47 Comparison Tests for Improper Integrals

Sometimes it is difficult to find the exact value of an improper integral by antidifferentiation, for instance the integral $\int_{0}^{\infty} e^{-x^{2}} d x$. However, it is still possible to determine whether an improper integral converges or diverges. The idea is to compare the integral to one whose behavior we already know, such us

- the p-integral $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ which converges for $p>1$ and diverges otherwise;
- the integral $\int_{0}^{\infty} e^{c x} d x$ which converges for $c<0$ and diverges for $c \geq 0$;
- the integral $\int_{0}^{1} \frac{1}{x^{p}} d x$ which converges for $p<1$ and diverges otherwise.

The comparison method consists of the following:

Theorem 47.1

Suppose that f and g are continuous and $0 \leq g(x) \leq f(x)$ for all $x \geq a$. Then
(a) if $\int_{a}^{\infty} f(x) d x$ is convergent, so is $\int_{a}^{\infty} g(x) d x$
(b) if $\int_{a}^{\infty} g(x) d x$ is divergent, so is $\int_{a}^{\infty} f(x) d x$.

This is only common sense: if the curve $y=g(x)$ lies below the curve $y=$ $f(x)$, and the area of the region under the graph of $f(x)$ is finite, then of course so is the area of the region under the graph of $g(x)$. Similar results hold for the other types of improper integrals.

Example 47.1
Determine whether $\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}+5}} d x$ converges.

Solution.

For $x \geq 1$ we have that $x^{3}+5 \geq x^{3}$ so that $\sqrt{x^{3}+5} \geq \sqrt{x^{3}}$. Thus, $\frac{1}{\sqrt{x^{3}+5}} \leq \frac{1}{\sqrt{x^{3}}}$. Letting $f(x)=\frac{1}{\sqrt{x^{3}}}$ and $g(x)=\frac{1}{\sqrt{x^{3}+5}}$ then we have that $0 \leq g(x) \leq f(x)$. From the previous section we know that $\int_{1}^{\infty} \frac{1}{x^{\frac{3}{2}}} d x$ is convergent, a p-integral with $p=\frac{3}{2}>1$. By the comparison test, $\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}+5}} d x$ is convergent.

The next question is to estimate such a convergent improper integral.

Example 47.2

Estimate the value of $\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}+5}} d x$ with an error of less than 0.01 .

Solution.

We want to find b such that

$$
\left|\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}+5}} d x-\int_{1}^{b} \frac{1}{\sqrt{x^{3}+5}} d x\right|<0.01
$$

But

$$
\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}+5}} d x=\int_{1}^{b} \frac{1}{\sqrt{x^{3}+5}} d x+\int_{b}^{\infty} \frac{1}{\sqrt{x^{3}+5}} d x
$$

Thus, the problem is to find b such that

$$
\left|\int_{b}^{\infty} \frac{1}{\sqrt{x^{3}+5}} d x\right|<0.01
$$

From the example above, we have

$$
\int_{b}^{\infty} \frac{1}{\sqrt{x^{3}+5}} d x<\int_{b}^{\infty} \frac{1}{\sqrt{x^{3}}} d x=\frac{2}{\sqrt{b}} .
$$

So it suffices to choose b such that $\frac{2}{\sqrt{b}}<0.01$ or $b>40,000$, say for example $b=45000$. In this case,

$$
\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}+5}} d x \approx \int_{1}^{45,000} \frac{1}{\sqrt{x^{3}+5}} d x=1.69824
$$

Example 47.3

Investigate the convergence of $\int_{4}^{\infty} \frac{d x}{\ln x-1}$.

Solution.

For $x \geq 4$ we know that $\ln x-1<\ln x<x$. Thus, $\frac{1}{\ln x-1}>\frac{1}{x}$. Let $g(x)=\frac{1}{x}$ and $f(x)=\frac{1}{\ln x-1}$. Thus, $0<g(x) \leq f(x)$. Since $\int_{4}^{\infty} \frac{1}{x} d x=\int_{1}^{\infty} \frac{1}{x} d x-\int_{1}^{4} \frac{1}{x} d x$ which is divergent since $\int_{1}^{\infty} \frac{1}{x} d x$ is divergent being a p-integral with $p=1$. By the comparison test $\int_{4}^{\infty} \frac{d x}{\ln x-1}$ is divergent.

Example 47.4
Investigate the convergence of the improper integral $\int_{1}^{\infty} \frac{\sin x+3}{\sqrt{x}} d x$.
Solution.
We know that $-1 \leq \sin x \leq 1$. Thus $2 \leq \sin x+3 \leq 4$. Since $x \geq 1$, we have $\frac{2}{\sqrt{x}} \leq \frac{\sin x+3}{\sqrt{x}} \leq \frac{4}{\sqrt{x}}$. Note that the two integrals $\int_{1}^{\infty} \frac{2}{\sqrt{x}} d x$ and $\int_{1}^{\infty} \frac{4}{\sqrt{x}} d x$
are both divergent being a multiple of a p-integral with $p=\frac{1}{2}<1$. If we let $g(x)=\frac{\sin x+3}{\sqrt{x}}$ and $f(x)=\frac{4}{\sqrt{x}}$ then we have no conclusion since $\int_{1}^{\infty} g(x) d x$ may or may not converge and still $\int_{1}^{\infty} g(x) d x \leq \int_{1}^{\infty} f(x) d x$. Now if we let $g(x)=$ $\frac{2}{\sqrt{x}}$ and $f(x)=\frac{\sin x+3}{\sqrt{x}}$ then by the comparison test $\int_{1}^{\infty} \frac{\sin x+3}{\sqrt{x}}$ is divergent since $\int_{1}^{\infty} f(x) d x \geq \int_{1}^{\infty} g(x) d x$ and $\int_{1}^{\infty} g(x) d x$ is divergent.

Example 47.5

Investigate the convergence of $\int_{1}^{\infty} e^{-\frac{1}{2} x^{2}} d x$.
Solution.
If $x \geq 2$ then $\frac{x}{2} \geq 1$. Multiply both sides of this inequality by $x \geq 2$ to obtain $\frac{1}{2} x^{2} \geq x$. Now, multiply both sides of this last inequality by -1 to obtain $-\frac{1}{2} x^{2} \leq-x$ and therefore $e^{-\frac{1}{2} x^{2}} \leq e^{-x}$ since the function e^{x} is an increasing function. Thus,

$$
\int_{1}^{\infty} e^{-\frac{1}{2} x^{2}} d x=\int_{1}^{2} e^{-\frac{1}{2} x^{2}} d x+\int_{2}^{\infty} e^{-\frac{1}{2} x^{2}} d x
$$

But

$$
\int_{1}^{2} e^{-\frac{1}{2} x^{2}} d x \approx 0.34
$$

and

$$
\int_{2}^{\infty} e^{-\frac{1}{2} x^{2}} d x \leq \int_{2}^{\infty} e^{-x} d x \leq \int_{0}^{\infty} e^{-x} d x
$$

so since $\int_{0}^{\infty} e^{-x} d x$ is convergent, $\int_{2}^{\infty} e^{-\frac{1}{2} x^{2}} d x$ is convergent. In conclusion, $\int_{1}^{\infty} e^{-\frac{1}{2} x^{2}} d x$ is convergent.

Sometimes it is laborious to find a convenient function $f(x)$ with $g(x) \leq f(x)$, but we may know that $g(x)$ is no larger than a constant multiple of $f(x)$ for large enough x, and this is good enough. The most powerful test of this form in the course is this version of the limit comparison test:

Theorem 47.2

Let $f(x)$ and $g(x)$ be two positive and continuous functions on $[a, \infty)$.
(a) $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$, or
(b) $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L$, where L is a finite positive number, or
(c) $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty$, then
(a) If $\int_{a}^{\infty} g(x) d x$ converges, then so does $\int_{a}^{\infty} f(x) d x$.
(b) $\int_{a}^{\infty} g(x) d x$ converges if and only if $\int_{a}^{\infty} f(x) d x$ does.
(c) If $\int_{a}^{\infty} g(x) d x$ diverges, then so does $\int_{a}^{\infty} f(x) d x$.

Proof.
(a) Suppose that $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$. Let $\epsilon>0$ be given. Then there is a $b>a$ such that $\frac{f(x)}{g(x)}<\epsilon$ for all $x \geq b$. Thus, $f(x)<\epsilon g(x)$ for all $x \geq b$. By the comparison test, if $\int_{a}^{\infty} g(x) d x$ is convergent so does $\int_{a}^{\infty} f(x) d x$.
(b) Now, suppose that $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L$, where L is a finite positive constant. Let $\epsilon<L$. Then there is a constant $b>a$ such that for all $x \geq b$ we have

$$
\left|\frac{f(x)}{g(x)}-L\right|<\epsilon
$$

That is,

$$
L-\epsilon<\frac{f(x)}{g(x)}<L+\epsilon
$$

Thus, for $x \geq b$ we have $(L-\epsilon) g(x)<f(x)<(L+\epsilon) g(x)$. Now the result follows from the comparison test.
(c) Finally, suppose that $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty$. Then there is $b>a$ such that
$\frac{f(x)}{g(x)} \geq 1$ for all $x \geq b$. That is, $g(x) \leq f(x)$ for all $x \geq b$. Therefore, if $\int_{a}^{\infty} f(x) d x$ converges, then $\int_{a}^{\infty} g(x) d x$ converges

Remark 47.1

The Comparison Test and Limit Comparison Test also apply, modified as appropriate, to other types of improper integrals.

Example 47.6

Show that the improper integral $\int_{1}^{\infty} \frac{1}{1+x^{2}} d x$ is convergent.

Solution.

Since the integral $\int_{1}^{\infty} \frac{d x}{x^{2}}$ is convergent (p-integral with $p=2>1$) and since $\lim _{x \rightarrow \infty} \frac{\frac{1}{1+x^{2}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}+1}=1$, by the limit comparison test (Theorem 47.2 (b)) we have $\int_{1}^{\infty} \frac{d x}{x^{2}+1}$ is also convergent.

