Problem 1. (15 pts) Solve a linear system in \mathbb{Z}_{13}.

\[
\begin{align*}
\end{align*}
\]
Problem 2. (15 pts) Assume that G is a group and $H \subset G$ its subgroup.
(a) Prove that subgroup H is necessarily normal if it has index $[G : H] = 2$.

(b) Give an example of a subgroup H of index $[G : H] = 3$ which is not normal. Justify that it is not normal.
Problem 3. (15 pts) Consider the ring of upper triangular matrices $T_2 = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} | a, b, c \in \mathbb{Z}$

and let $I = \begin{bmatrix} 0 & x \\ 0 & y \end{bmatrix} | x, y \in \mathbb{Z}$.

(a) Verify that I is a (2-sided) ideal in T_2.

(b) Prove that T_2/I is isomorphic to \mathbb{Z}. Write explicitly a map $T_2/I \to \mathbb{Z}$ and verify that it is a ring isomorphism.
Problem 4. (15 pts) (a) Present polynomial $f(x) = x^4 + x^3 + x^2 + x$ as a product of irreducible polynomials over \mathbb{Z}_3. Explain, why your factors are irreducible.

(b) Show that polynomial $f(x) = 2x^3 + x^2 + x + 1$ is irreducible over \mathbb{Q}.