dimensional example, but there
are examples in any odd dimension. We start with S3 = {(z0, z1):

∑
|zi|

2 = 1}.
We could form RP

3 from this by taking the quotient using {±1} or form
CP

1 = S2 by taking the quotient using S1. If we think of {±1} ⊂ S1, we
could factor the quotient space S3 → S3/{±1} = RP

3 → S3/S1 = CP
1 ≃ S2.

Instead of using {±1} we could use other finite groups of unit complex numbers.
In particular, we could take a subgroup of S1 consisting of pth roots of unity
Gp = {1, η, η2, . . . , ηp−1}, where η = e2πi/p. The case when p = 2 is just {±1}.
Now Gp acts on S3 as a subset of the action of S1. When we form the quotient
space by this action, we are making (z0, z1) ∼ (τz0, τz1) for τ ∈ Gp. Since each
τ is just a power of η, the equivalence relation is generated from the case when
τ = η.
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We first focus on a special case p = 3. Sitting inside S3 is S1 where the
second coordinate is 0. When we take the quotient by G3, we get S1/G3. This
motivates us to give a CW decomposition of S1 which is consistent with this
action. For 0-cells, we use the points 1, η, η2. Then there are 1-cells e1

0, e
1
1, e

1
2,

where e1
0 is mapped via the characteristic map φ1

0 to the arc on the circle joining
1 and η. The characteristic maps for e1

1, e
1
2 are the compositions of this with

multiplication by η, η2, respectively. Thus we get a CW decomposition for S1

with three 0-cells and three 1-cells. When we take the quotient by the G3 action,
it identifies the 0-cells and identifies the 1-cells. Thus this quotient has a single
0-cell and a single 1-cell, and the quotient is homeomorphic to S1. We next look
at the rest of S3. Consider the upper hemisphere S2

+ ⊂ S3. This can be thought
of as a 2-cell e2

0. It will be attached to S1 so that its boundary is the sum of
three 1-cells. When η acts on the 2-cell e2

0, it sends its boundary to itself, but
otherwise is disjoint from itself. Thus we can get three 2-cells by letting η, η2 act
on e2

0. We call these new 2-cells e
2
1, e

2
2. When we take the quotient space by the

G3 action, these three 2-cells become equivalent and so the quotient space will
have a single 0-cell, a single 1-cell, and a single 2-cell. The 2-cell will be attached
so that it runs over the S1 formed by the 0-cell and 1-cell three times. Thus this
part of the quotient is just S1 ∪m3

e2, where the map m3 : S
1 → S1 can be taken

as m3(z) = z3. This space is the pseudoprojective plane P3 from Exercise 5.1.3.
The 2-cells e2

0 and e2
1 intersect only along their boundary in a circle, and they are

otherwise disjoint. Up to homeomorphism, they provide an S2 in S3. In fact, they
enclose a region, which is characterized by the second coordinate being 0 (the S1

already identified on the boundary) or lying between 1 and η when normalized
by making it a unit vector. This region can be shown to be homeomorphic to
a three-dimensional disk D3, and so forms a 3-cell e3

0. All points S3 either lie
in this 3-cell or in its image under the action of multiplying by η or η2. Thus
there are two more 3-cells e3

1, e
3
2. When we take the quotient, then these 3-cells

become identified. Thus the quotient space turns out to be described by a single
cell in each dimension between 0 and 3. The standard notation for this quotient
space is L(3, 1) and it is called a lens space.

Exercise 5.1.16. By replacing 3 with p, give a description of the CW
decomposition of the lens space L(p, 1) = S3/Gp.

5.2 The fundamental group of a CW complex

In this section we consider a two-dimensional CW complex with a single 0-cell
e0. In computations of the fundamental group, the 0-cell will serve as the base
point. The effect of adding the 1-cells will then be to form a wedge X1 =

∨n
j=1 S

1
j

of circles. Each time we add a 2-cell, the homotopy type of the resulting space
will be completely determined by the homotopy class of the attaching map fk :
∂e2

k → X1. For simplicity of description, we will assume that 1 is mapped to the
base point so that the attaching map can be described, up to homotopy, by a
word in the free group Fn = π1(X

1, e0).
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Exercise 5.2.1. Suppose that there is a single 2-cell. Use the Seifert–van
Kampen theorem to show that the fundamental group of X is isomorphic to the
quotient of the free group Fn by the relation given by the word used in attaching
the 2-cell which is given by f∗(g), where g is the generator of π1(S

1,1). (Hint:
Use the decomposition of X into the two sets A,B, where A is the complement
of the center point of the 2-cell and B is the interior of the 2-cell. Note that A∩B
deformation retracts to the circle at radius 1

2 . Using that B is contractible and
that there is a homotopy equivalence of A with X1, show that the Seifert–van
Kampen theorem leads to the above description of the fundamental group. First
use the base point at (12 , 0) and then use the results of Section 3.10 to change
the base point.)

Exercise 5.2.2. (a) Show that if Y is a two-dimensional CW complex and we
attach a 2-cell to Y 1 by a map f sending 1 to e0, then π1(Y ∪f e

2, e0) ≃ π1(Y )/N ,
where N is the normal subgroup generated by the word in π1(Y, e

0) determined
by the image of the generator of π1(S

1,1) under f∗.
(b) Show that the fundamental group of a two-dimensional CW complex

with a single 0-cell is isomorphic to the group with one generator for each 1-cell
and one relation for each 2-cell coming as in part (a) from the word in Fn =
π1(X

1, e0), which is the image of the generator under (fj)∗.

The hypothesis that the attaching maps send 1 to e0 is unnecessary but
technically somewhat difficult to avoid. The easiest way to handle removing this
assumption is to use a result in a later section that says that homotoping the
attaching maps does not change the space up to homotopy type, and homotopy-
equivalent spaces have isomorphic fundamental groups. We will always look at
examples where the condition is satisfied. If there is more than one 0-cell and
the space is connected, it is homotopy equivalent to a CW complex with a single
0-cell, so we can again reduce to this case in computing the fundamental group.

In the following exercises, we describe spaces as quotients of polygons by
indicating identifications of edges. These spaces have natural decompositions as
CW complexes. You are to use these decompositions to compute the fundamental
groups. For those which are surfaces, identify the surface by abelianizing the
fundamental group. Check your result using Euler characteristics. All should
have a single 0-cell coming from the vertices.

Exercise 5.2.3. Find the fundamental groups of the two spaces in Figure 5.2.
Find their abelianizations and from this determine which surface the space is
homeomorphic to.

Exercise 5.2.4. Find the fundamental groups of the two spaces in Figure 5.3.

Exercise 5.2.5. Find the fundamental groups of the two spaces in Figure 5.4.
Part (a) is a surface with boundary. Identify it.

Exercise 5.2.6. Find the fundamental groups of the two spaces in Figure 5.5.
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Figure 5.2. Figure for Exercise 5.2.3.
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Figure 5.3. Figure for Exercise 5.2.4.
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Figure 5.4. Figure for Exercise 5.2.5.
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Figure 5.5. Figure for Exercise 5.2.6.
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Exercise 5.2.7. Use the Seifert–van Kampen theorem to show that, for a con-
nected CW complex X, π1(X, e0) ≃ π1(X

2, e0). Thus the fundamental group
only detects information about the 2-skeleton X2.

Exercise 5.2.8. Use the last exercise to show that π1(S
k, x) ≃ {e} for k ≥ 3

since it has a CW decomposition with one 0-cell and one k-cell.

Exercise 5.2.9. Use the CW decomposition for S1 ×S2 from Exercise 5.1.10 to
compute the fundamental group. Compare your answer with the general result
for the fundamental group of a product space.

Exercise 5.2.10. Use the CW decomposition for S1 ×RP
2 from Exercise 5.1.11

to compute the fundamental group. Compare your answer with the general result
for the fundamental group of a product space.

Exercise 5.2.11. Use the CW decomposition for S1 × S1 × S1 from
Exercise 5.1.12 to compute the fundamental group. Compare your answer with
the general result for the fundamental group of a product space.

Exercise 5.2.12. Use the CW decomposition for S2 × S2 from Exercise 5.1.13
to compute the fundamental group. Compare your answer with the general result
for the fundamental group of a product space.

Exercise 5.2.13. Use the CW decomposition for RP
2×RP

2 from Exercise 5.1.14
to compute the fundamental group. Compare your answer with the general result
for the fundamental group of a product space.

Exercise 5.2.14. Give the fundamental group of CP
n, n ≥ 1, using its CW

decomposition.

Exercise 5.2.15. Show that the fundamental group of the pseudoprojective
plane of Exercise 5.1.3 is Zp.

Exercise 5.2.16. Show that S3 is the universal covering space of L(p, 1) and
use this to give the fundamental group. Then use the CW decomposition from
Exercise 5.1.16 to compute the fundamental group in another way.

5.3 Homotopy type and CW complexes

In this section we discuss some key homotopy-theoretic ideas about CW com-
plexes. When we are attaching a cell, the only thing that matters up to homotopy
type of the result is the homotopy class of the attaching map. Moreover, if we
start off with homotopy equivalent spaces X,Y and form X ∪f en by attaching
a cell to X, then composing the attaching map with the homotopy equivalence
gives a homotopy-equivalent space Y ∪g en. The next two exercises lead you
through the proof of these two statements.

Exercise 5.3.1. Let X be a topological space and f : Sn−1 → X a continuous
function. Let Xf = X ∪f Dn be the quotient space formed from the disjoint
union by identifying x ∈ Sn−1 with f(x) ∈ X.
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(a) Show that if f is homotopic to f ′ via a homotopy F : Sn−1 ×I → X with
F0 = f ′, F1 = f , then there is a continuous function α : Xf → Xf ′ which
is the identity on X. (Hint: Regard Dn as being built from a smaller
Dn and an annular set A which is homeomorphic to Sn−1 × I. Here
Sn−1 × 1 is identified to the boundary ∂Dn and Sn−1 × 0 is identified
to the boundary of the smaller disk. Use F on the annulus to map the
annulus to X and then map the smaller disk to D2, checking that these
maps fit together to give a continuous map; see Figure 5.6.)

(b) Analogously, find a continuous function β : Xf ′ → Xf .

(c) Show that α is a homotopy equivalence with homotopy inverse β. (Hint:
Show that βαmaps a small disk toDn by radial expansion and an annular
region to X by fitting together F̄ and F . Show how to homotope this to
the identity; see Figure 5.6.)

Exercise 5.3.2. Suppose that h : X → Y is a homotopy equivalence with homo-
topy inverse g : Y → X. That is, gh is homotopic to 1X and hg is homotopic to
1Y . Name the homotopies H : X × I → X, Ht(x) = H(x, t), H0(x) = gh(x),
H1(x) = x, and G : Y × I → Y , Gt(y) = G(y, t), G0(y) = hg(y), G1(y) = y.

(a) Consider the map α : Xf → Yhf , which is given by h on X and the
identity on Dn, and β : Yhf → Xghf , which is defined by g on Y and the
identity on Dn. Show that they are continuous (see Figure 5.7).

X U

X Uf

f ' X U

X Uf

f

id F Expand id F ExpandF
_

(a) (c)

Figure 5.6. Figure for Exercise 5.3.1.
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Figure 5.7. Figure for Exercise 5.3.2.
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(b) Use the previous exercise to show that there is a homotopy equivalence
ǫ : Xghf → Xf .

(c) Show that γ = ǫβ is a left homotopy inverse to α; that is, ǫβα is homo-
topic to the identity. (Hint: ǫβα maps X to X via gh, maps an annular
region via Hf , and expands a smaller disk in Dn; see Figure 5.7.)

(d) Show that β : Yhf → Yghf has a left homotopy inverse. (Hint: Use
hg ∼ 1Y and the argument of (c).)

(e) In a group, show that whenever ba = 1 = ac, then a = c. That
is, whenever there is a left inverse and a right inverse to a, then a is
invertible and the inverse is b = c. Conclude that a left inverse for an
invertible element is also a right inverse. (Hint: Start with b(ac) = (ba)c.
In Section 3.1 there is a relevant discussion of this idea.)

(f) Starting with ǫβα ∼ 1, use the fact that ǫ is a homotopy equivalence to
show that βαǫ ∼ 1 and conclude that β has a right homotopy inverse.
From this and part (e), conclude that β is a homotopy equivalence, and
then that α is a homotopy equivalence.

The outline in Exercise 5.3.2 is motivated by an argument in [19].

Exercise 5.3.3. (a) Show that the dunce hat (see Figure 3.34) is homeomorphic
to a CW complex with one 0-cell, one 1-cell, and one 2-cell. Show that X1 is
homeomorphic to the circle, and the attaching map f : S1 → S1 = X1 of the
2-cell is homotopic to the reflection.

(b) Use Exercise 5.3.1 to show that the dunce hat is homotopy equivalent to
the disk.

(c) Show that the dunce hat is not homeomorphic to the disk by examining
neighborhoods of edge points and looking at the fundamental group when the
point is deleted. (Hint: From the assumption that D is homeomorphic to a disk,
find a nesting of neighborhoods N1 ⊂ N ⊂ N2, so that N1\{x} → N2\{x} is a
homotopy equivalence with π1 ≃ F2 and N\{x} is homotopy equivalent to S1.)

Exercise 5.3.4. (a) Suppose X is a two-dimensional CW complex with at least
two 0-cells. Show that if X is connected, at least one of the 1-cells must have its
boundary attached to two different 0-cells.

(b) Assume that e1 is a 1-cell with boundary attached to two different 0-cells
e0
1 and e0

2. Show that e
0
1 ∪e0

2 ∪e1 is homeomorphic to a 1-disk. Use Exercise 5.3.2
to show that X is homotopy equivalent to a CW complex where e0

1 ∪ e1
1 ∪ e1 is

replaced by a single 0-cell and there are corresponding 0-cells, 1-cells, and 2-cells
to the other cells of X.

(c) Use induction to show that a connected two-dimensional CW complex is
homotopy equivalent to a CW decomposition with a single 0-cell.

A somewhat more sophisticated way to approach the result of the last exercise
is to find a subcomplex of a connected X1 which contains all of the vertices and
deformation-retracts to any one of its 0-cells through a process of collapsing
1-cells one edge at a time. Such a subcomplex is called a maximal tree in X1.
This can always be shown to exist by an inductive argument on the number of
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0-cells of X. If there is only one 0-cell, then that 0-cell provides the maximal tree.
Assuming that there exists a maximal tree with fewer than n 0-cells, suppose
that there are n 0-cells in X. Choose one of the 0-cells e0 of X and consider a
maximal subcomplex K of X1 which does not contain e0. The subcomplex K
does not have to be path connected; suppose it has p path components. By the
inductive hypothesis, we can find a maximal tree in each path component that
connects all of 0-cells in that path component. Then adding a 1-cell from e0 to
each path component of K gives a maximal tree in X1. Let us call this maximal
tree T .

As an example, Figure 5.8 shows two maximal trees (in bolder lines) in a
1-dimensional CW complex.

Exercise 5.3.5. Use Exercise 5.3.2 and a maximal tree T in X to show that
there is a homotopy-equivalent CW complex Y with a single 0-cell.

Consider the CW complex X = X1 given by the left-hand diagram in
Figure 5.9. A maximal tree is given by the subcomplex including a, c and their
endpoints. When we collapse it to a point, we get a homotopy-equivalent CW
complex, which is shown is the figure at the right. We extend X by attaching
two 2-cells, attached via maps of the circle which are described by words in
terms of the 1-cells which are traversed. The two words used are abc and c−1d.
There is a homotopy-equivalent CW complex with 1-skeleton given by the right-
hand diagram. For the 2-cells, each subinterval of the attaching circle which was
mapped to a or c is now mapped to the 0-cell to which they were collapsed. Up
to homotopy (which does not change the homotopy type of the CW complex),
these can be described by words formed from the original words by deleting the
symbols a, c where they occurred. Thus the attaching maps are given by b, d,
which just means that the homotopy-equivalent complex is just two disks, joined
at one point. This space is homotopy equivalent to a point.

Figure 5.8. Examples of maximal trees.
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b
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d

b

d

Figure 5.9. Collapsing a tree.
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Figure 5.10. Figure for Exercise 5.3.6.

Exercise 5.3.6. Consider the CW complex whose 1-skeleton X1 is pictured in
Figure 5.10. Here A,B,C denote 0-cells and a,b,c,d,e,f are 1-cells. Suppose that
there are two 2-cells attached to X1, which can be described in terms of the
1-cells that are traversed by adec and dfb.

(a) Find Y 1 homotopy equivalent to X1 so Y 1 has a single 0-cell.

(b) Find Y homotopy equivalent to X so the 1-skeleton is Y 1 and use it to
compute the fundamental group of X.

Exercise 5.3.7. Consider a handle decomposition of a surface. The 0-handles
deformation-retract to a collection of points. When we attach a 1-handle, then
the composition of the attaching maps with the deformation retraction will send
these intervals to one or two points. Use this idea to show that the union of the
0-handles and 1-handles is homotopy equivalent to a CW complex with h0 0-cells
and h1 1-cells, where hi is the number of i-handles.

Exercise 5.3.8. Show that if a surface (possibly with boundary) has a handle
decomposition with h0 0-handles, h1 1-handles, and h2 2-handles, then there is
a corresponding CW complex with h0 0-cells, h1 1-cells, and h2 2-cells to which
it is homotopy equivalent.

Exercise 5.3.9. Show that a connected surface (possibly with boundary) is
homotopy equivalent to a CW complex with a single 0-cell.

Exercise 5.3.10. For Figure 5.11(a), give a CW decomposition and then get a
homotopy-equivalent CW complex with a single 0-cell. Use this to compute the
fundamental group.

Exercise 5.3.11. For Figure 5.11(b), give a CW decomposition and then get a
homotopy-equivalent CW complex with a single 0-cell. Use this to compute the
fundamental group.

Exercise 5.3.12. Using the notation established in Exercise 5.1.4, consider the
CW complex Y where Y 1 = X1 but Y = X1 ∪f e2, and ∂e2 is identified via
sending S1

+ to e1
1 as before but sending S1

− to e1
1 by reversing the direction.
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Figure 5.11. Figure for Exercises 5.3.10 and 5.3.11.

Geometrically, we can think of e1
1 as being [−1, 1] on the x-axis and the map is

just a vertical projection. Identify geometrically what the quotient space will be.
Show that Y is homotopy equivalent, but not homeomorphic, to S2 ∨ S1, with
the homotopy equivalence coming from collapsing e1

1 to a point.

To close this section, we study one of the important properties that a CW
complex has for homotopy theory, which is called the homotopy extension prop-
erty. Its proof illustrates how the structure of a CW complex facilitates inductive
arguments, reducing problems to problems on a disk. Suppose K is a CW com-
plex and L is a subcomplex of K. Then K is built from L by the process of
attaching k-cells for various k. This allows us to reduce arguments to the case of
attaching a single cell.

Theorem 5.3.1 (Homotopy extension theorem). Suppose L ⊂ K is a

subcomplex. Let g : K → Y and suppose there is a homotopy of the restriction

g|L : L → Y , that is, a map H : L× I → Y with H(x, 0) = g(x). Then there is a
homotopy H ′ : K×I → Y with H ′(x, t) = H(x, t) for x ∈ L and H ′(x, 0) = g(x).

To understand why this should be true, assume for the moment that K =
L ∪f Dk. Here f : Sk−1 → K is a continuous map. The homotopy extension
property asserts that if we have a map defined on L×I∪K×{0}, we can extend
it to a continuous map from K × I. The key to the argument is to reduce to the
case where L = Sk−1 and K = Dk.

Lemma 5.3.2. Consider Sk−1 × I ∪Dk ×{0} ⊂ Dk × I. There is a deformation
retraction of Dk × I onto Sk−1 × I ∪ Dk × {0}.

Here is the idea. We give an illustration for the case k = 2 in Figure 5.12.
Let p = (0, 2) ∈ Rk × R = Rk+1. Consider rays emanating from p. For each
point b ∈ B = Sk−1 × I ∪ Dk × {0}, there is a unique ray from p to x. That
ray will intersect Dk × I in an interval, with the first point of intersection on
Dk ×{1} and the last point of intersection being x. For points on Sk−1×{1}, the
intersection will consist of a single point. Now consider a point x ∈ Dk × I. The
ray from p through x will contain an interval which connects x to a point b ∈ B.
We can define a deformation retraction H on x × I by just moving along this
interval to contract it to the point b. If we take a point x ∈ Dk × I, and look at
h(x) = H(x, 1), then h : Dk × I → B gives a continuous map with h|B = id|B.
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x

h(x)

p

y

h( y)

Figure 5.12. Deformation-retracting D2 × I to S1 × I ∪ D2 × {0}.

Suppose g : K = L∪f Dk → Y and there is a homotopy H : L× I → Y with
H(x, 0) = g(x) for x ∈ L. Consider the composition J : Sk−1 ×I∪Dk ×{0} → Y
given by J(u, t) = H(f(u), t), u ∈ Sk−1, J(v, 0) = g(v), v ∈ Dk. The lemma
allows us to extend J to Dk × I by composing with the deformation retraction.

Exercise 5.3.13. By applying the lemma and using how K × I is formed as a
quotient space, show that there is an extension H ′ : K × I → Y of H.

Exercise 5.3.14. Use an inductive argument with induction over the number
of cells of K\L to prove the homotopy extension theorem.

5.4 The Seifert–van Kampen theorem

for CW complexes

In this section we explore applications of the Seifert–van Kampen theorem in
terms of the hypothesis that the two sets A,B we use in X = A ∪ B have to be
open. We show that this hypothesis can be replaced by one that is sometimes
easier to apply. We say that a subset A ⊂ X is a neighborhood deformation

retract if there is an open set U containing A and a deformation retraction of
U onto A. Recall that a deformation retraction is a map h : U → A with
h|A = id|A so that h is homotopic to the identity with the homotopy restricting
to the constant homotopy on A. If we have a pair of sets (A,B), then we say
the pair is a neighborhood deformation retract if there are open sets U, V with
A ⊂ U, B ⊂ V so that U deformation-retracts to A, V deformation-retracts to
B, and U ∩ V deformation-retracts to A ∩ B.

Exercise 5.4.1. Show that if (A,B) is a neighborhood deformation retraction
of (U, V ), then A,B,A ∩ B are all path connected iff U, V, U ∩ V are all path
connected.

Exercise 5.4.2. Show that if A,B,A ∩ B are path connected and (A,B) is a
neighborhood deformation retraction of (U, V ), then if x0 ∈ A ∩ B, there is an
isomorphism between π1(A, x0) ∗π1(A∩B,x0) π1(B, x0) and π1(U, x0) ∗π1(U∩V,x0)

π1(V, x0).
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Exercise 5.4.3. Show that if X = A∪B, where A,B,A∩B are path connected,
x0 ∈ A ∩ B, and (A,B) is a neighborhood deformation retract, then there is an
isomorphism π1(A, x0) ∗π1(A∩B,x0) π1(B, x0) ≃ π1(X,x0).

Exercise 5.4.4. (a) Show that if X = S1
a ∨S1

b is the wedge of two copies of the
circle and A = S1

a, B = S1
b , then (A,B) is a neighborhood deformation retract.

Use Exercise 5.4.3 to show that π1(X, v) = F2. Here {v} is the wedge point.
(b) Use induction to show that if Wk is the wedge of k copies of S

1, then
π1(Wk, v) ≃ Fk.

Exercise 5.4.5. Suppose M is a path-connected surface which is the union of
two path-connected surfaces with boundary N1, N2 which intersect along a circle
C = ∂N1 = ∂N2. Suppose there is a neighborhood H of C so that (H,H ∩ N1,
H ∩ N2, H∩C) is homeomorphic to (S1×(−1, 1), S1×(−1, 0], S1×[0, 1), S1×{0}).

(a) Show that (N1, N2) is a neighborhood deformation retract.

(b) Show that π1(M,x) ≃ π1(N1, x) ∗π1(C,x) π1(N2, x).

Exercise 5.4.6. Apply Exercise 5.4.5 to compute

(a) π1(T#T, x),

(b) π1(P#P, x).

Exercise 5.4.7. Suppose K is a two-dimensional CW complex and L is a sub-
complex K, so that we can form K from L by inductively attaching cells of
dimensions 0,1,2. Using an inductive argument, show that L is a neighborhood
deformation retract.

Exercise 5.4.8. Suppose that L,M are subcomplexes of the two-dimensional
CW complex K. Show that (L,M) is a neighborhood deformation retract.

The above two results hold without the two-dimensional hypothesis, but that
is all that we need for the next result.

Theorem 5.4.1 (Seifert–van Kampen theorem for CW complexes). Sup-
pose L,M are path-connected subcomplexes of the CW complex K so that L∩M
is path connected with x ∈ L∩M . Then π1(K,x) ≃ π1(L, x)∗π1(L∩M,x)π1(M,x).

Exercise 5.4.9. Prove Theorem 5.4.1. (Hint: First reduce to the two-
dimensional case using Exercise 5.2.7.)

5.5 Simplicial complexes and ∆-complexes

A special case of a CW complex is a simplicial complex where the i-cells are
identified to an i-dimensional simplex, which is the affine span of the vertices
v0, v1, . . . , vi which are affinely independent in Rn. From a CW point of view,
we can identify these simplices to a standard i-simplex with vertices e0, e1, . . . ,
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ei ∈ Ri but we will frequently think of them as geometric simplices all living
in a common Rn. By a face of a simplex with vertices v0, . . . , vi, we mean a
simplex which has as its vertices a subset of the these vertices. For example,
the 2-simplex [v0, v1, v2] with vertices v0, v1, v2 has three one-dimensional faces,
which are [v0, v1], [v0, v2], [v1, v2]. It has three zero-dimensional faces, which are
the 0-simplices [v0], [v1], [v2]. In a simplicial complex, each simplex is embedded
in X and each (i − 1)-dimensional face of an i-simplex obtained by taking the
span of i of its vertices is identified with one of the (i−1)-simplices. The simplices
can be thought of as independent entities that are glued together along faces or
from embedding each of them in a common Euclidean space Rn so that any two
simplices which intersect do so along a common face. Note that in a simplicial
complex, the characteristic maps of the simplices are embeddings.

Historically, simplicial complexes came before CW complexes and dominated
much of geometric topology, particularly in arguments in homotopy theory and
homology. They still play an important role in topology, but CW complexes
have become more important for many parts of homotopy theory and homology.
In this section we introduce some of the basic concepts of simplicial complexes,
and then discuss briefly the notion of a ∆-complex, which has many of the best
features of both simplicial and CW complexes. We will use ∆-complexes in the
next chapter on homology to give geometric examples where it is relatively simple
to compute a form of homology.

In Figure 5.13(a) we show a collection of simplices which do not form a
simplicial complex because they do not fit together along faces and in (b) an
example of a simplicial complex. Note that (b) would not be a simplicial complex
if the large right-hand blank simplex were filled in to be a 2-simplex, for now
there would be two 2-simplices that did not intersect in a common face. As it
is, this just represents a topological circle that is divided into four adjoining
1-simplices (and their faces), and one of these 1-simplices meets the other part
of the complex. Frequently, it is easier to think of a simplicial complex in terms of
the simplices and how they intersect rather than in terms of a specific embedding
in some Euclidean space such as R3. In Figure 5.14 we give both views for the

(a)

Not a simplicial complex

(b)

A simplicial complex

Figure 5.13. Simplices must intersect in a common face.
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Figure 5.14. Tetrahedron as a simplicial complex.
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Figure 5.15. How to (and not to) triangulate the torus.

surface of a tetrahedron. When a space is given as a quotient space, such as our
description of the torus as a quotient space of the square, we can get a simplicial
decomposition by using a simplicial decomposition of the square that survives
to give a simplicial decomposition of the torus after all of the identifications are
made. We have to be careful to see that after the identifications that individual
simplices are still embedded in the quotient space and they fit together along
their faces. We illustrate this for the torus in Figure 5.15. The subdivision into
eight triangles does not form a simplicial decomposition after the identifications
are made since simplices A and B intersect in two vertices, not in a common
face as they are supposed to. The second diagram using 18 triangles leads to a
proper triangulation of the quotient torus after the identifications are made.

Exercise 5.5.1. Thinking of the projective plane as a quotient of a rectangle
with identifications abab as you go around the four edges in counterclockwise
direction, subdivide this to make it a simplicial complex.

Exercise 5.5.2. For the surface T#T thought of as an octagon with identifica-
tions on the boundary aba−1b−1cdc−1d−1, give a decomposition as a simplicial
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complex. (Hint: We need to separate identified edges. Construct a smaller octa-
gon within the octagon and then subdivide so that it is the total space of a
subcomplex.)

Generally speaking, simplicial complexes have more structure than CW
complexes but also require many more cells. For many homotopy-theoretic com-
putations such as the fundamental group and homology, CW complexes are
easier to work with than simplicial complexes. An intermediate structure that
has some of the advantages of both simplicial complexes and CW complexes is
a ∆-complex. ∆-complexes are developed more thoroughly in [13]. We intro-
duce them here mainly for their use in homology computations in the next
chapter.

A ∆-complex is built up like a CW complex from cells, and the cells have
the structure of simplices as in a simplicial complex. Each simplex is determ-
ined by its vertices, and the vertices of the simplex are given an order. Each
i-simplex then can be thought of as [v0, v1, . . . , vi], where the vj are the vertices
in the chosen order v0 < v1 < · · · < vi. When the boundary of the i-simplex
is identified to points in Ki−1, the identification is required to use the unique
affine linear order-preserving maps from each face of the i-simplex to an (i− 1)-
dimensional simplex. Any simplicial complex can be made into a special type
of ∆-complex by giving an ordering of all of its vertices. We give a couple of
examples.

The simplest nontrivial example is the circle with a ∆-complex structure with
one vertex and one 1-simplex, where both vertices are identified. This structure
just comes from the usual simplicial structure of an interval with two vertices
and one edge after we make the identification of the two vertices to get a circle
from the interval.

The torus has the structure of a ∆-complex with one vertex, three 1-simplices,
and two 2-simplices. We start with the usual picture of the torus as coming from
the square D1 × D1 by identifying (x,−1) ∼ (x, 1), and (−1, y) ∼ (1,−y). The
four corner points then get identified to a single vertex. We first label the corner
points via v1 = (−1,−1), v2 = (1,−1), v3 = (−1, 1), v4 = (1, 1). The ordering
is given by the ordering of the vertices. In the quotient topology, these will give
a single vertex v. The 1-simplices are then a = [v1, v2], which is also identified to
[v3, v4], and b = [v1, v3], which is identified to [v2, v4], and c = [v1, v4]. There are
two 2-simplices, A = [v1, v2, v4], B = [v1, v3, v4]. The labeling of the vertices then
determines completely how the attaching maps are given. If we want to give a
∆-complex structure for the Klein bottle, we can again start with a rectangle, but
we now have the identifications (x,−1) ∼ (−x, 1) and (−1, y) ∼ (1, y). We can
give this a ∆-complex structure by ordering the vertices via v1 = (−1−1), v2 =
(−1, 1), v3 = (1, 1), v4 = (1,−1). These are identified to a single vertex v. Then
the 1-simplices are a = [v1, v4] ∼ [v2, v3], b = [v1, v2] ∼ [v3, v4], c = [v1, v3]. The
2-simplices are A = [v1, v2, v3], B = [v1, v3, v4]. We illustrate these ∆-complex
decompositions in Figure 5.16.

Exercise 5.5.3. Give a ∆-complex structure to S using two triangles. (Hint:
Start with a rectangle and subdivide it into two triangles. Label the vertices in a
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a a

b

b

c

v1 v3

v2 v4

Torus

a a

b

b

c

v1 v4

v2 v3

Klein bottle

Figure 5.16. ∆-complex structures for T,K.

way to determine the ∆-complex structure and also consistent with the labeling
of the edges as abb−1a−1 as we read around the edges in the counterclockwise
direction. Note that identified edges must have the same ordering of vertices;
that is, if we identify [vi, vj ] with [vk, vl] and i < j, then k < l.)

Exercise 5.5.4. Give a ∆-complex structure to P using two triangles. (Hint:
Label vertices to get the ab−1ab−1 pattern.)
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Homology

6.1 Chain complexes and homology

In this chapter we study the concept of the homology of a topological space X
as well as the homology of a pair (X,A) of spaces. We will also discuss related
concepts of homology for ∆-complexes and for CW complexes. For each integer
k ≥ 0, there will be a group Hk(X) for a topological space X. The group H0(X)
will measure path connectivity of X, in the sense that H0(X) is a free abelian
group with one generator for each path component of X. The group H1(X) of a
path-connected space measures something like simple connectivity. It turns out
to be isomorphic to the abelianization of the fundamental group of X. The first
homology measures when certain one-dimensional objects such as loops which
have no boundary are the boundaries of some two-dimensional objects. As an
example, it measures when a loop in a surface is the boundary of a subsurface
with boundary, such as how the equator in a sphere bounds the upper hemisphere
or the circle where a connected sum in formed bounds the two summands. In
general, n-dimensional homology measures when n-dimensional objects which
have no boundary are boundaries of (n+ 1)-dimensional objects. This is admit-
tedly very vague, and making it precise requires introducing the notion of a
chain complex and its homology as well as determining chain complexes which
are associated to topological spaces, ∆-complexes, or CW complexes.

In this section we introduce the basic ideas of a chain complex. In succeeding
sections, we will look at specific chain complexes related to topology and do some
fundamental calculations. We then look at some properties that characterize
homology for an important class of topological spaces and use these properties
to do more calculations. We will give a number of important applications of
homology. It turns out that although homology is somewhat complicated to
define, it obeys some properties which make it relatively easy to compute. Some
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basic results which will be shown are:

Hk(D
p) =

{
Z k = 0,

0 otherwise,
Hk(S

n) =





Z ⊕ Z n = k = 0,

Z n = k > 0 or k = 0, n > 0,

0 otherwise,

Hk(D
n+1, Sn) =

{
Z k = n+ 1,

0 otherwise.

We will also show that H2(M) measures whether a compact connected surface
is orientable or not, compute the homology for all compact connected surfaces,
and discuss the relation between orientability and homology for manifolds of any
dimension. We also apply homology to give a proof of the Jordan curve theorem
as well as to develop its generalizations.

We now introduce the notion of a chain complex, on which homology will be
based. We will always be dealing with a chain complex of abelian groups and so
will embed this in our definition.

Definition 6.1.1. A chain complex (C, ∂) = {(Cn, ∂n)} consists of a sequence of
abelian groups Cn, n ≥ 0 together with homomorphisms ∂n : Cn → Cn−1, n > 0
and ∂0 = 0 so that the composition ∂k∂k+1 : Ck+1 → Ck−1 is the zero homo-
morphism. Given a chain complex (C, ∂), the condition ∂k∂k+1 = 0 implies that
im(∂k+1) ⊂ ker(∂k). The elements of ker(∂k) are called the cycles of dimension
k and the elements of im(∂k+1) are called the boundaries of dimension k. The
k-dimensional homology is the quotient Hk(C) = ker(∂k)/im(∂k+1).

We will look at specific chain complexes coming from topology in the next
sections. Here we give a few calculations to familiarize ourselves with the basic
concepts.

Example 6.1.1. Suppose ∂k = 0 for all k ≥ 0. ThenHk(C) ≃ Ck. For ker(∂k) =
Ck, im(∂k+1) = 0, and hence

Hk(C) ≃ ker(∂k)/im(∂k+1) ≃ Ck/0 ≃ Ck.

This last example does occur when we compute the cellular homology of a
sphere or a disk pair (Dn+1, Sn) as well as while computing the cellular homology
of an orientable surface. Here is an example which occurs in computing the
cellular homology of the projective plane.

Example 6.1.2. Suppose that

Ci =

{
Z 0 ≤ i ≤ 2,

0 otherwise,

and ∂0 = ∂1 = 0, ∂2(g2) = 2g1, where gi denotes the generators of the copies of
Ci ≃ Z, i = 1, 2. Then

H0(C) = ker(∂0)/im(∂1) = Z/0 ≃ Z;H1(C) = ker(∂1)/im(∂2) = Z/2Z ≃ Z2;

H2(C) = ker(∂2)/0 = 0.
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Since Ci = 0 for i ≥ 3, we have Hi(C) = 0, i ≥ 3.

We now give a few exercises to acquaint ourselves with basic computations
using the definition.

Exercise 6.1.1. Suppose

Ci =

{
Z 0 ≤ i ≤ 2,

0 otherwise,

and ∂0 = ∂1 = 0, ∂2(1) = p > 0. Show that

H0(C) = Z; H1(C) = Zp; Hi(C) = 0, i ≥ 2.

Exercise 6.1.2. Suppose Ci = 0, i > 2;C2 = Z;C1 = Z ⊕ Z;C0 = Z; and
∂0 = ∂1 = 0, ∂2(1) = (2, 0). Show that

H0(C) = Z; H1(C) = Z2 ⊕ Z; Hi(C) = 0, i ≥ 2.

Exercise 6.1.3. Suppose Ci = 0, i > 2;Ci = Z ⊕ Z, 0 ≤ i ≤ 2, and ∂0 = 0,
∂1(1, 0) = (−1, 1), ∂1(0, 1) = (1,−1), ∂2(1, 0) = (1, 1) = ∂2(0, 1). Show that

Hi(C) = 0, i > 2; H0(C) = Z; H1(C) = 0; H2(C) ≃ Z.

Exercise 6.1.4. Suppose Ci = 0, i > 3;Ci = Z, 0 ≤ i ≤ 3; and ∂i = 0, i = 0,
1, 3; ∂2(1) = p. Show that

H0(C) ≃ H3(C) ≃ Z; H1(C) ≃ Zp; H2(C) = 0; Hi(C) = 0, i ≥ 4.

Exercise 6.1.5. Suppose n ≥ 1 and Ci = 0, i > n;Ci = Z, 0 ≤ i ≤ n; and
∂i = 0, 0 < i ≤ n, i = 2k + 1 or i = 0; and ∂i(1) = 2, 0 < i ≤ n, i = 2k.

(a) Show that

Hi(C) = 0, i > n; H0(C) ≃ Z; Hi(C) = 0, 0 < i < n, i = 2k;

Hi(C) ≃ Z2, 0 < i < n, i = 2k + 1.

(b) Show that if n is odd, then Hn(C) ≃ Z.

(c) Show that if n is even, then Hn(C) = 0.

6.2 Homology of a ∆-complex

For a ∆-complex K, we first define a chain complex (C∆
i (K), ∂i) associated to

K. This definition will also apply in the context of a simplicial complex when it
is made into a ∆-complex by using an ordering of the simplices (e.g. one which
comes from a total ordering of its vertices). Our viewpoint is to give a fairly
concrete example of how to compute the homology of a chain complex which
arises geometrically. The homology we compute agrees with the singular and
cellular homologies we discuss later.
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The chain complex consists of free abelian groups C∆
i (K) for each i ≥ 0 and

homomorphisms ∂i : C
∆
i (K) → C∆

i−1(K). The group C∆
i (K) is defined to be the

0-group if there are no simplices of dimension i. Otherwise, C∆
i (K) is the free

abelian group with one generator for each i-simplex [v0, . . . , vi] in the ∆-complex
structure. Note that these simplices automatically come with an order on the
vertices. We define ∂0 = 0. For i > 0, there is a homomorphism ∂i : Ci → Ci−1

which is defined on generators by

∂[v0, . . . , vi] =

i∑

k=0

(−1)k[v0, . . . , v̂k, . . . , vi].

The notation uses the identifications of a face of an i-simplex with an
(i− 1)-simplex, and v̂k indicates that the vertex vk is omitted. For example,
we have

∂1([v0, v1]) = [v1]− [v0], ∂2([v0, v1, v2]) = [v1, v2]− [v0, v2] + [v0, v1].

The definition of ∂i is then extended from the generators to all of C∆
i (K) by

extending it linearly, using the fact that the group is free abelian. For the case
of a two-dimensional ∆-complex, the chain complex is depicted via the diagram

0 �� C∆
2 (K)

∂1
�� C∆

1 (K)
∂1

�� C∆
0 (K)

∂0
�� 0.

Exercise 6.2.1.
(a) Show that the composition ∂1∂2([v0, v1, v2]) = 0.

(b) Show that in general ∂i∂i+1 = 0. (Hint: It suffices to check this on a gener-
ator [v0, . . . , vi+1]. For any (i− 1)-simplex formed from this by omitting
two vertices, show that this term occurs twice with opposite signs in
∂i∂i+1([v0, . . . , vi+1]).)

We denote the image of ∂i+1 in C
∆
i (K) by im(∂i+1) and denote the kernel of

∂i in C
∆
i (K) by ker(∂i). The condition ∂i∂i+1 = 0 from the last exercise shows

that im(∂i+1) ⊂ ker(∂i).

Definition 6.2.1. We define the ∆-homology groups

H∆
i (K) = ker(∂i)/im(∂i+1).

We carry out a couple of calculations as examples and then leave others as
exercises.

• The interval I has a ∆-complex structure with two 0-simplices [0], [1], and
one 1-simplex [0, 1], with ∂1[0, 1] = [1] − [0]. Then ker(∂0) = C0 = Z ⊕ Z.
Since im(∂1) is generated by [1]− [0], taking the quotient of ker(∂0)/im(∂1)
identifies [0] with [1]. The quotient is Z, with generator the equivalence
class of [0] ∼ [1]. We then compute that ker(∂1) = 0, and so we get
H∆

1 (I) = 0, H∆
0 (I) = Z, and all other Hi are 0 by definition since there

are no simplices in dimensions besides 0, 1.
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• For the circle with the ∆-complex structure arising as a quotient of I
where we identify 0 ∼ 1, we have C∆

1 (S1) = Z, C∆
0 (S1) = Z, and ∂1 = 0

since ∂1([0, 1]) = [1] − [0] = 0 (since [0] = [1] here). Thus H∆
0 (S1) = Z,

H∆
1 (S1) = Z.

• For a slightly more complicated example, we look at the torus with the
∆-complex structure of the torus in Figure 5.16. Here C∆

2 (T ) = Z ⊕ Z,
with generators [v1, v2, v4], [v1, v3, v4], C

∆
1 (T ) = Z⊕Z⊕Z, with generators

a, b, c, and C∆
0 (T ) = Z, with generator [v] = [vi], noting that all of the

vertices are identified. The boundary homomorphisms are

∂2([v1, v2, v4]) = a− c+ b, ∂2([v1, v3, v4]) = b− c+ a,

∂1(a) = ∂1(b) = ∂1(c) = 0, ∂0 = 0.

Thus ker(∂2) is the free abelian group generated by [v1, v2, v4]− [v1, v3, v4]
and so H∆

2 (T ) = Z. The kernel ker(∂1) = C∆
1 (T ), and the image im(∂2) is

the free abelian group generated by a+ b− c. Factoring out by it serves to
identify c to a+ b. Thus the quotient H∆

1 (T ) = ker(∂1)/im(∂2) is the free
abelian group Z ⊕ Z on two generators a, b. The group H∆

0 (T ) = Z since
im(∂1) = 0 and ker(∂0) = C∆

0 (T ) = Z.

Note that in each of the examples we have found that H∆
0 (K) ≃ Z. The

reason for this is that each one is path connected and H0 measures the number
of path components. We outline a proof for this in the next exercise.

Exercise 6.2.2. Suppose K is a path connected ∆-complex.

(a) Show thatK1 is path connected, and in particular, given any two vertices
v1, v2, there is a sequence of directed edges e1, e2, . . . , ek (which give some
of the 1-simplices, possibly with the opposite directions) which connect
v1 with v2. (Hint: First show that adding higher-dimensional simplices
does not change path connectivity, so that K1 and K have the same path
connectivity properties. Then show that a path connecting two vertices
may be replaced by a simplicial path.)

(b) Show that factoring out by im(∂1) serves to identify all vertices in
C∆

0 (K) = ker(∂0) by showing that [w] − [v] ∈ im(∂1) for any v1, v2.
Conclude that H∆

0 (K) = Z, with a generator coming from each vertex.

Exercise 6.2.3. Suppose that K is a ∆-complex with n path components
K1, . . . ,Kn. Show that each chain group C∆

i (K) = C∆
i (K1) ⊕ · · · ⊕ C∆

i (Kn)
and the boundary homomorphisms respect this splitting since ∂i : C

∆
i (Kj) →

C∆
i−1(Kj). Use this to show that H∆

i (K) = H∆
i (K1) ⊕ · · · ⊕H∆

i (Kn). Thus the
computation of homology just decomposes into the computation of the homology
groups of the path components. Conclude that H∆

0 (K) is the free abelian group
with n generators.

Exercise 6.2.4. Use the ∆-complex structure of the Klein bottle K from
Figure 5.16 to compute the ∆-homology groups of K.
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Exercise 6.2.5. Use the ∆-complex structure of the sphere S from Exercise 5.5.3
to compute the ∆-homology groups of S.

Exercise 6.2.6. Use the ∆-complex structure of the projective plane P from
Exercise 5.5.4 to compute the the ∆-homology groups of P .

In your computations above, you should have found that H∆
1 (M) is the

abelianization of π1(M, v). The second homology group H∆
2 (M) of a surface M

turns out to be Z whenever M is orientable and is 0 when M is nonorientable,
as occurred in the examples and exercises above.

Orientability of a surface that is given as a simplicial complex can be phrased
as follows. First, the condition that the space is a surface (possibly with bound-
ary) is phrased by requiring that, for each 1-simplex, there are either exactly
two 2-simplices with that simplex as a face (for an interior point) or there is
exactly one 2-simplex with that 1-simplex as a face (for a boundary point). A
simplicial complex is called orientable if we can choose an orientation for each
2-simplex so that, for each interior 1-simplex, the two 2-simplices with it as a
face impose opposite orientations on that 1-simplex. In a ∆-complex where there
are identifications on the boundary of a 2-simplex, it is also possible to have a
single 2-simplex where two edges emanating from a vertex are identified. This
occurred in the sphere example. In the ∆-complex case, each simplex has the
orientation given by its ordered vertices, and this determines how boundaries are
mapped and the corresponding boundary map for the ∆-chain complex. Then
the condition required for the orientability of the surface is that orientations
extend across identifications. This translates to the condition that we can select
a sign ±1 for each ordered 2-simplex so that, for any 1-simplex, it occurs with
opposite signs in the boundary of two different signed 2-simplices or occurs with
both signs in the boundary of a single 2-simplex. One can show that this con-
dition is equivalent to our earlier notions of orientability. Later in the chapter,
we will study orientability more thoroughly, so we do not pursue this point here.
We use this definition of orientability in the following exercise.

Exercise 6.2.7. Show that a compact connected surface M without boundary
with a ∆-complex structure satisfies H∆

2 (M) ≃ Z when it is orientable as given
above, and H∆

2 (M) ≃ 0 when it is nonorientable. Here we are using 0 for the
trivial abelian group with one element. (Hint: Show that the only way to get
a 2-cycle is from a multiple of

∑
ǫ(i)σi, where ǫ(i) = ±1 and we sum over all

2-simplices. You may use the fact that connectedness implies that, given any two
2-simplices, there is a chain of 2-simplices going from one to the other with a
common face. Start with an arbitrary sum

∑
niσi of 2-simplices and show that

the only way it could be a cycle is that all |ni| are equal.)

6.3 Singular homology Hi(X) and the

isomorphism πab1 (X, x) ≃ H1(X)

We next define singular homology. One difficulty with the definition of homology
of a ∆-complex is its dependence on the structure of the space as a ∆-complex.
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It is nontrivial to show that if we express the space as a ∆-complex in two
different ways, then the homology groups we get are the same. By their defini-
tion, the singular homology groups are invariant under homeomorphisms. The
tradeoff is that they are more difficult to understand and compute directly from
the definition. In singular homology theory, what is done is to prove general
properties of the singular homology groups and use these to do the computations
and not just rely on the definitions as we did above for ∆-homology. It is a
fact that for a ∆-complex, the singular homology groups and the ∆-homology
groups are isomorphic, leading to the invariance of the ∆-homology groups up to
homeomorphism (or even homotopy equivalence) independent of the ∆-complex
structure on a space.

As with ∆-homology, we start by defining a chain complex. Here the singular
chain groups are defined by letting Si(X) be free abelian groups, with one gener-
ator for each singular i-simplex. By a singular i-simplex, we mean a continuous
map σ : ∆i → X, where ∆i is the standard i-simplex with vertices e0, e1, . . . , ei.
Note that these groups have an infinite number of generators in most cases. Thus
the chain groups are more complicated than those that occur for ∆-complexes.
The elements of Si(X) are finite linear combinations

∑n
k=1 nkσk, where nk ∈ Z

and σk is a singular i-simplex. These linear combinations are called singular
i-chains.

We define a boundary homomorphism ∂i : Si(X) → Si−1(X), i > 0 by
defining it on generators by

∂iσ =

i∑

k=0

(−1)kσFk,

where Fk : ∆i−1 → ∆i is the affine linear map that is order preserving and
whose image omits the kth vertex. As an example, F0 : ∆1 → ∆2 sends [e0, e1]
affine linearly to [e1, e2], F1 sends [e0, e1] affine linearly to [e0, e2], and F2 sends
[e0, e1] affine linearly to [e0, e1]. As before, we define ∂0 = 0. The argument in
Exercise 6.2.1 extends to show that ∂i∂i+1 = 0.

Exercise 6.3.1. Verify that ∂i∂i+1 = 0.

Definition 6.3.1. The ith singular homology group Hi(X) = ker(∂i)/im(∂i+1).

Note that since ∆0 is just a point, the chain group S0(X) can be identified
with the free abelian group with one generator for each point of X. Since ∂0 = 0,
we have ker(∂0) = S0(X). A singular 1-simplex is a continuous map σ : ∆1 =
I → X, and so it gives a path in X connecting the end points. When we form
the quotient H1(X) = ker(∂0)/im(∂1), we will be identifying [x] = [y] ∈ H0(X)
whenever there is a path joining x to y.

Exercise 6.3.2. Show that if X is path connected, then H0(X) ≃ Z.

Exercise 6.3.3. Suppose the path components of X are Xj , j = 1, . . . , n.

(a) Show that Si(X) ≃
⊕n

j=1 Si(Xj) and ∂i : Si(X) → Si−1(X) sends
Si(Xj) to Si−1(Xj) in this direct sum decomposition.

(b) Show that Hi(X) ≃
⊕n

j=1Hi(Xj).
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(c) Show that H0(X) is the free abelian group with one generator for each
path component.

It is somewhat inconsistent with later computations that path connectivity
is measured by H0(X) ≃ Z, rather than being trivial. In Section 6.13 we will
introduce the notion of reduced homology, which will adjust our chain complex
so that path connectivity is measured by the reduced homology in dimension 0
being 0 in the path-connected case. Knowing that H0 measures the number of
path components, we now examine what H1 measures. Because of the last result,
we can restrict to the path-connected case.

Assume that X is path connected with base point x0. We now concentrate on
examining the relation of the fundamental group π1(X,x0) and the first homo-
logy group H1(X). Note that the generators of S1(X) are similar to the maps
used to form equivalence classes in π1 in that they are maps from I to X; a major
difference is that π1 uses equivalence classes of loops and for S1 we are just using
paths. However, suppose that we have a singular 1-chain C =

∑m
k=1 nkσk, where

∂C = 0. Such a 1-chain is called a singular 1-cycle and is similar to a loop in many
ways. For each 1-simplex σk in C, there are two singular 0-simplices which map
to the points σk(1) and σk(0), respectively. Let xi, i = 1, . . . , p be the distinct
points which occur as boundary points as we range over all singular 1-simplices
in C. Since C is a 1-cycle, we will have

∑
nk(σk(1) − σk(0)) = 0, where we are

abusing notation and identifying a singular 0-simplex with its image point. This
means that the coefficient of each xi in this sum is zero. For each x ∈ X, choose
a singular 1-simplex τx : ∆1 → X which is a path from the base point x0 to x.
Now suppose that σk(0) = p, σk(1) = q. Then define ck = τp + σk − τq.

Exercise 6.3.4. Show that ∂1(C) = 0 implies that
∑m

k=1 nkck =
∑m

k=1 nkσk.

Now look at the loop σ′
k = τp ∗σk ∗ τ̄q and consider it as a singular 1-simplex

as well as a loop at x0. There is a continuous map from the square to X which
has σ′

k on I × {0}, τp on {0} × I, σk on I × {1} and τq on {1} × I. The square is
divided into three pieces and the left piece is mapped using τp, the middle piece
is mapped via σk, and the right piece is mapped via τq. We illustrate this with
Figure 6.1.

Exercise 6.3.5. Use Figure 6.1 as a guide to construct the map of the square
so that the boundary is mapped as described.

We now define a map h from continuous loops at x0 to S1(X) by sending the
loop γ to the singular 1-simplex γ : ∆1 = I → X. Note that ∂1(h(γ)) = 0. For
the rest of this section, we will use ∼ to denote homotopy relative to the end
points for paths (or loops) and ∼∂ for the equivalence relation on 1-chains (or
1-cycles) that c1 ∼∂ c2 iff c1 = c2 + ∂(D), where D is a 2-chain.

Exercise 6.3.6. Show that if γ ∼ η for cycles γ, η, then there is a singular
2-chain D so h(η)−h(γ) = ∂2(D); thus h(η) ∼∂ h(γ). (Hint: Take the homotopy
as a map of the square and subdivide the square into two 2-simplices. Let D be
the chain which is a difference of two singular 2-simplices D = α1 − α2 which
first map into the two 2-simplices and then compose with the homotopy. See
Figure 6.2 for an illustration.)
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τp σk τ̄q

τp

σk

τqxp xq

Figure 6.1. A homotopy.

γ

η

x0 x0

α1

α2

Figure 6.2. Constructing D.

Exercise 6.3.7. Using the previous exercise, show that h induces a map h̄ :
π1(X,x0) → H1(X).

Exercise 6.3.8. Show that h(α∗β) ∼∂ h(α)+h(β) and so h̄ is a homomorphism.
(Hint: Consider Figure 6.3. First construct a map of the triangle with vertices
(0, 0), ( 1

2 , 1), (1, 0) with α ∗ β on the bottom, α on the left, and β (directed
downward) on the right. Use it to show that h(α ∗ β) differs from h(α) + h(β)
by the boundary of a singular 2-simplex.)

Note that if ex0
represents the trivial loop at x0, the homomorphism property

implies that c1x0
= h(ex0

) is a boundary.

Exercise 6.3.9. Show this directly by showing that if c2x0
is the singular

2-simplex mapping to x0, then ∂2(c
2
x0
) = c1x0

.

The homomorphism property and the last exercise imply that h(ᾱ) ∼∂

−h(α).

Exercise 6.3.10. Show this directly by showing that h(ᾱ)+h(α) is the boundary
of a 2-chain.
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α β

βα

Figure 6.3. Diagram showing that h̄ is a homomorphism.

Exercise 6.3.11. Use Exercises 6.3.4–6.3.8 to show that h̄ is surjective. (Hint:
Use the ideas in the previous exercises to show that if C =

∑m
k=1 nkσk is a

1-cycle in X, then, if σ′
k = τp ∗ σk ∗ τ̄q, we have h̄([σ′

k]) = [ck]. Then use the
homomorphism property of h̄ to show [C] is in the image of h̄.)

Since H1(X) is an abelian group, any element of the commutator subgroup of
π1(X,x0) must map to 0. Thus h̄ factors through the abelianization πab

1 (X,x0)
and induces a map h̄′ : πab

1 (X,x0) → H1(X). This induced map is surjective, so
to show that it is an isomorphism it suffices to show that the kernel consists of
the identity element.

π1(X,x0) ��

h̄ ������������
πab

1 (X,x0)

h̄′
������������

H1(X)

Theorem 6.3.1. The map h̄′ : πab
1 (X,x0) → H1(X) is an isomorphism.

Theorem 6.3.1 states that the first homology group is the abelianization of
the fundamental group. We give an argument that proves Theorem 6.3.1 through
a series of exercises. Start with an element [α] in the kernel of h̄. We have to
show that [α] is in the commutator subgroup. Just as we replaced a singular
1-simplex σ with σ′ which came from a loop, we want to replace a singular
2-simplex with one which maps the vertices to the base point. We can do this
with the techniques developed in proving the Seifert–van Kampen theorem. We
just take small triangular neighborhoods of the vertices that are not mapped to
x0 and first alter D so that the map is constant on these neighborhoods sending
them to the same point that D sends the vertex. Then we take a map from
the simplex to itself that sends the truncated neighborhood to the vertex and
otherwise expands the rest of the simplex to fill up the simplex. This map can
be constructed by defining it on the boundary of the truncated simplex and then
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τp

τp

τr τr

τq

τq

Figure 6.4. Constructing D′ from D.

extending it to the whole truncated simplex by coning from the centroid. We
define a new singular simplex D′ by using the composition of our map from
the truncated simplex to the simplex and composing with D. On the triangular
neighborhoods of the vertices, we take the map that is the composition of τp
with projection from the neighborhood to an interval (which we are identifying
canonically with I). Basically, this map is defined so radial lines from the vertex
formerly sent to p are mapped via a reparametrized τp. If we look at a term σ
in ∂2D, then D

′ is constructed so that ∂D′ now contains the term σ′ (at least
up to homotopy relative to the end points).

We illustrate this in Figure 6.4.
Now suppose α is a loop so that h̄(α) = 0. Then h(α) =

∑k
i=1 ni∂2Di. But

this means that the term h(α) occurs on the right-hand side and then all of the
other terms which occur do so in pairs with canceling signs. This means that it
will also be the case that ∂D′ = h(α) since the term h(α) will be unchanged and
any other term σ would be replaced by a corresponding term σ′. Hence we can
assume from the outset that any term Di is a singular 2-simplex whose vertices
map to x0. For any singular 2-simplex D whose vertices map to x0, there is a
loop at x0 given by D2∗D0∗D̄1, where Di = DFi. The three components are just
the face maps. This can also be written as D(F2 ∗F0 ∗ F̄1). The term F2 ∗F0 ∗ F̄1

just represents a loop that runs counterclockwise around the standard 2-simplex.

Exercise 6.3.12. Show that F2 ∗ F0 ∗ F̄1 represents the trivial element of
π1(∆2, e0) and that D represents the trivial element of π1(X,x0).

For any singular 2-simplex Di which occurs in the formula h(α) =∑k
i=1 ni∂2Di (with our assumption that Di maps the vertices to x0), look at

the loop D2i ∗D0i ∗ D̄1i = γi.

Exercise 6.3.13. Show that in the abelianization πab
1 (X,x0) that [α] and

[γ1]
n1 ∗ · · · ∗ [γk]

nk represent the same element. (Hint: Break the second term
into the individual components Dji so that each component occurs a net zero
number of times except for α. Here D̄ji counts as −1 when it occurs since it
represents the inverse of Dji in π1.)
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Exercise 6.3.14. Complete the proof of Theorem 6.3.1.

We can apply Theorem 6.3.1 to compute the first homology groups of surfaces.

Theorem 6.3.2.

(a) H1(T
(g)
(p) ) is the free abelian group on 2g+ p− 1 generators for p �= 0 and

the free abelian group on 2g generators when p = 0.

(b) H1P
(h)
(p) is the free abelian group on h+ p− 1 generators when p �= 0 and

is the direct sum of Z2 with the free abelian group with h− 1 generators
when p = 0.

Exercise 6.3.15. Prove Theorem 6.3.2.

6.4 Cellular homology of a

two-dimensional CW complex

We now consider a two-dimensional CW complex X and define a chain complex
(Cc

i (X), ∂i), i = 0, 1, 2, of free abelian groups and boundary homomorphisms
related to it. All higher-dimensional homology Hi(C) is defined to be zero since
there are no cells in these dimensions. In the two-dimensional case it is relatively
simple to define this complex in an ad hoc manner not relying on the general
theory of singular homology. Later on we will give the full definition which applies
in all dimensions and serves to link cellular and singular homology. The justifi-
cation for ∂1∂2 = 0 will be given then. Here we just focus on how computations
are done in this low-dimensional situation.

We let Cc
0(X) be the free abelian group with one generator g0

i for each 0-cell
e0i . As before, we define ∂0 = 0. For each 1-cell e1i , we choose the standard
positive orientation of the interval and have a generator g1

i for this oriented
1-cell. If it is attached via f so that f(1) = e0j , f(0) = e0k, then we define

∂1(g
1
i ) = g0

j − g0
k. For each 2-cell e2j , we choose the standard positive orientation

of the cell and have a generator g2
j . Corresponding to this orientation, there

will be a positive orientation of the cell and a corresponding generator g of
H1(S

1
j ) ≃ Z. When the 2-cell is attached via fj : S

1
j → X1, there is an induced

homomorphism (fj)∗ : H1(S
1
i ) → H1(X

1). We can form the quotient space
q : X1 → X1/X0 by identifying the points in X0 to a single point. The quotient
is homeomorphic to

∨p
i=1 S

1
i with one circle for each 1-cell of X1. By the results

of the last section relating π1 to H1 as well as the Seifert–van Kampen theorem,
H1(

∨p
i=1 S

1
i ) ≃

⊕p
i=1 Z = F ab

p , the free abelian group on p generators, one for
each 1-cell. We can thus identify the group to Cc

1(X), and consider the image
(qf)∗(g) of the generator g of H1(S

1
j ) in H1(

∨p
i=1 S

1
i ) with an element of Cc

1(X).

This image is defined to be ∂2(g
2
i ). Another way to think of this boundary map

is to note that a map to a direct sum of copies of Z is determined by its image on
each component. To determine the coefficient nij when ∂2(g

2
j ) =

∑p
i=1 nijg

1
i , we

look at the composition fij : S
1
j → S1

i of the attaching map fj with the quotient

map pi : X
1 → S1

i coming from collapsing all of X1 except the 1-cell e1i to a
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point. The image of the generator will be nij times the generator, so we just
need to compute the degree of this map between circles.

To help us understand this boundary homomorphism better, we look at some
examples.

• For the torus T , the 2-cell is attached to X1 via the commutator aba−1b−1,
and so ∂2(g

2) = g1
a + g1

b − g1
a − g1

b = 0. Since there is only one 0-cell,
∂1(g

1
a) = ∂1(g

1
b ) = 0. We then form the cellular homology groups Hc

i (X)
via ker(∂i)/im(∂i+1). Thus all of the boundary maps are 0 and so Hc

i =
Cc

i , giving that the homology of the torus is Hc
2(X) ≃ Z, Hc

1(X) ≃ Z ⊕
Z, Hc

0(X) ≃ Z.

• The computation of the homology of the Klein bottle is similar, with the
main difference being that the attaching map of the 2-cell uses the pattern
abab−1. This leads to ∂2(g

2) = g1
a + g1

b + g1
a − g1

b = 2g1
a. Thus ker(∂2) = 0

and so Hc
2(X) = 0. Then

Hc
1(X) = Z(g1

a)⊕ Z(g1
b )/{2g

1
a} ≃ Z2 ⊕ Z.

As before, Hc
0(X) ≃ Z.

As the two examples show, the way the 2-cells are attached determines the
boundary map ∂2, and it is largely a matter of reading off the boundary informa-
tion and abelianizing it. We give an example which is not a surface; see Figure 6.5
for an illustration. Consider the space with three 0-cells, which we will call
a,b,c. Then attach five 1-cells A,B,C,D,E so that their attaching maps determine
∂1(A) = a − b, ∂1(B) = a − c, ∂1(C) = c − c = 0, ∂1(D) = b − c, ∂1(E) = c − a.
To describe the attaching maps of the 2-cells, we think of dividing the bound-
ary into subarcs and say where the image of consecutive subarcs is in terms of
1-cells with a superscript −1 to indicate running over the 1-cell in the opposite
direction.

For our example, we will have two 2-cells which we label α, β, and are attached
via the patterns AECD and BA−1D−1. This leads to the chain groups Cc

2 =
2Z, Cc

1 = 5Z, Cc
0 = 3Z, with boundary map

∂2(α) = A+ E + C +D, ∂2(β) = B −A−D.

B

E

A

D

a b

c

AE

C D

B

A

D

C 

α β

Figure 6.5. Computing the cellular homology.
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The homology is then computed as follows. For Hc
0 , factoring out by the

image of ∂1 identifies all of the generators of C
c
0, so H

c
0(X) ≃ Z, which indicates

that X is path connected. To compute H1, we first find a basis for ker(∂1). To do
this, we can write down a matrix which represents ∂1 with respect to our basis
of Cc

1. This matrix is 


1 1 0 0 −1

−1 0 0 1 0
0 −1 0 −1 1



 .

Using gaussian elimination, we can find a basis of ker(∂1) to be C,A − B +
D,B + E. A basis of im(∂2) is given by A + E + C + D,−A + B − D. These
elements can be written in terms of the generators of ker(∂1) as A+E+C+D =
C − (A − B + D) + (B + E),−A + B − D = −(A − B + D). The quotient is
Hc

1(X) ≃ Z. One way of seeing this is to think of ∂2 as identifying (A−B +D)
to 0 in the quotient and then identifying (B + E) to C. Thus the quotient is
generated by C with no further relations. Since ∂2(α), ∂2(β) are independent,
ker(∂2) = 0 and so Hc

2(X) ≃ 0.

Exercise 6.4.1. Compute the cellular homology groups for all surfaces without
boundary, where we form the CW complex by thinking of the surface as a polygon
with identifications.

Exercise 6.4.2. Compute the cellular homology groups for the dunce hat. (Hint:
See Exercise 5.3.3.)

Exercise 6.4.3. Compute the cellular homology groups for the pseudoprojective
plane Pq (Exercise 3.9.4) which has a CW complex decomposition as a 0-cell,
one 1-cell, and one 2-cell, where the 1-cell is attached trivially to the 0-cell to
form a circle for X1, and the attaching map for the 2-cell is the map z → zq

which wraps around the circle q times.

Exercise 6.4.4. Compute the cellular homology groups for the CW complex
with cellular decomposition given by a single 0-cell, two trivially attached 1-cells
(labeled a, b), and three 2-cells attached via a2b−1a, ba3, abababab.

Exercise 6.4.5. Find the cellular homology groups of the two spaces in
Figure 5.2.

Exercise 6.4.6. Find the cellular homology groups of the two spaces in
Figure 5.3.

Exercise 6.4.7. Find the cellular homology groups of the two spaces in
Figure 5.4.

Exercise 6.4.8. Find the cellular groups of the two spaces in Figure 5.5.

6.5 Chain maps and homology

In this section we develop some basic results about chain complexes and
homology which we will apply in studying singular homology more deeply.
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We first look at the notion of a chain map between chain complexes.

Definition 6.5.1. Suppose (Ck, ∂
C
k ), (Dk, ∂

D
k ) are chain complexes. A sequence

of homomorphisms hk : Ck → Dk is called a chain map if ∂D
k hk = hk−1∂

C
k .

This can be re-expressed in terms of the following commutative diagram:

Ck

∂C
k

��

hk

��

Ck−1

hk−1

��

Dk

∂D
k

�� Dk−1

An important facet of chain maps is that they induce maps on homology
by the formula h∗([c]) = [h(c)]. Here [c] denotes the homology element which is
represented by the chain c with ∂(c) = 0.

Exercise 6.5.1. Verify the claim above that chain maps induce homomorphisms
on homology. You need to show that if [c] = [c′] ∈ Hn(C), then [hn(c)] =
[hn(c

′)] ∈ Hn(D).

These induced maps behave well under composition.

Exercise 6.5.2. Show that if A
f

�� B
g

�� C is a composition of chain

maps, then (gf)∗ = g∗f∗.

To simplify the notation from now on with chain maps and boundaries, we
will delete the subscripts unless they are needed for clarity. Thus we express the
chain map condition as h∂ = ∂h and just use h(c) for hn(c) when c ∈ Cn.

Definition 6.5.2. Suppose C,D,E are abelian groups and we have homo-
morphisms f : C → D and g : D → E. The sequence of homomorphisms

C
f

�� D
g

�� E is said to be exact at D if ker(g) = im(f). The sequence

0 �� C
f

�� D
g

�� E �� 0

is called a short exact sequence if it is exact at C,D,E; this means that f is an
injection and g is a surjection as well as ker(g) = im(f).

When there is a short exact sequence as above, there is an isomorphism of
abelian groups E ≃ D/im(f). Since f is an injection, C ≃ im(f) and so they are
frequently identified. C is then thought of as a subgroup of D and the quotient
D/im(f) is as written D/C. Two examples of short exact sequences are

• 0 �� Z
f

�� Z ⊕ Z
g

�� Z �� 0, where f(n) = (n, 0),

g(n,m) = m.
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• 0 �� Z
f

�� Z
g

�� Z2
�� 0, where f(n) = 2n and g(n) = n

mod 2.

In the first example, the middle term is a direct sum of the first and third
terms and the maps f, g have a standard form f(n) = (n, 0), g(n,m) = m.
This is called a split short exact sequence. Any short exact sequence of abelian
groups where the third term is a free abelian group can be shown to be equi-
valent to a split short exact sequence. By being equivalent to a split exact
sequence, we mean that there is a commutative diagram where all the ver-
tical maps are isomorphisms and the horizontal maps on the top row are
F (c) = (f(c), 0), G(c, e) = e.

0 �� C
F

��

=

��

C ⊕ E
G

��

≃

��

E ��

=

��

0

0 �� C
f

�� D
g

�� E �� 0

The second example shows that not all short exact sequences are split, and
identifies the presence of torsion in the third term as a source of difficulty in
splitting a short exact sequence.

Exercise 6.5.3. Show that if E ≃ Z⊕· · ·⊕Z is a finitely generated free abelian

group, then a short exact sequence 0 �� C
f

�� D
g

�� E �� 0 is

equivalent to a split short exact sequence. (Hint: Define a map r : E → D
with gr(e) = e by first defining it on generators and extending linearly. Then
define a map I : C ⊕ E → D by I(c, e) = f(c) + r(e). Show that I gives an
isomorphism and leads to the required commutative diagram. To show that I is
onto, start with d ∈ D and look at d− r(g(d)) and show that there is c ∈ C with
d− r(g(d)) = f(c).)

More generally, two short exact sequences are equivalent if there are vertical
isomorphisms so the following diagram is commutative:

0 �� C
f

��

≃

��

D
g

��

≃

��

E ��

≃

��

0

0 �� C ′

f ′

�� D′

g′

�� E′ �� 0

We generalize the preceding exercise.
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Exercise 6.5.4. Suppose that there is a commutative diagram with exact rows,

0 �� C
f

��

γ

��

D
g

��

δ

��

E ��

ǫ

��

0

0 �� C ′
f ′

�� D′
g′

�� E′ �� 0

Show that if γ and ǫ are isomorphisms, then δ is an isomorphism and the
two short exact sequences are equivalent. (Hint: The type of argument used is
called diagram chasing. We have to show that δ is both surjective and injective.
For surjectivity, start with d′ ∈ D′. Take g′(d′) ∈ E′ and use surjectivity of
ǫ to find e ∈ E with ǫ(e) = g′(d′). Use surjectivity of g to find d ∈ D with
g(d) = e. Then look at d′ − δ(d). If it were 0, then we would have shown that
δ is surjective. It does not have to be 0, but you can use commutativity of the
diagram to show that g′(d′ − δ(d)) = 0. Then use exactness at D′ of the bottom
row to show that there is a c′ ∈ C ′ with f ′(c′) = d′ − δ(d). Use surjectivity of γ
to find c with γ(c) = c′. Then use commutativity of the diagram to show that
d′ − δ(d) = δ(f(c)), from which you can conclude that d′ = δ(d + f(c)). Then
argue that δ is injective by using a similar diagram chase.)

Now suppose C,D,E are chain groups of chain complexes. Let f : C → D, g :
D → E be chain maps.

Definition 6.5.3. A sequence of chain maps is a short exact sequence if, for

each i ≥ 0, the sequence 0 �� Ci

f
�� Di

g
�� Ei

�� 0 is a short

exact sequence of homomorphisms between abelian groups.

Theorem 6.5.1. Suppose there is a short exact sequence

0 �� C
f

�� D
g

�� E �� 0

of chain complexes. Then there is a corresponding long exact sequence in
homology:

· · · �� Hk(C)
f∗

�� Hk(D)
g∗

�� Hk(E)
∂

�� Hk−1(C)
f∗

�� · · ·

The sequence then continues to the right until we are in dimension 0 and ends
with H0(E) → 0.

We break the proof up into a number of exercises. The induced maps f∗, g∗

are all defined as in: f∗([c]) = [f(c)], where [c] is the homology class containing c.
This is well defined by Exercise 6.5.1. We now indicate how the boundary map

Hk(E)
∂

�� Hk−1(C) is defined. For an element [e] ∈ Hk(E), we select an

element e ∈ Ek in the homology class. Note that ∂e = 0 since e represents a
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homology class. Since the map g is surjective, there is an element d ∈ Dk with
g(d) = e. We note g(∂(d)) = ∂(g(d)) = ∂(e) = 0. Since the sequence is exact,
there is an element c ∈ Ck−1 with f(c) = ∂(d). Moreover, f(∂(c)) = ∂(f(c)) =
∂∂(d) = 0. Since f is an injection, this implies that ∂(c) = 0 and so represents a
homology class. We define ∂([e]) = [c]. Note that we are using the same notation
∂ for the map on homology and the boundary maps in the chain complexes.

d ∈ Dk
��

��

e ∈ Ek

c ∈ Ck−1
�� ∂d ∈ Dk−1

Exercise 6.5.5. Show that this definition is well defined. This means that if
we choose another representative e′ of [e] ∈ Hk(E) and go through similar steps
to define [c′] ∈ Hk−1(C), then [c′] = [c]. (Hint: Start with e − e′ = ∂ǫ. Write
ǫ = g(δ). Then show g(d− d′ − ∂δ) = 0 and so d− d′ − ∂δ = f(γ). Chase around
the diagram to show that c− c′ = ∂γ and so [c] = [c′].)

Exercise 6.5.6. Show that the sequence is exact at Hk(C). (Hint: This requires
you to show that ker(f∗) = im(∂). Doing so requires showing inclusions in both
directions. To show that im(∂) ⊂ ker(f∗), use the fact that, if [c] = ∂([e]), then
we can assume f(c) = ∂(d) with g(d) = e. For the other direction, if f∗([c]) = 0,
then f(c) = ∂d. Use d to find e with ∂(e) = 0 and ∂([e]) = [c].)

Exercise 6.5.7. Show that the sequence is exact at Hk(D). (Hint: This requires
you to show that ker(g∗) = im(f∗). For one direction, you just need to use gf = 0.
For the other direction, suppose that g∗([d]) = 0, which means that g(d) = ∂(ǫ).
Choose δ so that g(δ) = ǫ. Then show that g(d− ∂(δ)) = 0 and use this to show
that there is a c with ∂(c) = 0 and f∗([c]) = [d].)

Exercise 6.5.8. Show that the sequence is exact at Hk(E). (Hint: This requires
you to show that ker(∂) = im(g∗). To show that ker(∂) ⊂ im(g∗), suppose
[e] ∈ Hk(E) satisfies ∂([e]) = 0. Then there are elements d, c, γ with g(d) =
e, f(c) = ∂(d), c = ∂(γ). Then show that ∂(d−f(γ)) = 0 and g∗([d−f(γ)]) = [e].)

An important property of the long exact sequence is its “naturality”.

Theorem 6.5.2 (Naturality of long exact sequence). Suppose that there
are two short exact sequences which are connected via chain maps as represented
in the following commutative diagram:

0 �� C
f

��

α

��

D
g

��

β

��

E ��

γ

��

0

0 �� C ′
f ′

�� D′
g′

�� E′ �� 0
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Then the corresponding long exact sequences are connected via the commutative
diagram

· · · �� Hk(C)
f∗

��

α∗

��

Hk(D)
g∗

��

β∗

��

Hk(E)
∂

��

γ∗

��

Hk−1(C)
f∗

��

α∗

��

· · ·

· · · �� Hk(C
′)

f ′
∗

�� Hk(D
′)

g′
∗

�� Hk(E
′)

∂
�� Hk−1(C

′)
f ′

∗
�� · · ·

Exercise 6.5.9. Prove Theorem 6.5.2.

We now give an algebraic result which we will apply to the long exact sequence
in homology.

Exercise 6.5.10. Show that if there is a long exact sequence of abelian groups,

A
f

�� B
g

�� C
h

�� D
k

�� E ,

then there is a corresponding short exact sequence

0 �� coker(f)
ḡ

�� C
h̄

�� ker(k) �� 0

Here coker(f) = B/im(f).

This last exercise is used in computations as a means of determining C from
coker(f) and ker(k). As important special cases, we note:

• if B = D = 0, then C = 0;

• if B = E = 0, then h : C → D is an isomorphism;

• if f is surjective, then C ≃ ker(k);

• if k is injective, then C ≃ coker(f);

• if D is a free abelian group, then ker(k) will also be free abelian and
C ≃ coker(f)⊕ ker(k).

The next result, the five lemma, allows us to compare two long exact
sequences.

Exercise 6.5.11. (Five lemma) Suppose there is a commutative diagram of
abelian groups,

A
f

��

surj α

��

B
g

��

≃ β

��

C
h

��

γ

��

D
k

��

≃ δ

��

E

inj ǫ

��

A′

f ′

�� B′

g′

�� C ′

h′

�� D′

k′

�� E′

where the horizontal rows are exact and the maps β, δ are isomorphisms, α is
surjective, and ǫ is injective.



300 6. Homology

(a) Show that this diagram induces a commutative diagram

0 �� coker(f)
ḡ

��

β̄

��

C
h̄

��

γ

��

ker(k) ��

δ̄

��

0

0 �� coker(f ′)
ḡ′

�� C ′
h̄′

�� ker(k′) �� 0

(b) Show that β̄ and δ̄ are isomorphisms.

(c) Use Exercise 6.5.4 to show that γ is an isomorphism.

We next define the notion of two chain maps as being chain homotopic. This
definition is motivated by the notion of homotopic continuous maps. The goal
is to show that if f, g are homotopic continuous maps, then they induce chain
maps f♯, g♯ which are chain homotopic.

Definition 6.5.4. We say that chain maps F,G : C → D are chain homotopic
if there is a map Hk : Ck → Dk+1 for each k ≥ 0 so that Gk − Fk = ∂D

k+1Hk +

Hk−1∂
C
k .

Ck+1

∂C
k+1

��

Fk+1 Gk+1

��

Ck

Hk

����
��

��
��

Fk Gk

��

∂C
k

�� Ck−1

Hk−1

����
��

��
��

Fk−1 Gk−1

��

Dk+1

∂D
k+1

�� Dk

∂D
k

�� Dk−1

Exercise 6.5.12. Show that if the chain maps F,G are chain homotopic, then
F and G induce the same map on homology. This involves showing that if c is a
cycle in Ck, then Gk(c)− Fk(c) is a boundary.

6.6 Axioms for singular homology

We have discussed a number of different homology theories. In this section, we
discuss a set of properties which characterize singular homology theory for a CW
complex. Because of these properties, it can be shown that cellular homology and
singular homology coincide for a CW complex.

We start by listing these properties, which are called the Eilenberg–Steenrod
axioms.

• (Functorial property) For each topological pair (X,A) and integer k ≥ 0,
there is an abelian group Hk(X,A) so that if f : (X,A) → (Y,B) is
continuous, then there is an induced homomorphism f∗ : Hk(X,A) →
Hk(Y,B) which is functorial. This means that the following two properties
hold:
— If we have a composition of continuous maps

(X,A)
f

�� (Y,B)
g

�� (Z,C) , then (gf)∗ = g∗f∗.
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— The identity induces the identity homomorphism: (1(X,A))∗ = 1H∗(X,A).
When A is the empty set, we denote Hk(X,φ) = Hk(X).

Moreover, for each pair (X,A) and integer k ≥ 1, there is a homo-
morphism ∂ : Hk(X,A) → Hk−1(A) satisfying the property that, if
f : (X,A) → (Y,B) is continuous, then there is a commutative diagram

Hk(X,A)
∂

��

f∗

��

Hk−1(A)

f∗

��

Hk(Y,B)
∂

�� Hk−1(B)

• (Homotopy property) If f, g : (X,A) → (Y,B) are homotopic continuous
maps, then f∗ = g∗.

• (Exactness property) If iA : A → X, j : X → (X,A) are the inclusions,
then there is a long exact sequence

· · · �� Hk(A)
i∗

�� Hk(X)
j∗

�� Hk(X, A)
∂

�� Hk−1(A) �� · · ·

• (Excision property) If Ū ⊂ intA, then the inclusion (X\U,A\U) → (X,A)
induces an isomorphism in homology.

• (Dimension property) If P is a one point space, then

Hk(P ) =

{
0 k �= 0,

Z k = 0.

Note that the invariance of homology under homeomorphisms follows from
the functorial property since, if f : (X,A) → (Y,B) is a homeomorphism with
inverse g, then f∗ : Hk(X,A) → Hk(Y,B) is an isomorphism with inverse g∗.
We note this result for future reference.

Theorem 6.6.1. If f : (X,A) → (Y,B) is a homeomorphism of pairs, then
f∗ : Hk(X,A) → Hk(Y,B) is an isomorphism.

Using the same argument, the homotopy property implies that a homotopy
equivalence induces an isomorphism in homology.

Theorem 6.6.2. Suppose f : (X,A) → (Y,B) is a homotopy equivalence of
pairs. Then f∗ : Hk(X,A) → Hk(Y,B) is an isomorphism.

Exercise 6.6.1. Prove Theorem 6.6.2.

Definition 6.6.1. The induced chain map f♯ : S(X) → S(Y ) coming from a
continuous map f : X → Y is defined on a generating singular simplex σ :
∆k → X by f♯(σ) = fσ. It is then extended to a general chain by linearity: if
c =

∑
i niσi, then f♯(c) =

∑
i nif♯(σi).
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Exercise 6.6.2. Check that f♯ is a chain map; that is, f♯∂
X
k = ∂Y

k f♯.

Sk(X)
∂X

k
��

f♯

��

Sk−1(X)

f♯

��

Sk(Y )
∂Y

k
�� Sk−1(Y )

Exercise 6.6.3. Check that f♯ satisfies the functorial property that, if we have

a composition X
f

�� Y
g

�� Z , then (gf)♯ = g♯f♯.

If f : (X,A) → (Y,B) is a continuous map, then this means that there is
an equality fiA = iBf , where, on the left, f : X → Y and, on the right, we
are regarding f : A → B. Here iA, iB are the inclusion maps. Then the previous
exercise implies that f♯(iA)♯ = (iB)♯f♯.

For singular homology, we have defined chain groups and corresponding
homology groups for a topological space X. We now extend this definition
to a pair (X,A), where A is a subspace of X. We first define singular chain
groups Sk(X,A) as quotient groups Sk(X,A) = Sk(X)/Sk(A). Here we are
identifying Sk(A) with its isomorphic image (iA)♯(Sk(A)). This quotient is iso-
morphic to the free abelian group with one generator for each singular simplex
of X whose image does not lie in A. Each element of the quotient comes
from a representative in Sk(X). We denote by c̄ the element in the quotient
Sk(X,A) = Sk(X)/Sk(A) with representative c ∈ Sk(X). Then f♯(iA)♯ = (iB)♯f♯

implies that, if f : (X,A) → (Y,B) is continuous, then f♯ : Sk(X) → Sk(Y )

induces a homomorphism f♯ : Sk(X,A) → Sk(Y,B) via f♯(c̄) = f♯(c).

Exercise 6.6.4. Check that this definition of f♯ : Sk(X,A) → Sk(Y,B) is well
defined.

Exercise 6.6.5. Check that this induced map satisfies the functorial property

(gf)♯ = g♯f♯, where (X,A)
f

�� (Y,B)
g

�� (Z,C) are continuous maps.

We then use the boundary map in S(X) to induce a boundary map in
S(X,A). The construction used is a general construction for quotient groups.

We define ∂
(X,A)
k (c̄) = ∂X

k (c). In order to see that this is well defined, we use the
commutative diagram

Sk(A)
∂A

k
��

i♯

��

Sk−1(A)

i♯

��

Sk(X)
∂X

k
�� Sk−1(X)

This commutes since i♯ is a chain map.
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Exercise 6.6.6. Show that the map ∂
(X,A)
k : Sk(X,A) → Sk−1(X,A) is well

defined.

Exercise 6.6.7. Show that, if f : (X,A) → (Y,B), then f♯ is a chain map; that

is, f♯∂
(X,A)
k = ∂

(Y,B)
k f♯.

Since f♯ is a chain map, it induces a homomorphism in homology f∗ :
Hk(X,A) → Hk(Y,B) via f∗([c]) = [f♯(c)]. This map satisfies the functorial
property since f♯ does.

Exercise 6.6.8. Verify that (gf)∗ = g∗f∗ and (1(X,A))∗ = 1H(X,A).

It is interesting to interpret what a cycle is in Sk(X,A). If we take a represent-

ative to be a chain c ∈ Sk(X), then ∂
(X,A)
k (c̄) = 0 means that ∂X

k (c) ∈ Sk−1(A).
This leads to a boundary homomorphism ∂ : Hk(X,A) → Hk−1(A) being defined
by ∂[c̄] = [∂X

k c]. This is just the boundary homomorphism which is formed
from having a short exact sequence 0 → S(A) → S(X) → S(X,A) → 0 of
chain complexes. For we are taking a cycle c̄ ∈ Sk(X,A), using the fact that
the map Sk(X) → Sk(X,A) is onto to pull the element c̄ back to an element
c ∈ Sk(X), then take its boundary ∂X

k (c), and then pull it back to an element
of Sk−1(A). Here we are just identifying Sk−1(A) with its image (iA)♯(Sk−1(A)).
Then the work in the last section means that this is a well-defined homomorph-
ism ∂ : Hk(X,A) → Hk−1(A) given by this formula. Of course, we do need to
establish that 0 → S(A) → S(X) → S(X,A) → 0 is a short exact sequence of
chain complexes.

Exercise 6.6.9. Show that 0 → S(A) → S(X) → S(X,A) → 0 is a short exact
sequence of chain complexes.

With this definition of ∂ : Hk(X,A) → Hk−1(A), we then get the long exact
sequence in singular homology as a consequence of Theorem 6.5.1. To establish
the property that there is a commutative diagram

Hk(X,A)
∂

��

f∗

��

Hk−1(A)

f∗

��

Hk(Y,B)
∂

�� Hk−1(B)

we can use Theorem 6.5.2 once we have established that, if f : (X,A) → (Y,B)
is a continuous map, then there is a commutative diagram

0 �� S(A)

f♯

��

�� S(X) ��

f♯

��

S(X,A) ��

f♯

��

0

0 �� S(B) �� S(Y ) �� S(Y,B) �� 0

In fact, Theorem 6.5.2 will imply that there is a commutative diagram
connecting the two long exact sequences.
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Theorem 6.6.3. Suppose f : (X,A) → (Y,B) is continuous. Then there is the
following commutative diagram linking the long exact sequences:

· · · �� Hk(A)
i∗

��

f∗

��

Hk(X)
j∗

��

f∗

��

Hk(X,A)

f∗

��

∂
�� Hk−1(A)

f∗

��

�� · · ·

· · · �� Hk(B)
i∗

�� Hk(Y )
j∗

�� Hk(Y,B)
∂

�� Hk−1(A) �� · · ·

Exercise 6.6.10. Prove Theorem 6.6.3 by showing that there is a commutat-
ive diagram connecting the two short exact sequences of chain complexes for
(X,A), (Y,B) as described above.

We next verify the dimension property.

Exercise 6.6.11.
(a) Show that Sk(P ) ≃ Z for k ≥ 0 with generator the singular simplex σk

which sends ∆k to P .

(b) Show that

∂k(σk) =

{
0 k odd or k = 0,

σk−1 k even, k �= 0.

(c) Prove the dimension property

Hk(P ) =

{
0 k �= 0,

Z k = 0.

We have shown the functorial, exactness, and dimension properties of singular
homology. We postpone to later sections the homotopy and excision properties
since they are substantially more difficult. However, we will be assuming them
in the remainder of the chapter.

6.7 Reformulation of excision and the

Mayer–Vietoris exact sequence

We now discuss a reformulation of the excision property of homology and the
closely related Mayer–Vietoris exact sequence. As we stated it, excision concerns
an isomorphism between the homology of (X,A) and (X\U,A\U), where Ū ⊂
intA. We want to first rephrase the statement in terms of open covers and then
show how the rephrased version leads to the excision theorem. For simplicity, we
will use a cover with two sets A,B whose interiors cover X although the ideas
work for a general cover by sets whose interiors cover X. We denote S{A,B}(X) =
S(A)+S(B). By this notation we mean the sum as a subchain complex of S(X),
not the direct sum. There is a homomorphism S{A,B}(X) → S(X) which is
induced by the two inclusion maps S(A), S(B) → S(X). The key fact needed for
excision is the following theorem.
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Theorem 6.7.1. If {intA, intB} is an open cover of X, then the homomorphism

S{A,B}(X) → S(X) induces an isomorphism H
{A,B}
k (X) → Hk(X) in homology

for all k ≥ 0.

To see how this relates to our statement of excision, we use the cover {A,X \
U}. The hypothesis in excision that Ū ⊂ intAmeans that {intA, int(X\U)} is an
open cover ofX. Then Theorem 6.7.1 says that the map S(A)+S(X\U) → S(X)
induces an isomorphism in homology. There is a similar statement for the quo-
tient (S(A) + S(X \ U))/S(A) → S(X)/S(A), which can be proved via a
relative version of the theorem or through some homological algebra. But the
quotient (S(A) + S(X\U))/S(A) is naturally isomorphic to S(X \ U)/S(A\U)
via a Noether isomorphism theorem from algebra. The combination of the iso-
morphism on homology induced by S(X\U)/S(A\U) → (S(A)+S(X\U))/S(A)
and the isomorphism on homology induced by (S(A) + S(X\U))/S(A) →
S(X)/S(A) gives the excision isomorphism Hk(X\U,A\U) → Hk(X,A). We
will prove Theorem 6.7.1 in Section 6.17, and now pursue its implications and
reformulations of excision.

Here is a useful restatement of excision.

Theorem 6.7.2. Suppose X = A ∪ B, where intA, intB cover X. Then there
is an isomorphism Hk(B,A ∩B) → Hk(X,A) induced by inclusion.

Exercise 6.7.1. Show that Theorem 6.7.2 is equivalent to the original statement
of excision. (Hint: Let U = X\B. Be sure to check that the hypotheses of the
excision property translate to the hypotheses of Theorem 6.7.2, and vice versa,
with this substitution.)

We now look at the Mayer–Vietoris exact sequence, which follows from
Theorem 6.7.1.

Theorem 6.7.3 (Mayer–Vietoris exact sequence). Suppose X = A ∪ B,
where {intA, intB} is an open cover of X. Then there is a long exact sequence

· · · �� Hk(A ∩ B)
i∗

�� Hk(A) ⊕ Hk(B)
j∗

�� Hk(X)
δ

�� Hk−1(A ∩ B)
i∗

�� · · · .

The map i∗ is given by i∗(x) = ((iA)∗,−(iB)∗) and the map j∗(x, y) = (jA)∗(x)+
(jB)∗(y). Here iA : A ∩ B → A, iB : A ∩ B → B, jA : A → X, jB : B → X are
the inclusions.

Exercise 6.7.2. Follow the outline to prove Theorem 6.7.3.

(a) First show that there is a short exact sequence

0 �� S(A ∩B)
i♯

�� S(A)⊕ S(B)
j♯

�� S(A) + S(B) �� 0.

(b) Deduce a long exact sequence in homology

· · · �� Hk(A ∩ B)
i∗

�� Hk(A) ⊕ Hk(B)
j∗

�� H
{A,B}
k

(X)
∂

�� Hk−1(A ∩ B)
i∗

��

from the above short exact sequence.
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(c) Use Theorem 6.7.1 to transform the last exact sequence into the Mayer–
Vietoris exact sequence.

Exercise 6.7.3. The map Hk(X)
δ

�� Hk−1(A ∩B) in the Mayer–Vietoris

exact sequence uses the composition Hk(X) → H
{A,B}
k (X) → Hk−1(A∩B). The

first map is the isomorphism from Theorem 6.7.1 and the second is the boundary
map ∂ from part (b) of the last exercise. Suppose that x ∈ Hk(X) is represented
by a cycle α+ β, where α ∈ Sk(A), β ∈ Sk(B). Show that

(a) ∂(α) = −∂(β), and these give chains in Sk−1(A ∩ B) = Sk−1(A) ∩
Sk−1(B);

(b) δ(x) = [∂α].

For many applications, it is useful to generalize slightly the hypotheses of the
Mayer–Vietoris sequence to include situations where X = A∪B, and intA, intB
do not cover X but slight enlargements of them by homotopy equivalent sets
do. For example, this will allow us to apply the Mayer–Vietoris sequence to
decompositions of the sphere as the union of its hemispheres or to a surface
which is a connected sum.

Exercise 6.7.4. Suppose X = A∪B = A′ ∪B′ where A ⊂ A′, B ⊂ B′. Suppose
the inclusions A ∩ B → A′ ∩ B′, A → A′, B → B′ induce isomorphisms in
homology and X = intA′ ∪ intB′. By following the outline below, show that
there is a Mayer–Vietoris exact sequence

· · · �� Hk(A ∩ B)
i∗

�� Hk(A) ⊕ Hk(B)
j∗

�� Hk(X)
δ

�� Hk−1(A ∩ B)
i∗

�� · · · .

(a) Use the chain maps induced by inclusions between short exact sequences

0 �� S(A ∩B) ��

��

S(A)⊕ S(B) ��

��

S(A) + S(B) ��

��

0

0 �� S(A′ ∩B′) �� S(A′)⊕ S(B′) �� S(A′) + S(B′) �� 0

to get a diagram linking long exact sequences

· · · �� Hk(A ∩ B)
i∗

��

��

Hk(A) ⊕ Hk(B)
j∗

��

��

H
{A,B}
k

(X)
δ

��

��

Hk−1(A ∩ B)
i∗

��

��

· · ·

· · · �� Hk(A′ ∩ B′)

i′
∗,j′

∗
�� Hk(A′) ⊕ Hk(B′)

j′
∗

�� H
{A′,B′}
k

(X)
δ

�� Hk−1(A
′ ∩ B′)

i′
∗

�� · · ·



6.7. Reformulation of excision 307

(b) Use the five lemma and the hypotheses to deduce that all vertical maps

are isomorphisms, so in particular H
{A,B}
k (X) → H

{A′,B′}
k (X) is an

isomorphism.

(c) Combine (b) with the Mayer–Vietoris exact sequence for {A′, B′} to get
the result.

Exercise 6.7.5. Suppose a surface S = A ∪B is decomposed into two surfaces
with boundary (A, ∂A), (B, ∂B) withA∩B = ∂A = ∂B. Suppose there is a closed
neighborhood N of A∩B so that (N,N ∩A,N ∩B,N ∩A∩B) is homeomorphic
to (∂A× [−1, 1], ∂A× [−1, 0], ∂A× [0, 1], ∂A×{0}). The set N comes from collars
in A,B and is called a bicollar neighborhood. Use the last exercise to show that
there is a Mayer–Vietoris exact sequence based on X = A ∪B.

An n-manifold A with boundary ∂A possesses an interior collar (C, ∂A) ≃
(∂A× [0, 1], ∂A×{0}). Frequently, A is a subset of a larger n-manifoldM so that
M splits as M = A ∪ B, where A,B are n-manifolds with common boundary
∂A = ∂B whose interior collars piece together to give a bicollar neighborhood
N so that

(N,N ∩A,N ∩B,N ∩A∩B) ≃ (∂A× [−1, 1], ∂A× [−1, 0], ∂A× [0, 1], ∂A×{0}).

Exercise 6.7.6. Generalize the last exercise to decompositions of n-manifolds
for arbitrary n.

There are also parallel results for both forms of excision. They are proved by
similar techniques as the last exercises.

Exercise 6.7.7. Suppose U ′ ⊂ U ⊂ A ⊂ X

• Ū ′ ⊂ intA;

• the inclusion (X\U,A\U) → (X\U ′, A\U ′) induces an isomorphism in
homology.

Then the inclusion (X\U,A\U) → (X,A) induces an isomorphism in homology.

As an example for the last exercise, consider X = S2, A equal to the lower
hemisphere S2

−, and U = intA. We then choose for U ′ = S2
−\C, where C is

an interior collar within the lower hemisphere so that (C, S1) is homeomorphic
to (S1 × [0, 1], S1 × 0), where ∂S2

− = S1 is being sent to S1 × 0. Using spher-
ical coordinates (θ, φ), we can specify U ′ by requiring φ to satisfy φ > 3π/4,
where the north pole corresponds to φ = 0 and the south pole to φ = π. We
cannot excise U directly from S2

+ since Ū is not contained in intS2
+. However,

we can excise U ′. Moreover, the inclusion (S2\U, S2
−\U) → (S2\U ′, S2

−\U ′) is
a homotopy equivalence since (S2\U ′, S2

−\U ′) = ((S2\U) ∪ C, (S2
−\U) ∪ C) and

we can just deformation retract C ≃ S1 × [0, 1] back to S1 × {0}, keeping the
identity on S2\U = S2

+. Here the collar corresponds to φ ∈ [π/2, 3π/4] and we
are using the linear homeomorphism between [π/2, 3π/4] and [0, 1] in expressing
it as homeomorphic to S1 × [0, 1].

Exercise 6.7.8. Suppose M = A ∪ B is an n-manifold and A,B ⊂ M are
embedded n-manifolds with common boundary. Assume that the interior collars
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of A,B piece together to give a bicollar neighborhood N so that (N,N ∩A,N ∩
B,N ∩ A ∩ B) ≃ (∂A× (−1, 1), ∂A× (−1, 0], ∂A× [0, 1), ∂A× {0}). Show that
the inclusion maps induce an isomorphism Hk(B, ∂B) → Hk(M,A).

What is occurring is this last case is part of a more general result.

Exercise 6.7.9. Suppose A ∪ B = A′ ∪ B′ = X and A ⊂ A′, B ⊂ B′. Suppose
intA′ ∪ intB′ = X and the inclusion (B,A ∩ B) → (B′, A′ ∩ B′) induces an
isomorphism in homology. Then the inclusion (B,A ∩ B) → (X,A) induces an
isomorphism in homology.

These last exercises allow us to apply excision and the Mayer–Vietoris
sequence more generally than its original statement. We will use these refined
forms in our applications in succeeding sections.

6.8 Applications of singular homology

Most calculations using singular homology are a consequence of applying the
basic properties rather than using the definition directly. We illustrate this in
this section with a few basic applications.

We first use the basic properties to give the homology of a disk, a sphere,
and a disk–sphere pair (Dn+1, Sn).

Exercise 6.8.1. Use Theorem 6.6.2 and the dimension property to show that

Hk(D
n) =

{
Z k = 0,

0 k > 0.

Exercise 6.8.2. Show that

Hk(S
0) =

{
Z ⊕ Z k = 0,

0 k > 0.

Exercise 6.8.3. Use the long exact sequence of the pair (D1, S0) to show that

Hk(D
1, S0) =

{
Z k = 1,

0 k �= 1.

Exercise 6.8.4. Give an explicit singular simplex σ : ∆1 → D1 which represents
the generator of H1(D

1, S0). (Hint: It should map via ∂ to a generator of the
kernel of i0∗ : H0(S

0) → H0(D
1).)

Exercise 6.8.5. Show that there is a homeomorphism h : D1 → S1
+ = {x ∈

S1: x2 ≥ 0} and use this to compute Hk(S
1
+, S

0) for all k ≥ 0.

Exercise 6.8.6. Suppose B = S1
+ ⊂ S1 is the upper semicircle x2 ≥ 0 and

A = S1
− is the lower semicircle.
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(a) Use Exercise 6.7.7 to show that there is an isomorphism Hk(S
1
+, S

0) →
Hk(S

1, S1
−). Indicate how to find the sets U,U ′ used in the exercise.

(b) Use Exercise 6.7.8 to show that there is an isomorphism Hk(S
1
+, S

0) →
Hk(S

1, S1
−). Indicate how to find the required bicollar neighborhood.

Exercise 6.8.7. Use the two previous exercises to compute Hk(S
1, S1

−).

Exercise 6.8.8. Give an explicit singular simplex σ : ∆1 → S1 which represents
a generator of H1(S

1, S1
−). (Hint: The essential ingredient of a generator is that

it corresponds to a generator of H1(S
1
+, S

0), and this generator must map to a
generator of ker(i0∗) ⊂ H0(S

0). From our earlier work, ker(i0∗) is generated by
([1]− [−1]). There is a simple trigonometric formula that works for σ.)

Exercise 6.8.9. Use the previous exercises to compute Hk(S
1) by using the

long exact sequence of the pair (S1, S1
−).

Exercise 6.8.10. Give an explicit singular chain which is a sum of two singular
simplices, one of which is the answer to Exercise 6.8.8 and the other is a singular
simplex in S1

−, which represents a generator of H1(S
1). Explain how this relates

to the isomorphism between H1(S
1) and π1(S

1,1).

The argument so far has shown that there is a chain of isomorphisms

Hk+1(S
1) ≃ Hk+1(S

1, S1
−) ≃ Hk+1(S

1
+, S

0) ≃ Hk+1(D
1, S0).

When k > 0, there is also an isomorphism Hk+1(D
1, S0) ≃ Hk(S

0). When k = 0,
the argument is slightly different since S0 is not path connected, and we use
the isomorphism H1(D

1, S0) ≃ ker(i0∗) instead. These arguments all generalize
to compute the homology of Sp and (Dp+1, Sp) for p ≥ 1 via an inductive
argument. Before starting with the general argument, note that Sp, Dp+1 are
path connected, so H0(S

p) ≃ H0(D
p+1) ≃ Z. The portion of the exact sequence

H0(S
p) → H0(D

p+1) → H0(D
p+1, Sp) → 0

shows that H0(D
p+1, Sp) = 0 since the first map is an isomorphism.

Exercise 6.8.11. Suppose p ≥ 1. Show that Hk+1(D
p+1, Sp) ≃ Hk(S

p), k > 0.
Show that H1(D

p+1, Sp) = 0.

Exercise 6.8.12. Suppose p ≥ 1. Show that Hk(D
p+1, Sp) ≃ Hk(S

p+1
+ , Sp), k ≥

0. Here Sp+1
+ denotes the part of the sphere where the last coordinate is ≥ 0.

Exercise 6.8.13. Suppose p ≥ 1. Show that Hk(S
p+1
+ , Sp) ≃ Hk(S

p+1,

Sp+1
− ), k ≥ 0.

Exercise 6.8.14. Suppose p ≥ 1. Show thatHk(S
p+1) ≃ Hk(S

p+1, Sp+1
− ), k ≥ 1.

Exercise 6.8.15. Suppose p ≥ 1. Combine the last exercises to show that
Hk+1(S

p+1) ≃ Hk(S
p) for k ≥ 1, and H1(S

p+1) = 0.
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Exercise 6.8.16. Use an inductive argument to show that

(a)

Hk(S
n) =





Z ⊕ Z n = k = 0,

Z n = k > 0 or n > 0, k = 0,

0 otherwise;

(b)

Hk(D
n, Sn−1) =

{
Z k = n ≥ 0,

0 otherwise.

Later on, we will introduce reduced homology H̃k(X) and this will sim-
plify the statements above for low-dimensional homology to give isomorphisms
Hk+1(D

p+1, Sp) ≃ H̃k(S
p) and H̃k+1(S

p+1) ≃ H̃k(S
p).

We now apply these calculations to generalize the result from Chapter 3 that
a 2-disk cannot retract onto its boundary circle. We first recall the definition.
If A ⊂ X with inclusion map i, then a map r : X → A is called a retraction if
ri = 1A.

Exercise 6.8.17. Show that, if r : X → A is a retraction, then r∗ : Hk(X) →
Hk(A) is surjective for each k.

Exercise 6.8.18. Show that, if there is a k with Hk(X) = 0 and Hk(A) �= 0,
then there is no retraction of X onto A.

Exercise 6.8.19. Show that Dn does not retract onto Sn−1, n ≥ 1.

Exercise 6.8.20. Show that if f : Dn → Dn is continuous, then there is a fixed
point x ∈ Dn with f(x) = x. (Hint: See the proof of Theorem 3.5.4.)

Exercise 6.8.21.
(a) If M denotes the Möbius band with boundary ∂M , show that H1(∂M)

and H1(M) are each isomorphic to Z, but the induced map i∗ is given
by multiplication by 2.

(b) Use (a) to show that a Möbius band does not retract onto its boundary
even though they have isomorphic homology.

6.9 The degree of a map f : Sn → Sn

We discuss in this section the degree of a continuous map from Sn to Sn. Here
we first take n > 0 and modify the definition for n = 0. We showed above
that Hn(S

n) = Z. Let g denote a generator. If f : Sn → Sn is continuous,
then f∗(g) = dg for some integer d. The degree of f is defined to be the integer
d = deg(f) with f∗(g) = deg(f)g. We note the following elementary facts about
degree:

• deg(1) = 1;

• deg(hf) = deg(h) deg(f);
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• if f is homotopic to f ′, then deg(f) = deg(f ′);

• if f is a homotopy equivalence, then deg(f) = ±1.

Exercise 6.9.1. Prove the facts cited above about degree. Also, show that the
degree does not depend on which generator of Hn(S

n) = Z you choose.

When n = 0, we have H0(S
0) = Z⊕Z, so the above definition of degree does

not apply. However, there is a modification which can be made to define degree in
this case. We look at the map induced by inclusion i0∗ : H0(S

0) → H0(D
1). Then

ker(i0∗) is generated by [1] − [−1], where [x] denotes the homology class of the
singular 0-simplex which maps to the point x. Moreover, any map f : S0 → S0

must map this generator to a multiple of itself since if both points are sent to
the same point, the induced map is 0, and if not, it is multiplication by ±1. In
defining degree in dimension 0, we replace H0(S

0) by ker(i0∗) ≃ Z. Thus we can
look at g = [1] − [−1] and define deg(f) by the same formula, f∗(g) = deg(f)g.
The map r(x) = −x is an important example of a map of degree −1.

When f : (Dn+1, Sn) → (Dn+1, Sn), there is a similar definition of degree
which uses Hn+1(D

n+1, Sn) ≃ Z. If g is a generator here, define degree by the
same formula, f∗(g) = deg(f)g.

Exercise 6.9.2. Show that deg(f) as defined above is the same as deg(f |Sn).
(Hint: Use the exact sequence for the pair (Dn+1, Sn) to relate the two
computations.)

Exercise 6.9.3. Suppose f : (Sn+1, Sn+1
+ , Sn+1

− , Sn) → (Sn+1, Sn+1
+ , Sn+1

− , Sn).
We can define deg(f) and deg(f |Sn). Show that they are equal. (Hint: You need
to relate the generators. Consider how we computed the homology of spheres
inductively. Use isomorphisms

Hn+1(S
n+1) ≃ Hn+1(S

n+1, Sn+1
− ) ≃ Hn+1(S

n+1
+ , Sn) ≃ Hn(S

n),

when n > 0 and an appropriate modification when n = 0.)

Exercise 6.9.4. There is a reflection of any sphere of dimension greater
than or equal to 0 given by r1 : Sn → Sn, where r1(x1, x2, . . . , xn+1) =
(−x1, x2, . . . , xn+1). By starting with the case of S0 show that the degree of
r1 is −1 for all n.

Suppose r : Sn → Sn is a reflection. It is of the form r(x) = x − 2(x · v)v,
where v ∈ Sn is the normal vector of the plane through which you are
reflecting. For example, for r1 above, v = e1. For r2(x1, x2, . . . , xn+1) =
(x1,−x2, . . . , xn+1), then v = e2.

Exercise 6.9.5. Let n > 0.

(a) Use the fact that Sn is path connected to show that any reflection r is
homotopic to r1.

(b) Show that the degree of a reflection of Sn is −1.

The antipodal map A : Sn → Sn is A(x) = −x. It can be written as the
composition of n+ 1 reflections in the individual coordinates.



312 6. Homology

Exercise 6.9.6. Show that the degree of the antipodal map of Sn is (−1)n+1.

Exercise 6.9.7. Show that the antipodal map of Sn is homotopic to the identity
iff n is odd. (Hint: First consider the case of S1 using a rotation to get a homotopy
between the antipodal map and the identity. Then generalize this argument to
take care of other odd-dimensional spheres. It is useful to write an element of an
odd-dimensional sphere as (z1, . . . , zk), where zi = (x2i−1, x2i) is identified with
a complex number.)

We noted that we can also define degree in the context of maps (Dn, Sn−1) →
(Dn, Sn−1) since the nth homology is also Z. This fact is useful in defining the
notion of local degree of a map. Note that if Dx denotes a small disk about x,
then D′

x = Sn\intDx is also a disk that is contractible to a point. Then the long
exact sequence of the pair says thatHn(S

n) ≃ Hn(S
n, D′

x). Note that by excision
Hn(S

n, D′
x) ≃ Hn(Dx, ∂Dx). Alternatively, we can use the long exact sequence

to show that Hn(S
n) ≃ Hn(S

n, Sn\{x}), which is isomorphic to Hn(Dx, ∂Dx)
by excision. We will use the notation Sx = Sn\{x}. We denote by gx the image
of g in Hn(S

n, Sx).
Suppose that f(x) = y and we have a small disk neighborhood Dx about x so

that f restricts to give a map f : (Dx, Dx\{x}) → (Sn, Sy). Then excision gives
an isomorphism Hn(Dx, Dx\{x}) ≃ Hn(S

n, Sx). Then gx determines via this
isomorphism a generator gD

x ∈ Hn(Dx, Dx\{x}), and so we can form f∗(g
D
x ). It

is a multiple of the generator gy. We define this multiple as degx(f), and call it
the local degree of f at x.

Exercise 6.9.8. Show that the local degree is well defined, independent of which
disk Dx is chosen. (Hint: First show that if we choose a smaller disk, then there
is a commutative diagram showing that the local degrees are the same. Then use
the fact that any two disks contain a third disk in their intersection.)

Exercise 6.9.9. Show that the following alternative definition gives the same
answer. Choose a small disk Dy about y so that f(Dx) ⊂ Dy and f :
(Dx, Dx\{x}) → (Dy, Dy\{y}). Then define degx(f) by f∗(g

D
x ) = degx(f)g

D
y .

Exercise 6.9.10. Show that the local degree has the following properties
analogous to the degree:

• degx(1) = 1;

• if f(x) = y, h(y) = z, and there are disks Dx, Dy, Dz with f :
(Dx, Dx\{x}) → (Dy, Dy\{y}), h : (Dy, Dy\{y}) → (Dz, Dz\{z}), then

degx(hf) = degy(h) degx(f);

• if f is a local homeomorphism at x so that there is a disk Dx which is sent
homeomorphically to a disk Dy, then degx(f) = ±1.

In most applications of local degree, the original map will be modified up to
homotopy so that it is a local homeomorphism when the local degree is being
calculated. What the local degree is measuring there is whether the map is
locally preserving or reversing the orientation. In a later section, we will discuss
orientation in terms of homology.
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We now begin to relate the definition of the local degree and the degree of
the map. We first note a special case when f−1({y}) = {x}.

Exercise 6.9.11. Suppose f : (Sn, Sx) → (Sn, Sy). Then f∗(gx) = deg(f)gy

and thus deg(f) = degx(f).

It is usually not the case that f−1({y}) = {x} but there are geometric tech-
niques to homotope f so that f−1({y}) is a finite number of points x1, . . . , xk.
Then by choosing small disks about these points, we can define the local degrees
degxi

(f).

Theorem 6.9.1. When f−1({y}) = {x1, . . . , xk}, then deg(f) =
∑k

i=1 degxi
(f).

Note that the hypothesis implies that f : (Sn, Sn\{x1, . . . , xk}) → (Sn, Sy).
There is a commutative diagram

Hn(S
n)

f∗
��

ex

��

Hn(S
n)

ey

��

Hn(S
n, Sn\{x1, . . . , xk})

f∗
�� Hn(S

n, Sy)

Exercise 6.9.12. Show thatHn(S
n, Sn\{x1, . . . , xk}) ≃

⊕k
i=1Hn(Dxi

, Dxi
\{xi})

and, using the identification of these two, ex(g) =
∑k

i=1 g
D
xi
.

Exercise 6.9.13. Use the last exercise and the commutative diagram preceding
it to prove Theorem 6.9.1.

We now do a computation which we will use in the next section.

Exercise 6.9.14. Suppose that T : Sn → Sn is a homeomorphism and f : Sn →
Sn satisfies fT (x) = f(x). Suppose the local degree degx(f) of f is defined at
x. Then show that degT (x)(f) is also defined and

degx(f) = deg(T ) degT (x)(f).

Exercise 6.9.15. Consider the quotient map q : Sn → Sn/(x ∼ −x) = RP
n.

We compose with the map RP
n → RP

n/RP
n−1 which identifies RP

n−1 to a
point, and identify this quotient as Sn since it is homeomorphic to a disk with
its boundary sphere identified to a point. This composition gives a map Sn → Sn.
Use the preceding exercise and Theorem 6.9.1 to show that the degree of this
map is ±(1 + (−1)n+1).

6.10 Cellular homology of a CW complex

In Section 6.4 we gave a description of the cellular homology of a two-dimensional
CW complex. We now define the cellular homology more formally in terms of sin-
gular homology for any finite CW complex and will verify that our new definition
agrees with the one given earlier in the two-dimensional case. In the next section
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we will show that cellular homology agrees with singular homology for a finite
CW complex.

We denote by Xk the k-skeleton of X, which is the union of the cells of
dimension less than or equal to k. Recall that the k-cell ek

j is a unit disk

(up to homeomorphism) which is attached to Xk−1 via an attaching map
fj : S

k−1 → Xk−1. We can extend Xk−1 to a larger set Kk−1 in Xk by attach-
ing Lk−1 = Dk\(int 1

2D
k) via fi for each k-cell. We will use this set for excision

purposes. There is a corresponding pair (Dk
j , L

k−1
j ) for each k-cell and call the

corresponding disjoint unions (Dk, Lk−1) = (
⊔ck

j=1D
k
j ,

⊔ck

j=1 L
k−1
j ) as well as

(Dk, Sk−1) = (
⊔ck

j=1D
k
j ,

⊔ck

j=1 S
k−1
j ).

Exercise 6.10.1.
(a) Show the inclusion (Dk, Sk−1) → (Dk, Lk−1) induces an isomorphism in

homology. (Hint: Show that there is a homotopy equivalence of pairs.)

(b) Show that the inclusion (Xk, Xk−1) → (Xk,Kk−1) induces an isomorph-
ism in homology. (Hint: See the hint above.)

Exercise 6.10.2.
(a) Show that if (Y,B) = (

⊔N
j=1 Yj ,

⊔N
j=1Bj) is a disjoint union of path

components (Yj , Bj), then Hp(Y,B) = ⊕N
j=1Hp(Yj , Bj).

(b) Show that Hk(Dk, Sk−1) ≃ ⊕ck

j=1Z. Call the generator gk
j that corres-

ponds to a generator of Hk(D
k
j , S

k−1
j ).

(c) Show that the inclusion Hp(Dk, Sk−1) → Hp(Dk, Lk−1) induces an
isomorphism in homology. Conclude that

Hp(Dk, Lk−1) = ⊕ck

j=1Hp(D
k
j , L

k−1
j ) ≃ ⊕ck

j=1Z.

Exercise 6.10.3. Show that the restriction of the characteristic maps to
the k-cells gives a homeomorphism of pairs (Dk\intLk−1, Lk−1\intLk−1) →
(Xk\intKk−1,Kk−1\intKk−1). Conclude that there is an isomorphism in
homology.

Exercise 6.10.4. Show that there is a commutative diagram where all maps are
isomorphisms. The map φ =

⊔
φj is the disjoint union of the characteristic maps

of the k-cells which restricts to the attaching maps on the boundary spheres.
The other horizontal maps are induced by restrictions of this map. The vertical
maps are inclusions. Use the previous exercises to justify why each map is an
isomorphism.

Hp(Dk, Sk−1)
φ∗

��

(iL)∗

��

Hp(X
k, Xk−1)

(iK)∗

��

Hp(Dk, Lk−1)
(φL)∗

�� Hp(X
k,Kk−1)

Hp(Dk\intLk−1, Lk−1\intLk−1)

(jL)∗

��

(φ−
L

)∗

�� Hp(X
k\intKk−1,Kk−1\intKk−1)

(jK)∗

��
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When we combine the results of Exercises 6.10.3 and 6.10.4, they say
that the characteristic maps induce an isomorphism ⊕ck

j=1Hp(D
k
j , S

k−1
j ) →

Hp(X
k, Xk−1). In particular, all terms are 0 unless p = k. When p = k,

the generator gk
j of the term Hp(D

k
j , S

k−1
j ) is mapped to a generator xk

j of

Hk(X
k, Xk−1). Thus Hk(X

k, Xk−1) is a free abelian group with generators
xk

1 , . . . , x
k
ck
.

For the next few exercises, we will be assuming that k > 0. Recall that
the quotient space Dk/Sk−1 is homeomorphic with Sk. When we start with
the disjoint union (Dk, Sk−1) and form the quotient space Dk/Sk−1, we get the
space formed from ck copies of Sk where base points in each sphere (coming
from the Sk−1

j terms which are collapsed to a point) are all identified to a single

base point ∗. Thus the quotient space is ∨ck

j=1S
k
j . From a CW decomposition

point of view, there is one 0-cell coming from the identified spheres and then
ck k-cells. When we form the quotient space Xk/Xk−1, this has the same CW
decomposition and the map φ induces a homeomorphism φ̄. Thus there is an
isomorphism Hp(∨

ck

j=1S
k
j , ∗) ≃ Hp(X

k/Xk−1, ∗).

Exercise 6.10.5. Show that when k > 0, Hk(∨
ck

j=1S
k
j , ∗) ≃ ⊕ck

j=1Hk(S
k
j , ∗).

(Hint: Use an inductive argument with the Mayer–Vietoris sequence.)

Any element y of this direct sum is expressible as
∑ck

j=1 njyj , where yj is

a chosen generator of Hk(S
k
j , ∗). Then the inclusion of the jth sphere into the

wedge induces algebraically the inclusion of the term yj in the direct sum. Let Aj

represent the other spheres except for the jth one. When we form the quotient
∨ck

j=1S
k
j /Aj , we just get a homeomorphic copy of Sk

j . In this case the element

y maps to njyj . This uses the fact that the composition Sk
j → ∨ck

j=1S
k
j →

∨ck

j=1S
k
j /Aj = Sk

j is the identity and the composition Sk
p → ∨ck

j=1S
k
j → ∨ck

j=1S
k
j =

Sk
j maps Sk

p to the base point ∗ when p �= j. Since the identity induces the
identity map and the constant map to the base point induces the zero map, this
gives the algebraic result.

Exercise 6.10.6. Verify that the map Sk
p → Sk

j , p �= j which sends the whole
sphere to the base point induces the zero map in homology in dimension k > 0.

Exercise 6.10.7. Let Aj ⊂ Dk, Bj ⊂ Xk denote the subcomplexes consisting of
everything except the jth k-cell. We can form a quotient spaces Dk/Aj , X

k/Bj

by collapsing Aj and Bj to a point. Show that the characteristic map Dk
j →

Dk → Xk induces homeomorphisms between the quotient spaces Dk
j /S

k−1
j →

Dk/Aj → Xk/Bj .

We next want to show that the maps (Dk, Sk−1) → (Dk/Sk−1, ∗) and
(Xk, Xk−1) → (Xk/Xk−1, ∗) induce (consistent) isomorphisms in homology.
This will use an excision argument. Each sphere Sk

j has a closed neighborhood

L̄k−1
j about the base point ∗ which comes from the image of Lk−1

j under the

collapsing map. The union of all of these in ∨ck

j=1S
k
j provides a closed neigh-

borhood L̄k−1 of the base point ∗. Analogously, the set Kk−1 provides a closed
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neighborhood K̄k−1 of the base point ∗ ∈ Xk/Xk−1. The homeomorphism φ̄
sends L̄k−1 to K̄k−1.

Exercise 6.10.8. Show that (Dk/Sk−1, L̄
k−1) is homotopy equivalent to

(Dk/Sk−1, ∗), and (Xk/Xk−1, K̄k−1) to (Xk/Xk−1, ∗).

Exercise 6.10.9. Show that the restriction of the quotient map gives
a homeomorphism (Xk\intKk−1,Kk−1\intKk−1) → (Xk/Xk−1\int K̄k−1,
K̄k−1\int K̄k−1).

Exercise 6.10.10.
(a) Suppose k > 0. Show that there is a commutative diagram where all

maps are isomorphisms. Horizontal maps are induced by inclusions and
vertical maps are induced by quotient maps.

Hk(Xk, Xk−1) ��

��

Hk(Xk, Kk−1)

��

Hk(Xk\int Kk−1, Kk−1\int Kk−1)

��

��

Hk(Xk/Xk−1, ∗) �� Hk(Xk/Xk−1, K̄k−1) Hk(Xk/Xk−1\int K̄k−1, K̄k−1\int K̄k−1)��

(b) Deduce a similar result for (Dk, Sk−1) in place of (Xk, Xk−1).

(c) Show that there is a commutative diagram, where all maps are
isomorphisms.

Hk(Dk, Sk−1) ��

��

Hk(X
k, Xk−1)

��

Hk(Dk/Sk−1, ∗) ��

���������������
Hk(X

k/Xk−1, ∗)

��

Hk(∨
ck

j=1S
k
j , ∗)

We now define a generator yk
j of Hk(∨

ck

j=1S
k
j , ∗) coming from the image of

the generator gk
j ∈ Hk(Dk, Sk−1). Using the commutative diagram above, this

is the image of xk
j via the vertical maps on the right. If we name the map

Pj that collapses all but the jth sphere of ∨ck

j=1S
k
j , then (Pj)∗(y

k
j ) = yk

j and

(Pm)∗(y
k
j ) = 0,m �= j via the discussion before Exercise 6.10.6.

We define the cellular chain groups Cc
k(X) = Hk(X

k, Xk−1), k ≥ 0, where
X−1 = φ so Cc

0(X) = H0(X
0). This is a free abelian group with generators

xk
j , one for each k-cell. To define the boundary homomorphisms ∂c

k we use the
composition

Hk(X
k, Xk−1)

∂
�� Hk−1(X

k−1)
j∗

�� Hk−1(X
k−1, Xk−2) .

Note that, when k = 1, we can just regard the definition as meaning ∂c
1 = ∂ :

H1(X
1, X0) → H0(X

0). As usual, ∂c
0 is defined to be 0.
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Exercise 6.10.11. Show that ∂c
k∂

c
k+1 = 0. (Hint: Use the exactness of the long

exact sequence of the pair (Xk, Xk−1).)

We now want to re-express this boundary map in a more computable form.
Note that ∂c

k is a mapping from the free abelian group with generators xk
j to the

free abelian group with generators xk−1
i . Thus this homomorphism is determined

by the formula ∂c
k(x

k
j ) =

∑
nijx

k−1
i . To determine the coefficient nij of x

k−1
i we

can collapse all cells of Xk−1 except the ith one to get a sphere Sk−1
i . The

generator xk−1
i maps to yk−1

i and the other generators map to 0. If we call
this collapse pi then we get (pi)∗∂

c
k(x

k
j ) = nijy

k−1
i . We want to bring in the

characteristic map of the k-cell that leads to the generator and so look at the
following diagram:

Hk(D
k
j , S

k−1)
(φj)∗

��

∂

��

Hk(X
k, Xk−1)

∂

��

Hk−1(S
k−1
j )

(fj)∗
�� Hk−1(X

k−1)

Since (φj)∗(g
k
j ) = xk

j , we can rewrite ∂c
k(x

k
j ) as i∗(fj)∗(∂g

k
j ). Thus to find nij we

just take (pifj)∗(∂g
k
j ), where pi : (X

k−1, Xk−2) → (Xk−1/Bi, ∗). Another way
to state this is to find nij , we take the induced map on the (k−1)st homology from

the composition Sk−1
fj

�� Xk−1
pi

�� Xk−1/Bi = Sk−1, where the Bi

represents everything but the ith (k−1)-cell. Then we are computing the degree
of the map pifj between these two spheres. In this case the generator for the
first copy is coming from the chosen generator of Hk(D

k, Sk−1) coming from the
jth k-cell after taking its boundary in Hk−1(S

k−1). The generator for the second
copy is coming from the chosen generator ofHk−1(D

k−1, Sk−1) for the ith (k−1)-
cell and then taking its image in Hk−1(D

k−1, Sk−1) → Hk−1(D
k−1/Sk−1, ∗) =

Hk−1(S
k−1, ∗). The number nij then gives the degree of this map with respect

to these generators. For the case when k = 1, this is simpler since we do not have
to worry about collapsing a lower skeleton and so the boundary ∂c

1(x
1
j ) is just

computed by taking the composition H1(D
1
j , S

0
j ) → H0(S

0
j ) → H0(X

0). This
just takes the difference [fj(1)] − [fj(−1)]. Note that our descriptions coincide
with how we defined the cellular chain complex in the two-dimensional case.

We now summarize our results for future reference.

Theorem 6.10.1. Let X be a finite CW complex, with Xk its k-skeleton. Then
the map induced by the characteristic maps of the k-cells, φ∗ : Hp(Dk, Sk−1) →
Hp(X

k, Xk−1), induces an isomorphism. In particular, Hp(X
k, Xk−1) = 0 when

p �= k, and is the free abelian group on ck generators xk
1 , . . . , x

k
ck

when p = k.

The generator xk
j = (φk

j )∗(g
k
j ), where g

k
j generates Hk(D

k
j , S

k−1
j ), and φk

j is the
characteristic map of the jth k-cell. Moreover, for k > 0, there is an isomorphism
Hk(X

k, Xk−1) → Hk(X
k/Xk−1, ∗) ≃ Hk(∨

ck

j=1S
k
j , ∗) ≃ ⊕ck

j=1Hk(S
k, ∗), and the
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generator xk
j maps to the generator yk

j which corresponds to the image of gk
j

under the map (Dk
j , S

k−1
j ) → (Dk

j /S
k−1
j , ∗) ≃ (Sk

j , ∗).

In the cellular chain complex Cc
k(X) = Hk(X

k, Xk−1), the boundary map ∂c
k

is characterized by ∂c
k(x

k
j ) =

∑
nijx

k−1
i , where nij can be computed for k > 1

by taking the degree of the composition pifj. Here pi : X
k−1 → Sk−1

i is the map
which collapses all but the ith (k−1)-cell to a point to form a sphere, and fj is the
attaching map for the jth k-cell. The computation is done using the generator for
the first copy coming from the chosen generator of Hk(D

k, Sk−1) coming from the
jth k-cell after taking its boundary in Hk−1(S

k−1). The generator for the second
copy is coming from the chosen generator of Hk−1(D

k−1, Sk−1) for the ith (k−1)-
cell and then taking its image in Hk−1(D

k−1, Sk−1) → Hk−1(D
k−1/Sk−1, ∗) =

Hk−1(S
k−1, ∗). The map ∂c

1 is computed using the simpler formula ∂c
1(x

1
j ) =

[fj(1)]− [fj(−1)] ∈ H0(X
0).

We have already given computations of the cellular homology in the two-
dimensional case. We look at some computations via the cellular chain complex
for higher-dimensional CW complexes. We first look at the case of S2 ×S2. Here
there are cells in dimensions 0, 2, 4, and the cellular chain complex is 0 → Z →
0 → Z ⊕ Z → 0 → Z in low dimensions, 0–5. Since all boundary maps are 0, the
homology groups are the chain groups. Thus we get

Hc
k(S

2 × S2) ≃





Z k = 0, 4,

Z ⊕ Z k = 2,

0 otherwise.

The computation for CP
n is similar and is left as an exercise.

Exercise 6.10.12. Show that

Hc
k(CP

n) =

{
Z 0 ≤ k ≤ 2n, k even,

0 otherwise.

We next look at the computation for S1 × RP
2. The chain complex is

Cc
3 = Z(x3) → Cc

2 = Z(x2
1)⊕ Z(x2

2) → Cc
1 = Z(x1

1)⊕ Z(x1
2) → Cc

0 = Z → 0.

The boundary map ∂c
1 = 0. We denote by x1

1 the generator from the 1-cell
to form the circle S1 × y and x1

2 the generator from the 1-cell to form the circle
x × S1 ⊂ RP

2. We denote by x2
1 the generator from the 2-cell to form the

torus. We denote by x2
2 the generator from the 2-cell used in forming x × RP

2.
Finally, x3 corresponds to the generator for the 3-cell. From our methods for
two-dimensional complexes, we get that ∂c

2(x
2
1) = 0, ∂c

2(x
2
2) = 2x1

2. To compute
the boundary map ∂c

3, we look at the attaching map of the 3-cell, f : S2 → X2.
We write S2 = ∂(D1 × D2) = S0 × D2 ∪ D1 × S1. This map sends each copy
of {±1} ×D2 via the characteristic map of the 2-cell in RP

2. It sends D1 × S1

via the characteristic map of the first circle crossed with the attaching map of
the 2-cell in RP

2, which uses a map of degree 2. Since the two copies of D2 in
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the first part are mapped the same way, but inherit different orientations in S2,
they contribute 0 to ∂3(x

3). This can also be phrased in terms of local degree
since they have opposite local degrees at two points in the inverse image of a
point. For the second part, D1 × S1 maps with a degree-2 map to the torus in
X2 which gives the x2

1 generator, so ∂c
3(x3) = 2x2

1. Thus we get ker(∂3) = 0,
so Hc

3(S
1 × RP

2) = 0. We also get ker(∂c
2) is generated by x2

1, and im(∂3) is
generated by 2x2

1. Hence H2(S
1 × RP

2) ≃ Z2. This term is basically coming
from the same source as the Z2 = H1(RP

2). Finally, im(∂c
2) is generated by 2x1

2,
so we get H1(S

1 × RP
2) = Z ⊕ Z2. We have H0(S

1 × RP
2) = Z and all other

homology vanishes. The hardest part of the above argument to justify is the
statement about orientation leading to 0 contribution from the S0 × D2 part.
What is geometrically clear is that each disk maps to a generator that comes from
collapsing the lower skeleta to get RP

2/S1 = S2. Thus the only other possibility
would be that ∂c

3(x
3) = 2x2

1 ± 2x2
2 instead. But the fact that applying ∂c

2 to
this element gives ±4x2

2 �= 0 and two successive applications of the boundary
homomorphism have to give 0 verifies our earlier claim. This is a case where the
algebra helps us out, so we do not have to figure out exactly what is happening
geometrically. From the geometric point of view, we are computing the degree
from the part of the map S0 ×D2 when we identify D3 with D1 ×D2. Reflection
in the first coordinate is a map of degree −1 and in S2 it remains a map of degree
−1 which interchanges the two copies of D2 in S0 ×D2. Thus the local degree at
a point in one copy of D2 is the negative of the local degree at the other point.
Thus these two contributions to the degree cancel one another.

Exercise 6.10.13. Compute the cellular homology of S1 × S2.

Exercise 6.10.14. Compute the cellular homology of RP
2 × RP

2.

We next look at RP
3. The cellular chain complex is

0 → Z → Z → Z → Z → 0.

The 2-skeleton is RP
2 and we already computed its cellular homology, so we know

that ∂c
2(x

2) = 2x1, ∂c
1(x

1) = 0. To compute ∂c
3, we can again rely on algebra as

in the last example. For we must have im(∂c
3) ⊂ ker(∂c

2) = 0. Thus ∂c
3 = 0, and

so we get

Hc
k(RP

3) =





Z k = 0, 3,

Z2 k = 1,

0 otherwise.

This computation can also be done using our earlier result that the degree
of the map S2 → RP

2 → RP
2/S1 = S2 is 1 + (−1)3 = 0 from Exercise 6.9.15.

If we try to continue to compute the cellular homology of higher-dimensional
real projective spaces, we can no longer rely on algebra to help us, but can
use Exercise 6.9.15. Since ker(∂c

3) = Z, it does not tell us anything about the
map ∂c

4. The cellular chain complex says to look at the attaching map of the
4-cell, which is just the standard double covering S3 → RP

3. We then compose
this with collapsing RP

2 ⊂ RP
3 to a point to get S3. Each hemisphere covers
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the 3-sphere exactly once. The maps from the two hemispheres are related by
f(−x) = f(x). Thus f = fA, where A(x) = −x. A : S3 → S3 has degree 1;
that is, its induced map sends the generator of H3(S

3) to itself. We can express
the degree of f as the sum of the local degrees. Since A has degree 1, the local
degree is the same at two points in the inverse image of a point. The generator
of S3 is sent to twice the generator. This means that ∂c(x4) = ±2x3. Hence
H4(RP

4) = 0, H3(RP
4) = Z2. Since the 3-skeleton is the same for RP

3 and RP
4,

they have the same cellular homology in dimensions 2 and lower. Thus

Hk(RP
4) =





Z k = 0,

Z2 k = 1, 3,

0 otherwise.

Exercise 6.10.15. Compute the cellular homology of RP
n.

6.11 Cellular homology, singular homology, and

Euler characteristic

We now want to show that the homology of the cellular chain complex gives the
same homology as the singular homology of X. As a tool, we will use the long
exact sequence of a triple (X,A,B), where B ⊂ A ⊂ X.

Exercise 6.11.1.
(a) Show that there is a short exact sequence of chain complexes,

0 → S(A)/S(B) → S(X)/S(B) → S(X)/S(A) → 0.

(b) Show that there is a long exact sequence of the triple (X,A,B) given by

· · · → Hk+1(X,A) → Hk(A,B) → Hk(X,B) → Hk(X,A) → · · · .

Exercise 6.11.2.
(a) Use the long exact sequence of the triple (X,Xp, Xp−1) to show that

Hk(X,X
p) ≃ Hk(X,X

p−1) for k > p+ 1.

(b) Use (a) and induction to show that Hk(X) ≃ Hk(X,X
k−2).

Exercise 6.11.3.
(a) Use the long exact sequence of the triple (Xp+1, Xp, A) to show that

Hk(X
p, A) ≃ Hk(X

p+1, A) for k < p.

(b) Use (a) and induction to show that for a finite CW pair (X,A), we have
Hk(X,A) ≃ Hk(X

k+1, A).

Exercise 6.11.4. Combine the last two exercises to show that Hk(X) ≃
Hk(X

k+1, Xk−2).

By our definition of the chain complex (Cc, ∂c) the kth homology is
ker(∂c

k)/im(∂
c
k+1). By the last exercise we need to identify this quotient with
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Hk(X
k+1, Xk−2). First note that ∂c

k occurs as a boundary map in the long exact
sequence of the triple (Xk, Xk−1, Xk−2).

Exercise 6.11.5. Use the long exact sequence of the triple (Xk, Xk−1, Xk−2)
to show that Hk(X

k, Xk−2) maps isomorphically onto ker(∂c
k) as a subgroup of

Hk(X
k, Xk−1).

Exercise 6.11.6. Use the long exact sequence of the triple (Xk+1, Xk, Xk−2) to
show that the quotient Hk(X

k, Xk−2)/im(Hk+1(X
k+1, Xk) → Hk(X

k, Xk−2))
is isomorphic to Hk(X

k+1, Xk−2).

Exercise 6.11.7. Use the last two exercises and the commutative diagram

Hk+1(X
k+1, Xk)

∂
��

∂c
k+1

��������������
Hk(X

k, Xk−2)

(j12)∗

��

Hk(X
k, Xk−1)

to complete the argument that the cellular homology Hc
k(X) is isomorphic to

the singular homology Hk(X).

In Chapter 2 we used the Euler characteristic as defined in terms of a handle
decomposition as a tool to distinguish surfaces up to homeomorphism. We stated
there that the Euler characteristic was an invariant of the surface up to homeo-
morphism, independent of the chosen handle decomposition, but did not prove
this claim. We will prove this by defining Euler characteristic in an invariant
manner using singular homology and applying the result that the singular homo-
logy can be computed from the cellular chain complex. The connection to handle
decompositions is that in Chapter 5 we showed that given a handle decomposition
of a surface S (possibly with boundary), there is a corresponding CW complex
K which is homotopy equivalent to the surface so that there is one k-cell of K
for each k-handle of S.

Suppose that (C, ∂) is a chain complex of finitely generated free abelian
groups so that there is a number n with Ck = 0 for k > n (i.e. C is
n-dimensional). The rank of Ck, which we denote by ck, is the number of gener-
ators. In the case of the cellular chain complex, it is just the number of k-cells.
The homology groups Hi(C) will also vanish for k > n and they will be finitely
generated abelian groups of the form Hi(C) ≃ hiZ ⊕ Ti. Here hiZ denotes the
free abelian group which is the direct sum of hi copies of Z, and Ti denotes a
torsion group which is a direct sum of a finite number of copies of Zpj

. Here hi

is the rank of Hi(C).

Definition 6.11.1. Define the Euler characteristic of C to be

χ(C) =
n∑

i=0

(−1)ici
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and that of H∗(C) to be

χ(H∗(C)) =

n∑

i=0

(−1)ihi.

Our main result is

Theorem 6.11.1. χ(C) = χ(H∗(C)).

The starting point for our argument will be the result from algebra that
whenever we have a short exact sequence of finitely generated abelian groups

0 → A → B → C → 0

then there is an equation

rk(B) = rk(A) + rk(C).

Here rk denotes the rank of a finitely generated abelian group.
Now let Bi ⊂ Ci denote the subgroup of boundaries and Zi ⊂ Ci be the

subgroup of cycles.

Exercise 6.11.8.
(a) Show that there is a short exact sequence

0 → Zi → Ci → Bi−1 → 0.

(b) If zi = rk(Zi) and bi = rk(Bi), show that ci = zi + bi−1.

Exercise 6.11.9.
(a) Show that there is a short exact sequence

0 → Bi → Zi → Hi(C) → 0.

(b) Show that zi = bi + hi.

(c) Use the previous exercise to show that ci = hi + bi + bi−1.

Exercise 6.11.10.
(a) Show that

∑n
i=0(−1)

i(bi + bi−1) = 0.

(b) Show that χ(C) = χ(H∗(C)).

Here is another algebraic result which is sometimes useful.

Exercise 6.11.11. Suppose there is a long exact sequence of finitely generated
abelian groups:

0 �� An

an
�� An−1

an−1
�� · · ·

a2
�� A1

a1
�� A0

�� 0

Show that
∑n

i=0(−1)
irk(Ai) = 0. (Hint: Use induction on n starting with the

case n = 2. For n > 2 rewrite the exact sequence in terms of two exact sequences

0 �� An

an
�� An−1

an−1
�� ker(an−2) �� 0.

0 �� ker(an−2) �� An−2

an−2
�� · · ·

a2
�� A1

a1
�� A0

�� 0 .)
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There is an alternative approach to equating the Euler characteristic given by
a handle decomposition and the Euler characteristic coming from using the
homology groups, that is, to use an inductive argument on the number of handles.

Exercise 6.11.12. Suppose that we have a handle decomposition of a surface
S (possibly with boundary) with k0 0-handles, k1 1-handles, and k2 2-handles.
Let hi = rk(Hi(S)).

(a) Show that if there is a single handle (i.e. k0 = 1, k1 = k2 = 0), then
h0 = 1, h1 = h2 = 0.

(b) Show that if S = H ∪ hi is formed from the handlebody H by attaching
another handle hi, then

Hp(S,H) =

{
Z p = i,

0 p �= i.

(c) Use the exact sequence of the pair (S,H) and the Exercise 6.11.11 to
show that

χ(H∗(S)) = χ(H∗(H)) + (−1)i.

(d) Use induction to prove that k0 − k1 + k2 = h0 − h1 + h2.

Exercise 6.11.13. Use the technique of the last exercise to prove directly that
if X is a finite CW complex of dimension n, and we define ci to be the number
of i-cells, then χc(X) =

∑n
i=0(−1)

ici =
∑n

i=0(−1)
ihi = χ(H(X)).

6.12 Applications of the Mayer–Vietoris

sequence

We next look at some applications of the Mayer–Vietoris exact sequence which
use our refinements given earlier. We first use it to give a different derivation of
the homology of spheres. We start with the basic computation

Hk(S
1) ≃

{
Z k = 0, 1,

0 k > 1.

We know that H0(S
n) ≃ Z for n ≥ 1 by path connectivity, so we concentrate

on higher-dimensional homology. What we want to show inductively is that
Hk+1(S

n+1) ≃ Hk(S
n), n ≥ 1, k ≥ 0.

Exercise 6.12.1. (a) Use the decomposition Sn+1 = A∪B, where A is the upper
hemisphere where xn+2 ≥ 0, and B is the lower hemisphere where xn+2 ≤ 0, and
the refined Mayer–Vietoris sequence to show that Hk+1(S

n+1) ≃ Hk(S
n), n ≥

0, k > 0 and H0(S
n) ≃ H1(S

n+1)⊕ Z.
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(b) Show by induction that

Hk(S
n) =





Z ⊕ Z n = k = 0,

Z n = k > 0 or n > 0, k = 0,

0 otherwise.

Note that the Mayer–Vietoris argument used for the sphere in Exercise 6.12.1
applies to suspensions of spaces. Suppose X is a path-connected topological
space. Then the suspension

∑
X of X is the space formed from X × D1 by

identifying X × {1} to a point and identifying X × {−1} to a point, and then
using the quotient space topology.

Exercise 6.12.2. Show that ΣSn is homeomorphic to Sn+1.

Exercise 6.12.3.
(a) Show that ΣX is path connected, and so H0(ΣX) ≃ Z.

(b) Use the Mayer–Vietoris exact sequence to show thatHk+1(ΣX) ≃ Hk(X)
for k > 0.

(c) Show that H1(ΣX)⊕ Z ≃ H0(X).

We now use the Mayer–Vietoris sequence to compute the homology of the
torus. We divide the torus into two halves T = T+ ∪ T−. We will think of T as
arising as a quotient space of D1 ×D1 and let T+ correspond to the quotient of
points whose first coordinate is between − 1

2 and 1
2 , with T− corresponding to

the quotient of those points whose first coordinate is either ≤ − 1
2 or ≥ 1

2 . Note
that each of T+, T− is homotopy equivalent to a circle as T+ deformation retracts
to the circle with first coordinate equal to 0 in the quotient space description,
and T− deformation retracts to the circle with first coordinate equal to 1 in the
quotient space description. The intersection T− ∩ T+ is the union of two circles
C− ∪ C+. Here C− is chosen to be the circle with first coordinate equal to − 1

2 ,
and C+ is the circle whose first coordinate is 1

2 .
Using standard identifications of the homology of T+, T−, C+, C− to the

homology of the circles to which they each deformation-retract, we can look
at the Mayer–Vietoris exact sequence.

Exercise 6.12.4. For k ≥ 2, show that Hk(T+) = Hk(T−) = Hk(T+ ∩ T−) = 0
and use this to show that Hk+1(T ) = 0 for k ≥ 2.

We thus concentrate on the lower part of the exact sequence.

Exercise 6.12.5. Using our earlier calculations, show that we can identify it to
the following sequence:

H2(T+)⊕H2(T−)
j2

��

≃

��

H2(T )
δ2

��

=

��

H1(T+ ∩ T−)
i1

��

≃

��

H1(T+)⊕H1(T−)

≃

��

0 �� H2(T )
δ2

�� Z ⊕ Z
i1

�� Z ⊕ Z
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j1
�� H1(T )

δ1
��

=

��

H0(T+ ∩ T−)
i0

��

≃

��

H0(T+) ⊕ H0(T−)
j0

��

≃

��

H0(T ) ��

=

��

0

j1
�� Z ⊕ Z

δ1
�� Z ⊕ Z

i0
�� Z ⊕ Z

j0
��

Z
�� 0

Exercise 6.12.6.
(a) Show that i0(a, b) = (a+ b,−a− b).

(b) Show that i1(a, b) = (a+ b,−a− b).

Exercise 6.12.7.
(a) Show that H0(T ) ≃ Z.

(b) Use Exercise 6.5.11(a) to show that there are short exact sequences

0 �� coker (i1) �� H1 (T )
δ1

�� ker(i0) �� 0

and

0 �� H2(T )
δ2

�� ker(i1) �� 0.

Exercise 6.12.8.
(a) Show that ker(i0) = {(a,−a)} ≃ Z.

(b) Show that coker(i1) ≃ Z.

(c) Use (a),(b), and Exercise 6.5.3 to show that H1(T ) ≃ Z ⊕ Z.

Exercise 6.12.9.
(a) Show that ker(i1) = {(a,−a)} ≃ Z.

(b) Use (a) to show that H2(T ) ≃ Z.

Exercise 6.12.10. Give an explicit pair of singular 1-chains which generate
H1(T ) ≃ Z ⊕ Z.

Exercise 6.12.11. Give an explicit singular 2-chain which generates H2(T ) ≃
Z. (Hint: First find chains in S2(T+) and S2(T−) whose boundaries give a
representative of the generator of ker(i1) ⊂ H1(T+ ∩ T−).)

We apply the same ideas used for the torus to compute the homology of the
Klein bottle. As for our discussion of the torus, we regard K as a quotient space
of D1×D1, where we make the identifications (x,−1) ∼ (x, 1), (−1, y) ∼ (1,−y).
We decompose K into K+ ∪K−, where K+ corresponds to the first coordinate
satisfying − 1

2 ≤ x ≤ 1
2 and K− corresponds to the first coordinate satisfying

−1 ≤ x ≤ −1
2 or 1

2 ≤ x ≤ 1. Each of K+,K− is homemorphic to an annulus and
the intersection K+ ∩K− is homeomorphic to the disjoint union of two circles.

Exercise 6.12.12. Use the Mayer–Vietoris sequence to show that Hk(K) = 0
for k > 2.

Exercise 6.12.13. Let i0 : H0(K+ ∩ K−) ≃ Z ⊕ Z → H0(K+) ⊕ H0(K−) ≃
Z ⊕ Z, i1 : H1(K+ ∩K−) ≃ Z ⊕ Z → H0(K+) ⊕H0(K−) ≃ Z ⊕ Z be the maps
in the Mayer–Vietoris sequence.
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(a) Show that i0(a, b) = (a+ b,−a− b).

(b) Show that i1(a, b) = (a+ b, a− b). Here we are using the first coordinate
of Z ⊕ Z to correspond to an upwardly oriented

{
− 1

2

}
×D1/ ∼ and the

second coordinate to correspond to an upwardly oriented
{

1
2

}
×D1/ ∼.

Exercise 6.12.14.
(a) Show that H0(K) ≃ Z.

(b) Use Exercise 6.5.11(a) to show that there are short exact sequences

0 �� coker(i1) �� H1(K)
δ1

�� ker(i0) �� 0

and

0 �� H2(K)
δ2

�� ker(i1) �� 0

Exercise 6.12.15.
(a) Show that ker(i0) = {(a,−a)} ≃ Z.

(b) Show that coker(i1) ≃ Z2. (Hint: For coker(i1), show we have [(1, 0)] =
[(0, 1)] = [(−1, 0)], which gives the relation 2[(1, 0)] = 0.)

(c) Use (a),(b), and Exercise 6.5.3 to show that H1(K) ≃ Z2 ⊕ Z.

Exercise 6.12.16.
(a) Show that ker(i1) = 0.
(b) Use (a) to show that H2(K) ≃ 0.

Exercise 6.12.17.
(a) Show that reversing the direction of a singular 1-simplex σ to get σ̄(t) =

σ(1 − t) satisfies σ + σ̄ = ∂τ . Do this via a direct construction and by
using H1(I) ≃ 0.

(b) Give an explicit pair of singular 1-chains which generateH1(K) ≃ Z2⊕Z.
Explain how the 2-torsion arises for one of the generators by giving a
2-chain whose boundary represents twice the generator of Z2.

We now look at the general problem of computing the homology of a compact,
connected surface. We first note how orientability is related to the inclusion map
from the boundary circle to a surface with a disk removed. In Exercise 6.8.21(a),
it is shown that the inclusion map from the boundary ∂M ≃ S1 of a Möbius
band to the Möbius band M induces multiplication by 2 on the first homology

H1(∂M) ≃ Z
2

�� H1(M) ≃ Z.

If P denotes the projective plane, then removing a disk from P to form P(1)

gives the Möbius band. Thus the map H1(∂P(1)) ≃ Z → H1(P(1)) ≃ Z is mul-
tiplication by 2. Now look at the Mayer–Vietoris sequence based on splitting P
into P(1) ∪D2.
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Exercise 6.12.18.

(a) Show that Hk(P ) ≃ 0 for k ≥ 3.

(b) Show that H2(P ) = 0 by using the fact that the map i1 : H1(S
1) →

H1(P(1))⊕H1(D
2) is injective.

(c) Show that H1(P ) ≃ Z2 and H0(P ) ≃ Z by using the Mayer–Vietoris
sequence.

We next consider a compact connected nonorientable surface N . Such a sur-
face contains a Möbius band and so splits as a connected sum of P with another
surface Q. Decompose N = P(1) ∪ Q(1). The intersection is the circle which is
the common boundary of the two pieces.

Exercise 6.12.19.

(a) Show that Hk(N) = 0 for k ≥ 3.

(b) Show that H2(N) = 0 by using the fact that the map i1 : H1(S
1) →

H1(P(1))⊕H1(Q(1)) is injective.

(c) Use the relation to the fundamental group to show that H1(P
(k)) ≃ Z2 ⊕

(k− 1)Z, where (k− 1)Z denotes the connected sum of k− 1 copies of Z.

(d) Use path connectivity to show that H0(P
(k)) ≃ Z.

We have seen that for the sphere and torus, the second homology is iso-
morphic to the integers. The other compact, connected and orientable surfaces
are connected sums of copies of the torus. We want to show that their second
homology is also the integers.

Exercise 6.12.20.

(a) Show that the inclusion map ∂T(1) = S1 → T(1) induces the zero map on
H1.

(b) By using the decomposition T = T(1) ∪ D2, use the Mayer–Vietoris
sequence to show that H2(T ) ≃ Z and Hk(T ) ≃ 0 for k ≥ 3.

(c) Use the relation to the fundamental group to show that H1(T ) ≃ Z ⊕ Z.
Use path connectivity to show that H0(T ) ≃ Z.

We use Exercise 6.12.17(a) in the next exercise.

Exercise 6.12.21. (a) For the other oriented surfaces T
(k)
(1) use the descrip-

tion of the T (k) as the quotient of a 4k-gon with identifications to show that

H1(∂T
(k)
(1) ) → H1(T

(k)
(1) ) is the zero map. (Hint: Think of the disk being removed

as an interior 4k-gon and its generator for H1 as a sum of the edges and see
where it maps via the standard deformation retraction to the boundary which is
being identified.)

(b) Use the Mayer–Vietoris sequence based on T (k) = T
(k)
(1) ∪D2 to show that

Hi(T
(k)) ≃ 0, i ≥ 2 and H2(T

(k)) ≃ Z.
(c) Use the relation to the fundamental group to show that H1(T

(k)) ≃ 2kZ,
where 2kZ denotes the direct sum of 2k copies of Z.

(d) Use path connectivity to show that H0(T
(k)) ≃ Z.
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Exercise 6.12.22. Consider T (k) as arising as a quotient of the 4k-gon as in
the previous exercise. Divide the 4k-gon into 4k triangles with common point at
the center of the 4k-gon.

(a) Find a 2-cycle σ which is the signed sum of 4k singular simplices
corresponding to these triangles.

(b) Let ∆ represent one of the triangles. Show that the map which sends
H2(T

(k)) → H2(T
(k), T (k)\int∆) ≃ H2(∆, ∂∆) ≃ Z sends [σ] to a

generator.

(c) Show that σ is a generator of H2(T
(k)) ≃ Z.

The calculations above show that H2 detects orientability of compact con-
nected surfaces, with oriented surfaces having integral second homology and
nonorientable surfaces having zero second homology.

6.13 Reduced homology

In most of our calculations so far, the spaces have been path connected and so
computation of H0 has not been an issue. When it is a concern, it is useful to
use reduced homology instead of homology. In the path-connected case, using
reduced homology also makes the statements of results simpler. If we have a
chain complex of free abelian groups (Ci, ∂i), i ≥ 0, we can extend it further by
introducing C−1 = Z. We define ∂0 = ǫ by first selecting a basis of generators of
C0 and define ǫ(g) = 1 for each generator g. This means that ker(ǫ) is generated
as a free group on a difference of generators. When ∂1 has the property that, for
a generator g of C1, ∂1(g) is a difference of generators, we have im(∂1) ⊂ ker(ǫ).
Thus the extended chain complex is still a chain complex. The map ∂0 = ǫ is
called the augmentation of the original chain complex.

Definition 6.13.1. We define the reduced homology H̃k(C) to be the homo-
logy of the augmented chain complex for k ≥ 0. This is the same as Hk(C)

in dimensions greater than 0 but H̃0(C) = ker(ǫ)/im(∂1), whereas H0(C) =
C0/im(∂1).

Exercise 6.13.1. Show that the short exact sequence

0 �� ker(ǫ) �� C0

ǫ
�� Z �� 0,

leads to a short exact sequence

0 �� H̃0(C)
�� H0(C) �� Z �� 0,

which splits to give
H0(C) ≃ H̃0(C)⊕ Z.

For the singular complex S(X) of a topological space X we define the aug-
mentation ǫ : S0(X) → Z by ǫ(σ) = 1 for a singular 0-simplex σ. Then the

reduced homology H̃k(X) is defined to be the homology of this augmented
singular complex.
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Exercise 6.13.2.
(a) Verify that for S(X) we have ǫ∂1 = 0.

(b) Show that H0(X) ≃ H̃0(X)⊕ Z.

(c) Show that a topological space is path connected iff H̃0(X) ≃ 0.

Exercise 6.13.3. Show that the reduced homology of the sphere can be
expressed as

H̃k(S
n) =

{
Z k = n,

0 k �= n.

Exercise 6.13.4. Show that the homology of the suspension ΣX of a path-
connected space can be expressed as Hk+1(ΣX) ≃ H̃k+1(ΣX) = H̃k(X) for
k ≥ 0.

The long exact sequence of a pair (X,A) can be modified to replace homology
by reduced homology, as can the Mayer–Vietoris exact sequence.

Exercise 6.13.5. By using the augmented complex in place of the original
complex and using S−1(X,A) = S−1(X)/S−1(A) = Z/Z = 0, show that there is
a long exact sequence in reduced homology which ends in

H1(X,A) → H̃0(A) → H̃0(X) → H0(X,A) → 0.

The Mayer–Vietoris exact sequence can also be modified to use reduced
homology as long as A ∩ B �= ∅. Here we need to augment the usual simplicial
chains used by S−1(A∩B) = Z, S−1(A)⊕ S−1(B) = Z ⊕ Z, S−1(A) + S−1(B) =
Z, S−1(X) = Z.

Exercise 6.13.6. Assume that X = A∪B,A∩B �= ∅ and the hypotheses giving
the usual Mayer–Vietoris exact sequence hold. Show that there is a long exact
sequence using reduced homology which ends in

H1(X)
δ

�� H̃0(A ∩B)
i0

�� H̃0(A)⊕ H̃0(B)
j0

�� H̃0(X) �� 0

Exercise 6.13.7. Use the above reduced sequence to show that, if A and B
are path connected, A ∩ B �= ∅, A ∪ B = X, and the hypotheses giving the
Mayer–Vietoris exact sequence apply, then X is path connected.

6.14 The Jordan curve theorem and

its generalizations

We now apply the reduced Mayer–Vietoris exact sequence to prove the Jordan
curve theorem. Instead of R

2, we consider S2 and use the fact that there is
a homeomorphism between R

2 and S2\{N}, where N is the north pole. Since
there is a rotation sending any one point on the sphere to another (the sphere
is homogeneous, as is any connected surface—see Exercise 2.9.34), S2\{p} is
homeomorphic to R

2.
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Exercise 6.14.1. Suppose that C is a compact set in R
2 and h(C) its image

under a homeomorphism between R
2 and S2\{p}. Show that one of the path

components of R
2\C contains all points outside some large ball, and that there

is a homeomorphism between this path component and K\{p}, where K is the
path component of S2\h(C) which contains p. Show that for all other path com-
ponents of R

2\C, there is a homeomorphism to a corresponding path component
of S2\h(C).

The previous exercise allows us to transfer the problem about a simple closed
curve separating R

2 into two path components to a problem in the sphere. What
we first need to see is that an arc does not separate the sphere into multiple path
components. By an arc we mean the homeomorphic image of an interval [a, b].

Definition 6.14.1. We say a set C disconnects S2 if S2\C is not path connected,

or, equivalently, H̃0(S
2\C) �≃ 0.

Exercise 6.14.2. Let A be an arc h([a, b]) in S2 and c = 1
2 (a + b). Let A1 =

h([a, c]), A2 = h([c, b]). Use the Mayer–Vietoris exact sequence with

S2\A = (S2\A1) ∩ (S2\A2), S2\{h(c)} = (S2\A1) ∪ (S2\A2)

to show that H̃0(S
2\A1)⊕ H̃0(S

2\A2) ≃ H̃0(S
2\A).

Exercise 6.14.3. Use the last exercise to show that if an arc A disconnects S2,
then there is a sequence of subarcs · · · ⊂ Ai ⊂ Ai−1 ⊂ · · · ⊂ A1 ⊂ A so that the

maps induced by inclusions H̃0(S
2\A) → H̃0(S

2\A1) → · · · → H̃0(S
2\Ai) each

map a given nontrivial element [p]− [q] to a nontrivial element. Moreover, show
that these subarcs intersect in a point.

Theorem 6.14.1. If A is an arc in S2, then S2\A is path connected.

Exercise 6.14.4. Use the previous exercise to prove Theorem 6.14.1 that an
arc does not disconnect S2. (Hint: Suppose it did. Choose p and q in different
path components and use the previous exercise to show that there is a sequence
of subarcs whose diameters tend to zero with limit a single point so that p and q
remain in different path components in the complements of each of these subarcs.
Show that this leads to a contradiction.)

Exercise 6.14.5. By using an analogous argument to the one used for H̃0, show
that H1(S

2\A) ≃ 0, where A is an arc in S2.

We now consider a simple closed curve C ⊂ S2. Since C = h(S1) and S1 is
the union of two subarcs, we can write C = A1 ∪ A2, where A1 ∩ A2 = {p, q}
represent two points in the sphere.

Exercise 6.14.6.
(a) Show that S2\{p, q} is homeomorphic to R

2\{0}.

(b) Show that H̃0(S
2\{p, q}) ≃ 0, H1(S

2\{p, q}) ≃ Z.
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Exercise 6.14.7.
(a) Let C be a simple closed curve in S2. Use the above exercises and the

reduced Mayer–Vietoris sequence to show that H̃0(S
2\C) ≃ Z.

(b) Show that S2\C has precisely two path components and that each path
component is open.

Exercise 6.14.8. Suppose that p, q are points in different path components
K1,K2 of S

2\C, and r ∈ C. Let D be an open disk about r. Show that there is a
point of each path component in D. (Hint: First find a subarc A1 of C containing
r that is in D. Then write S2\C = (S2\A1) ∩ (S2\A2), where C = A1 ∪ A2 as
before. Use the path connectivity of S2\A2 to find a path connecting p to q
which misses A2. Show that this path must pass through D and use it to prove
the result.)

Theorem 6.14.2 (Jordan curve theorem). Suppose C is a simple closed
curve in R

2.

(a) R
2\C has precisely two path components, which are also its two compon-

ents and are open sets.

(b) One of these components is bounded and the other is not. Call the bounded
component the interior I and the unbounded component the exterior E.

(c) Ī = I ∪ C, Ē = E ∪ C.

Exercise 6.14.9. Prove Theorem 6.14.2.

The ideas that have gone into proving the Jordan curve theorem can be
generalized to prove similar separation theorems. The natural context for proving
these is for embedded subsets which are homeomorphic to a sphere of lower
dimension.

We first use the Mayer–Vietoris sequence to show that the complement of an
embedded disk of any dimension in a sphere has trivial reduced homology in all
dimensions. The following lemma, which is implicit in our proof above, will be
useful.

Lemma 6.14.3. Suppose there is a closed set B which is expressed as the inter-
section of a nested family of closed sets Bi, i = 0, . . . ,∞ with Bi+1 ⊂ Bi and a

nonzero element x ∈ H̃p(S
n\B0) which maps injectively to H̃p(S

n\Bi) for all i.

Then x maps injectively to a nonzero element of H̃p(S
n\B).

Exercise 6.14.10. Prove Lemma 6.14.3. (Hint: If a chain c ∈ Sp(S
n\B0) bounds

a chain d ∈ Sp+1(S
n\B), show that d is actually a chain in Sp+1(S

n\Bi) for
some i.)

Theorem 6.14.4. Suppose h : Dk → Sn is an embedding. Then
H̃i(S

n\h(Dk)) ≃ 0, i ≥ 0.

Exercise 6.14.11. Use induction and the Mayer–Vietoris sequence to prove
Theorem 6.14.4.
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We now apply the Mayer–Vietoris to relate the homology of the complement
of an embedded Sk in Sn. Before doing this, we motivate the answer by looking
at the model situation where Sk is embedded in a particularly nice fashion so
that we can see directly what the complement is. This is basically the standard
embedding, but we will look at it from a slightly different perspective. We start
by writing Sn = ∂Dn+1. Then we note that there is a homeomorphism between
Dn+1 and Dk+1 × Dn−k. Using this homeomorphism, there is a corresponding
homeomorphism between their boundaries given by

Sn ≃ ∂(Dk+1 ×Dn−k) = Sk ×Dn−k ∪Dk+1 × Sn−k−1.

When Sk = Sk ×{0} is removed, Sk × (Dn−k\{0}) first deformation-retracts to
Sk×Sn−k−1 = ∂(Dk+1×Sn−k−1) and then Dk+1×Sn−k−1 deformation-retracts
to Sn−k−1. Thus the complement Sn\Sk deformation-retracts to Sn−k−1 and so

H̃p(S
n\Sk) =

{
Z p = n− k − 1,

0 otherwise.

The ideas used in the decomposition above are critical for understanding
handle decompositions of higher-dimensional manifolds as well as generalizing
the procedure of surgery for modifying manifolds of all dimensions. These ideas
play a central role in the topology of manifolds.

We now show that the homology of the complement of an embedded sphere
is independent of the embedding.

Theorem 6.14.5 (Alexander duality for spheres). Suppose that h : Sk →
Sn, 0 ≤ k < n is an embedding. Then

H̃p(S
n\h(Sk)) ≃

{
Z p = n− k − 1,

0 otherwise.

The next three exercises lead to a proof of Theorem 6.14.5.

Exercise 6.14.12. Prove Theorem 6.14.5 when k = 0.

Exercise 6.14.13. Under the hypotheses of Theorem 6.14.5 with k = m+1 ≥ 1,
use the Mayer–Vietoris exact sequence based on the decomposition

Sn\h(Sm) = (Sn\h(Sk
+))∪(Sn\h(Sk

−)), Sn\Sk = (Sn\h(Sk
+))∩(Sn\h(Sk

−))

and the results above on the homology of complements of embedded disks to
show that

H̃p+1(S
n\h(Sm+1)) ≃ H̃p(S

n\h(Sm)).

Exercise 6.14.14. Use the previous two exercises and induction to prove
Theorem 6.14.5.

Theorem 6.14.5 is part of a much more general phenomenon called Alexander
duality. In the general case, the Alexander duality is concerned with the homo-
logy of a complement M\C, where C is some subset a manifold M . The reader
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can find nice developments of this duality in [5, 13]. We now state a consequence
of the special case k = n− 1 for further reference.

Theorem 6.14.6 (Jordan separation theorem). Suppose that h : Sn−1 →
Sn is an embedding. Then Sn\h(Sn−1) is the disjoint union of two open sets.
The closure of each set is the union of the set and h(Sn−1).

Exercise 6.14.15. Prove Theorem 6.14.6.

In Chapter 2 we used invariance of domain to prove a number of results. We
now prove invariance of domain using the Jordan separation theorem.

Theorem 6.14.7 (Invariance of domain). Suppose that U is an open subset
of R

n and f : U → R
n is 1–1 and continuous. Then f is an open map; that is,

it maps open sets to open sets.

By composing f with a homeomorphism between R
n and Sn\{p}, we can

assume that the image is contained in Sn and we just have to show that the
image of an open set in U is an open set in Sn. The next exercise leads you
through a proof of Theorem 6.14.7.

Exercise 6.14.16. Suppose x ∈ U, y = f(x) ∈ Sn and let V be an open set in
U containing x. Choose a small disk Dx = D(x, ǫ) about x which is contained
in V with Sx = ∂Dx.

(a) Use the Jordan separation theorem to show that Sn\f(Sx) is the union
of two disjoint connected open sets.

(b) Show that f(intDx) is one of these sets. (Hint: Show that f(intDx) and
Sn\f(Dx) are each path components.)

(c) Conclude that f(V ) is open.

6.15 Orientation and homology

In this section we will discuss the concept of an orientation of an n-manifold in
terms of homology. We will relate this to our earlier discussion of orientation of
surfaces in Chapter 2 and isotopy classes of embedded disks. In particular, we will
outline proofs of some statements made there. A key concept in this discussion
is the relative homology group Hn(M,M\{x}), so we will begin by discussing
this group and then apply it to distinguish interior points and boundary points
and to show that the dimension of an n-manifold is well defined.

Exercise 6.15.1. Suppose that M is an n-manifold, and x ∈ intM . Let h :
Dn → M be the restriction of a homeomorphism h′ from R

n onto an open set
U ′ in intM so that if U = h(intDn), then x = h(y) ∈ U .

(a) Show that

Hk(M,M\U) ≃ Hk(D
n, Sn−1) ≃

{
Z k = n,

0 otherwise.
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(b) Show that

Hk(M,M\{x}) ≃ Hk(D
n, Dn\{y}) ≃

{
Z k = n,

0 otherwise.

(c) Show that the map Hk(M,M\U) → Hk(M,M\{x}) is an isomorphism.

Exercise 6.15.2. Show that if Dn
+ is the upper half disk and Sn−1

+ is the upper

half of the sphere, then Hk(D
n
+, S

n−1
+ ) ≃ 0.

Exercise 6.15.3. Show that a boundary point x and an interior point y of
an n-manifold M with boundary are distinguished by their homology groups
Hn(M,M\{x}) ≃ 0 and Hn(M,M\{y}) ≃ Z.

Exercise 6.15.4. Show that ifM is an n-manifold, then it is not an m-manifold
for m �= n.

Now suppose M is a connected n-manifold. We will assume that M has no
boundary—if it does, then our first step is to replace M by M\∂M = intM
for this discussion. Note that we have shown that if x ∈ M and U is an open
set about x homeomorphic to the interior of an embedded n-disk which con-
tains x, then if rU,x : Hn(M,M\U) → Hn(M,M\{x}) is the map induced by
inclusion, then rU,x is an isomorphism of groups isomorphic to Z. Moreover,
h : (Dn, Sn−1) → (M,M\U) → (M,M\{x}) gives the corresponding generators
µU ∈ Hn(M,M\U), µx ∈ Hn((M,M\{x}) with rU,x(µU ) = µx as images of a
generator of µD of Hn(D

n, Sn−1). This leads to the following definition.

Definition 6.15.1. An n-manifold M is orientable if there is a choice µx ∈
Hn(M,M\{x}) for each x ∈ M so that

• µx is a generator of Hn(M,M\{x}) for each x ∈ M ;

• these choices are locally consistent in the sense that for each x ∈ M , there
is an open set U containing x which is homeomorphic to the interior of a
disk in an embedded R

n and a generator µU ∈ Hn(M,M\U) ≃ Z so that
rU,y(µU ) = µy for all y ∈ U . Here rU,x is the map induced by inclusion.

A choice of µx for all x as above is called a homology orientation or just an
orientation for M .

Exercise 6.15.5. Show that if a connected n-manifoldM is orientable, then the
choice of homology orientation at a fixed x0 determines the choice everywhere.
(Hint: Use the fact that it determines it locally and path connectivity.)

Since we will be working extensively with the groups Hi(M,M\A), we intro-

duce the shorthand notation HM,A
i for these groups. Whenever A ⊂ B, we

have an inclusion (M,M\B) ⊂ (M,M\A) and an induced homomorphism

rB,A : HM,B
i → HM,A

i . Of particular importance to us are the homomorph-
isms rA,x. Note that, if x ∈ A ⊂ B, then rA,xrB,A = rB,x. We use the notation
rx for the Hn(M) → HM,x

n induced by inclusion. For a manifold with boundary,
there is also a map we denote by rx : Hn(M,∂M) → HM,x

n when x ∈ intM .
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We now show how to orient R
n. Consider the disk of radius r about 0,

which we denote Dr. When r1 < r2 there is an inclusion Dr1 ⊂ Dr2 . Let Cr =
R

n\Dr. Now there is an inclusion (Rn, Cr2) ⊂ (Rn, Cr1). By excision, there is an
isomorphism HR

n,Dr
n ≃ Hn(R

n, Cr) ≃ Hn(D
n, Sn−1), where we are excising out

the complement of a disk of larger radius and then deformation-retracting the
annular region between the spheres to the outer sphere. Thus HR

n,Dr
n ≃ Z with

a generator µr coming from a selected positive generator µD ∈ Hn(D
n, Sn−1).

Moreover, we can choose these generators consistently so that rDr2
,Dr1

(µr2
) =

µr1 by choosing µ1 and getting the others using the isomorphisms induced by
inclusion. Now let x ∈ Dr. Then the inclusion map (Rn, Cr) → (Rn,Rn\{x})
induces an isomorphism in homology since R

n\{x} deformation-retracts back to
C̄s for any s > r, as does Cr. Then rDr,x(µr) is a generator µx ∈ HR

n,x
n Moreover,

if r1 < r2, and x ∈ Dr1
, then rDr2 ,Dr1

(µr2
) = µr1

and rDr2 ,x = rDr1 ,xrDr2 ,Dr1

imply that both µr2 and µr1 map to the same element µx. We now define an
orientation µx by the following prescription. Choose a disk Dr with x ∈ Dr

and let µx = rDr,xµr. Note that, if U is an open disk about x with U ⊂ Dr,
then rU,x and rDr,x being isomorphisms imply that rDr,U is as well. Thus these
choices of µx give an orientation for R

n since they come from rU,x(µU ), where
µU = rDr,U (µr). Instead of the argument that rDr,U is an isomorphism, we could
use the convexity of U as follows. The radial deformation retraction of R

n\{x} to
C̄s for s > r will restrict to a deformation retraction of R

n\U onto C̄s. This will
work for any convex set K, giving consistent homotopy equivalences between
(Rn, C̄s) and (Rn,Rn\Dr), (R

n,Rn\K), (Rn,Rn\{x}) for x ∈ K. This implies

that HR
n,K

i = 0 for i �= n and HR
n,K

n ≃ Z with a generator rDr,K(µr) so that
rK,x(µK) = µx for each x ∈ K. If we start with a given orientation µx for each
x, then this will determine consistent choices for µr for all r and a consistent
µK . We will later use this for K an i-cube given by a product of closed intervals
I1 × · · · × In (some of which may be points). For future reference, we state the
results of this discussion as a proposition.

Proposition 6.15.1. R
n is oriented by choosing a consistent set of generators

µr ∈ HR
n,Dr

n ≃ Z so that, if r1 < r2, then rDr2 ,Dr1
(µr2

) = µr1
. Then for

any x ∈ R
n, choosing r with x ∈ Dr and defining µx = rDr,x(µr) gives an

orientation. Moreover, if K is a compact convex set contained in Dr and x ∈ K,
then the inclusion maps R

n\Dr → R
n\K → R

n\{x} are homotopy equivalences
inducing isomorphisms for all i. The maps rDr,K , rK,x are each isomorphisms

with composition the isomorphism rDr,x. Thus HR
n,K

i = 0 if i �= n and HR
n,K

n ≃
Z. If we choose the generator µK = rDr,K(µr), then it has the property that
rK,x(µK) = µx for each x ∈ K. Given an orientation s(x) = µx, the choice of
µx for a single x will determine the choice of consistent µr for all r and hence
a consistent µK whenever x ∈ K.

Now suppose A is any nonempty compact set in R
n. Choose r so that A ⊂

Dr. Then rDr,A(µr) is an element µA so that rA,x(µA) = µx for each x ∈
A. Thus the map rA,x is surjective for each x ∈ A, but it is not always an
isomorphism. For example, if A consists of two points, then HR

n,A
n ≃ Z ⊕ Z by

excision.
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Here is another way to look at our orientation of R
n. We can consider R

n

as embedded in Sn as Sn\{N}, where N = (0, 1), via stereographic projection.
The pair (Rn, Cr) then corresponds to (Sn\{N}, Bs\{N}) where Bs is an open
disk about N . Note that, as r increases, the diameter s decreases. By excision,
Hn(S

n\{N}, Bs\{N}) ≃ Hn(S
n, Bs). Thus our system of generators µr corres-

ponds to consistent generators of Hn(S
n, Bs). From the long exact sequence of

the pair (Sn, Bs), the map Hn(S
n) → Hn(S

n, Bs) is an isomorphism. Thus our
generators µs come from a single generator µ ∈ Hn(S

n). So an equivalent way to
have found our orientation was to start with a generator µ ∈ Hn(S

n) and use it
to induce generators of µx ∈ Hn(S

n, Sn\{x}) and then identify this group with
Hn(R

n,Rn\{x}) by excision whenever x �= N .
Note that this discussion shows that Sn is oriented by choosing a gener-

ator µ ∈ Hn(S
n). Similarly, any compact connected n-manifold M without

boundary with Hn(M
n) ≃ Z so that rx : Hn(M) → HM,x

n is an isomorphism
for all x ∈ M will be oriented in this fashion. For a manifold with bound-
ary, we can get an orientation (which is a consistent choice of generators of
HM,x

n for x ∈ intM, or, equivalently, an orientation of intM) by showing
that Hn(M,∂M) ≃ Z and rx : Hn(M,∂M) → HM,x

n is an isomorphism for
all x ∈ intM .

Recall that for the case of compact connected surfaces without boundary,
we found that the orientable surfaces were distinguished from the nonorient-
able ones in that H2(M) ≃ Z when M is orientable and H2(M) ≃ 0 when M
is nonorientable. Since the surfaces with boundary come from ones without a
boundary by removing disks, we could use long exact sequences of pairs and the
fact that the disks are contractible to show that for an orientable surface with
boundary H2(M,∂M) ≃ Z. We could also have checked from our calculations via
CW complexes that the map restricting to (M,M\{x}) gives an isomorphism in
homology.

Our main theorem is a parallel result for n-manifolds, where we are now using
the definition of orientability in terms of homology.

Theorem 6.15.2. Let M be a connected n-manifold with boundary ∂M , possibly
empty.

(1) Hi(M) = 0, i > n.

(2) If M is compact, nonorientable, or M is not compact, then Hn(M) = 0.

(3) If ∂M = ∅ and M is compact and orientable, then rx : Hn(M) → HM,x
n

is an isomorphism for all x ∈ M .

(4) If M is compact with ∂M �= ∅, then Hn(M) = 0.

(5) If M is compact with ∂M �= ∅ and M is orientable, then rx :
Hn(M,∂M) → HM,x

n is an isomorphism for each x ∈ intM .

In part (3), the homology orientation classes µx will all be in the image
of a single generator µ ∈ Hn(M), which is called the orientation homology
class of M corresponding to the orientation. Conversely, when there is a class
µ ∈ Hn(M) ≃ Z and the maps rx : Hn(M) → HM,x

n are isomorphisms for
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each x, then the classes µx = rx(µ) will determine a homology orientation.
For if U is an open set homeomorphic to a disk about x and y ∈ U , then if
we take the map rU : Hn(M) → HM,U

n , then rU (µ) = µU gives a class so
that rU,y(µU ) = rU,yrU (µ) = ry(µ) = µy. Thus these classes satisfy the local
consistency condition for a homology orientation. In part (5), the orientation
class comes from the generator of Hn(M,∂M).

The proof of Theorem 6.15.2 will be quite involved. Before beginning our
discussion of it, we want to look back at surfaces and see how to apply ideas
of homology orientations to them. To distinguish different definitions of orienta-
tions, we will refer to the current form as homology-orientable. We will show that
handle-orientable implies homology-orientable implies disk-orientable, providing
another proof that handle-orientability implies disk-orientability. We also show
that if r is a reflection of the disk, then ir and r are not ambient isotopic as
maps of R

2. We will work in dimension n and then apply this to surfaces.

Exercise 6.15.6. Suppose M is a compact and connected and homology-
oriented n-manifold without boundary. Denote by µ ∈ Hn(M) a generator with
µ → µz under rz : Hn(M) → HM,z

n and µz the class in the definition of homology
orientation.

(a) Show that if Ht :M → M is an isotopy and H0 = id, then (Ht)∗(µ) = µ
for all t ∈ I.

(b) Suppose that Ht(x) = y. Show that (Ht)∗(µx) = µy. (Hint: Considering
the commutative diagram

Hn(M)
(Ht)∗

��

rx

��

Hn(M)

ry

��

HM,x
n

(Ht)∗
�� HM,y

n

is helpful.)

(c) Let h0, h1 : D
n → M be embedded disks which are ambient isotopic; that

is, h1 = H1h0, where Ht is an isotopy of M . Let µD ∈ Hn(D
n, Dn\{0})

be the positive generator. If (h0)∗µD = ǫµh0(0), show that (h1)∗µD =
ǫµh1(0).

(d) Show that h0 is not ambient isotopic to h0r, where r : Dn → Dn is a
reflection.

Note that if M is a compact, connected and homology-oriented n-manifold
with boundary, then all of the previous exercise can be repeated virtually word
for word where we now use the assumed class µ ∈ Hn(M,∂M) instead.

We showed earlier that Hn(S
n) ≃ Z, n > 0. Hence our theorem says that it

is homology orientable, with homology orientation coming from rx : Hn(S
n) →

HSn,x
n .
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Exercise 6.15.7.
(a) Suppose that n > 0. Without using the theorem, show that Hn(S

n) ≃ Z

with generator µ implies that rx : Hn(S
n) → HSn,x

n is an isomorphism.

(b) If µx = rx(µ), show that µx satisfies the definition of a homology
orientation.

Exercise 6.15.8. Suppose H : R
n × I → R

n × I is an isotopy. Extend H to a
map H̃ : Sn × I → Sn × I by regarding R

n as embedded into Sn as Sn\{N},

where N = (0, 1), and defining H̃(N, t) = (N, t). Show that H̃ is an isotopy.

Exercise 6.15.9. Suppose that h0, h1 : D
n → R

n are embedded disks which are
ambient isotopic. By regarding R

n as embedded in Sn as Sn\{N} and taking
the homology orientation of R

n as coming from the homology orientation of Sn,
show that if (h0)∗(µD) = ǫµh0(0) then (h1)∗(µD) = ǫµh1(0). Conclude that h0 is
not ambient isotopic to h0r.

Here is a more direct approach to the last result, where we are now using
ambient isotopies of R

n which are the identity outside a disk, as in Chapter 2.

Exercise 6.15.10. Let Gt : R
n → R

n be an isotopy which is the identity outside
of a large disk B with G0 = id.

(a) Show that the map (G1)∗ : H
R

n,int B
n → HR

n,int B
n is the identity.

(b) Use (a) to show that the map (G1)∗ : HR
n,x

n → H
R

n,G1(x)
n sends the

local homology orientation at x determined via a choice of generator
gB ∈ HR

n,int B
n to the local homology orientation at G1(x) determined

by gB .

(c) Show that if h0, h1 : D
n → R

n are ambient isotopic embedded disks with
ambient isotopy Gt which is the identity outside of a large disk B (i.e.
G0 = id, G1h0 = h1), and we choose the homology orientation consistent
with h0, then it is also consistent with h1.

(d) Show that h and hr are not ambient isotopic.

Finally, we look at a direct approach without the assumption that the isotopy
is the identity outside a disk.

Exercise 6.15.11. Let Gt : R
n → R

n be an isotopy with G0 = id.

(a) Show that if Dr is a disk about the origin in R
n, then there is another

disk Ds for s ≥ r about the origin so that Gt(R
n\Ds) ⊂ R

n\Dr for all
t. (Hint: Consider the image of p1H

−1(Dr × I), where p1 : R
n × I → R

n

is projection onto the first coordinate. This is a compact set and so is
contained in some Ds.)

(b) Show that the map (G1)∗ : H
R

n,Ds
n → HR

n,Dr
n sends µs to µr.

(c) Use (b) to show that the map (G1)∗ : HR
n,x

n → H
R

n,G1(x)
n sends the

local homology orientation at x determined via a choice of generator
gs ∈ HR

n,Ds
n to the local homology orientation at G1(x) determined

by gr.
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(d) Now suppose that h0, h1 : Dn → R
2 are ambient isotopic embedded

disks (i.e. G0 = id, G1h0 = h1). Show that if we choose the homology
orientation consistent with h0, then it is also consistent with h1.

(e) Show that h and hr are not ambient isotopic.

We now apply this information to surfaces. First, any handle-orientable con-
nected handlebody is homology-orientable. This follows from the classification
theorem and homology calculations but can also be proved inductively. It suf-
fices to assume that the handlebody is formed from a single 0-handle, disjointly
attached 1-handles, and some 2-handles. The 0-handle is homology-oriented
from its orientation as a handle. The assumption that the surface is oriented
as a handlebody means that when we attach any 1-handle to the 0-handle, the
result is identifiable to an annulus which has a homology orientation arising
as a subset of the plane which is consistent with the homology orientations on
the 0-handle and 1-handle. This then allows us to get a homology orientation of
the sub-handlebody formed from the 0-handle and 1-handles. When a 2-handle is
attached, then the collar where it is attached plus the 2-handle is identifiable with
an open disk in the plane in a manner consistent with the homology orientation
of the 2-handle and the one imposed on the collar by the rest of the surface.

For a compact connected surface without boundary, Exercise 6.15.6 implies
that homology-orientability implies disk-orientability. If the surface has bound-
ary, the bounded version of Exercise 6.15.6, which we discussed immediately
following it, gives the result. Combining this with the last paragraph, this implies
that handle-oriented surfaces are disk-oriented. This was used in the Chapter 2
supplementary exercises to show that all of the definitions of orientability are
equivalent for handlebodies.

We now leave surfaces and return to begin the proof of Theorem 6.15.2. We
first want to rephrase the choice of a consistent local orientation in terms of
covering spaces. Suppose M is a connected n-manifold. We form two covering
spaces ofM , which we denote M̃g, M̃ . The points of M̃ are elements of the group

HM,x
n , where x ranges over the points of M . To be a point of M̃g, the element

must be a generator of the group. We are using the notion of covering space in
a more general sense than we did earlier, in that we are not requiring M̃, M̃g

to be path connected. In fact, the path connectivity of M̃g will be shown to
be equivalent to nonorientability. However, we are requiring the local triviality
condition of a covering space. Thus we may think of these covering spaces as the
disjoint union of covering spaces in the earlier sense. There is a natural inclusion
M̃g ⊂ M̃ . We define a projection map p : M̃ → M by sending k ∈ HM,x

n to

x ∈ M . By restriction we get pg : M̃g → M . We want to define a topology of

M̃, M̃g so that these maps are continuous and are covering maps. To do this we
use the idea of elements of HM,x

n being locally consistent. Thus we use as a basis

of the topology the sets Ũα = {rU,y(α)}, where U is the interior of an embedded
disk in a Euclidean neighborhood and α ∈ HM,U

n denotes a fixed element. Here
the maps rU,y are induced by inclusion.



340 6. Homology

Exercise 6.15.12.
(a) Show that the elements of Ũα are locally consistent in the sense that if

we have vx ∈ Ũα with vx ∈ HM,x
n and W ⊂ U is a neighborhood of x

homeomorphic to an open disk with vW the element of HM,W
n ≃ HM,x

n

which maps to vx under this isomorphism, then we have rW,y(vW ) ∈ Ũα.

(b) Show that this does provide a basis for a topology.

(c) Show that (M̃g, pg,M) and (M̃, p,M) are covering spaces.

Exercise 6.15.13.
(a) Show that nearby points in M̃ have the same divisibility as elements of

groups isomorphic to Z.

(b) Show that M̃ consists of the disjoint union of one copy of the identity
covering space (corresponding to the 0 element of HM,x

n for each x) and

a natural number of copies of covering spaces equivalent to (M̃g, pg,M),
one for each divisibility d ∈ N.

Exercise 6.15.14.
(a) Show that the homology-orientability condition on M is equivalent to

finding a continuous map s : M → M̃g so that ps(x) = x. Such a map s
is called a section of the covering space.

(b) Show that if there is a nonzero section of p : M̃ → M (so that the image

of x is not the zero element of HM,x
n ), then there is a section of M̃g.

(c) Show that M is nonorientable iff the only section of p : M̃ → M is the
zero section.

We next look at properties of sections of M̃ , which we denote by ΓM .

Exercise 6.15.15. Show that if s1, s2 are sections and s1(x) = s2(x) for one x,
then s1 = s2.

Exercise 6.15.16. Show that there exists a section s : M → M̃g iff the cov-

ering space (M̃g, pg,M) is equivalent to the two copies of the identity covering

space, or, equivalently, M̃g is the union of two components, each of which is sent
homeomorphically to M via pg.

Exercise 6.15.17. Show that M is orientable iff M̃g is homeomorphic to the
disjoint union of two copies of M .

Exercise 6.15.18. Use the theory of covering spaces to show that a simply
connected manifold is orientable. (Hint: Nonorientability leads to a nontrivial
connected double covering.)

Exercise 6.15.19.
(a) Show that if π1(M,x) does not have an index-2 subgroup, then M is

orientable.

(b) Give an example of a surface which is orientable and whose fundamental
group contains an index-2 subgroup.
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Exercise 6.15.20. Suppose that M is connected. Show that ΓM has the struc-
ture of a group, and the evaluation map E : ΓM → HM,x

n ≃ Z given by
E(s) = s(x) is an injective homomorphism (monomorphism) for all x ∈ M .

Exercise 6.15.21.
(a) Show that if M is connected and orientable, then ΓM ≃ Z with

isomorphism given by E.

(b) Show that if M is connected and nonorientable, then ΓM = 0.

For a manifold M with possibly empty boundary, there is a map SM :
Hn(M,∂M) → Γint M so that SM (α)(x) = rx(α).

Exercise 6.15.22.
(a) Show that SM (α) satisfies the local consistency condition required for a

section.

(b) Show that SM is a homomorphism.

Our main tool in proving Theorem 6.15.2 is the following theorem.

Theorem 6.15.3. Let M be a connected n-manifold, with ∂M = ∅, and let A
be a compact subset of M .

(1) HM,A
i = 0, i > n.

(2) If α ∈ HM,A
n and rA,x(α) = 0 for all x ∈ A, then α = 0.

(3) If M is oriented via a section s(x) = µx, then there exists µA ∈ HM,A
n

with rA,x(µA) = µx.

Proposition 6.15.1 asserts that Theorem 6.15.3 is true for M = R
n and A a

compact convex set. The next set of exercises will deduce Theorem 6.15.2 from
Theorem 6.15.3.

Exercise 6.15.23. Suppose that M is connected and compact, ∂M = ∅.

(a) Hi(M) = 0, i > n.

(b) If M is nonorientable, then Hn(M) = 0.

(c) If M is orientable via a section s(x) = µx, then there exists µ ∈ Hn(M)
with rx(µ) = µx. (Hint: Take A =M .)

Exercise 6.15.24. Suppose M is connected and is not compact and ∂M = ∅.
Let i ≥ n. Let α ∈ Hi(M) be represented by a chain c and suppose S is the
support of c.

(a) Show that there is an open set U with S ⊂ U and Ū compact.

(b) Let V =M\Ū . Show that Hi(U) ≃ Hi(U ∪ V, V ).

(c) Use the long exact sequence of the triple (M,U ∪ V,U) and
Theorem 6.15.3(1) to show that Hi(U ∪ V, V ) = 0 for i > n.

(d) Show that α = 0 when i > n.
For the remaining parts, let i = n.
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(e) Show that rx(α) = 0 for all x ∈ M by evaluating it at x ∈ V .

(f) By first regarding c as a chain in (U ∪ V, V ) and using the long exact
sequence of the triple, show that α = 0.

The previous exercises have taken care of Theorem 6.15.2(1)–(3) when ∂M =
∅. The next exercises will assume ∂M �= ∅. To deal with this case, we use the
fact that there is a collar neighborhood C of ∂M which is homeomorphic to
∂M × [0, 1].

Exercise 6.15.25. Let C ≃h ∂M × [0, 1] be a collar. Let Ct = h[0, t) and
At =M\Ct, t ≤ 1.

(a) Show that M, intM and At deformation-retract to A1.

(b) Show that (M,Ct) deformation-retracts to (M,∂M) for t < 1.

(c) Show that Hi(M) ≃ Hi(intM)

(d) Show that the map induced by inclusion Hi(M,∂M) → HM,At

i is an
isomorphism for all t.

We next take care of the remaining cases of Theorem 6.15.2(1)–(4) when
∂M �= ∅.

Exercise 6.15.26. Show that Hi(M) = 0, i ≥ n.

The next exercise takes care of Theorem 6.15.2(5).

Exercise 6.15.27. Suppose M is compact and orientable with ∂M �= ∅. Let
s(x) = µx ∈ Γint M be a section for x ∈ intM . Show that there exists a class
Hn(M,∂M) which maps to µx under the map rx : Hn(M,∂M) → HM,x

n for each
x ∈ intM .

We now return to prove Theorem 6.15.3. The key to the argument is
to examine the relative Mayer–Vietoris sequence connecting the homology of
(M,M\C) when C takes on the values C = A,B,A ∩ B,A ∪ B. Note that
(M\A) ∪ (M\B) =M\A ∩B, (M\A) ∩ (M\B) =M\A ∪B. We leave it as an
exercise to justify the necessary relative Mayer–Vietoris exact sequence since we
have only discussed this in the absolute case.

Exercise 6.15.28 (Relative Mayer–Vietoris sequence). Show that if U, V
are open sets in M , then there is a long exact sequence with segment

Hk+1(M, U ∪ V )
δ

�� Hk(M, U ∩ V )
ik

�� Hk(M, U) ⊕ Hk+1(M, V )
jk

�� Hk(M, U ∪ V )
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(Hint: Start with the diagram

0

��

0

��

0

��

0 �� Sk(U ∩ V ) ��

��

Sk(U) ⊕ Sk(V ) ��

��

Sk(U) + Sk(V ) ��

��

0

0 �� Sk(M) ��

��

Sk((M) ⊕ Sk(M) ��

��

Sk(M) ��

��

0

0 �� Sk(M, U ∩ V ) ��

��

Sk(M, U) ⊕ Sk(M, V ) ��

��

Sk(M)/(Sk(U) + Sk(V )) ��

��

0

0 0 0

and consider the horizontal rows as chain complexes and the vertical columns
as giving an exact sequence of chain complexes. Look at the long exact
sequence in homology to see that it says that the bottom horizontal row is
exact. Then take the long exact sequence arising from this exact row. Then
show that the fact that there is an isomorphism induced by inclusion between

H
{U,V }
k (U ∪ V ) and Hk(U ∪ V ) leads to an isomorphism between Hk(M,U ∪V )

and Hk(S(M)/(S(U) + S(V )).)

Exercise 6.15.29. Use the previous exercise to show that if A,B are closed
subsets of M , then there is long exact sequence

· · · �� HM,A∩B
k+1

δ
�� HM,A∪B

k

ik
�� HM,A

k
⊕ HM,B

k

jk
�� HM,A∩B

k

δ
�� · · · .

The exact sequence from Exercise 6.15.29 will be the basis for most of the
remaining arguments. The next exercise shows that if Theorem 6.15.3 holds for
A,B,A∩B, then it holds for A∪B and is the basis of inductive proofs to show
that it holds generally.

Exercise 6.15.30. Show that if A,B,A ∩ B satisfy Theorem 6.15.3, then so
does A ∪B.

The point of Exercise 6.15.30 is that we can inductively build up sets C
satisfying the conclusion of Theorem 6.15.3 by starting with pieces A,B,A ∩ B
which have this property and using C = A ∪ B. Note that if C is a compact
subset of a coordinate neighborhood U ⊂ M which is homeomorphic to R

n, then
HM,C

k ≃ HR
n,C

k by excision. Thus to prove our results for C it suffices to prove
these statements when M = R

n.
Our starting point for the argument will be when M = R

n and C is a cube
of some dimension k with 0 ≤ k ≤ n. By a cube we mean a product of intervals
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I1 × · · · × In, and each interval is of the form [ai, bi] with ai ≤ bi. This case was
done in Proposition 6.15.1.

Now consider the space Cs formed from an n-cube by subdividing it using
subdivisions of each subinterval. This is built up from subcubes by adding them
one step at a time, where the intersections are finite unions of cubes of lower
dimension. We can think of this as a CW complex where all of the cells are
embedded cubes of various dimensions. Let K be any subcomplex of Cs.

Exercise 6.15.31. Show that if K is a subcomplex of Cs, then show the con-
clusion of Theorem 6.15.3 holds for K. (Hint: Use induction on the number of
cells in K and Exercises 6.15.30.)

Now suppose A is a compact subset of R
n. It will be contained in a large cube

C. By subdividing this cube into subcubes successively (say subdivide the edges
in half, fourths, etc.) we can let Ki be the subcomplex of the ith subdivision
consisting of all closed subcubes which intersect A somewhere in their interior.
We will have · · · ⊂ K2 ⊂ K1 ⊂ K0 = C and A ⊂ Ki for all i. Moreover,
A = ∩iK

i.
Suppose α ∈ HR

n,A
i is represented by a chain c. Look at ∂c. It is a finite sum

of singular simplices, each of which has image is R
n\A. Let B ⊂ R

n\A be the
compact set which consists of images of these simplices.

Exercise 6.15.32.
(a) Show that there is a minimal distance between points of A and points of

B. Use this to show that there is an integer p so that c also represents a
cycle of Si(R

n,Rn\Kp).

(b) Show that (a) implies that α = 0 when i > n since it is in the image of
Hi(R

n,Rn\Kp).

(c) Suppose i = n and rA,x(α) = 0 for x ∈ A. Show that this means that if
αK is the class represented by c, then rKp,x(αK) = 0 for x ∈ Kp. Then
show that this implies that αK = 0 and hence α = 0.

(d) Show that the usual orientation of R
n provides the class µA that restricts

to the orientation class µx for x ∈ A in the statement of Theorem 6.15.3.

We now have proved Theorem 6.15.3 when M = R
n and A is any compact

subset. We next consider a general connected n-manifold M .

Exercise 6.15.33. Show that Theorem 6.15.3 holds forM when A is a compact
subset of a coordinate neighborhood U .

Exercise 6.15.34. Show that any compact set A ⊂ M can be written as the
union A = A1 ∪ · · · ∪Am of a finite number of sets Ai which are compact sets in
an Euclidean neighborhood Ui ⊂ M .

Exercise 6.15.35. By using induction on the number of sets, m, in the
description above, complete the proof of Theorem 6.15.3.
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6.16 Proof of homotopy invariance of

homology

We next look at the homotopy invariance property. One of the important facets
of singular homology is that it is a homotopy functor, which includes the fact that
a homotopy equivalence of topological spaces f : A → X gives an isomorphism
of homology groups Hk(A) → Hk(X) in each dimension. We first look at a proof
of this when k = 0, 1, where the argument is simpler to understand. For H0, we
use the fact that H0 just measures the path components, with one copy of Z

for each path component. A representative cycle is a map from ∆0 to a point in
that path component.

Suppose that f, g : X → Y are homotopic maps. To show that they induce
the same map in homology, we need to see that the chain maps f♯ and g♯ are
chain homotopic.

We first look at dimension 0. Since all of the maps we are consider-
ing are linear, it suffices to look at a singular 0-simplex σ. Let F be
the homotopy between f and g, so F (x, 1) = g(x), F (x, 0) = f(x). The
induced maps are f♯(σ) = fσ and g♯(σ) = gσ. Suppose σ(0) = p. Let
γ : [0, 1] = ∆1 → Y be the singular 1-simplex defined by the composition

[0, 1] �� {p} × [0, 1]
F

�� Y.

Exercise 6.16.1. Define H0(σ) = γ and show that H0 provides a chain
homotopy between fσ and gσ.

We now look at dimension 1, noting that we have defined H0 above. We need
to define H1 : S1(X) → S2(Y ) so that, for a singular 1-simplex σ : I → X, we
have the formula

g♯σ − f♯σ = ∂2H1(σ) +H0∂1(σ).

We first use the homotopy F to define a map K = F (σ × id) : I × I → Y where
σ×id : I×I → X×I. Note thatKi0 = fσ,Ki1 = gσ, where i0(s) = (s, 0), i1(s) =
(s, 1). Moreover, if τ1(0) = σ(1), τ0(0) = σ(0) are the singular 0-simplices coming
from restricting σ to its end points, then we have ∂1σ = τ1 − τ0. Moreover,
H0(τ1)(y) = K(1, y), H0(τ0)(y) = K(0, y).

We now look at Figure 6.6.
Motivated by this figure, we can define two singular 2-simplices α, β in I×I =

∆1×I with positive orientation on α and negative orientation on β as depicted via
the arrows on their boundaries, and then define H1(σ) = Kβ−Kα = K♯(β−α).

Exercise 6.16.2. Show that with this definition of H1, we have the required
formula

g♯(σ)− f♯(σ) = ∂2H1(σ) +H0∂1(σ).

Exercise 6.16.3. Use the previous exercises to show that if f, g : X → Y are
homotopic maps then the induced maps f♯, g♯ are chain homotopic in dimensions
0 and 1. Deduce that f∗ = g∗ in homology.
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fσ

H0(τ1)H0(τ0)

gσ

Kα

Kβ

Figure 6.6. Constructing H1.

In order to extend this to higher-dimensional chains, we need to analyze
the process above. First, the homotopy F is used at the last step in each case
and can be separated from the definition. The relation between f, g, F is g =
FiX1 , f = FiX0 , where i

X
j : X → X × I is iXj (x) = (x, j). If we label the maps

Hk = HX,Y
k : Sk(X) → Sk+1(Y ) that we have defined already, k = 0, 1, then

there are corresponding maps related to the maps ij : X → X× I, which we will

label as HX
k instead of the more cumbersome HX,X×I

k . Here we use the identity

homotopy I(x, t) = (x, t) as the map connecting iX0 and iX1 . The maps H
X,Y
k :

Sk(X) → Sk(Y ) then factor as F♯H
X
k , where HX

k : Sk(X) → Sk+1(X × I).

The term (∂2H
X,Y
1 + HX,Y

0 ∂1)(σ) just becomes F♯(∂H
X
1 + HX

0 ∂1)(σ). On the
right-hand side, we note that g♯ = F♯(i

X
1 )♯, f♯ = F♯(i

X
0 )♯, and so we can rewrite

g♯(σ) − f♯(σ) = F♯((i
X
1 )♯(σ) − (iX0 )♯(σ)). Thus our formula follows from the

special case

(∂2H
X
1 +HX

0 ∂1)(σ) = ((iX1 )♯ − (iX0 ))(σ)

by taking composition with F♯. Thus we now restrict to looking at what is
happening in this case.

Let i∆1
j be the corresponding inclusions for ∆1. Then if we use the identity

map ι1 ∈ S1(∆1), we will have a formula

(∂2H
∆1
1 +H∆1

0 ∂1)(ι1) = ((iX1 )♯ − (iX0 ))(ι1).

Now apply (σ× id)♯ to both sides of this equation. On the left-hand side we note

first that our definition of HX
1 (σ) is just (σ × id)♯(β − α) = (σ × id)♯H

∆1
1 (ι1).

When we take ∂2 of this, we can use the fact that (σ × id)♯ is a chain map

and commutes with ∂2 to rewrite ∂2H
X
1 (σ) = (σ × id)♯∂2H

∆1
1 (ι1). Moreover,

HX
0 ∂1(σ) = (σ × id)♯∂(ι). by our construction. Thus the left-hand side of our

fundamental equation becomes

(σ × id)♯((∂2H
∆1
1 +H∆1

0 ∂1)(ι)).
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For the right-hand side, we note that σ = σ♯(ι1) and iXj σ = (σ × id)i∆1
j

implies (iXj )♯(σ) = (iXj )♯σ♯(ι1) = (σ × id)♯(ι1). Thus the right-hand side can
be rewritten as

(σ × id)♯((i
∆1
1 )♯(ι1)− (i∆1

0 )♯(ι1)).

Thus our formula for σ follows from the formula for ι by composing with (σ×id)♯.
This discussion shows that generalizing this construction to higher dimensions

can be done through first specializing to the case of ∆k and the identity singular
simplex ιk and then defining our maps in general using this.

The key to extending the above argument to all dimensions is finding a way to
systematically subdivide the product ∆i×I into (i+1)-simplices as we have done
in the case i = 1 above. This can be done inductively on i. An important fact
about ∆i ×I is that it is a convex subset of R

i ×R = R
i+1. We can redefine what

we have done as follows. Whenever we have a convex space with points u0, . . . , ui,
we can define an affine linear singular i-simplex by using the affine linear map
that sends ej to uj . We will denote this by [u0, u1, . . . , ui]. Now consider ∆1 × I.
Denote by vj the point (ej , 0) and by wj the point (ej , 1). Then H0([e0]) =
[v0, w0], and when we extend to ∆1, we get H0([ej ]) = [vj , wj ], j = 0, 1. Another
way to state what we are doing for ∆1 is that we are using the definition for ∆0

to define H0 on these particular singular simplices in ∆1 by defining it on the
face maps Fj : ∆0 → ∆1, j = 0, 1, by H0(Fj) = (Fj × id)♯H0([e0]).

Now look at our definition of H1. For simplicity, we will delete the super-
script ∆1. For the case when σ is just the identity map ι1 = [e0, e1], then
the simplex β = [v0, w0, w1] and α = [v0, v1, w1]. Thus our definition is
H1([e0, e1]) = [v0, w0, w1]− [v0, v1, w1]. Note that

H0∂([e0, e1]) = H0([e1]− [e0]) = [v1, w1]− [v0, w0].

When we take ∂H1([e0, e1]), we get [w0, w1] − [v0, v1] = (i1)♯([e0, e1]) −
(i0)♯([e0, e1]), as well as the terms coming from deleting a vertex besides v0 in the
first and w1 in the last term. There are two types of terms here. The first type
comes from deleting a nonrepeated index—here this gives [v0, w0] − [v1, w1] =
−H0∂([e0, e1]). The other type of terms come from deleting an interior repeated
index. Here we get two terms such that −[v0, w1] + [v0, w1] = 0. Putting all of
these together gives the formula

(∂H1 +H0∂)([e0, e1]) = (i1)♯([e0, e1])− (i0)♯([e0, e1]).

The formulas we gave above for HX
0 , H

X
1 can now be rephrased in a more

functorial way. We define them as maps from Si(X) → Si+1(X× I) by using the
formula HX

0 (σ) = (σ × id)♯H0([e0]) and H
X
1 (σ) = (σ × id)♯(H1([e0, e1]). Then

∂X
1 H0(σ) = ∂X

1 (σ × id)♯H0([e0]) = (σ × id)♯∂
∆0

1 H0([e0]))

= (σ × id)♯((i
∆0

1 )♯([e0])− (i∆0

0 )♯([e0])) = (iX1 )♯σ♯([e0])− (iX0 )♯σ♯([e0])

= (iX1 )♯(σ)− (iX0 )♯(σ).
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Exercise 6.16.4. Verify by an argument analogous to the one given above that

(∂X
2 H

X
1 +HX

0 ∂
X
1 )(σ) = (iX1 )♯(σ)− (iX0 )♯(σ)

follows from the similar formula

(∂∆1
2 H∆1

1 +H∆1
0 ∂∆1

1 )([e0, e1]) = (i∆1
1 )♯([e0, e1])− (i∆1

0 )♯([e0, e1]).

We next note that our definition of H0, H1 satisfies the further property of
naturality.

Exercise 6.16.5. Show that, if f : X → Y is a continuous map, then
HY

i (f♯(σ)) = (f × id)♯(H
X
i (σ)), i = 0, 1.

We now indicate what is involved in extending this to define HX
i (σ) for

i ≥ 2. We first need to define it in the case of X = ∆i and σ = [e0, . . . , ei] and
show that it satisfies the condition ∂i+1Hi([e0, . . . , ei]) + Hi−1∂([e0, . . . , ei]) =
(i1)♯([e0, . . . , ei]) − (i0)♯([e0, . . . , ei]). We then extend it by using the formula

HX
i (σ) = (σ× id)♯H

∆i

i ([e0, . . . , ei]) to show that it satisfies the required formula
for X and that it has the same naturality property as in Exercise 6.16.5.

We extend the formula for Hi inductively where we have already defined Hj

for j < i on ∆j and extended it over any X via

HX
j (σ) = (σ × id)♯H

∆j

j ([e0, . . . , ej ]).

In particular, we will already have it defined for the face maps Fk : ∆i−1 → ∆i

and so we will have the definition of H∆i

i−1∂i([e0, . . . , ei]) determined from this.
The general definition of Hi([e0, . . . , ei]) in any dimension is given by

Hi([e0, . . . , ei]) =

i∑

j=0

(−1)j [v0, . . . , vj , wj , . . . , wi].

Exercise 6.16.6.
(a) Check that this corresponds to the definition given for i = 0, 1 above.
(b) Check that our naturality property gives

Hi−1([e0, . . . , êk, . . . , ei])

=





i−1∑
j=0

(−1)j [v0, . . . , vj , wj , . . . , ŵk, . . . , wi] if k > j,

i−1∑
j=0

(−1)j [v0, . . . , v̂k, . . . , vj+1, wj+1, . . . , wi] if k ≤ j.

Using the last exercise, we can now compute

Hi−1∂([e0, . . . , ei])

= Hi−1

(
i∑

k=0

(−1)k[e0, . . . , êk, . . . , ei]

)

=

i∑

k=0




i−1∑

j=0,j<k

(−1)j+k[v0, . . . , vj , wj , . . . , ŵk, . . . , wi]
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+

i−1∑

j=0,j≥k

(−1)j+k[v0, . . . , v̂k, . . . , vj+1, wj+1, . . . , wi]





=

i∑

j,k=0,j<k

(−1)k+j [v0, . . . , vj , wj , . . . , ŵk, . . . , wi]

+

i∑

j,k=0,j>k

(−1)k+j+1[v0, . . . , v̂k, . . . , vj , wj , . . . , wi].

We now look at ∂i+1Hi([e0, . . . , ei]).

Exercise 6.16.7. Show that

∂i+1Hi([e0, . . . , ei]) =

i∑

j,k=0,j>k

(−1)j+k[v0, . . . , v̂k, . . . , vj , wj , . . . , wi]

+

i∑

j=0

[v0, . . . , vj−1, wj , . . . , wi] −

i∑

j=0

[v0, . . . , vj , wj+1, . . . , wi]

+
i∑

j,k=0,j<k

(−1)j+k+1[v0, . . . , vj , wj , . . . , ŵk, . . . , wi]

Exercise 6.16.8. Show that

i∑

j=0

[v0, . . . , vj−1, wj , . . . , wi]−
i∑

j=0

[v0, . . . , vj , wj+1, . . . , wi]

= (i1)♯([e0, . . . , ei])− (i0)♯([e0, . . . , ei]).

Exercise 6.16.9. Combine the calculations from the last exercises to show that

(∂i+1Hi +Hi−1∂i)([e0, . . . , ei]) = ((i1)♯ − (i0)♯)([e0, . . . , ei]).

We now extend this result to a general space and singular simplex.

Exercise 6.16.10. Show that if we define HX
i (σ) = (σ × id)♯H0([e0, . . . , ei])

and then extend linearly to chains, then this satisfies the condition

∂X
i+1H

X
i +HX

i−1∂
X
i = (iX1 )♯ − (iX0 )♯.

Moreover, this satisfies the naturality property that when f : X → Y , then
(f × id)♯H

X
i = HY

i f♯.

Note that the formula we have proved shows that (iX1 )♯ and (iX0 )♯ are chain-
homotopic chain maps with the chain homotopy provided by HX

i . Hence they
induce the same map in homology. Thus (iX0 )∗ = (iX1 )∗.
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We now apply this to the situation of homotopic maps f0 ∼ f1 via a homotopy
F : X × I → Y . Then (fj)∗ = F∗(ij)∗. Hence (f0)∗ = (f1)∗ and we have proved
the homotopy property in the absolute case.

Exercise 6.16.11. Prove that if f : X → Y is a homotopy equivalence, then
f∗ : Hk(X) → Hk(Y ) is an isomorphism.

Exercise 6.16.12.
(a) Adapt the previous exercises to prove the relative case: if f, g : (X,A) →

(Y,B) are homotopic, then f∗ = g∗.

(b) Show that if f : (X,A) → (Y,B) is a homotopy equivalence, then f∗ is
an isomorphism.

6.17 Proof of the excision property

We now discuss the proof of the excision property of homology in terms of the
reformulation Theorem 6.7.1, which we now restate for our convenience: If {intA,
intB} is an open cover of X, then the homomorphism S{A,B}(X) → S(X)
induces an isomorphism in homology.

In discussing the proof of Theorem 6.7.1, we will mainly restrict our attention
to the cases k = 0, 1, 2, where the geometric constructions are simpler, and then
derive the general case based on these models. The fundamental idea is that since
{intA, intB} is an open cover, then small enough images of singular simplices
should lie in either intA or intB. Thus we want to replace a singular simplex up
to homology by the sum of many small ones. To achieve this technically, we use
the notion of barycentric subdivision of the domain. This is defined inductively,
with no action on 0-simplices, subdividing a 1-simplex into two 1-simplices of 1

2
the length, and subdividing a 2-simplex into six 2-simplices using the subdivision
on the boundary. A basic estimate used is that, in subdividing an n-simplex, the
maximal diameter of a subdivided simplex is reduced by a factor of n/(n + 1).
Another key idea, which is similar to that used in the last section, is that it
suffices to deal with subdividing the domain ∆k and then using naturality to
define subdivision on a singular simplex which is defined on ∆k.

We first show pictures of subdividing ∆1 and ∆2 (Figure 6.7). For a geometric
1-simplex e in the plane, the barycenter of e with vertices v, w is ẽ = 1

2 (v +
w). The new 1-simplices are then [ẽ, v], [ẽ, w] and their length is half of the
original length of e = [v, w]. For a 2-simplex t = [u, v, w], we first subdivide the
edges, introducing new vertices at the barycenters of [v, w], [u,w], [u, v]. Let us
name these vertices ẽ0, ẽ1, ẽ2, respectively. We introduce a new vertex t̃ at the
barycenter t̃ = 1

3 (u+ v + w) of t. We then have new 1-simplices

[ẽ0, v], [ẽ0, w], [ẽ1, u], [ẽ1, w], [ẽ2, ũ], [ẽ2, ṽ]

coming from the subdivision of the boundary of t, new 1-simplices

[t̃, ẽ0], [t̃, ẽ1], [t̃, ẽ2], [t̃, u], [t̃, v], [t̃, w]
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Figure 6.7. Barycentric subdivision of ∆1 and ∆2.

Figure 6.8. Second barycentric subdivision of ∆2.

coming from joining t̃ to the 0-simplices of the subdivision of the boundary of t,
and new 2-simplices

[t̃, ẽ0, v], [t̃, ẽ0, w], [t̃, ẽ1, u], [t̃, ẽ1, w], [t̃, ẽ2, ũ], [t̃, ẽ2, ṽ]

coming from joining t̃ to the 1-simplices of the subdivision of the boundary of t.
In this subdivision it can be shown that the diameter of any 2-simplex is less than
two-thirds of the original diameter. Thus when the process is repeated again and
again, the diameter of simplices goes to 0. Through repeated subdivision we can
make the subdivided simplices lie within any open cover of the original simplex.
We show in Figure 6.8 the result of subdividing ∆2 twice.

In dimension 0, we know that H0(X) just measures the path components of
X. We need to see that H0(S(A) + S(B)) also measures the path components.

Exercise 6.17.1. Verify the conclusion of Theorem 6.7.1 in dimension 0 by
showing the following.

(a) Each path component of X is represented by a point in A or a point in B.

(b) If two points x, y in X are in the same path component, then there is a
1-chain c in S(A) + S(B) with ∂(c) = x − y. (Hint: Start with a path
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connecting x to y and subdivide it so that each subinterval is mapped to
A or B. This should use the open cover {intA, intB}.)

(c) Use (a) and (b) to verify Theorem 6.7.1 in dimension 0.

We break the verification of Theorem 6.7.1 in low dimensions into a number
of steps. We first introduce a subdivision operator Sd : Sk(X) → Sk(X) for k =
0, 1, 2. We start with the standard 2-simplex ∆2 = [e0, e1, e2]. For a 0-simplex
[x],Sd[x] = [x]. For the identity 1-simplex [e0, e1],

Sd[e0, e1] = [ẽ, e1]− [ẽ, e0] = ẽ.Sd(∂[e0, e1]),

where ẽ is the barycenter of e = [e0, e1]. Here [a, b] denotes the affine linear map
from ∆1 to the segment joining a to b in that order. We are using the notation
x.w = [x,w] in forming ẽ · Sd(∂[e0, e1]). More generally, when we start with
an affine linear k-simplex [v0, . . . , vk], we form the affine linear (k + 1)-simplex
v · [v0, . . . , vk] = [v, v0, . . . , vk].

Exercise 6.17.2. Show that ∂(v · [v0, . . . , vk]) = [v0, . . . , vk]− v · ∂[v0, . . . , vk].

We then define Sd(σ) = σ♯(Sd[e0, e1]). Geometrically, what this does is
replace a singular simplex by sum of singular simplices (with signs ±1) which
represent the composition of the original singular simplex with affine linear maps
into simplices that occur in the subdivision of the geometric simplex. By pulling
back an open cover to the domain simplex, we can guarantee that after a finite
number of subdivisions, the images of the new subdivisions are contained in
elements of the open cover. We extend the definition of Sd linearly over 1-chains.

Exercise 6.17.3. Verify that

∂(Sd[e0, e1]) = ∂(ẽ · Sd(∂[e0, e1]) = ∂[e0, e1] = Sd(∂[e0, e1]).

Extend this to show that for any 1-chain c, we have

∂(Sd(c)) = Sd(∂(c)) = ∂(c)

In particular, this says that Sd is a chain map in dimensions ≤1.

Exercise 6.17.4. Use the chain map Sd to give another proof that there is an
isomorphism from H0(S(A) + S(B)) to H0(X).

We now want to extend this construction to singular 2-simplices and 2-chains.
We start with the identity map [e0, e1, e2] : ∆2 → ∆2. Using the notation
established above for the barycentric subdivision, we define

Sd[e0, e1, e2] = t̃ · Sd(∂[e0, e1, e2]).

We then define Sd on a singular 2-simplex σ by Sd(σ) = σ♯(Sd([e0, e1, e2]) and
extend linearly to 2-chains.

Exercise 6.17.5. By starting with the identity singular 2-simplex and then
extending to singular 2-simplices and 2-chains, show that there is the formula

∂(Sd(c)) = Sd(∂(c)).
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Conclude that Sd is a chain map for dimensions ≤ 2.

Exercise 6.17.6. Extend the definition of Sd to a chain map in all dimensions.

We claim that subdividing a 1-chain should not change it up to homology.
In order to see this, we need two more operators H0 : S0(X) → S1(X), H1 :
S1(X) → S2(X), which essentially give a chain homotopy between Sd and the
identity Id. The homomorphism H0(σ0) = 0. Note that we have the trivial
formula ∂H0(c) = (Id− Sd)(c) = 0 for any 0-chain c. We want a map H1 with a
similar formula,

∂H1(c) +H0∂(c) = ∂H1(c) = (Id− Sd)(c),

in dimension 1.
We start by defining H1 on the identity singular 1-simplex by

H1([e0, e1]) = ẽ · (Id− Sd−H0∂)[e0, e1].

Then

∂H1([e0, e1]) = (Id− Sd−H0∂)[e0, e1]− ẽ · ∂(Id− Sd−H0∂)[e0, e1]

= (Id− Sd−H0∂)[e0, e1].

Exercise 6.17.7. Extend the definition of H1 to 1-chains so that the formula
∂H1 +H0∂ = Id− Sd holds.

Exercise 6.17.8. Suppose thatX = A∪B, where {intA, intB} is an open cover
of X. Show that for any singular 1-simplex σ, there is an integer k so that Sdkσ
is a chain in S(A) +S(B). Use this to show that the map S(A) +S(B) → S(X)
induces a surjective map on H1.

Exercise 6.17.9. Suppose that X = A ∪ B, where {intA, intB} is an open
cover of X. Suppose c ∈ S1(A) + S1(B) is a singular chain which is a cycle
(∂c = 0), so that when it is considered as a chain in S1(X), it is a boundary:
c = ∂d. Show that Sd(c) = ∂Sd(d) is also a boundary in X and represents the
same homology class as c in H1(S(A) + S(B)). By taking enough subdivisions,
show that the map H1(S(A) + S(B)) → H1(X) is injective.

Exercise 6.17.10. Prove Theorem 6.7.1 for dimension 1.

We want to define an analogous map H2 : S2(X) → S3(X).

Exercise 6.17.11. Show that ∂(Id − Sd − H1∂)(c) = 0. (Hint: Use the facts
Id,Sd are chain maps and the formula proved earlier for ∂H1 +H0∂.)

Exercise 6.17.12. For the standard 2-simplex [e0, e1, e2], define

H2[e0, e1, e2] = t̃.((Id− Sd−H1∂)[e0, e1, e2]).

Show that
(∂H2 +H1∂)[e0, e1, e2] = (Id− Sd)[e0, e1, e2].
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Exercise 6.17.13. By extending H2 to a singular 2-simplex, and finally
extending to 2-chains, define a map H2 : S2(X) → S3(X) so that

∂H2 +H1∂ = Id− Sd.

Exercise 6.17.14. Prove Theorem 6.7.1 for dimension 2.

Exercise 6.17.15. Extend the definition of Hn to a chain map in all dimensions
which satisfies ∂Hn(c) +Hn−1∂(c) = (Id− Sd)(c).

Exercise 6.17.16. Extend the ideas of the previous exercises to prove
Theorem 6.7.1.



Appendix

Selected solutions

1.1.2. (a) A is not open since any ball about (0, y) will contain points with
negative first coordinate.

(d) D is not open since (0, 0) ∈ D, but every ball about (0, 0) contains points
with negative first coordinate and so is not contained in D. It is open in A.

1.2.2. d′((x, y), (u, v)) = |x − u| + |y − v| ≥ 0 and equals 0 iff x = u, y = v, so
(x, y) = (u, v). Since |x − u| = |u − x|, |y − v| = |v − y|, then d′((x, y), (u, v)) =
d′((u, v), (x, y)). Finally,

d′((x, y), (w, z)) = |x− w|+ |y − z| ≤ (|x− u|+ |u− w|) + (|y − v|+ |v − z|)

= (|x− u|+ |y − v|) + (|u− w|+ |v − z|)

= d′((x, y), (u, v)) + d′((u, v), (w, z))

1.2.7. It is not closed since b ∈ R\[a, b), but every interval about b contains
a point of [a, b), so R\[a, b) is not open. The set [a, b) is not open since every
interval about a contains a point which is less than a and so is not in [a, b).

1.2.11. Since Ā is defined as the intersection of closed sets, it is a closed set.
Similarly, intA is open since it is a union of open sets.

1.2.12. (b) Ā = {(x, y): y ≥ 0}, intA = φ, Bd A = Ā.

1.3.3. (a) Suppose a1 − a0,a2 − a0 are linearly independent and

λ0a0 + λ1a1 + λ2a2 = 0, λ0 + λ1 + λ2 = 0.

Then λ0a0 = (−λ1 − λ2)a0 and we may rewrite λ0a0 + λ1a1 + λ2a2 = 0 as

λ1(a1 − a0) + λ2(a2 − a0) = 0.

Then linear independence of a1 − a0, a2 − a0 implies λ1 = λ2 = 0. Combining
this with λ0 + λ1 + λ2 = 0 implies λ0 = 0 as well.

355
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For the converse, suppose λ0a0 + λ1a1 + λ2a2 = 0, λ0 + λ1 + λ2 = 0 implies
λ0 = λ1 = λ2 = 0. Then suppose

c1(a1 − a0) + c2(a2 − a0) = 0.

Rewriting this as
(−c1 − c2)a0 + c1a1 + c2a2 = 0,

note that the coefficients sum to 0. Thus our assumption on a0,a1,a2 implies
that the coefficients all vanish and hence c1 = c2 = 0.

1.3.5. We just need to see that for each map and its inverse, the inverse image of
an open set is open. But each open set in the square is a union of the basic open
sets described and the inverse images of these are the basic open sets we gave for
the disk. Thus the inverse image of an arbitrary open set is the union of basic
open sets and so is open. Continuity in the other direction is proved similarly.

1.4.2. Let A = A1 ∪ · · · ∪ An, where Aj is compact. Let U = {Ui: i ∈ I} be an
open cover of A. In particular, it gives an open cover of each Aj . Since Aj is
compact, there is a finite subcover for each j. The union of these subcovers give
a finite subcover for A.

1.4.3. (c) This is not compact since the open cover {(1/n, 2)} has no finite
subcover.

1.5.2. To see that this subsequence is convergent to x, let U be an open set about
x. Since U is open, we may find ǫ > 0 so that the ball B(x, ǫ) ⊂ U . Then choose
N such that 1/N < ǫ. Then n > N implies that sn ∈ B(x, 1/N) ⊂ B(x, ǫ) ⊂ U ,
so the sequence converges to x.

1.5.4. If f is uniformly continuous and x ∈ X, then given ǫ > 0, uniform continu-
ity implies there exists δ > 0 so that d(y, z) < δ implies that d(f(y), f(z)) < ǫ.
Taking z = x in this definition proves continuity at x.

A counterexample is f(x) = 1/x on the interval (0, 1]. For given ǫ = 1, to
get d(f(x), f(y)) < 1 requires (1/xy)d(x, y) < 1 whenever d(x, y) < δ. But the
sequence xn = 1/n, yn = 1/2n has distance d(xn, yn) = 1/2n, which tends
toward zero yet d(f(xn), f(yn)) = n ≥ 1 for all n.

1.6.2. X is connected iff it is not separated iff there do not exist open sets
U, V ⊂ X with A ⊂ U ∪V, U ∩V ∩A = ∅, U ∩A �= ∅, V ∩A �= ∅. But this means
that whenever U, V are open sets in X with U ∩ V ∩A = ∅, A ⊂ U ∩ V , then we
must have A ∩ U = ∅ or A ∩ V = ∅. The first case is equivalent to A ⊂ V and
the second case is equivalent to A ⊂ U .

1.6.6. (1) x ∼ x: use the path f(t) = x;
(2) If x ∼ y, then there is a path f : I → X with f(0) = x, f(1) = y. Then

g(t) = f(1−t) is a path connecting y to x since g(0) = f(1) = y, g(1) = f(0) = x;
(3) If x ∼ y, y ∼ z, then there exists paths f, g with f(0) = x,

f(1) = g(0) = y, g(1) = z. Then

h(t) =

{
f(2t) 0 ≤ t ≤ 1

2 ,

g(2t− 1) 1
2 ≤ t ≤ 1

is a path connecting x to z, so x ∼ z.
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1.6.10. S1\{x} is path connected. If there were a homeomorphism with h(x) = y,
then R\{y} would have to be path connected, but it is not, since the intermediate
value theorem says that there is no path in R\{y} connecting x < y and z > y.

1.7.4. The hint describes a continuous map from the square to the triangle which
is a bijection except on the bottom edge of the square, which is sent to the bottom
vertex of the triangle. This induces a continuous bijection from the quotient space
of the square where the bottom edge is identified to a point to the triangle. This
map is a homeomorphism, by Proposition 1.7.3.

1.7.9. Take the function which is defined by f(z) = z2 on the upper half of the
circle and sends the lower half to 1. This then induces a homeomorphism of the
quotient space to S1.

1.9.3. Following the hint, for each x ∈ U , choose a basis element Bi(x) with
x ∈ Bi(x) ⊂ U . Then U =

⋃
x∈U Bi(x).

1.9.8. Since A is open in B, then A = B ∩ V , where V is open in X. Since B is
open in X and the intersection of two open sets is open, then A is open in X.

1.9.12. (b) R.

1.9.15. (a) Since Ā is the intersection of all closed sets containing A, we have
Ā ⊂ C.

1.9.21. Let U be an open set about f(x). Then f−1(U) is an open set about x.
Hence there exists N so that n > N implies xn ∈ f−1(U). This implies that
f(xn) ∈ U , so the sequence {f(xn)} converges to f(x).

1.9.23. If x �= y, then there are disjoint open sets U, V with x ∈ U , y ∈ V . If
xn → x, then there exists N so that n > N implies xn ∈ U . This contradicts the
sequence converging to y since the tail of the sequence is not in V .

1.9.27. Following the hint, let V,W be disjoint open sets about x,X\U , respect-
ively. Note that X\U ⊂ W implies X\W ⊂ U . Then D = X\W is a closed
set with V ⊂ D. Hence V̄ ⊂ D ⊂ U . Combining these statements, we have
x ∈ V ⊂ V̄ ⊂ U .

1.9.32. Let y ∈ Cǫ. Then d(y, C) < ǫ, so there exists c ∈ C with d(y, c) < ǫ.
Let r = ǫ − d(y, c). Then, if x ∈ B(y, r), the triangle inequality gives d(x, c) ≤
d(x, y) + d(y, c) < r + d(y, c) = ǫ. Hence d(x,C) < ǫ and so x ∈ Cǫ.

1.9.41. We use the fact that there is a countable neighborhood basis Ck at each
point of X with Ck+1 ⊂ Ck as constructed in the last exercise. Then Exer-
cise 1.9.19 says that X is limit point compact and Exercise 1.9.14 says that
every neighborhood of a limit point of a set contains infinitely many points of
the set. If we have a sequence with only a finite number of values, then we
can find a constant, hence convergent, subsequence. Thus we may assume the
sequence {sn} assumes an infinite number of values. Then the set of values will
have a limit point x. Then if Ck is a neighborhood basis at x, each Ck will
contain an infinite number of values. This allows us to select n1 < n2 < · · · , so
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that snk
∈ Ck. If U is an open set about x, there exists N so that x ∈ CN ⊂ U .

If k > N , then snk
∈ Ck ⊂ CN ⊂ U so the subsequence converges to x.

1.9.45. Suppose Y is a connected subset of Z, and Ȳ ⊂ U∪V , where Ȳ ∩U∩V =
∅. Thus Y ⊂ U ∪V , Y ∩U ∩V = ∅. Since Y is connected, then Y ⊂ U or Y ⊂ V .
Suppose Y ⊂ U . Then let x ∈ Ȳ . If x ∈ V , then there is a point of Y in V , which
contradicts Y ⊂ U and Y ∩ U ∩ V = ∅. Then x ∈ U and so Ȳ is connected.

1.9.49. If U is the open set and x ∈ U , then there a ball B(x, r) ⊂ U . The ball is
path connected since it is convex and straight line segments joining two points
in the ball stay in the ball.

1.9.53. (b) A point y is in the component C containing x if there is a connected
set Cy which contains both x, y. Then the set Cy also is in the component
containing x for the same reason. Thus C =

⋃
y∈C Cy. But then C is union of

connected sets with the point x in common, so is connected. If two components
have a point in common, then their union is connected and every point lies in
each component. But this means the two components must be equal. Every point
x ∈ X is in the component of points equivalent to it.

1.9.59. From the definition, choose an open set U and a compact set C with
x ∈ U ⊂ C. Since X is Hausdorff, then C compact implies C is closed. Since C
is a closed set containing U , then the closure Ū ⊂ C, since it is the intersection
of all closed sets containing U . But Ū is then a closed subset of a compact set,
so it is compact.

1.9.63. (a) Define a homeomorphism from R to S1\{(0,−1)} as a composition
of arctan x with e2it. Alternatively, stereographic projection from (0, 1) gives a
homeomorphism from S1\{(0, 1)} to R ⊂ R2. Then apply the last exercise.

1.9.68. When we remove the crossing point of the X, the space separates into
four components. When we remove any point in the Y, the space separates into
at most three components. A homeomorphism from Y to T comes from sending
the vertical parts to each other and then sending the upper prongs of the Y to
the top of the T.

1.9.73. (a) Connected, path connected; (d) connected, path connected, open.

1.9.75. The subset A would have to be connected and compact and miss some
point p. Since S1\{p} is homeomorphic to R, the set would be homeomorphic to
a compact connected subset of R, which must be a closed interval. But the circle
is not homeomorphic to a closed interval since removing a midpoint of an interval
disconnects it but removing any point of the circle does not disconnect it.

1.9.81. Each homeomorphism can come from vertical projection (x1, x2, x3) →
(x1, x2). The map g is the identity since it is induced by taking the circle, sending
it to the upper hemisphere and then projecting it back to the circle from the
projection of the lower hemisphere.

1.9.87. The inside of the circle is path connected, so it has to be sent to a path-
connected set and so the image must lie entirely in the outside component if
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there were such a homeomorphism. The homeomorphism would have to send
the exterior component to the interior component then, or points in the interior
component would not be in the image. But the image of the interior plus the
circle would be a compact set in the exterior component and thus not all points
in the exterior component would be in the image.

1.9.94. The two sets represent the inside of the triangle and the exterior. The
first is convex, so path connected via straight line paths. It is bounded. The
exterior is path connected as well. To connect two points, go radially on a ray
until hitting a point on the circle of radius 2 and then connect the two points on
the circle by an arc of the circle. If the two points already lie on the same radial
arc, we can just use the segment of the arc connecting them. We still have to show
that there is no path connecting the exterior to the interior missing the triangle.
But the complement of the triangle is the union of two disjoint nonempty open
sets in the plane and, for open sets, the components and the path components
are the same. Thus these must be the path components as well.

2.1.1. (c) We use the restriction g : [0, 1) → [0,∞) of part (a). Define k :
B(0, 1) → Rn by

k(x) =

{
g(|x|)x/|x| x �= 0,

0 x = 0,

with inverse

k−1(y) =

{
g−1(|y|)y/|y| y �= 0,

0 y = 0.

2.1.6. The homeomorphism must send interior points to interior points and
boundary points to boundary points. Thus it must restrict to a homeomorphism
between ∂M and ∂N (as well as one between the interiors of the two manifolds).

2.1.11. Suppose that (x, y) ∈ M × N and there are homeomorphisms hM :
Ux → Rm, hN : Vy → Rn, where Ux, Vy are open sets in M,N , respectively.
Then h : Ux × Vy → Rm × Rn = Rm+n with h(u, v) = (hM (u), hN (v)) is a
homeomorphism. The torus T = S1 × S1 is then a 2-manifold since it is the
product of the 1-manifold S1 with itself. It is compact and connected since S1

is and products of compact, connected sets are compact and connected.

2.2.2. (a) Since f is continuous and S2 is compact and connected, so is P . For
any point x ∈ S2, the map f is a local homeomorphism near x. This means that
there is a small open set U about x so that f sends U homeomorphically onto
an open set Ū about f(x). We just have to choose U small enough so that it
does not contain any pair of antipodal points.

2.2.3. We start with R2 and identify (x, y) with (x, y + 2). After this identific-
ation, the quotient space is the infinite cylinder. To form the Klein bottle, we
identify (x, y) ∼ (x + 2,−y). After making these identifications, each point will
be identified with a point in the rectangle D1 × D1, the upper and lower edges
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will be identified via (x,−1) ∼ (x, 1), and the right and left edges will be iden-
tified via (−1, y) ∼ (1,−y). The map from the plane to the quotient space is a
local homeomorphism, so the quotient K is a surface.

2.3.1. Let x = t+n, t ∈ [a, a+1). Then x+1 = t+(n+1) and f(x+1) = f ′(t)+
(n+1) = f(x)+ 1, so f is periodic. The map f |[a+n, a+n+1] is just Tnf

′T−n

and so is a homeomorphism since it is a composition of homeomorphisms. The
piecing lemma then shows that f is a homeomorphism.

2.3.5. By (b) fr is isotopic to the identity via an isotopy Ft, so f = frr is
isotopic to r via the isotopy Gt = Ftr.

2.4.1. For the Möbius band, think of it as D1 × D1/(−1, y) ∼ (1,−y). When
we remove the center circle D1 × {0}/(−1, 0) ∼ (1, 0), the space can be divided
into the equivalence classes of points M1 with second coordinate > 0 or M2 with
second coordinate < 0, each of which is path connected from D1 ×D1\D1 ×{0}.
But the equivalence relation says that some points in M1 are in M2, so the
whole complement is path connected. In fact, the complement can be shown to
be homeomorphic to S1 × (0, 1]. For the annulus, the complement is just the
disjoint union S1 × [−1, 0) ∪ S1 × (0, 1], which is separated.

2.4.4. (a) and (b) are orientable, but (c) is nonorientable.

2.5.1. The first connected sum is formed from M\iM (0)
⊔
N\iN (0) using

the map iNRi
−1
M , and the second connected sum is formed similarly using

i′NR(i
′
M )−1. What is required for consistency is that hN iNRi

−1
M = i′NR(i

′
M )−1hM

on iM (intD2\{0}). Composing with iM on both sides and using i′M = kM iM ,
both sides simplify to give the equivalent equation hN iNR = i′NR, which holds
since hN iN = i′N .

2.5.2. This can be constructed by a coning construction. We divide each region
into six triangles and map the triangles to each other via affine linear homeo-
morphisms determined by the maps on vertices. For each region, we choose the
interior point v0 = (0, 1

2 ). For the larger rectangle we use the vertices v1 =
(1, 0), v2 = (1,−1), v3 = (−1,−1), v4 = (−1, 0), v5 = (−1, 1), v6 = (1, 1). For the
smaller rectangle, we use v′

i = vi, i = 0, . . . , 4, but have v′
5 = (− 1

3 , 0), v
′
6 = ( 1

3 , 0).
The map then is determined from sending vi to v

′
i and extending affine linearly

on the six triangles. See Figure A.1.

Figure A.1. Sending a big rectangle to a small one.
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2.5.7. When we formM
∐
D2, we are starting withM , adding a disjoint disk, and

then adding a 1-handle to join the disk to M via the boundary sum. However,
the disk is homeomorphic to a rectangle and the union of the disk and the
rectangle used in forming the boundary sum is homeomorphic to the union of
two rectangles along a common edge, which is a rectangle. Thus our operation
of boundary sum is homeomorphic to adding a rectangle to M along an interval
in the boundary. Then using an internal rectangle from either a collar on the
boundary or just the local structure of a region near the boundary homeomorphic
to H

2
+ allows us to use the argument of Exercise 2.5.2 to absorb the external

rectangle into M .

2.6.1. First construct a rectangular strip (longer than wide) and cylinder out of
fairly stiff cloth. Cut two holes in the strip and attach the cylinder on one side
about one-fourth and three-fourths of the way across lengthwise. Now form the
Möbius band connected sum the torus by making a half twist and gluing the
ends. Then note that when we look at the disk that includes the two handles
and the glued edge, the two ends of the handle are glued to opposite sides of this
disk.

2.6.5. We look at the 0-handle and the torus pair. This forms T(1), which is a
torus with a disk removed. As boundary this has an oriented circle to which the
other handles are attached. We replace T(1) with a disk as 0-handle with the
other handles attached to it in the same way they were attached to ∂T(1). This
is an oriented surface which has two fewer 1-handles and so by induction is of

the form T
(g)
(p) . We get our surface from it by removing the disk and gluing to

the boundary of T(1) = T\D2. But this is the operation of connected sum, so we

get T
(g+1)
(p) .

2.7.2. (a) We prove this by induction using the basic formula χ(A
∐
B) = χ(A)+

χ(B)− 1, which is the case n = 2. We suppose it is true for n− 1 ≥ 2 and prove
it for n:

χ(A1
∐

· · ·
∐
An) = χ((A1

∐
· · ·

∐
An−1)

∐
An) = χ(A1

∐
· · ·

∐
An−1) + χ(An)− 1

= (χ(A1) + · · ·+ χ(An−1)− (n− 2)) + χ(An)− 1

= χ(A1) + · · ·+ χ(An)− (n− 1).

2.7.7. (a) The surface is nonorientable with one boundary circle and χ = −1, so

it is P
(2)
(1) .

2.9.3. Given x ∈ U , let b = sup{y ∈ U : y > x, [x, y] ⊂ U}. Since U is open, this
set is nonempty. If it is not bounded, then [x,∞) ⊂ U . If it is bounded, then
b will be its supremum or least upper bound. Given any y with x < y < b, the
definition of b shows that there exists c with y < c ≤ b with [x, c] ∈ U . This
implies that [x, b) ⊂ U . We claim that b �∈ U . For if it were, then we would have
some interval about b in U , and this would contradict the definition of b as the
least upper bound. Thus we can find a maximal interval [x, b) ⊂ U . Analogously,
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we can find a maximal interval (a, x] ⊂ U and so, given x ∈ U , there is a largest
interval Ix ⊂ U . Any two such intervals are either equal or disjoint. These sets
can be labeled by any point in them, and so we can choose a rational point in
each set to label it. Since the rationals are countable, the labels are countable,
so there will be a countable (possibly finite) number of these sets Ix.

2.9.9. An n-manifold, being locally homeomorphic to Rn, is locally path connec-
ted. The result follows from the fact that a locally path connected and connected
space is path connected. See Exercise 1.9.51.

2.9.15. Following the hint, let a denote the point on the right side, where three
segments join. Take a connected neighborhood of it so that removing a discon-
nects the neighborhood into three components. If this were 1-manifold, then this
neighborhood would be a connected open set in R and so it is homeomorphic
to an open interval, open ray or R. But this is a contradiction since removing a
point from one of these only gives two components.

2.9.19. We think of the torus as a quotient of a square D1 ×D1, where opposite
edges are identified via translation and the sphere as the quotient of the the
square where all boundary points are identified to the same point. This latter
description uses a similar description using the standard disk together with the
homeomorphism of the disk to a square. Now the identity map on D1 × D1

induces the desired map T → S.

2.9.20. We think of a Möbius band as a quotient of D1 ×D1 where we identify
(−1, y) with (1,−y). We remove the image of D1 × (−ǫ, ǫ) in the quotient. What
remains is the union D1 × [ǫ, 1]

⊔
[−1,−ǫ]. When the second piece is turned over

vertically, translated by 2, and glued to the first according to identification of its
left edge with the right edge of the first, then we can reexpress the complement
as a strip [−1, 3] × [ǫ, 1], where the vertical edges are identified via translation
by 4. This gives a description of the annulus.

2.9.25. We apply the strong form of the Schönflies theorem to the embedded
circle C = f(∂D2). The ambient isotopy there will send C to S1 and f(D2) to
D2 since f(D2) must map to the closure of the component which is compact.
Then g = G1f is ambient isotopic to f with g(D2) = D2 and g(S1) = S1.

2.9.29. The formula is

cǫ(s) =





ǫs s ∈ [0, 1],

ǫ+ (2− ǫ)(s− 1) s ∈ [0, 2],

s s ∈ [2,∞).

The isotopy is given by

kt(s) =





[(1− t) + tǫ]s s ∈ [0, 1],

[(1− t) + tǫ] + (2− [(1− t) + tǫ])(s− 1) s ∈ [1, 2],

s s ∈ [0,∞).
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2.9.37. Note first that if C is coming from the outer circle of our model, we are
using the discussion preceding Theorem 2.6.5 and Figure 2.44 to identify with
the model above. We first identify the upper annulus to a rectangle with a hole
and then use the argument from Exercise 2.5.2 to pull the exterior rectangle with
a hole in it into the surface. We then apply our construction of an orientation
reversing isotopy of Möbius band to get a self-homeomorphism which is the
reverses the orientation of the circle bounding the hole and is the identity on
the boundary of this Möbius band. Going back to the original set W , this gives
a homeomorphism of W which reverses the orientation on C and is the identity
on the rest of ∂W . We then can extend this by the identity outside of W to get
a homeomorphism of the nonorientable handlebody that reverses orientation on
C and preserves the other boundary circles.

2.9.39. The proof of the classification theorem implies that if a handlebody is
nonorientable as a handlebody, then it possesses an embedded Möbius band
B. For the standard form with a single 0-handle and the twisted 1-handle
attached to it will have a Möbius band inside the 1-handle and a collar about
the 0-handle. There is an isotopy of B which connects f and fr. If the Möbius
band is embedded in a surface M , then we can extend this isotopy by the
identity outside the Möbius band to get that M is disk-nonorientable. From
Chapter 6, any handle-oriented surface is disk-oriented. The contrapositive says
that a disk-nonorientable handlebody is handle-nonorientable.

2.9.44. We form a disk (the new 0-handle) with the three 0-handles and h1
2, h

1
3.

The 1-handles h1
1, h

1
4 are attached to the boundary of this 0-handle.

2.9.50. We use the hint. This map is continuous and surjective. The only points
which are sent to the same points are the points on the circle which are identified
as indicated by the identifications of a. Since the domain is compact and the
range is Hausdorff, this gives a homeomorphism of the quotient space with S.

2.9.56. These are the standard ways to write P (3), P#K, and P#T . The fun-
damental lemma of surface theory says that the last two are homeomorphic and
the fact K = P#P says that the first two are homeomorphic.

2.9.61. The torus. Think of the handle as being the cylinder used to form T from
S when two disks are removed.

2.9.66. (c) S(3).

2.9.70. This is nonorientable, has three boundary circles, and has χ = −3. Thus

h = 2 + 3− 3 = 2. The surface is P
(2)
(3) .

2.9.75. Think of T as coming from revolving the circle in the yz-plane given by
(y − 2)2 + z2 = 1 about the z-axis. Then remove a small disk near the point
(0, 3, 0) by slicing by a plane parallel to the xz-plane. Then reflection through
the yz-plane will reverse orientation on the boundary circle of T(1).

2.9.80. The homotopy is given by Ft(x) = (1− t)x− tx = (1− 2t)x. An isotopy
has to be a homeomorphism at each stage and so must either always preserve
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order or reverse it. In particular, if F0(1) = 1, then Ft(1) is either 1 or −1 and
the only way the map can be continuous is for the Ft(1) = 1 for all t.

2.9.84. If there is a single 1-handle and M is nonorientable, then it must be
attached to a single 0-handle. Otherwise, the union of two 0-handles and this
1-handle would be a disk, and thenM would be orientable since there are no more
1-handles which would have to be oriented consistently. Note that the union of
the 0-handle and 1-handle to which it is attached must give a Möbius band. Since
there are no more 1-handles, the 2-handles do not change connectivity, and M
is connected, there can be no more 0-handles. Since the boundary of the Möbius
band has only one boundary circle, then there must be exactly one 2-handle.
Thus M has three handles and is homeomorphic to a Möbius band with a disk
attached to its boundary, which then can be used to give a homeomorphism of
M to P by extending the attaching map to a homeomorphism the 2-handle, as
in the previous exercise.

2.9.88. If the surface N is orientable and connected then the orientations of the
disks that get embedded coming from ∂(D2×S1) must not be consistent with the
orientation of the rest of the surface, or the original surface would be orientable.
Hence the result of removing those disks and replacing them with a cylinder
will be forming a connected sum M ≃ N#K. Now N is orientable with fewer
1-handles, so it is homeomorphic to T (k) with 2 − 2k = χ(N). Again, we have
the relation χ(M) = χ(N) − 2. But M ≃ T (k)#K ≃ P (h), where h = 2k + 2.
Thus χ(M) = χ(N)− 2 = 2− 2k − 2 = 2− h.

2.9.92. For the case of a surgery of index 1, we define the map by using H1 :
M\f({−1, 1} × int D2) → M\f ′({−1, 1} × int D2) and using the identity on
D1 × S1. A similar homeomorphism is used for the surgery of index 2.

2.9.96. (a) For (a) use the map f(x, y) = (y, x).

2.9.100. That the genus of S is 0 is just the Jordan curve theorem, which implies
that any embedded simple closed curve separates S into two disjoint open sets.
When we have an embedded circle in T that does not separate T , we can do
surgery on T using the extended embedding and write T = T#M . From the
classification theorem, we must have M ≃ S. An embedded circle in the com-
plement of the first embedded circle in T would give an embedded circle in
S2\D2 ⊂ M and so must separate it.

2.9.104. Since M is nonorientable, there is an embedded Möbius band whose
central curve C does not separate M or even a neighborhood of C. Thus there is
no extension of C to a neighborhood D1 × S1 since C would then separate this
neighborhood.

3.1.3. Suppose that b, c are inverses of the group element a. Then

b = b(ac) = (ba)c = c.

3.1.6. (a) An isomorphism f : S2 → Z2 has f([12]) = 0, f [21] = 1, with inverse
f−1(0) = [12], f−1(1) = [21].
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(b) They are not isomorphic. For if f : (Z,+) → (Q,+) is a homomorphism
and f(1) = q, then f(n) = nq. Thus the map is not surjective, as q/2 is not in
the image, for example, unless q = 0 and then the whole image is just {0}.

3.1.9. If h = [213] and g = g−1 = [321], then ghg−1 = [132]. If H =
{[123], [213]}, then ghg−1 �∈ H.

3.2.3. We use the same basic formula as before, except reverse the roles of f̄ , f :

G(s, t) =

{
f̄(2st) if 0 ≤ s ≤ 1

2 ,

f(2t(s− 1) + 1) if 1
2 ≤ s ≤ 1.

3.3.4. We first check that this is well defined at 1
2 , that f̃(1) = g̃m(0). But this

follows since m = f̃(1). Then continuity follows from the piecing lemma. We
compute

pf̃ ∗ g(t) =

{
pf̃(2t) if 0 ≤ t ≤ 1

2 ,

pg̃m(2t− 1) if 1
2 ≤ t ≤ 1

=

{
f(2t) if 0 ≤ t ≤ 1

2 ,

g(2t− 1) if 1
2 ≤ t ≤ 1

= f ∗ g.

3.3.8. As sets they are the same, so it suffices to show that for representative
classes fk(s) = e2πks used in the isomorphism π1(S

1,1) ≃ Z, we have fm ◦ fn ∼
fm+n. But fm ◦ fn(s) = p(ms+ ns) = p((m+ n)s) = fm+n(s).

3.4.2. We use the straight line homotopy Gt(s) = (1− t)g0(s) + tg1(s).

3.4.4. We just use the given homotopy on [a, b] and the constant homotopy on
its complement in [0, 1].

3.4.8. First note that if we includeD1×S1 into T = S1×S1 by sendingD1 → S1
+

by vertical projection, then this induces a map D1 × S1/(−1, w) ∼ (1, w̄) →
T/(z, w) ∼ (−z, w̄) which is a homeomorphism. Then map D1 ×D1 → D1 × S1

by mapping the second D1 factor via eπit to wrap it once. Then this map induces
a map of the quotient space D1 ×D1/(−1, y) ∼ (1,−y), (x,−1) ∼ (x, 1) = K to
D1 ×S1/(−1, w) ∼ (1, w̄), which is a homeomorphism. The composition of these
two homeomorphisms gives our homeomorphism between K and T/(z, w) ∼
(−z, w̄). Alternatively, we could get the homeomorphism more directly by using
the map D1 × D1 → S1 × S1 sending (x, y) → (eπix, eπiy) and check that it
induces an isomorphism of quotient spaces D1 ×D1/(−1, y) ∼ (1,−y), (x,−1) ∼
(x, 1) = K → S1 × S1/(z, w) ∼ (−z, w̄).

3.5.2. We solve 〈x+ tv,x+ tv〉 = 1, where v = x − f(x) �= 0, by the quadratic
formula to get

t =
−〈x,v〉+

√
〈x,v〉2 + |v|2(1− |x|2)

|v|2
.
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Since v depends continuously on x, so does t.

3.5.5. (1) f homotopic to g implies f̄ is homotopic to ḡ and so deg f = deg f̄ =
deg ḡ = deg g.

(2) The map mr extends with the same definition to a homeomorphism from
D2 to rD2, so the extension F of f determines an extension F̄ of f̄ . Hence
deg f = deg f̄ = 0, by Lemma 3.5.7.

(3) We let S1 × [0, 1] → A(r1, r2) be defined by M(z, t) = ((1 − t)r1 +
tr2)z. Then M0 = mr1 ,M1 = mr2 . The map uFM is a homotopy between
u(F |r1S

1)mr1 and u(F |r2S
1)mr2 , so deg(F |r1S

1) = deg(F |r2S
1).

(4) The composition ufmr = f , so this follows by Lemma 3.5.8.

3.6.1. When we take two different radii, then the annular region between the two
circles allows us to find a homotopy between the two maps vmx,r1 , vmx,r2 . This is
part (3) of Proposition 3.5.10, together with the translation from a neighborhood
of 0 to a neighborhood of x. The fact that v only vanishes at x means that
v defines a map into R2\{0}, which is required in defining the homotopy.

3.6.7. Following the hint, the composition FG gives a homotopy between f and h
where h(z) = F (0). By path connectivity of C\{0}, there is a path p : I → C\{0}
connecting F (0) and 1. Then H(z, t) = p(t) gives a homotopy between h(z) and
the constant map g(z) = 1. Combining these two homotopies gives a homotopy
between f and g.

3.6.12. The point is that since there are no singularities in the annular type
region A = B(x, r)\int B(z1, r1), then v extends to a map from A to R2\{0}.
Moreover, there is a parametrization P : S1 × I → A which agrees with mz1,r1

and mx,r as pictured in Figure 3.19. The composition of P with the extension
gives the homotopy, which when further composed with u, shows the two degrees
are the same.

3.7.4. We can first homotope f by composing it with a rotation (which is homo-
topic to the identity) so that f(1) = 1. Then we can compose f with p : I → S1,
p(t) = e2πit, to get a representative of π1(S

1, 1). This map is homotopic to the
map znp by our computation of π1(S

1, 1). Moreover, the homotopy preserves the
base point 1 and thus induces a homotopy as maps of (S1, 1) to itself between
our rotated f and zn.

3.7.10. Let d1, d2 be the indices on the outer circles and d11, . . . , d1k, d21, . . . , d2k

be the indices of the vector fields on the inner circles. Then the way the corres-
ponding circles are identified is the same locally as in the analysis of T , so there
will again be a relationship d1+d2 = 2, d1j+d2j = 2. But the sum of the indices
of the singularities for each the two pieces is Ii = di − (di1 + · · ·+ dik). Thus the

total index I = I1 + I2 = d1 + d2 −
∑k

j=1(d1j + d2j) = 2− 2k, which is the Euler

characteristic of T (k).

3.8.3. (a), (b) The proof of (b) with the subspace the empty space gives
(a). The identity map gives a homotopy equivalence of (X,A) to itself. If
f : (X,A) → (Y,B) with homotopy inverse g : (Y,B) → (X,A), there
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are homotopies F : (X,A) × I → (X,A), G : (Y,B) × I → (Y,B) with
F0 = 1(X,A), F1 = gf,G0 = 1(Y,B), G1 = fg. These same maps then show
that there is a homotopy equivalence from (Y,B) to (X,A). Thus the rela-
tion is symmetric. Supposing that there is also a homotopy equivalence of pairs
h : (Y,B) → (Z,C) with homotopy inverse k and homotopies H,K, then the
map hf : (X,A) → (Z,C) will have homotopy inverse gk : (Z,C) → (X,A). The
homotopy from (gk)(hf) = g(kh)f will be given by first usingHt to homotope kh
to the identity and thus homotoping g(kh)f to gf and then using Ft to homotope
gf to the identity. We similarly use Gt and Kt to homotope (hf)(gk) = h(fg)k
to the identity.

3.8.7. This just uses the same maps on (I ∪ S1, 0) to (S1, (1, 0)) and homotopy
inverse on each factor of S1. The deformation retractions used there fit together
to give the result.

3.9.3. (a) This space deformation-retracts onto the boundary circle union an arc
from y to the circle, and its fundamental group is just the fundamental group of
the circle, which is Z.

(d) N\{x} deformation-retracts onto two circles with a segment joining them,
so the fundamental group is again F2.

3.9.6. All are nonorientable. Part (a) has two boundary circles, and part (b) has
one boundary circle. In part (a) the abelianized fundamental group is Z ⊕ Z,
while in part (b) it is Z. The effect of adding the 2-handle in part (b) to add the
relation a = b2. The space is P(2) in part (a) and is P(1) in part (b).

3.11.1. (a) No, it does not contain an additive identity.
(b) Yes. The identity is (1, 0). The inverse of (z1, z2) is (z̄1,−z2). We can

check associativity. This group represents the unit quaternions.
(c) This is a group. The identity is 1. It is isomorphic to (Z3,+) where a in

this group corresponds to a− 1 ∈ Z3.

3.11.6. The subgroups are multiples nZ = {nk: k ∈ Z}.

3.11.11. (a) This follows since addition and taking the additive inverse are both
continuous maps.

(b) Note first that complex multiplication is a continuous map. This can be
shown by the same formula that shows that real multiplication is continuous:

|z1z2 − w1w2| ≤ |z1||z2 − w2|+ |w2||z1 − w1|.

To see that inverses are continuous, we note that the inverse is just given by the
conjugate z−1 = z̄ and |z̄ − w̄| = |z − w|.

(c) Continuity comes from continuity of cosine and sine. That it is a group
homomorphism just is the formula e2πi(t+u) = e2πite2πiu for the exponential (or
equivalently, trigonometric formulas for the addition of angles).
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3.11.13. (b) This deformation retraction comes from deformation-retracting the
matrices R to the identity. Write R as ( a b0 c ). Then

Rt =

(
(1− t)a+ t (1− t)b

0 (1− t)c+ t

)

satisfies R0 = R and R1 = I. The map F (R, t) = Rt gives a deformation
retraction of the upper triangular matrices with positive diagonal entries onto
the identity matrix. Then F (QR, t) = QRt gives a deformation retraction of
GL(2,R) onto O(2).

3.11.21. f ◦ g ∼ (f ∗ E) ◦ (E ∗ g) = f ∗ g.

3.11.23. (a) This just uses the deformation retraction of S1
b \{−1} to the point

1 which can be written as F (eis, t) = eist for −π < s < π, 0 ≤ t ≤ 1. On T we
use G(x, y, t) = (x, F (y, t)).

3.11.27. (a) If we think ofM = D1×D1/(−1, y) ∼ (1,−y), then we can take C =
D1×{0}/ ∼. This deformation-retracts onto the boundary circle by deformation-
retracting D1 ×(D1\{0}) onto D1 ×{±1} by using the straight line homotopy in
the second coordinate and noting that this is consistent with the identifications.

3.11.31. Following the hint, we define F (s, t) = f(ts). Then if f, g are two paths,
let F be the free homotopy to f(0) and G the free homotopy to g(0). Let h(t)
be a path connecting f(0) to g(0). Then the free homotopy H between f and g
is given by

H(s, t) =





F (s, 3t) 0 ≤ t ≤ 1
3 ,

h(3t− 1) 1/3 ≤ t ≤ 2
3 ,

G(s, 3− 3t) 2/3 ≤ t ≤ 1.

3.11.38. Since π1(R
2\{0},1) is abelian, the map π1(R

2\{0},1) → πf1 (R
2\{0})

is bijective. Since the inclusion induces an isomorphism between π1(S
1,1) and

π1(R
2\{0},1), the map j is bijective.

3.11.43. We compute

Pv = (Mx ◦ f)f1
uf

1
v + (My ◦ f)f1

uf
2
v + (Nx ◦ f)f2

uf
1
v + (Ny ◦ f)f2

uf
2
v

+ (M ◦ f)f1
uv + (N ◦ f)f1

uv,

Qu = (Mx ◦ f)f1
uf

1
v + (My ◦ f)f2

uf
1
v + (Nx ◦ f)f1

uf
2
v + (Ny ◦ f)f2

uf
2
v

+ (M ◦ f)f1
uv + (N ◦ f)f1

uv.

Comparing these using My = Nx gives Pv = Qu.

3.11.48. This calculation is equivalent to substituting x = rn cos 2πnt, y =
rn sin 2πnt and integrating from 0 to 1. We get

d(zn) =
1

2π

∫ 1

0

2πn dt = n.
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3.11.55. If there were such a map, then h(g)h(i) = 1h(Sn). But this is impossible
since this map factors through a map of the trivial group.

4.1.1. Let {Ui} be a covering of B by path-connected open sets that are evenly
covered. That is, p−1(Ui) =

⊔
j∈Ji

Uij and p : Uij → Ui is a homeomorph-
ism. Then B × C has a covering by the path-connected open sets {Ui × C}
since P−1(Ui × C) =

⊔
j∈Ji

Uij × C and P |Uij × C : Uij × Y → Ui × C is a
homeomorphism, being a product of homeomorphisms.

4.1.7. (a) The inverse image of the added cylinder is the disjoint union of two
cylinders, so we can find evenly covered open sets for points in its interior. For
points outside the added cylinder, we find the evenly covered open sets from the
original cover. For points on the boundary of the added cylinder, we get our
evenly covered open set by taking a disk (up to homeomorphism) which comes
from a half disk in the cylinder and a half disk in the complement of the interior
of the cylinder.

4.1.13. If a surface Σ covers itself, we get χ(Σ) = kχ(Σ), k > 1 and so χ(Σ) = 0.
Hence Σ must be either T or K.

4.1.18. Let f : I → B with f(0) = b be a given path. Cover B by path-connected
open sets {Ui} which are evenly covered. Then {f−1(Ui)} is an open cover of I.
Choose a Lebesgue number for this cover and subdivide I into subintervals of
equal length less than this Lebesgue number. Note that for a map from a path-
connected set into some Ui, there is a unique lift to the cover once we specify
where one point lifts. We then write I = I1 ∪I2 ∪· · ·∪In as the union of adjacent
subintervals in the subdivision. Starting with f |I1, we lift it to the unique map to
the cover g1 with g1(0) = a. Letting g(1/n) = a1, we next lift f |I2 to the unique
map to the cover g2 with g2(1/n) = a1. Inductively, after we have defined lifts
g1, . . . , gk, we then lift f |Ik+1 to gk+1 : Ik+1 → A with gk+1(k/n) = gk(k/n). We

define f̃ by f̃ |Ij = gj . Continuity follows from the piecing lemma and uniqueness
follows from uniqueness over each subinterval.

4.2.1. Let ea, eb denote the constant maps at a, b, respectively. Following the
hint, we start with a class [f̃ ] ∈ π1(A, a) which maps to [eb], and so there is a

homotopy F between pf̃ and eb. Use Theorem 4.1.3 to lift this to a homotopy
F̃ : I×I → A with F̃ (0, 0) = a. By unique path lifting, this must be a homotopy

relative to the end points between f̃ and ea. The map p∗ is a homomorphism,
so it is 1–1 since its kernel consists of the identity element. Thus the image
p∗(π1(A, a)) is a subgroup of π1(B, b) which is isomorphic to π1(A, a).

4.2.6. (a) To show that this is a covering space, we must show that it is evenly
covered. Near the wedge point, we see an X-like neighborhood which is covered
by homeomorphic open sets at each point (n, 0), (0,m) in the cover. For each
point on the circle labeled a away from this wedge point, take an arc that does
not include the wedge point. Above it in the cover are homeomorphic intervals
along the x-axis and homeomorphic arcs in the a circles which are attached to
the y-axis. The argument is similar for the b circle with the roles of the axes
reversed.
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(b) If we start with the loop in p∗(π1(A, (1, 0)) represented by the projection
of the loop that runs around S1

y in the counterclockwise direction (denoted b in
the figure), then when it is lifted starting at (0, 0), it lifts to the line segment
from (0, 0) to (0, 1), which is not a loop.

4.2.9. (a) We use pf̃ = f to get f∗(π1(X,x)) = p∗(f̃∗(π1(X,x))) ⊂ p∗(π1(A, a))

since f̃∗(π1(X,x)) ⊂ π1(A, a).
(d) This follows from Theorem 4.1.3.

4.2.13. By Theorem 4.2.2, there is a continuous lifting g : A1 → A2 of p1 so that
g(a1) = a2. Similarly, there is a lifting h : A2 → A1 so that h(a2) = a1. Then
the composition hg is a lift of p1 with hg(a1) = a1, and so, by Exercise 4.2.11,
hg = 1A1 . Similarly, we get gh = 1A2 and so g gives the equivalence we seek.

4.2.18. h is a lifting of p2 and the lifting is unique sending a to h(a). This lifting
is an equivalence, by the proof of Theorem 4.2.2.

4.3.1. Since T is a homeomorphism, it induces an isomorphism between π1(A, a1)
and π1(A, a2) and

G1 = (p1)∗(π1(A, a1)) = (p2T )∗(π1(A, a1)) = (p2)∗(T∗(π1(A, a1)))

= (p2)∗(π1(A, a2)) = G2.

4.3.6. Suppose T (0) = n. Then T and Tn are covering transformations which
agree at a point, and so they are equal, by Exercise 4.3.4.

4.3.10. (a) If S is the homotopy between s and s′, then pS gives the homotopy
between ps and ps′.

(d) Suppose r(T1) = r(T2). This means that the loops representing r(T1) and
r(T2) lift to paths joining a and the same point T1(a) = T2(a). But two covering
transformations which agree at a point are equal, by Exercise 4.3.4.

4.3.14. From the hint, there is a 1–1 correspondence between

{c ∈ p−1(b): there is a covering transformation T with T (a) = c}

and Gp. Combining this with Theorem 4.3.2 gives the result.

4.4.1. This is just a special case of Theorem 4.2.3.

4.4.5. With this restriction on α, if [α1] �= [α2] then Ũ[α1] ∩ Ũ[α2] = ∅. For if they
had a point in common, they would be equal and then α2 = α1 ∗ β, where β
is a loop at c in U . But the construction of U implies that β is homotopic to a
constant in B. This implies that α1 ∼ α2.

4.4.11. (a) The map p : A → B factors as the composition of q : A → A/G, and
the homeomorphism p̄ : A/G → B, by Theorem 4.3.3. Now the factorization
being alluded to just uses the factorization A → A/H → A/G. That A → A/H
is a covering map just uses that G acts properly discontinuously on A and so
does any subgroup H. Thus p1 : A → A/H is also a regular covering space. That



Selected solutions 371

p2 : A/H → B is a covering space uses the same evenly covered open sets U ⊂ B
as for p, but now we identify in A/H all of the homeomomorphic copies of U
in the inverse image in A which differ by the action of covering transformations
in H.

5.1.4 (a) As described above, X1 can be identified with the circle by identifying
e01 to 1 and e

0
2 to −1. Then the attaching maps of the 1-cells are consistent with

sending e11 to the upper half of the circle and e12 to the lower half as depicted.

5.1.8. The subcomplex is the image of a finite number of cells, so it is compact.
It is closed since a compact set is closed in a Hausdorff space.

5.1.13. We start with the CW decompositions S2
i = e0i ∪ e2i , i = 1, 2. Then there

are four cells

E0 = e01 × e02, E2
1 = e21 × e02, E2

2 = e01 × e22, E4 = e21 × e22.

The 2-cells are attached trivially and X2 = S2
1 ∨ S2

2 . The characteristic map
for the 4-cell is the product of the characteristic maps for the two 2-cells. Its
attaching map uses ∂E4 = ∂e21 × e22 ∪ e21 × ∂e22. The first term is mapped first
to e01 × e22 and then mapped via the characteristic map to e01 × S2

2 . The second
term is mapped similarly onto S2

1 × e02.

5.1.15. We prove the result by induction on n. The case n = 1 is established
above. For the inductive step, we have to see that CP

k is built from CP
k−1

by attaching a 2k-cell as claimed. Any point in S2k+1 is equivalent to a point
(w0, . . . , wk−1, r) with r ≥ 0. Write the last coordinate as zk = rζ, where r =
|zk| ≥ 0. When r > 0, we can take ζ = zk/|zk|. Then multiplying each coordinate
by ζ−1 gets an equivalent representative of the required form. When r > 0, no
two elements of this special form are equivalent. However, when r = 0, we could
choose any unit complex number ζ. In this case, the point in the quotient space
lies in CP

k−1. Thus CP
k = CP

k−1 ∪pk−1
S2k

+ ≃ CP
k−1 ∪pk−1

e2k. Here we are
identifying the upper hemisphere to a 2k-cell via vertical projection.

5.2.1. Let x = (1, 0) ∼ e0 be our base point and y = (1/2, 0). The Seifert–
van Kampen theorem says that π1(X, y) ≃ π1(A, y) ∗π1(A∩B,y) π1(B, y). Here
π1(B, y) is trivial since the open disk is contractible, so we get π1(X, y) ≃
π1(A, y)/N(im(π1(A∩B, y)). Here N(im(π1(A∩B, y)) denotes the normal sub-
group generated by the image. But A ∩ B is just D2\{0} and its fundamental
group has a generator running around a circle at radius 1

2 . When we take its
image in π1(A, y), it is homotopic to the path γ ∗ α ∗ γ̄, where α runs once
around the unit circle and γ is the linear path running from (1

2 , 0) to (1, 0).
Its image in π1(A, y) is represented by γ ∗ fα ∗ γ̄. Using the isomorphism
γ∗ : π1(X,x) → π1(X, y), this quotient is isomorphic to π1(X,x)/N(f∗[α]). The
term N(f∗[α]) is the term f∗(g) referred to in the statement of the exercise.

5.2.7. We show that when we attach a cell of dimension>2, then the fundamental
group does not change up to isomorphism. Let X = Y ∪ en+1, n ≥ 2. Let
A = X\{0}, B = int en+1. Then A ∩ B is homeomorphic to Dn+1\{0}, which
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deformation retracts to Sn. The Seifert–van Kampen theorem implies π1(S
n) is

trivial for n ≥ 2 since it can be written as the union of two sets homeomorphic to
Rn with path-connected intersection. Returning to our calculation, then π1(B) ≃
π1(A ∩ B) being trivial and the Seifert–van Kampen theorem imply π1(X) ≃
π1(Y ). Inductively, this implies that attaching cells of dimension greater than 2
does not change the fundamental group and so π1(X, e

0) ≃ π1(X
2, e0).

5.2.10. The 2-skeleton is S1 × S1 ∪ e2, where the 2-cell is attached via the map
f(z) = z2 running around the second S1 (from RP

2). Thus its fundamental
group is 〈a, b|ab = ba, b2 = 1〉, which is Z ⊕ Z2. This agrees with the calculation
as a product space since π1(S

1) ≃ Z and π1(RP
2) ≃ Z2.

5.2.16. S3 is simply connected. It is a covering space of L(p, 1) since the
homeomorphisms which we are using to form the quotient act in a properly
discontinuous manner. Thus the fundamental group is the cyclic group Zp. From
the CW decomposition, the 2-skeleton is the pseudoprojective plane, whose
fundamental group is Zp.

5.3.1. (a) We follow the hint to define the map α : Xf → Xf ′ . It will be induced
from G : X

⊔
Dn → X ∪f ′ Dn. The map G|X includes X ⊂ X ∪f ′ Dn. To define

G|Dn, we first write Dn = 0.5Dn∪(Dn\int 0.5Dn). Here 0.5Dn denotes the disk
of radius 0.5. We can identifyDn\int 0.5Dn with Sn−1×[0, 1] by using the inverse
of the homeomorphism H(x, t) = 0.5(1 + t)x. We then define G|Dn\int 0.5Dn :
Dn\int 0.5Dn → X ⊂ X ∪f ′ Dn by using the composition FH−1. Note that
this sends Sn−1 to X via f and 0.5Sn−1 to X via f ′. Then map 0.5Dn to Dn

via x → 2x and compose with the quotient map Dn → X ∪f ′ Dn. Note that
on 0.5Sn−1 this agrees with f ′. We then apply Proposition 1.7.5 to get the map
α induced by G to be continuous. We have the following diagram of continuous
maps:

X
⊔
Dn

qf

��

G

���

�

�

�

�

�

�

�

�

�

X ∪f D
n

α

��
X ∪f ′ Dn

5.3.2. (a) Xf is a quotient space of X
⊔
Dn and Yhf is a quotient space of

Y
⊔
Dn. The map K : X

⊔
Dn → Y

⊔
Dn given by K|X = h,K|Dn = id

induces a map α : X∪fD
n → Y ∪hfD

n which is continuous by Proposition 1.7.5.
We have the following diagram of continuous maps:

X
⊔
Dn

K
��

qf

��

Y
⊔
Dn

qhf

��
X ∪f D

n
α

�� Y ∪hf D
n
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(f) To use (e) here, we consider maps up to homotopy and note that it says
that if a map has a left homotopy inverse and a right homotopy inverse, then
it is invertible and the two partial inverses are equal up to homotopy and are
each homotopy inverses of the map. Note that γ = ǫβ and so ǫβα ∼ id. Since
ǫ is a homotopy equivalence and βα is a right homotopy inverse, it is also a
left homotopy inverse. Hence βαǫ ∼ 1. Hence β has a right homotopy inverse.
However, the same argument which shows α : Xf → Xhf has a left homotopy
inverse shows that β : Yhf → Yghf has a left homotopy inverse. Thus β is a
homotopy equivalence, and so is γ. Since α is a right homotopy inverse to γ, it
must also be a left homotopy inverse and so α is also a homotopy equivalence.

5.3.4. (a) Since X is connected, the 1-skeleton X1 must also be connected since
2-cells are attached along connected sets and cannot change a separated set to
a connected set. If each 1-cell was attached to a single 0-cell, then the number
of components would not change in going from X0 to X1, which contradicts X0

being separated and X1 connected.

5.3.8. By the previous exercise, the 0- and 1-handles are homotopy equivalent
to a CW complex K with h0 0-cells and h0 1-cells. Exercise 5.3.2 implies that
the surface is homotopy equivalent to K with h2 2-cells attached, which is the
required CW complex.

5.3.13. If J : Sk−1 × I ∪ Dk × {0} → Y is given by J(u, t) = H(f(u), t), u ∈
Sk−1, J(v, 0) = g(v), v ∈ Dk, then the lemma says that there is an extension
J ′ : Dk × I → Y . Then the map H ′ : K × I → Y defined by using H on L × I
and J ′ on Dk × I gives a continuous extension of H.

5.4.2. The inclusions induce a commutative diagram with vertical isomorphisms:

π1(A, x0)

��

π1(A ∩B, x0)�� ��

��

π1(B, x0)

��

π1(U, x0) π1(U ∩ V, x0)�� �� π1(V, x0)

This implies that the inclusions fit together to induce an isomorphism between
π1(A, x0) ∗π1(A∩B,x0) π1(B, x0) and π1(U, x0) ∗π1(U∩V,x0) π1(V, x0).

5.4.6. (a) Here we use that T(1) = T\D2 is homotopy equivalent to a wedge of
two circles and the π1(∂T(1)) is mapped homotopically to the class aba−1b−1 ∈
F2 = π1(T(1), x). Using this on both factors, we get

π1(T#T, x) ≃ 〈a, b, c, d|aba−1b−1cdc−1d−1〉.

5.5.1. The subdivision of the rectangle on the right-hand side of Figure 5.15
leads to the structure of a simplicial complex for the quotient space giving the
projective plane.

6.1.1. We have H0(C) = ker(∂0)/im(∂1) = Z/0 ≃ Z;H1(C) = ker(∂1)/im(∂2) =
Z/pZ ≃ Zp; and H2(C) = ker(∂2)/0 = 0. Since Ci = 0, we have Hi(C) = 0,
i ≥ 3.
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6.1.5. (a) H0(C) = ker(∂0)/im(∂1) = Z. For 0 < i = 2k + 1 < n, then
Hi(C) = ker(∂i)/im(∂i+1) = Z/2Z ≃ Z2. For 0 < i = 2k < n, then
Hi(C) = ker(∂i)/im(∂i+1) = 0. Since Ci = 0 for i > n, we have Hi(C) = 0,
i > n.

6.2.1. (a) We have ∂1∂2([v0, v1, v2]) = ∂1([v1, v2] − [v0, v2] + [v0, v1]) = [v2] −
[v1]− [v2] + [v0] + [v1]− [v0] = 0.

6.2.4. We have ∂1(a) = ∂1(b) = ∂1(c) = 0, ∂2([v1, v2, v3]) = a + b −
c, ∂2([v1, v3, v4]) = a− b+ c. Then

∂2(n1[v1, v2, v3] + n2[v1, v3, v4]) = (n1 + n2)a+ (n1 − n2)(b− c).

Then n1[v1, v2, v3] + n2[v1, v3, v4] ∈ ker(∂2) implies n1 = n2 = 0. Thus
H∆

2 (K) = 0. Since im(∂2) is generated by a + (b − c), a − (b − c), this intro-
duces relations in the quotient ker(∂1)/im(∂2), so [a] = [b− c] = −[b− c]. Then
the quotient is generated by [a], [b] with 2[a] = 0. Hence H∆

1 (K) ≃ Z2 ⊕Z. Since
∂1 = 0, H∆

0 (K) = Z. All H∆
i (K) = 0 for i > 2 since there are no i-simplices.

6.3.2. If X is path connected, then im(∂1) is the subgroup generated by the
differences [x]− [y], where x, y ∈ X. Thus the quotient H0(X) is the free abelian
group generated by [x], where x is any chosen point in X.

6.3.7. The map h is defined on loops at x0. The previous exercise says that
homotopic loops are mapped to cycles which differ by a boundary, hence [η] =
[γ] ∈ π1(X,x0) implies [h(η)] = [h(γ)] ∈ H1(X). Hence h induces a well defined
map h̄([γ]) = [h(γ)].

6.3.12. For F2 ∗ F0 ∗ F̄1 this holds, since ∆2 contractible implies π1(∆2, e0)
is trivial. The statement for D2 ∗ D0 ∗ D̄1 follows since this represents
D∗([F2 ∗ F0 ∗ F̄1]).

6.4.2. There is one cell in dimensions 0,1,2. We have ∂0 = ∂1 = 0 and ∂2 sends
the generator to the generator. Thus Hc

0(D) = Z;Hc
1(D) = 0 = Hc

2(D).

6.4.7. (a) Here there is one 0-cell, three 1-cells with corresponding generators
a, b, c, and one 2-cell, with ∂2 sending the generator to 2a+ c. Then Hc

0(X) = Z;
Hc

1(X) = 2Z; Hc
2(X) = 0.

6.5.3. Let e1, . . . , en be generators of E. Then choose d1, . . . , dn so that g(di) =
ei. We define r(ei) = di. Since E is free abelian, we can extend r uniquely to a
homomorphism r : E → D. Since any element e of E is expressible uniquely as
e =

∑
niei, then r(e) =

∑
nidi and g(r(e)) = e. Thus gr is the identity map. To

show that I is an isomorphism, we show that it is 1–1 and onto. Let d ∈ D. Look
at d − r(g(d)). Then g(d − rg(d)) = g(d) − gr(g(d)) = g(d) − g(d) = 0. Hence
there is an element c ∈ C with f(c) = d − r(g(d)), and so d = f(c) + r(g(d)) =
I(c, g(d)). Thus I is onto. Next suppose that I(c, e) = f(c) + r(e) = 0. Then
0 = g(f(c) + r(e)) = gr(e) = e and so e = 0. Then f(c) = 0. Since f is 1–1,
this means c = 0 as well, so (c, e) = 0. Hence I is 1–1. To see that the diagram
commutes, note that I(c, 0) = f(c), and g(I(c, e)) = g(f(c) + r(e)) = gr(e) = e.



Selected solutions 375

6.5.8. First suppose [e] ∈ im(g∗). Then [e] = g∗([d]) = [g(d)] with ∂(d) = 0. Since
the definition of ∂ does not depend on the representative of [e] chosen, we start
with g(d) and apply the definition to get ∂([e]) = [c], where f(c) = ∂(d). But then
f∗([c]) = [f(c)] = [∂(d)] = 0. Thus [e] ∈ ker(∂). Next suppose that [e] ∈ ker(∂).
Then there are elements d, c, γ with g(d) = e, f(c) = ∂(d), c = ∂(γ). We compute
∂(d− f(γ)) = ∂(d)− ∂f(γ) = ∂(d)− f(∂(γ)) = ∂(d)− f(c) = 0. Thus d− f(γ)
represents a homology class and g∗([d − f(γ)]) = [g(d) − gf(γ)] = [g(d)] = [e].
Thus [e] ∈ im(g∗).

6.5.12. Suppose c ∈ Ck and ∂Ck (c) = 0. Then Gk(c) − Fk(c) = ∂Dk+1Hk(c) +

Hk−1∂
C
k (c) = ∂Dk+1(Hk(c)), so G∗([c]) = [Gk(c)] = [Fk(c)] = F∗([c]).

6.6.2. It suffices to check this on a generator. Then f♯∂
X
k (σ) =

f♯(
∑k

i=0(−1)
iσFi) =

∑k
i=0(−1)

if(σFi) =
∑k

i=0(−1)
i(fσ)Fi = ∂Yk (fσ) =

∂Yk (f♯(σ)) = ∂Yk f♯(σ).

6.6.8.

(gf)∗([c]) = [(gf)♯(c)] = [g♯(f♯(c))] = g∗([f♯(c)]) = g∗f∗([c]),

(1(X,A))∗([c]) = [(1(X,A))♯(c)] = [c].

6.7.2. (a) Define i♯ : S(A ∩ B) → S(A) ⊕ S(B) by i♯(c) = ((iA)♯(c),−(iB)♯(c)),
where iA : A ∩ B → A, iB : A ∩ B → B are the inclusions. Make S(A) ⊕ S(B)
into a chain complex via the direct sum construction from the chain complexes
S(A), S(B). Then i♯ becomes a chain homomorphism since (iA)♯, (iB)♯ are chain
homomorphisms. S(A) + S(B) is the subchain complex of S(X) consisting of
chains of the form cA+cB , where cA is a chain in S(A) and cB is a chain in S(B).
It is a subchain complex since S(A), S(B) are. The map j♯ : S(A) ⊕ S(B) →
S(A) + S(B) is j♯(cA, cB) = (jA)♯(cA) + (jB)♯(cB). Here jA : A → X, jB :
B → X are the inclusions. By its definition, j♯ is surjective. i♯ is injective since
(iA)♯, (iB)♯ are. Note that j♯i♯(c) = j♯((iA)♯(c),−(iB)♯(c)) = (jA)♯(iA)♯(c) −
(jB)♯(iB)♯(c) = (jA∩B)♯(c) − (jA∩B)♯(c) = 0. Here jA∩B : A ∩ B → X is the
inclusion. We are using jAiA = jA∩B = jBiB . Thus im(i♯) ⊂ ker(j♯). Suppose
(cA, cB) ∈ ker j♯. Then (jA)♯(cA) = −(jB)♯(cB). But S(A) ∩ S(B) = S(A ∩ B)
so cA = (iA)♯(c), cB = −(iB)♯(c), where c ∈ S(A ∩ B). Hence (cA, cB) ∈ im(i♯)
and so ker(j♯) ⊂ im(i♯). Thus the sequence is exact.

6.7.4. (b) Take a string of five terms with H
{A,B}
k (X), H

{A′,B′}
k (X) in the middle

in the top and bottom rows. The outer four vertical maps are isomorphisms by

our hypotheses. The five lemma then implies that the middle map H
{A,B}
k (X) →

H
{A′,B′}
k (X) is also an isomorphism.

6.7.9. This follows from the hypothesis and Theorem 6.7.2, since A′, B′ now
satisfy the hypotheses of that theorem.

6.8.1. The disk deformation-retracts to a point, so Theorem 6.6.2 implies the
homology of the disk is isomorphic to the homology of a point. The result follows
from the dimension property.
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6.8.6. (a) For the set U we take the points on the circle in the interior of the
lower semicircle. For U ′ we take the smaller set where the angle θ ∈ (5π/4, 7π/4).
Then (S1\U ′, A\U ′) deformation-retracts to (S2\U,A\U) since S1\U = S1\U ′∪
C,A\U = A\U ′ ∪ C, where C is the collar specified by letting the angle θ lie
in the range [0,−π/4] or [π, 5π/4]. Identifying each to the intervals to [0, 1]
linearly leads to the homeomorphism between C and S0 × [0, 1] needed for the
deformation retraction.

6.8.11. We use the long exact sequence of the pair (Dp+1, Sp):

Hk+1(D
p+1) → Hk+1(D

p+1, Sp) → Hk(S
p) → Hk(D

p+1).

For k > 0, the first and last terms are 0, so the middle map is an isomorphism.
For k = 0, the last map is an isomorphism so its kernel is 0. The first term is 0,
so the long exact sequence implies that H1(D

p+1, Sp) = 0.

6.8.17. ri = 1A implies r∗(i∗(x)) = x for any x ∈ Hk(A).

6.9.2. Following the hint, we use the diagram

Hn+1(D
n+1, Sn)

∂
��

f∗

��

Hn(S
n)

(f |Sn)∗

��

Hn+1(D
n+1, Sn)

∂
�� Hn(S

n)

For n > 0, we start with a generator G of Hn+1(D
n+1, Sn) and choose the

generator g = ∂G of Hn(S
n). Then the commutative diagram and deg(f)G =

f∗(G) imply that

deg(f)∂G = ∂(deg(f)G) = ∂f∗(G) = (f |Sn)∗(∂G) = deg(f |Sn)(∂G),

so deg(f) = deg(f |Sn). For n = 0, the argument still works with our modified
definition of degree and the isomorphismH1(D

1, S0) ≃ ker(i0∗), replacingH0(S
0)

by ker(i0∗).

6.9.5. (a) Any reflection r is of the form rv(x) = x − 2(x · v)v for some unit
vector v. Choose a path p(t) connecting p(0) = v and e1. Then let Rt(x) =
x − 2(x · p(t))p(t). This gives a homotopy between rv and re1 = r1.

6.9.11. This follows from the commutative diagram

Hn(S
n)

f∗
��

jx
∗

��

Hn(S
n)

jy
∗

��

Hn(S
n, Sx)

f∗
�� Hn(S

n, Sy)

Note that jy∗f∗(g) = f∗j
x
∗ (g), jy∗f∗(g) = jy∗ (deg(f)g) = deg(f)gy, and

f∗j
x
∗ (g) = f∗(gx) = degx(f)(gy).
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6.9.15. Choose a point y ∈ RP
n/RP

n−1 ≃ Sn away from the point coming from
collapsing RP

n−1. Then there are two points in the inverse image of the form
x, T (x), where T is the antipodal map. In identifying the quotient to Sn, we use
the generator that corresponds under the local homeomorphism at T (x). Then
the local degree at T (x) is, by definition, 1. The local degree at x is given by the
last exercise as degx(f) = deg(T ) degT (x)(f) = (−1)n+1. Then Theorem 6.9.1
gives the result.

6.10.1. (a) We use a map r : (Dk, Lk−1) → (Dk, Sk−1) which maps Lk−1 radi-
ally to Sk−1 and maps Dk\int Lk−1 onto Dk along radial lines using [0.5, 1] →
[0, 1], r → 2(r − 0.5) on the radial parameter. The map ir : (Dk, Lk−1) →
(Dk, Lk−1) is homotopic to the identity via maps that use [0.5t, 1] → [0, 1]. Thus
r provides a deformation retraction of (Dk, Lk−1) to (Dk, Sk−1).

6.10.7. The maps induce maps of the quotient spaces which are continuous and
bijective. Since the domain space of the quotient is compact and the range is
Hausdorff, the maps are homeomorphisms.

6.10.11. ∂c
k∂

c
k+1 includes the composition Hk(X

k) → Hk(X
k, Xk−1) →

Hk−1(X
k−1), which is two steps in the long exact sequence of the pair

(Xk, Xk−1) and so is 0.

6.10.13. There is one cell in each dimension from 0 to 3. The 1-cell and 2-cell
are attached trivially, so the boundary maps in dimensions 1 and 2 are both 0.
To determine ∂3, we look at the attaching map of the 3-cell, again regarding
the boundary 2-sphere as S0 × D2 ∪ D1 × S1. Then the argument we gave for
S1 × RP

2 again shows that the contributions from the two copies of D2 cancel
one another and so we look at the contribution from D1 × S1. But this uses the
trivial attaching map for the 2-sphere and so the image lies in the 1-skeleton
which is being collapsed. Thus the degree is 0, and ∂3 = 0 as well. Hence

Hc
k(S

1 × S2) =

{
Z 0 ≤ k ≤ 3,

0 otherwise.

6.11.1. (a) This follows from Sk(X)/Sk(A) being the quotient of (Sk(X)/
Sk(B)/(Sk(A)/Sk(B)) and all of the boundary maps being induced via quotient
constructions from the consistent boundary maps in S(B), S(A), S(X).

6.11.4. The last exercise says that Hk(X
k+1, Xk−2) ≃ Hk(X,X

k−2) and the
previous exercise says that Hk(X,X

k−2) ≃ Hk(X).

6.11.10. (a) The sum is b0 − (b0 + b1) + (b1 + b2) + · · · + (−1)n(bn−1 + bn) =
(−1)nbn. Because of the signs, all of the middle terms cancel and we are left
with (−1)nbn = 0 since cn+1 = 0.

6.11.12. (c) When we look at the long exact sequence of the pair and take the
alternating sum of the ranks, we get χ(H∗(S)) = χ(H∗(H))+χ(H∗(S,H)). This
uses the fact each term for S,H, (S,H), respectively, occurs every third term in
the long exact sequence and so the signs alternate as in forming the individual
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Euler characteristics. However, χ(H∗(S,H)) = (−1)i by part (b) and the result
follows.

6.12.4. We can use a bicollar neighborhood of T+ ∩ T− coming from ([0.4, 0.6]∪
[0, 0.1] ∪ [0.9, 1]) × D1/ ∼ to justify the application of the Mayer–Vietoris
sequence. Since each of T+, T− deformation retract to circles and T+ ∩ T− is
a pair of circles, their kth homology is zero for k ≥ 2. Then the Mayer–Vietoris
sequence gives

0 = Hk+1(T+)⊕Hk+1(T−) → Hk+1(T ) → Hk(T+ ∩ T−) = 0

for k ≥ 2. Hence Hk+1(T ) = 0 for k ≥ 2.

6.12.10. In terms of the quotient description above, we can use σ1(t) = [(0, 2t−
1)], σ2(t) = [(2t − 1, 0)]. In terms of thinking of T as S1 × S1, we can use
σ1(t) = (1, e2πit), σ2(t) = (e2πit, 1).

6.12.15. (b) We showed i1(a, b) = (a+ b, a− b). In particular, (1, 1) and (1,−1)
generate the image, so in the cokernel, we have [(1, 0)] = [(0, 1)] = [(−1, 0)].
But this means the cokernel is generated by [(1, 0)] and 2[1, 0] = 0. Thus
coker(i1) ≃ Z2.

6.12.19. (b) The Mayer–Vietoris sequence gives

0 → H2(N) → H1(S
1) → H1(P(1))⊕H1(Q(1)).

The map H1(S
1) → H1(P(1)) is the map shown above to be multiplication by 2,

so is injective. Hence the map i1 : H1(S
1) → H1(P(1))⊕H1(Q(1)) is injective as

well. Thus H2(N) ≃ ker(i1) ≃ 0.

6.13.1. The boundary map ∂1 has im(∂1) ⊂ ker(ǫ). Thus the short exact sequence
induces map of the quotient spaces

H̃0(C) = ker(ǫ)/im(∂1)
ī

�� H0(C) = C0/im(∂1)
ǭ

��
Z. The first map is

still injective since it was originally and we factored out by the same subgroup.
The last map is still surjective since we factored C0 by its kernel. Thus we get
the desired short exact sequence, which splits since Z is free.

6.13.5. When we take the augmented complex, which we will call Sǫ in each
case, we again have a short exact sequence

0 → Sǫ(A) → Sǫ(X) → Sǫ(X,A) → 0,

which, in dimension −1, becomes 0 → Z → Z → 0 → 0. This leads to a long
exact sequence. Further, H−1(S

ǫ(A)) = H−1(S
ǫ(X)) = 0 since ǫ is surjective,

and H−1(S
ǫ(X,A)) = 0 since the chain group is 0. Hence the sequence ends as

claimed.

6.14.2. We note that S2\{h(c)} is homeomorphic to R
2 and H̃0(S

2\{h(c)}) =
0 = H1(S

2\{h(c)}). Then the end of the Mayer–Vietoris sequence is

0 → H̃0(S
2\A) → H̃0(S

2\A1)⊕ H̃0(S
2\A2) → 0,

which gives the isomorphism.



Selected solutions 379

6.14.7. (b) Using (a) H0(S
2\C) ≃ Z⊕Z, and so there are two path components.

Since C is compact, hence closed, S2\C is an open subset of S2, and so is itself
are surface. Since it is locally path connected, the path components are open.

6.14.13. We subdivide the embedded sphere into the image of the upper and
lower hemispheres. Applying Theorem 6.14.4, the exact sequence gives the
isomorphism

H̃p+1(S
n\h(Sm+1)) ≃ H̃p(S

n\h(Sm)),

which gives the result.

6.15.1. (c) This follows from the commutative diagram

Hn(D
n, Sn−1) ��

��

Hn(M,M\U)

��

Hn(D
n, Dn\{y}) �� Hn(M,M\{x})

The horizontal maps are isomorphisms from above, and the left vertical map is
an isomorphism, so the right vertical map is also one. This could also be shown
from using the deformation retraction of (Dn, Dn\{y}) onto (Dn, Sn−1) and the
embedding h to get a deformation retraction of (M,M\{x}) onto (M,M\U).

6.15.5. Since the manifold is assumed orientable, the homology orientation at
a point determines the choice in an open set about the point. Suppose y ∈ M
is another point. Choose a path f : I → M connecting x0 to y, using the fact
that a connected n-manifold is path connected. Then the image of the path is
compact and so is covered by a finite number of interiors of disks in Euclidean
neighborhoods. By taking the inverse image of embedded disks about points of
M , we get a covering of I. We can then take a finite subcovering and thus find
a sequence D1, . . . , Dk of embedded disks so that Di+1 ∩ Di �= ∅ and x0 ∈ D1,
y ∈ Dk. Since the homology orientation at one point in a disk determines the
homology orientation at all other points, we inductively see that the homology
orientation at x0 determines it at y.

6.15.10. (a) Since G1 and G0 = id are homotopic maps from (Rn,Rn\int B) to
itself, they induce induce the same map on homology.

(b) Here we use the diagram

HR
n,int B

n

(G1)∗
��

��

HR
n,int B

n

��

HR
n,x

n

(G1)∗
�� H

R
n,G1(x)

n

Here the vertical maps are induced by inclusion and are isomorphisms. The result
follows from (a) and this commutative diagram.
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6.15.14. (a) If µx is a homology orientation, then the map s :M → M̃g given by
s(x) = µx is a nonzero section. Conversely, a nonzero section s gives the homo-
logy orientation by µx = s(x). We have constructed the basis for the topology

on M̃g so that this section is continuous—it is just a local homeomorphism using
the disk neighborhood of the point.

6.15.18. A simply connected covering space has no nontrivial connected double
coverings since they correspond to equivalence classes of index-2 subgroups.

6.15.23. We apply Theorem 6.15.3 with A =M . Note that HM,A
n = Hn(M).

(a) This follows from Theorem 6.15.3(1).
(b),(c) Here we look at the homomorphism SM : Hn(M) → ΓM which sends

α ∈ Hn(M) to s(x) = rx(α). Theorem 6.15.3(2) says this is injective. Since ΓM =
0 when M is nonorientable, this implies Hn(M) = 0 then. Theorem 6.15.3(3)
implies that SM is an isomorphism onto ΓM ≃ Z when M is orientable.

6.15.25. (a) These deformation retractions just use the deformation retractions
of [0, 1], (0, 1], [t, 1] to {1}, which leads to deformation retractions of the product
of ∂M times each of these intervals to ∂M × {1}. These extend to the claimed
deformation retractions by using the identity map on A1.

6.15.30. (1) We use the exact sequence from the previous exercise. Suppose i > n.

Then HM,A∪B
i = 0 since it is squeezed between two terms which are 0 in the

exact sequence.

6.15.33. This follows from the excision isomorphism HM,A
i ≃ HU,A

i = HR
n,A

i

when U is the coordinate neighborhood.

6.16.2. We compute

∂2H1(σ) = ∂(β − α) = H0(τ0)−H0(τ1) + gσ − fσ = −H0∂1(σ) + g♯(σ)− f♯(σ).

6.16.7. We first compute

∂i+1Hi([e0, . . . , ei]) = ∂i+1

i∑

j=0

(−1)j [v0, . . . , vj , wj , . . . , wi].

When taking the boundary, there are three types of terms: (1) the ones where vk
is deleted, k < j; (2) the two terms where vj , wj are deleted; (3) the ones where
wk is deleted, where k > j. These three types of terms correspond to the three
terms above.

6.17.1 (b) Following the hint, we start with a path σ : I → X, which connects y
to x. Pulling the open cover {intA, intB} back to I via σ gives an open cover of
I. By using enough subdivisions of I we can find a subdivision of I so that each
subinterval is sent to intA or intB by σ. Then replace σ by the chain which is
the sum of the reparametrizations of restrictions of σ to these subintervals. This
gives a chain in S(A) + S(B), which has boundary x− y.
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6.17.6. The extension is inductive, assuming the map is defined and shown to
be a chain map in dimensions less than n. We first define it on the identity
n-simplex [e0, . . . , en] by letting v = (1/(n+ 1))

∑
ei denote the barycenter and

then defining Sd([e0, . . . , en]) = v.Sd∂[e0, . . . , en]. Then check

∂Sd([e0, . . . , en]) = Sd∂([e0, . . . , en])− v.∂Sd∂([e0, . . . , en])

= Sd∂([e0, . . . , en])− v.Sd∂2([e0, . . . , en]) = Sd∂([e0, . . . , en]).

Now define Sd(σ) = σ♯(Sd([e1, . . . , en]). We then compute

∂Sd(σ) = ∂σ♯Sd([e1, . . . , en]) = σ♯∂Sd([e1, . . . , en]) = σ♯Sd∂([e1, . . . , en])

= Sdσ♯∂([e1, . . . , en]) = Sd ∂σ.

Finally, extend Sd to a chain map in dimension n by linearity.

6.17.10. The previous two exercises have shown that the map H
{A,B}
1 (X) →

H1(X) is both surjective and injective.
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abelianization 229
affine linear map 17
affinely independent set 17
Alexander duality 332
ambient isotopy 78
annulus 21
antipodal map 311
antipodal point 73, 184
arc (in circle) 78
attaching map of cell 260
augmentation 328

ball 4
in metric space 8

base point 160
basis for topology 49
basis element 49

Borsuk–Ulam theorem 184
boundary connected sum 98
boundary of manifold 64
boundary point of a set 12
boundary of a set 12
bounded set in metric space 22

chain complex 282
boundary homomorphism 282
cellular chain complex 292, 316
chain homotopy 300
chain map 295
∆-chain complex 283
singular chain complex 287

classification theorem for surfaces
117, 120

closed map 24
closed set 11
closure of a set 12
cokernel of homomorphism 299

collar 78
comb space 207
commutator 219
subgroup 219

compact set 22
countably compact 54
limit point compact 51
locally compact 56
locally compact at x 56
sequentially compact 28

compactification, one point 56
component 55
path component 34

coning 20
conjugate 246
conjugate subgroup 246

connected 31
locally connected 55
locally path connected 55

connected sum 102
boundary 98

continuity 3
continuous 3, 4, 6, 7
at x 3
uniformly 29

contractible space 207
strongly 207

contraction (in metric space) 56
contraction mapping principle 56
countable set 54
countable dense subset 54
countably compact 54
first countable space 54
second countable space 54

convex set 19
covering map 175
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covering space 175
equivalence 176
regular 256
characterization 256

subgroup 248
covering transformation 254
crosscap 120
CW complex 260
fundamental group 276
cellular homology 292, 313

deformation retraction 207
degree of a map 181, 229, 310
local 312

dense subset 54
delta complex 279
delta homology 283

diameter, in metric space 29
differential form 236
closed 236
exact 236

differential structure 194
dimension (of manifold) 62
discrete topology 9
distance from point to a set 52
distance function 8
disk, embedded in surface 77
disk lemma 77
strong version 92

dunce hat 220

edge 45
embedding 62
embedded disk 77

equivalence relation 14
Euler characteristic 111
of handlebody 111
via homology 322
of polyhedron 124

evenly covered 175
equivalent covering spaces 176
characterization 253

exact sequence 295
long 297
short 295
split 296

excision 301

finite subcover 22
finite intersection property 56

first countable space 54
five lemma 299
fixed point 56
theorem 179

free abelian group 159
free group 215
free product 215
amalgamated 216

freely homotopic loops 234
functor 159
fundamental group 160
associativity 165
identity 163
induced homomorphism 166
inverse 164
multiplication 162

fundamental lemma of surfaces 108
fundamental theorem of algebra 183

genus of surface 120
via embedded circles 151
nonorientable 120

gluing 40
group 153
abelian 155
cokernel 299
finitely generated 159
free 215
free abelian 159
image 158
kernel 158
trivial 154

ham sandwich theorem 184
handle 68
index 68
i-handle 68

handle decomposition 68
handlebody 68
Hausdorff 10
Heine–Borel theorem 28
homogeneous space 139
homology 282
cellular 292, 316
delta 283
orientation 334
reduced 328
singular 287
dimension property 301
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exactness property 301
excision property 301
functorial property 300
homotopy property 301

homeomorphic 14
homeomorphism 14
homomorphism 156
homotopic maps 147, 160, 206
homotopy 146, 160
equivalence 206
extension property 274
inverse 206
relative 206
straight line 166
type 207

Hopf map 265

identification map 37
identification space 37
image of homomorphism 158
index (of critical point) 130
index (of handle) 68
index (of surgery) 149
index (of vector field) 187, 200
indiscrete topology 10
induced map, in quotient space 37
interior of manifold 64
interior point of manifold 64
interior point of set 12
interior of a set 12
invariance of domain 64, 333
isometry of metric space 16
isomorphism 156
isotopic 78
embeddings 78
homeomorphisms 78

isotopy 78
ambient 78

Jordan curve theorem 21, 331
for polygonal curves 45

Jordan separation theorem 333

kernel of homomorphism 158
k-fold cover 244
Klein bottle 74

least upper bound property 24
Lebesgue number, in metric space 29

lens space 266
lifting 168, 247, 251
of continuous maps 251
of paths 168, 247

limit point 51
limit point compact 51
local degree 312
locally compact 56
at x 56

locally connected 55
at x 55

locally Euclidean 62
locally homeomorphic 62
locally path connected 55
at x 55

loop 60

manifold 62
with boundary 63
boundary point 63
dimension 62
interior point 63
n-manifold 62

Mayer–Vietoris sequence 305
metric 8
metric space 8
Möbius band 43, 70

naturality 298
neighborhood basis 54
nonorientability 88
nonorientable 88
via embedded disks 92
via handle orientations 95
via Möbius band 90

normal space 52
normal subgroup 158
normalizer 255
no retraction theorem 179, 240

one point compactification 56
open set 4, 8
in Rn 4
in subspace topology 4, 11
in a topology 8

open cover 22
open map 39
order of cover 244
orientation 88
covering space 334
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via embedded disks 92
via handle orientations 95
negative 91
positive 91

orientability 88
via homology 334
via Möbius band 90

orientable surface 90, 92
via handle orientations 95
triangulated 123

orientable manifold 334

path 33
path component 34
path connected 33
periodic map 78
piecewise linear 19
piecing lemma 13
polygonal path 19
closed 19

product topology 26
projective plane 70
properly discontinuous 256
pseudoprojective plane 220

quasi-regular map 236
quotient map 37
quotient space 36
quotient topology 36

rank (of a group) 159
reduced word 215
regular map 235
regular neighborhood 215
regular space 52
retraction 179
no retraction theorem 179, 240

rigid motion in plane 16

saturated set, in quotient space 38
Schönflies theorem 21
for polygonal curves 45
strong form 92

Seifert–van Kampen theorem 216
semilocally simply connected 258
separable metric space 54

separated 30
simple closed curve 21, 45
simplicial complex 276
simply connected 167
singularity of vector field 187
index 187
isolated 187

star shaped 207
stereographic projection 65
straight line homotopy 166
subcover, finite 22
subdivision 350
barycentric 350
operator Sd 352

subspace topology 11
surface 62
surgery 149
index 149

Tietze extension theorem 53
topological group 231
topological invariant 22
topological space 8
topologist’s sine curve 34, 54
topology on a set 7
torus 40
totally bounded set in metric space 30
triangulated surface 144
orientable 144

tube, in product space 28
Tychanoff theorem 27

Urysohn’s lemma 53
uniformly continuous 30
upper bound 24
least upper bound 24

vector field 185
index 187, 200
in plane 185
on surface 198

vertex 45
vertices 45
regular vertex 45
special vertex 45

wedge product 209


