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xi

As the earlier editions were, this book is intended as a text for an introductory course in
algebraic structures (groups, rings, fields, and so forth). Such a course is often used to
bridge the gap from manipulative to theoretical mathematics and to help prepare secondary
mathematics teachers for their careers.

A minimal amount of mathematical maturity is assumed in the text; a major goal is to
develop mathematical maturity. The material is presented in a theorem-proof format, with
definitions and major results easily located thanks to a user-friendly format. The treatment
is rigorous and self-contained, in keeping with the objectives of training the student in the
techniques of algebra and providing a bridge to higher-level mathematical courses.

Groups appear in the text before rings. The standard topics in elementary group theory
are included, and the last two sections in Chapter 4 provide an optional sample of more
advanced work in finite abelian groups.

The treatment of the set Zn of congruence classes modulo n is a unique and popular
feature of this text, in that it threads throughout most of the book. The first contact with Zn

is early in Chapter 2, where it appears as a set of equivalence classes. Binary operations of
addition and multiplication are defined in Zn at a later point in that chapter. Both the addi-
tive and multiplicative structures are drawn upon for examples in Chapters 3 and 4. The
development of Zn continues in Chapter 5, where it appears in its familiar context as a ring.
This development culminates in Chapter 6 with the final description of Zn as a quotient ring
of the integers by the principal ideal (n).

Some flexibility is provided by including more material than would normally be taught
in one course, and a dependency diagram of the chapters/sections (Figure P.1) is included
at the end of this preface. Several sections are marked •optionalŽ and may be skipped by
instructors who prefer to spend more time on later topics.

Several users of the text have inquired as to what material the authors themselves teach
in their courses. Our basic goal in a single course has always been to reach the end of
Section 5.3 •The Field of Quotients of an Integral Domain,Ž omitting the last two sections
of Chapter 4 along the way. Other optional sections could also be omitted if class meetings
are in short supply. The sections on applications naturally lend themselves well to outside
student projects involving additional writing and library research.

For the most part, the problems in an exercise set are arranged in order of difficulty,
with easier problems first, but exceptions to this arrangement occur if it violates logical
order. If one problem is needed or useful in another problem, the more basic problem
appears first. When teaching from this text, we use a ground rule that any previous result,
including prior exercises, may be used in constructing a proof. Whether to adopt this
ground rule is, of course, completely optional.

Preface



Some users have indicated that they omit Chapter 7 (Real and Complex Numbers) be-
cause their students are already familiar with it. Others cover Chapter 8 (Polynomials) before
Chapter 7. These and other options are diagrammed in Figure P.1 at the end of this preface.

The following user-friendlyfeatures are retained from the sixth edition:

€ Descriptive labels and titlesare placed on definitions and theorems to indicate their
content and relevance.

€ Strategy boxesthat give guidance and explanation about techniques of proof are
included. This feature forms a component of the bridge that enables students to
become more proficient in constructing proofs.

€ Symbolic marginal notessuch as •(p ¿ q) � r Ž and •z p � (z q ¿ z r)Ž are used
to help students analyze the logic in the proofs of theorems without interrupting the
natural flow of the proof.

€ A reference systemprovides guideposts to continuations and interconnections of
exercises throughout the text. For example, consider Exercise 8 in Section 4.4.
The marginal notation •Sec. 3.3, #11 @Ž indicates that Exercise 8 of Section 4.4 iscon-
nectedto Exercise 11 in the earlier Section 3.3. The marginal notation •Sec. 4.8, #7 ! Ž
indicates that Exercise 8 of Section 4.4 has a continuationin Exercise 7 of Section 4.8.
Instructors, as well as students, have found this system useful in anticipating which
exercises are needed or helpful in later sections/chapters.

€ Anappendixon the basics of logic and methods of proof is included.

€ A biographical sketchof a great mathematician whose contributions are relevant to
that material concludes each chapter.

€ A gradual introduction and developmentof concepts is used, proceeding from the
simplest structures to the more complex.

€ Anabundance of examplesthat are designed to develop the student•s intuition are
included.

€ Enoughexercisesto allow instructors to make different assignments of approximately
the same difficulty are included.

€ Exercise setsare designed to develop the student•s maturity and ability to construct
proofs. They contain many problems that are elementary or of a computational nature.

€ A summary of key words and phrasesis included at the end of each chapter.

€ A list of special notationsused in the book appears on the front endpapers.

€ Group tablesfor the most common examples are on the back endpapers.

€ Anupdated bibliography is included.

Between this edition and the previous one, my coauthor and beloved husband, Jimmie
Gilbert, passed away. As I worked on this edition, Jimmie was sitting on my shoulder whis-
pering do•s and don•ts to me, and for this reason, his profound influence is still being
reflected in this edition. The most significant changes that •weŽ made include:

€ enhancing the treatment of congruences to systems by introducing the Chinese Re-
mainder Theorem (Section 2.5);

€ splitting Section 3.1 so that the variety of groups can be appreciated before the group
properties are emphasized;
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€ splitting Section 4.4 so that cosets can be completely understood before introducing
normal subgroups;

€ expanding the treatment of irreducibility of polynomials (Section 8.4);

€ introducing the discriminant of a cubic polynomial to characterize the solutions of
cubic equations (Section 8.5);

€ fine-tuning the links between exercises from one section/chapter to another;

€ including around 300 True/False statements that encourage the students to thoroughly
understand the statements of definitions and results of theorems;

€ adding nearly 400 new exercises, a majority of which are theoretical and the remain-
der computational; and, of course,

€ minor rewriting throughout the text.

Acknowledgments
We are grateful to the following people for their helpful comments, suggestions for
improvements, and corrections for this and earlier editions:
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1

C H A P T E R  O N E

Introduction

This chapter presents the fundamental concepts of set, mapping, binary operation, and
relation. It also contains a section on matrices, which will serve as a basis for examples and
exercises from time to time in the remainder of the text. Much of the material in this chap-
ter may be familiar from earlier courses. If that is the case, appropriate omissions can be
made to expedite the study of later topics.

1.1 Sets

Abstract algebra had its beginnings in attempts to address mathematical problems such as
the solution of polynomial equations by radicals and geometric constructions with straight-
edge and compass. From the solutions of specific problems, general techniques evolved
that could be used to solve problems of the same type, and treatments were generalized to
deal with whole classes of problems rather than individual ones.

In our study of abstract algebra, we shall make use of our knowledge of the various
number systems. At the same time, in many cases we wish to examine how certain proper-
ties are consequences of other, known properties. This sort of examination deepens our un-
derstanding of the system. As we proceed, we shall be careful to distinguish between the
properties we have assumed and made available for use and those that must be deduced
from these properties. We must accept without definition some terms that are basic objects
in our mathematical systems. Initial assumptions about each system are formulated using
these undefined terms.

One such undefined term is set. We think of a set as a collection of objects about which
it is possible to determine whether or not a particular object is a member of the set. Sets are
usually denoted by capital letters and are sometimes described by a list of their elements,
as illustrated in the following examples.

Example 1 We write

to indicate that the set A contains the elements 0, 1, 2, 3, and no other elements. The nota-
tion is read as •the set with elements 0, 1, 2, and 3.Ž �50, 1, 2, 36

A 5 50, 1, 2, 36

Fundamentals 



Example 2 The set B, consisting of all the nonnegative integers, is written

The three dots c , called an ellipsis, mean that the pattern established before the dots con-
tinues indefinitely. The notation is read as •the set with elements 0, 1, 2, 3,
and so on.Ž �

As in Examples 1 and 2, it is customary to avoid repetition when listing the elements
of a set. Another way of describing sets is called set-builder notation. Set-builder notation
uses braces to enclose a property that is the qualification for membership in the set.

Example 3 The set B in Example 2 can be described using set-builder notation as

The vertical slash is shorthand for •such that,Ž and we read •B is the set of all x such that x
is a nonnegative integer.Ž �

There is also a shorthand notation for •is an element of.Ž We write • Ž to mean •x
is an element of the set A.Ž We write •x o AŽ to mean •x is not an element of the set A.Ž
For the set A in Example 1, we can write

Definition 1.1 � Subset

Let A andB be sets. Then A is called a subsetof B if and only if every element of A is an ele-
ment of B. Either the notation A 8 B or the notation B 9 A indicates that A is a subset of B.

The notation A 8 B is read •A is a subset of BŽ or •A is contained in B.Ž Also,B 9 A
is read as •B containsA.Ž The symbol [ is reserved for elements, whereas the symbol8
is reserved for subsets.

Example 4 We write

However,

are both incorrectuses of set notation. �

Definition 1.2 � Equality of Sets

Two sets are equal if and only if they contain exactly the same elements.

The setsA andB are equal, and we writeA 5 B, if each member ofA is also a member
of B and if each member ofB is also a member ofA. Typically, a proof that two sets are

a 8 5a, b, c, d6 and 5a6 [ 5a, b, c, d6

a [ 5a, b, c, d6 or 5a6 8 5a, b, c, d6.

2 [ A and 7 o A.

x [ A

B 5 5x 0x is a nonnegative integer6.

50, 1, 2, 3, c 6

B 5 50, 1, 2, 3, c 6.

2 Chapter 1 Fundamentals



equal is presented in two parts. The first shows thatA 8 B, the second thatB 8 A. We then
conclude thatA 5 B. We shall have an example of this type of proof shortly.

1.1 Sets 3

Strategy � One method that can be used to prove that A Z B is to exhibit an element that is in either
setA or set B but is not in both.

Example 5 Suppose , and Now A Z B since
� 1 [ B but � 1 o A, whereasA 5 C sinceA 8 C andA 9 C. �

Definition 1.3 � Proper Subset

If A andB are sets, then A is a proper subsetof B if and only if A 8 B andA 2 B.

We sometimes write A ( B to denote that A is a proper subset of B.

Example 6 The following statements illustrate the notation for proper subsets and
equality of sets.

�

There are two basic operations,unionandintersection, that are used to combine sets.
These operations are defined as follows.

Definition 1.4 � Union, Intersection

If A andB are sets, theunion of A andB is the setA c B (read •A union BŽ), given by

Theintersectionof A andB is the set A d B (read •A intersectionBŽ), given by

The union of two sets A andB is the set whose elements are either in A or in B or are
in both A andB. The intersection of sets A andB is the set of those elements common to
bothA andB.

Example 7 Suppose and Then

and

�

The operations of union and intersection of two sets have some properties that are
analagous to properties of addition and multiplication of numbers.

A d B 5 54, 66.

A c B 5 52, 4, 5, 6, 76

B 5 54, 5, 6, 76.A 5 52, 4, 66

A d B 5 5x 0x [ A and x [ B6.

A c B 5 5x 0x [ A or x [ B6.

51, 2, 46 ( 51, 2, 3, 4, 56  5a, c6 5 5c, a6

C 5 516.B 5 52 1, 16,A 5 51, 16



Example 8 It is easy to see that for any sets A andB, A c B 5 B c A:

Because of the fact that A c B 5 B c A, we say that the operation union has the commu-
tative property. It is just as easy to show that A d B 5 B d A, and we say also that the op-
eration intersection has the commutative property. �

It is easy to find sets that have no elements at all in common. For example, the sets

have no elements in common. Hence, there are no elements in their intersection,A d B,
and we say that the intersection is empty. Thus it is logical to introduce the empty set.

Definition 1.5 � Empty Set, Disjoint Sets

Theempty setis the set that has no elements, and the empty set is denoted by [ or { }.
Two sets A andB are called disjoint if and only if A d B 5 [ .

The sets and are disjoint, since

There is only one empty set [ , and[ is a subset of every set. For a set A with n ele-
ments (n a nonnegative integer), we can write out all the subsets of A. For example, if

then the subsets of A are

Definition 1.6 � Power Set

For any set A, thepower setof A, denoted by p (A), is the set of all subsets of A and is written

Example 9 For the power set of A is

�

It is often helpful to draw a picture or diagram of the sets under discussion. When we
do this, we assume that all the sets we are dealing with, along with all possible unions and
intersections of those sets, are subsets of some universal set, denoted by U. In Figure 1.1,
we let two overlapping circles represent the two sets A andB. The sets A andB are subsets
of the universal set U, represented by the rectangle. Hence the circles are contained in the
rectangle. The intersection of A andB, A d B, is the crosshatched region where the two
circles overlap. This type of pictorial representation is called a Venn diagram.

p (A) 5 5[ , 5a6, 5b6, 5c6, 5a,b6, 5a,c6, 5b,c6, A6.

A 5 5a, b, c6,

p (A) 5 5X 0X 8 A6.

[ , 5a6, 5b6, 5c6, 5a,b6, 5a,c6, 5b,c6, A.

A 5 5a, b, c6,

51, 2 16 d 50, 2, 36 5 [ .

50, 2, 3651, 2 16

A 5 51, 2 16 and B 5 50, 2, 36

5 B c A.
5 5x 0x [ B or x [ A6

A c B 5 5x 0x [ A or x [ B6

4 Chapter 1 Fundamentals



1.1 Sets 5

� Figure 1.1

U

: A

: B

: A > B

BA BA

Another special subset is defined next.

Definition 1.7 � Complement

For arbitrary subsets A andB of the universal set U, thecomplementof B in A is

The special notation Ar is reserved for a particular complement,U 2 A:

We readAr simply as •the complement of AŽ rather than as •the complement of A in U.Ž

Example 10Let

Then

�5 50, 2 1, 2 2, 2 3, c 6.

Br 5 5x 0x is a nonpositive integer6

5 5c , 2 3, 2 1, 1, 3, c 6

Ar 5 5x 0x is an odd integer6

5 50, 2 2, 2 4, 2 6, c 6

A 2 B 5 5x 0x is a nonpositive even integer6

5 51, 3, 5, 7, c 6

B 2 A 5 5x 0x is a positive odd integer6

B 5 5x 0x is a positive integer6.

A 5 5x 0x is an even integer6

U 5 5x 0x is an integer6

Ar 5 U 2 A 5 5x [ U 0x o A6.

A 2 B 5 5x [ U 0x [ A and x o B6.



Example 11The overlapping circles representing the sets A andB separate the interior of
the rectangle representing U into four regions, labeled 1, 2, 3, and 4, in the Venn diagram in
Figure 1.2. Each region represents a particular subset of U.

6 Chapter 1 Fundamentals

� Figure 1.2

U

BA

3 2 1

4

� Figure 1.3

C

Z

Q
R

Z 1

Many of the examples and exercises in this book involve familiar systems of numbers,
and we adopt the following standard notations for some of these systems:

Z denotes the set of all integers.

Z1 denotes the set of all positive integers.

Q denotes the set of all rational numbers.

R denotes the set of all real numbers.

R1 denotes the set of all positive real numbers.

C denotes the set of all complex numbers.

We recall that a complex numberis defined as a number of the form a 1 bi, wherea and
b are real numbers and Also, a real number x is rational if and only if x can be
written as a quotient of integers that has a nonzero denominator. That is,

The relationships that some of the number systems have to each other are indicated by
the Venn diagram in Figure 1.3.

Q 5 e
m
n

  ̀ m [ Z,n [ Z,  and n 2 0f .

i 5 ! 2 1.

Region 1: B 2 A
Region 2: A y B
Region 3: A 2 B
Region 4: (A x B)r �

Z1 ( Z ( Q ( R ( C



Our work in this book usually assumes a knowledge of the various number systems
that would be familiar from a precalculus or college algebra course. Some exceptions
occur when we wish to examine how certain properties are consequences of other prop-
erties in a particular system. Exceptions of this kind occur with the integers in Chapter 2
and the complex numbers in Chapter 7, and these exceptions are clearly indicated when
they occur.

The operations of union and intersection can be applied repeatedly. For instance, we
might form the intersection of A andB, obtainingA d B, and then form the intersection of
this set with a third set C: (A d B) d C.

Example 12The sets (A d B) d C andA d (B d C) are equal, since

In analogy with the associative property

for addition of numbers, we say that the operation of intersection is associative. When we
work with numbers, we drop the parentheses for convenience and write

Similarly, for sets A, B, andC, we write

�

Just as simply, we can show (see Exercise 18 in this section) that the union of sets is an
associative operation. We write

Example 13A separation of a nonempty set A into mutually disjoint nonempty subsets
is called a partition of the set A. If

then one partition of A is

since

A 5 X1 c X2 c X3

X1 5 5a,d6,  X2 5 5b,c, f6,  X3 5 5e6,

A 5 5a,b,c,d,e, f6,

A c B c C 5 A c (B c C) 5 (A c B) c C.

A d B d C 5 A d (B d C) 5 (A d B) d C.

x 1 y 1 z 5 x 1 (y 1 z) 5 (x 1 y) 1 z .

(x 1 y) 1 z 5 x 1 (y 1 z)

5 A d (B d C).

5 A d 5x 0x [ B and x [ C6

5 5x 0x [ A and x [ B and x [ C6

 (A d B) d C 5 5x 0x [ A and x [ B6 d C

1.1 Sets 7



with X1 2 [ , X2 2 [ , X3 2 [ , and

The concept of a partition is fundamental to many of the topics encountered later in this
book. �

The operations of intersection, union, and forming complements can be combined in
all sorts of ways, and several nice equalities can be obtained that relate some of these
results. For example, it can be shown that

and that

Because of the resemblance between these equations and the familiar distributive property
x(y 1 z) 5 xy1 xzfor numbers, we call these equations distributive properties.

We shall prove the first of these distributive properties in the next example and leave
the last one as an exercise. To prove the first, we shall show that A d (B c C) 8
(A d B) c (A d C) and that (A d B) c (A d C) 8 A d (B c C). This illustrates the point
made earlier in the discussion of equality of sets, immediately after Definition 1.2.

The symbol � is shorthand for •implies,Ž and � is shorthand for •is implied by.Ž We
use them in the next example.

Example 14To prove

we first let x [ A d (B c C). Now

ThusA d (B c C) 8 (A d B) c (A d C). 
Conversely, suppose x [ (A d B) c (A d C). Then

Therefore, (A d B) c (A d C) 8 A d (B c C), and we have shown that A d (B c C) 5
(A d B) c (A d C).

� x [ A d (B c C).

� x [ A  and  x [ (B c C)

� x [ A, and  x [ B  or x [ C

� x [ A  and  x [ B, or x [ A and x [ C

x [ (A d B) c (A d C) � x [ A d B, or x [ A d C

� x [ (A d B) c (A d C).

� x [ A d B, or x [ A d C

� x [ A  and x [ B, or x [ A and x [ C

� x [ A, and x [ B or x [ C

x [ A d (B c C) � x [ A  and x [ (B c C)

A d (B c C) 5 (A d B) c (A d C),

A c (B d C) 5 (A c B) d (A c C).

A d (B c C) 5 (A d B) c (A d C)

X1 d X2 5 [ ,  X1 d X3 5 [ ,  X2 d X3 5 [ .
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It should be evident that the second part of the proof can be obtained from the first
simply by reversing the steps. That is, when each � is replaced by � , a valid implication
results. In fact, then, we could obtain a proof of both parts by replacing � with � ,
where� is short for •if and only if.Ž Thus

�� x [ (A d B) c (A d C).

� x [ A d B, or x [ A d C

� x [ A  and x [ B, or x [ A and  x [ C

� x [ A, and x [ B  or x [ C

x [ A d (B c C) � x [ A  and x [ (B c C)

1.1 Sets 9

Strategy � In proving an equality of sets SandT, we can often use the technique of showing that
S 8 T and then check to see whether the steps are reversible. In many cases, the steps are
indeed reversible, and we obtain the other part of the proof easily. However, this method
should not obscure the fact that there are still two parts to the argument:S 8 T andT 8 S.

There are some interesting relations between complements and unions or intersec-
tions. For example, it is true that

This statement is one of two that are known as De Morgan•s• Laws. De Morgan•s other
law is the statement that

Stated somewhat loosely in words, the first law says that the complement of an intersection
is the union of the individual complements. The second similarly says that the complement
of a union is the intersection of the individual complements.

Exercises1.1
True or False
Label each of the following statements as either true or false.

1. Two sets are equal if and only if they contain exactly the same elements.

2. If A is a subset of B andB is a subset of A, thenA andB are equal.

3. The empty set is a subset of every set except itself.

4. A 2 A 5 [ for all sets A.

5. A c A 5 A d A for all sets A.

(A c B)r 5 Ar d Br.

(A d B)r 5 Ar c Br.

•Augustus De Morgan (1806…1871) coined the term mathematical induction and is responsible for rigorously
defining the concept. Not only does he have laws of logic bearing his name but also the headquarters of the
London Mathematical Society and a crater on the moon.



6. A ( A for all sets A.

7. { a, b} 5 { b, a}

8. { a, b} 5 { b, a, b}

9. A 2 B 5 C 2 B impliesA 5 C, for all sets A, B, andC.

10. A 2 B 5 A 2 C impliesB 5 C, for all sets A, B, andC.

Exercises

1. For each set A, describeA by indicating a property that is a qualification for membership
in A.

a. A 5 {0, 2, 4, 6, 8, 10} b. A 5 {1, 2 1}

c. A 5 { 2 1, 2 2, 2 3, c } d. A 5 {1, 4, 9, 16, 25,c }

2. Decide whether or not each statement is true for A 5 {2, 7, 11} and B 5 {1, 2, 9, 10, 11}.

a. 2 8 A b. {11, 2, 7} 8 A

c. 2 5 A d B d. {7, 11} [ A

e. A 8 B f. {7, 11, 2} 5 A

3. Decide whether or not each statement is true, where A andB are arbitrary sets.

a. B c A 8 A b. B d A 8 A c B

c. [ 8 A d. 0 [ [

e. [ [ { [ } f. [ 8 { [ }

g. { [ } 8 [ h. { [ } 5 [

i. [ [ [ j. [ 8 [

4. Decide whether or not each of the following is true for all sets A, B, andC.

a. A d Ar 5 [ b. A d [ 5 A c [

c. A d (B c C) 5 A c (B d C) d. A c (Br d Cr) 5 A c (B c C)r

e. A c (B d C) 5 (A c B) d C f. (A d B) c C 5 A d (B c C)

g. A c (B d C) 5 (A d C) c (B d C) h. A d (B c C) 5 (A c B) d (A c C)

5. Evaluate each of the following sets, where

a. A c B b. A d C c. Ar c B

d. A d B d C e. Ar d B d C f. A c (B d C)

g. A d ( B c C ) h. (A c Br)r i. A 2 B

j. B 2 A k. A 2 (B 2 C) l. C 2 (B 2 A)

m. (A 2 B) d (C 2 B) n. (A 2 B) d (A 2 C)

C 5 52, 3, 5, 76.

B 5 50, 2, 4, 6, 8, 106

A 5 50, 1, 2, 3, 4, 56

U 5 50, 1, 2, 3, c , 106

10 Chapter 1 Fundamentals



6. Write each of the following as either A, Ar, U, or [ , whereA is an arbitrary subset of
the universal set U.

a. A d A b. A c A

c. A d Ar d. A c Ar

e. A c [ f. A d [

g. A d U h. A c U

i. U c Ar j. A 2 [

k. [ r l. Ur

m. (Ar)r n. [ 2 A

7. Write out the power set,p (A), for each set A.

a. A 5 { a} b. A 5 {0, 1} 

c. A 5 { a, b, c} d. A 5 {1, 2, 3, 4} 

e. A 5 {1, {1}} f. A 5 {{1}}

g. A 5 { [ } h. A 5 { [ , { [ }}

8. Describe two partitions of each of the following sets.

a. { is an integer} b. { a, b, c, d}

c. {1, 5, 9, 11, 15} d. { is a complex number}

9. Write out all the different partitions of the given set A.

a. A 5 {1, 2, 3} b. A 5 {1, 2, 3, 4}

10. Suppose the set A hasn elements where n [ Z1 .

a. How many elements does the power set p (A) have?

b. If 0 # k # n, how many elements of the power set p (A) contain exactly k elements?

11. State the most general conditions on the subsets A andB of U under which the given
equality holds.

a. A d B 5 A b. A c Br 5 A

c. A c B 5 A d. A d Br 5 A

e. A d B 5 U f. Ar d Br 5 [

g. A c [ 5 U h. Ar d U 5 [

12. Let Z denote the set of all integers, and let

Prove that A 5 B.

13. Let Z denote the set of all integers, and let

Prove that C 5 D.

D 5 5x 0x 5 3s 1 2 for some s [ Z6.

C 5 5x 0x 5 3r 2 1 for some r [ Z6

B 5 5x 0x 5 3q 1 1 for some q [ Z6.

A 5 5x 0x 5 3p 2 2 for some p [ Z6

x 0x

x 0x

1.1 Sets 11

Sec. 3.1, #37…39 !

Sec. 2.2, #33…36 !



In Exercises 14…33, prove each statement.

14. A d B 8 A c B 15. (Ar)r 5 A

16. If A 8 B andB 8 C, thenA 8 C. 17. A 8 B if and only if Br 8 Ar.

18. A c (B c C) 5 (A c B) c C 19. (A c B)r 5 Ar d Br

20. (A d B)r 5 Ar c Br 21. A c (B d C) 5 (A c B) d (A c C)

22. A d (Ar c B) 5 A d B 23. A c (Ar d B) 5 A c B

24. A c (A d B) 5 A d (A c B) 25. If A 8 B, thenA c C 8 B c C.

26. If A 8 B, thenA d C 8 B d C. 27. B 2 A 5 B d Ar

28. A d (B 2 A) 5 [ 29. A c (B 2 A) 5 A c B

30. (A c B) 2 C 5 (A 2 C) c (B 2 C) 31. (A 2 B) c (A d B) 5 A

32. A 8 B if and only if A c B 5 B. 33. A 8 B if and only if A d B 5 A.

34. Prove or disprove that A c B 5 A c C impliesB 5 C.

35. Prove or disprove that A d B 5 A d C impliesB 5 C.

36. Prove or disprove that p (A c B) 5 p (A) c p (B).

37. Prove or disprove that p (A d B) 5 p (A) d p (B).

38. Prove or disprove that p (A 2 B) 5 p (A) 2 p (B).

39. Express (A c B) 2 (A d B) in terms of unions and intersections that involve A, Ar, B,
andBr.

40. Let the operation of addition be defined on subsets A and B of U by A 1 B 5
(A c B) 2 (A d B). Use a Venn diagram with labeled regions to illustrate each of the
following statements.

a.

b.

c.

41. Let the operation of addition be as defined in Exercise 40. Prove each of the following
statements.

a. A 1 A 5 [ b. A 1 [ 5 A

1.2 Mappings

The concept of a function is fundamental to nearly all areas of mathematics. The term
functionis the one most widely used for the concept that we have in mind, but it has be-
come traditional to use the termsmappingandtransformationin algebra. It is likely that
these words are used because they express an intuitive feel for the association between the
elements involved. The basic idea is that correspondences of a certain type exist between

A d (B 1 C) 5 (A d B) 1 (A d C).

A 1 (B 1 C) 5 (A 1 B) 1 C

A 1 B 5 (A 2 B) c (B 2 A)

12 Chapter 1 Fundamentals



the elements of two sets. There is to be a rule of association between the elements of a
first set and those of a second set. The association is to be such that for each element in
the first set, there is one and only one associated element in the second set. This rule of
association leads to a natural pairing of the elements that are to correspond, and then to
the formal statement in Definition 1.9.

By an ordered pair of elements we mean a pairing (a, b), where there is to be a dis-
tinction between the pair (a, b) and the pair (b, a), if a andb are different. That is, there is to
be a first position and a second position such that (a, b) 5 (c, d) if and only if both a 5 c and
b 5 d. This ordering is altogether different from listing the elements of a set, for there the
order of listing is of no consequence at all. The sets {1, 2} and {2, 1} have exactly the same
elements, and {1, 2}5 {2, 1}. When we speak of ordered pairs, however, we do not consider
(1, 2) and (2, 1) equal. With these ideas in mind, we make the following definition.

Definition 1.8 � Cartesian• Product

For two nonempty sets A andB, the Cartesian product A 3 B is the set of all ordered
pairs (a, b) of elements a [ A andb [ B. That is,

Example 1 If A 5 {1, 2} and B 5 {3, 4, 5}, then

We observe that the order in which the sets appear is important. In this example,

soA 3 B andB 3 A are quite distinct from each other. �

We now make our formal definition of a mapping.

Definition 1.9 � Mapping, Image

Let A andB be nonempty sets. A subset f of A 3 B is a mapping from A to B if and only
if for each a [ A there is a unique (one and only one) element b [ B such that (a, b) [ f.
If f is a mapping from A to B and the pair (a, b) belongs to f, we write b 5 f (a) and call b
theimageof a underf.

Figure 1.4 illustrates the pairing between a andf (a). A mapping f from A to B is the
same as a function from A to B, and the image of a [ A underf is the same as the value of
the function f at a. Two mappingsf from A to B andg from A to B areequal if and only if
f (x) 5 g(x) for all x [ A.

B 3 A 5 5(3, 1),  (3, 2),  (4, 1),  (4, 2),  (5, 1),  (5, 2)6,

A 3 B 5 5(1, 3),  (1, 4),  (1, 5),  (2, 3),  (2, 4),  (2, 5)6.

A 3 B 5 5(a, b) 0a [ A and b [ B6.

1.2 Mappings 13

•The Cartesian product is named for René Descartes (1596…1650), who has been called the •Father of Modern
PhilosophyŽ and the •Father of Modern Mathematics.Ž
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� Figure 1.4

A

a (a, b) [ f b = f (a)

B

� Figure 1.5

… 2

1

1

4

9

A

f (a) = a2, a [ A

B

2

Example 2 Let A 5 { 2 2, 1, 2}, and let B 5 {1, 4, 9}. The set f given by

is a mapping from A to B, since for each a [ A there is a unique element b [ B such that
(a, b) [ f. As is frequently the case, this mapping can be efficiently described by giving
the rule for the image under f. In this case,f (a) 5 a2, a [ A. This mapping is illustrated in
Figure 1.5.

�

f 5 5(2 2, 4), (1, 1), (2, 4)6

When it is possible to describe a mapping by giving a simple rule for the image of an
element, it is certainly desirable to do so. We must keep in mind, however, that the set A,
the set B, and the rule must all be known before the mapping is determined. If f is a map-
ping from A to B, we write f : A S B or to indicate this.

Definition 1.10� Domain, Codomain, Range

Let f be a mapping from A to B. The set A is called the domain of f, andB is called the
codomainof f. The rangeof f is the set

The range of f is denoted by f (A).

Example 3 Let A 5 { 2 2, 1, 2} and B 5 {1, 4, 9}, and letf be the mapping described
in the previous example:

The domain off is A, the codomain off is B, and the range off is {1, 4} ( B. �

If f : A S B, the notation used in Definition 1.10 can be extended as follows to arbitrary
subsetsS 8 A.

f 5 5(a,b) 0f (a) 5 a2, a [ A6.

C 5 5y 0y [ B and y 5 f (x) for somex [ A6.

A h
f

B



Definition 1.11� Image, Inverse Image

If f : A S B andS 8 A, then

The setf (S) is called the imageof Sunderf. For any subset T of B, theinverse imageof
T is denoted by f 2 1(T) and is defined by

We note that the image f (A) is the same as the range off. Also, both notations f (S) and
f 2 1(T) in Definition 1.11 denote sets, not values of a mapping. We illustrate these notations
in the next example.

Example 4 Let f : A S B as in Example 3. If S5 {1, 2}, then f (S) 5 {1, 4} as shown
in Figure 1.6.

f2 1(T) 5 5x 0x [ A and f (x) [ T6.

f (S) 5 5y 0y [ B and y 5 f (x) for somex [ S6.

1.2 Mappings 15

� Figure 1.6

A
…2

1

2

S
B

f (S)
4

1f

9

� Figure 1.7

A
…2

1
2

f …1

f …1

1

B

T

4

9

(T)

With T 5 {4, 9}, f 2 1(T) is given by f 2 1(T) 5 { 2 2, 2} as shown in Figure 1.7.

�

Among the various mappings from a nonempty set A to a nonempty set B, there are some
that have properties worthy of special designation. We make the following definition.

Definition 1.12� Onto, Surjective

Let f : A S B. Thenf is called onto, or surjective, if and only if B 5 f (A). Alternatively, an
onto mappingf is called a mapping from A onto B.



We begin our discussion of onto mappings by describing what is meant by a map-
ping that does not satisfy the requirement in Definition 1.12. To show that a given map-
ping f : A S B is not onto, we need only find a single element b in B for which no x [ A
exists such that f (x) 5 b. Such an element b and the sets A, B, andf (A) are diagrammed
in Figure 1.8.

16 Chapter 1 Fundamentals

Strategy � According to our definition, a mappingf from A to B is onto if and only if every element
of B is the image of at least one element inA. A standard way to demonstrate that
f: A S B is onto is to take an arbitrary elementb in B and show (usually by some kind of
formula) that there exists an elementa [ A such thatb 5 f (a).

� Figure 1.8

A
x

f (x)

f (A)

B

b

Example 5 Suppose we have f : A S B, whereA 5 { 2 1, 0, 1}, B 5 {4, 2 4}, and
f 5 {( 2 1, 4), (0, 4), (1, 4)}. The mapping f is not onto, since there is no a [ A such that
f (a) 5 2 4 [ B. �

Example 6 Let f : Z S Z, whereZ is the set of integers. Iff is defined by

then we writef (a) 5 2 2 a, a [ Z.
To show thatf is onto (surjective), we choose an arbitrary element b [ Z. Then there

exists 22 b [ Z such that

sincef(2 2 b) 5 2 2 (2 2 b) 5 b, and hence f is onto. �

Definition 1.13� One-to-One, Injective

Let f : A S B. Then f is called one-to-one, or injective, if and only if different elements of
A always have different images under f.

In an approach analogous to our treatment of the onto property, we first examine the situ-
ation when a mapping fails to have the one-to-one property. To show thatf is not one-to-one,

(2 2 b, b) [ f

f 5 5(a, 2 2 a) 0a [ Z6,



we need only find two elements a1 [ A anda2 [ A such that a1 2 a2 andf (a1) 5 f (a2). A
pair of elements with this property is shown in Figure 1.9.

1.2 Mappings 17

� Figure 1.9

A
a1

f (a1) = f (a2)

B

a2

Strategy � The preceding discussion illustrates how only one exception is needed to show that a
given statement is false. An example that provides such an exception is referred to as a
counterexample.

Strategy � We usually show that f is one-to-one by assuming thatf (a1) 5 f (a2) and proving that this
implies that a1 5 a2.

Example 7 Suppose we reconsider the mapping f : A S B from Example 5 where
A 5 { 2 1, 0, 1},B 5 {4, 2 4}, and f 5 {( 2 1, 4), (0, 4), (1, 4)}. We see that f is not one-to-
one, since

�

A mapping f : A S B is one-to-one if and only if it has the property that a1 2 a2 in A
always implies that f (a1) 2 f (a2) in B. This is just a precise statement of the fact that diff-
erent elements always have different images. The trouble with this statement is that it is for-
mulated in terms of unequal quantities, whereas most of the manipulations in mathematics
deal with equalities. For this reason, we take the logically equivalent contrapositivestate-
ment •f(a1) 5 f(a2) always implies a1 5 a2Ž as our working form of the definition.

f(2 1) 5 f(0) 5 4 but 2 1 2 0.

This strategy is used to show that the mapping in Example 6 is one-to-one.

Example 8 Supposef: Z S Z is defined by

To show that f is one-to-one (injective), we assume that for a1 [ Z anda2 [ Z,

f (a1) 5 f (a2).

f 5 5(a, 2 2 a) 0a [ Z6.



Then we have

and this implies that a1 5 a2. Thus f is one-to-one. �

Definition 1.14� One-to-One Correspondence, Bijection

Let f : A S B. The mappingf is called bijective if and only if f is both surjective and injec-
tive. A bijective mapping from A to B is called a one-to-one correspondencefrom A to B,
or a bijection from A to B.

Example 9 The mapping f : Z S Z defined in Example 6 by

is both onto and one-to-one. Thus f is a one-to-one correspondence. �

Just after Example 11 in Section 1.1, the symbols Z, Z1 , Q, R, R1 , andC were
introduced as standard notations for some of the number systems. Another set of numbers
that we use often enough to justify a special notation is the set of all even integers. The
setE of all even integers includes 0 and all negative even integers,2 2, 2 4, 2 6, c , as
well as the positive even integers, 2, 4, 6,c . Thus

and we define n to be an even integerif and only if n 5 2k for some integer k. An integer
n is defined to be an odd integer if and only if n 5 2k 1 1 for some integer k, and the set
of all odd integers is the complement of E in Z:

Note that we could also define an odd integer by using the expression n 5 2j 2 1 for some
integer j.

The next two examples show that a mapping may be onto but not one-to-one, or it may
be one-to-one but not onto.

Example 10In this example, we encounter a mapping that is onto but not one-to-one.
Let h: Z S Z be defined by

To attempt a proof that h is onto, let b be an arbitrary element in Z and consider the
equationh(x) 5 b. There are two possible values for h(x), depending on whether x is even
or odd. Considering both of these values, we have

x 2 2
2

5 b for x even, or 
x 2 3

2
5 b for x odd.

h(x) 5 d

x 2 2
2

if x is even

x 2 3
2

if x is odd.

Z 2 E 5 5c , 2 5, 2 3, 2 1, 1, 3, 5, c 6.

E 5 5c , 2 6, 2 4, 2 2, 0, 2, 4, 6, c 6,

f 5 5(a, 2 2 a) 0a [ Z6

2 2 a1 5 2 2 a2,
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Solving each of these equations separately for x yields

We note that 2b 1 2 5 2(b 1 1) is an even integer for every choice of b in Z and that
2b 1 3 5 2(b 1 1) 1 1 is an odd integer for every choice of b in Z. Thus there are two
values, 2b 1 2 and 2b 1 3, for x in Z such that

This proves that h is onto. Since 2b 1 2 2 2b 1 3 and h(2b 1 2) 5 h(2b 1 3), we have
also proved that h is not one-to-one. �

Example 11Consider now the mapping f : Z S Z defined by

To attempt a proof that f is onto, consider an arbitrary element b in Z. We have

and the equation 2x 5 b 2 1 has a solutionx in Z if and only if b 2 1 is an even
integer„that is, if and only if b is an odd integer. Thus only odd integers are in the
range of f, and therefore f is not onto.

The proof that f is one-to-one is straightforward:

Thusf is one-to-one even though it is not onto. �

In Section 3.1 and other places in our work, we need to be able to apply two mappings
in succession, one after the other. In order for this successive application to be possible, the
mappings involved must be compatible, as required in the next definition.

Definition 1.15� Composite Mapping

Let g: A S B andf : B S C. The composite mappingf +g is the mapping from A to C
defined by

for all x [ A.

The process of forming the composite mapping is called composition of mappings,
and the result f +g is sometimes called the compositionof g andf. Readers familiar with
calculus will recognize this as the setting for the chain ruleof derivatives.

( f +g)(x) 5 f (g(x)) 

� m 5 n.
�  2m 5 2n

f (m) 5 f (n) �  2m 1 1 5 2n 1 1

�  2x 5 b 2 1,

f (x) 5 b � 2x 1 1 5 b

f (x) 5 2x 1 1.

h(2b 1 2) 5 b  and h(2b 1 3) 5 b.

x 5 2b 1 2 for x even, or x 5 2b 1 3 for x odd.
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The composite mapping f +g is diagrammed in Figure 1.10. Note that the domain of
f must contain the range of g before the composition f +g is defined.
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� Figure 1.10

A B f

f ° g

g C

x f (g(x))
g(x)

Example 12Let Z be the set of integers,A the set of nonnegative integers, and B the
set of nonpositive integers. Suppose the mappings g andf are defined as

Then the composition f +g is a mapping from Z to B with

Note that f +g is not onto, since 2 3 [ B, but there is no integer x such that

Also, f +g is not one-to-one, since

and

�

In connection with the composition of mappings, a word of caution about notation is
in order. Some mathematicians use the notation xf to indicate the image of x under f.
That is, both notations xf andf(x) represent the value of f atx. When the xf notation is used,
mappings are applied from left to right, and the composite mapping f +g is defined by the
equationx( f +g) 5 (xf)g. We consistently use the f(x) notation in this book, but the xf
notation is found in some other texts on algebra.

When the composite mapping can be formed, we have an operation defined that is
associative. If h: A S B, g: B S C, andf : C S D, then

for all x [ A. Thus the compositions (f +g) +h andf +(g +h) are the same mapping from
A to D.

5 ( f +(g +h))(x)

5 f ((g +h)(x)) 

5 f 3g(h(x))4

(( f +g) +h)(x) 5 ( f +g)(h(x)) 

2 2 2 2.

( f +g)(2 2) 5 2 (2 2)2 5 2 4 5 ( f +g)(2) 

( f +g)(x) 5 2 x2 5 2 3.

( f +g)(x) 5 f (g(x)) 5 f (x2) 5 2 x2.

f: A S B,  f (x) 5 2 x.

g: Z S A,  g(x) 5 x2



Exercises1.2
True or False 
Label each of the following statements as either true or false.

1. A 3 A 5 A, for every set A.

2. A 3 [ 5 [ , for every set A.

3. Let f : A S B whereA andB are nonempty. Then f � 1( f(S)) 5 Sfor every subset Sof A.

4. Let f : A S B whereA andB are nonempty. Then f ( f � 1(T)) 5 T for every subset T of B.

5. Let f : A S B. Then f(A) 5 B for all nonempty sets A andB.

6. Every bijection is both one-to-one and onto. 

7. A mapping is onto if and only if its codomain and range are equal. 

8. Let g: A S A andf : A S A. Then (f +g)(a) 5 (g +f )(a) for every a in A.

9. Composition of mappings is an associative operation. 

Exercises

1. For the given sets, form the indicated Cartesian product.

a.

b.

c.

d.

e.

2. For each of the following mappings, state the domain, the codomain, and the range,
wheref: E S Z.

a. b.

c. d.

3. For each of the following mappings, write out f (S) andf2 1(T) for the given SandT,
wheref: Z S Z.

a.

b.

c.

d.

4. For each of the following mappings f : Z S Z, determine whether the mapping is onto
and whether it is one-to-one. Justify all negative answers.

a. b.

c. d.
e. f. f (x) 5 x 2 0x 0f (x) 5 0x 0

f (x) 5 x3f (x) 5 x 1 3

f (x) 5 3xf (x) 5 2x

f (x) 5 0x 02 x; S5 T 5 52 7, 2 1, 0, 2, 46

f (x) 5 x2; S5 52 2, 2 1, 0, 1, 26,T 5 52, 7, 116

S5 50, 1, 5, 96, T 5 Z 2 Ef (x) 5 b
x 1 1 if x is even
x if x is odd;

f (x) 5 0x 0; S5 Z 2 E, T 5 51, 3, 46

f (x) 5 x 1 1, x [ Ef (x) 5 0x 0, x [ E

f (x) 5 x, x [ Ef (x) 5 x>2, x [ E

B 3 A; A 5 B 5 51, 2, 36

B 3 A; A 5 51, 5, 96, B 5 52 1, 16

A 3 B; A 5 52, 4, 6, 86, B 5 526

B 3 A; A 5 5a, b6, B 5 50, 16

A 3 B; A 5 5a, b6, B 5 50, 16
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g. h.

i. j.

5. For each of the following mappingsf: R S R, determine whether the mapping is onto
and whether it is one-to-one. Justify all negative answers. (Compare these results with
the corresponding parts of Exercise 4.)
a. b.

c. d.
e. f.

6. For the given subsets A andB of Z, let f (x) 5 2x and determine whether f : A S B is
onto and whether it is one-to-one. Justify all negative answers.
a. b.

7. For the given subsets A andB of Z, let f (x) 5 0x0and determine whether f : A S B is
onto and whether it is one-to-one. Justify all negative answers.
a. b.
c. d.

8. For the given subsets A andB of Z, let f (x) 5 0x1 40and determine whether f : A S B
is onto and whether it is one-to-one. Justify all negative answers.
a. b.

9. For the given subsets A andB of Z, let f (x) 5 2x and determine whether f : A S B
is onto and whether it is one-to-one. Justify all negative answers.
a. b.

10. For each of the following parts, give an example of a mapping from E to E that
satisfies the given conditions.
a. one-to-one and onto b. one-to-one and not onto
c. onto and not one-to-one d. not one-to-one and not onto

11. For the given f : Z S Z, determine whether f is onto and whether it is one-to-one. Prove
that your conclusions are correct.

a. b.

c. d.

e. f. f (x) 5 b
2x 2 1 if x is even
2x if x is odd

f(x) 5 b
3x if x is even
2x if x is odd

f (x) 5 d

x
2

if x is even

x 2 3
2

if x is odd
f (x) 5 c

2x 1 1 if x is even
x 1 1

2
if x is odd

f (x) 5 b
0 if x is even
2x if x is odd

f (x) 5 c

x
2

if x is even

0 if x is odd

A 5 Z1 , B 5 Z1 d EA 5 Z1 , B 5 Z

A 5 Z1 , B 5 Z1A 5 Z, B 5 Z

A 5 Z 2 506, B 5 Z1A 5 Z1 , B 5 Z1

A 5 Z1 , B 5 ZA 5 Z, B 5 Z1 c 506

A 5 E, B 5 EA 5 Z, B 5 E

f (x) 5 x 2 0x 0f (x) 5 0x 0
f (x) 5 x3f (x) 5 x 1 3

f (x) 5 3xf (x) 5 2x

f (x) 5 b
x 2 1 if x is even
2x if x is odd

f (x) 5 c
x if x is even
x 2 1

2
if x is odd

f (x) 5 b
x if x is even
x 2 1 if x is odd

f (x) 5 b
x if x is even
2x 2 1 if x is odd
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12. Let A 5 R 2 {0} and B 5 R. For the given f : A S B, determine whetherf is onto and
whether it is one-to-one. Prove that your decisions are correct.

a. b.

c. d.

13. For the given f : A S B, determine whether f is onto and whether it is one-to-one. Prove
that your conclusions are correct.

a.

b.

c.

d.

e.

f.

14. Let f : Z S { 2 1, 1} be given by 

a. Prove or disprove that  f is onto.

b. Prove or disprove that  f is one-to-one.

c. Prove or disprove that .

d. Prove or disprove that .

15. a. Show that the mapping f given in Example 2 is neither onto nor one-to-one.

b. For this mapping f, show that if S 5 {1, 2}, then f2 1( f (S)) 2 S.

c. For this same f andT 5 {4, 9}, show that f ( f2 1(T)) 2 T.

16. Let g: Z S Z be given by 

a. ForS 5 {3, 4}, find g(S) andg2 1(g(S)).

b. ForT 5 {5, 6}, find g2 1(T) andg(g2 1(T)).

17. Let f : Z S Z be given by 

a. ForS 5 {0, 1, 2}, find f (S) andf2 1( f (S)).

b. ForT 5 { 2 1, 1, 4}, find f2 1(T) andf( f2 1(T)).

18. Let f : Z S Z andg: Z S Z be defined as follows. In each case, compute (f +g)(x) for
arbitraryx [ Z.

a.

b. f (x) 5 2x, g(x) 5 x3

f (x) 5 2x, g(x) 5 b
x if x is even
2x 2 1 if x is odd

f (x) 5 b
2x 2 1 if x is even
2x if x is odd.

g(x) 5 c
x if x is even
x 1 1

2
if x is odd.

f (x1x2) 5 f (x1) f (x2)

f (x1 1 x2) 5 f (x1) f (x2)

f (x) 5 b
1 if x is even

2 1 if x is odd.

A 5 R 3 R, B 5 R, f (x, y) 5 2x1 y

A 5 Z 1 3 Z 1 , B 5 Q, f (x, y) 5 x>y

A 5 Z, B 5 Z 3 Z, f (x) 5 (x, 1) 

A 5 Z 3 Z, B 5 Z, f (x, y) 5 x

A 5 Z 3 Z, B 5 Z, f (x, y) 5 x 1 y

A 5 Z 3 Z, B 5 Z 3 Z, f (x, y) 5 (y, x)

f (x) 5
2x 2 1
x2 1 1

f (x) 5
x

x2 1 1

f (x) 5
2x 2 1

x
f (x) 5

x 2 1
x
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c.

d.

e.

19. Let f and g be defined in the various parts of Exercise 18. In each part, compute
(g +f )(x) for arbitrary x [ Z.

In Exercises 20…22, suppose mandn are positive integers,A is a set with exactly melements,
andB is a set with exactly n elements.

20. How many mappings are there from A to B?

21. If m 5 n, how many one-to-one correspondences are there from A to B?

22. If m # n, how many one-to-one mappings are there from A to B?

23. Let a andb be constant integers with a 2 0, and let the mapping f : Z S Z be defined
by f(x) 5 ax 1 b.

a. Prove that f is one-to-one.

b. Prove that f is onto if and only if a 5 1 or a 5 2 1.

24. Let f : A S B, whereA andB are nonempty.

a. Prove thatf (S1 c S2) 5 f (S1) c f (S2) for all subsets S1 andS2 of A.

b. Prove thatf (S1 d S2) 8 f (S1) d f (S2) for all subsets S1 andS2 of A.

c. Give an example where there are subsets S1 andS2 of A such that

d. Prove that f (S1) 2 f(S2) 8 f(S1 2 S2) for all subsets S1 andS2 of A.

e. Give an example where there are subsets S1 andS2 of A such that

25. Let f : A S B, whereA andB are nonempty, and let T1 andT2 be subsets of B.

a. Prove that f2 1(T1 c T2) 5 f2 1(T1) c f2 1(T2).

b. Prove that f2 1(T1 d T2) 5 f2 1(T1) d f2 1(T2).

c. Prove that f2 1(T1) 2 f2 1(T2) 5 f2 1(T1 2 T2).

d. Prove that if T1 8 T2, thenf2 1(T1) 8 f2 1(T2).

26. Let g: A S B andf : B S C. Prove that (f +g)2 1(T) 5 g2 1( f2 1(T)) for any subset T
of C.

f (S1) 2 f (S2) 2 f (S1 2 S2).

f (S1 d S2) 2 f (S1) d f (S2).

f (x) 5 x2,g(x) 5 x 2 0x 0

g(x) 5 b
x 2 1 if x is even
2x if x is odd

f (x) 5 c

x
2

if x is even

x 1 1 if x is odd

f (x) 5 x 1 0x 0, g(x) 5 c

x
2

if x is even

2 x if x is odd
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27. Let f : A S B, where A and B are nonempty. Prove that f has the property that
f2 1( f (S)) 5 S for every subset S of A if and only if f is one-to-one. (Compare with
Exercise 15b.)

28. Let f : A S B, where A and B are nonempty. Prove that f has the property that
f ( f 2 1(T)) 5 T for every subset T of B if and only if f is onto. (Compare with
Exercise 15c.)

1.3 Properties of Composite Mappings (Optional)

In many cases, we will be dealing with mappings of a set into itself; that is, the domain and
codomain of the mappings are the same. In these cases, the mappings f +g andg +f are
both defined, and the question of whether f +g andg +f are equal arises. That is, is map-
ping composition commutative when the domain and codomain are equal? The following
example shows that the answer is no.

Example 1 Let Z be the set of all integers, and let the mappings f : Z S Z and
g: Z S Z be defined for each n [ Z by

In this case, the composition mappings f +g andg +f are both defined. We have, on the
one hand,

so (g +f )(n) 5 n for all n [ Z. On the other hand,

sof +g 2 g +f. Thus mapping composition is not commutative. �

In the next example we use the same functions f, g, g +f, andf +g as in Example 1. For
each of them, we determine whether the mapping is onto and whether it is one-to-one.

Example 2 Let f andg be the same as in Example 1. We see that f is one-to-one since

� m 5 n.

f (m) 5 f(n) � 2m 5 2n

5 c
f a

n
2

b 5 n if n is even

f (4) 5 8 if n is odd,

 ( f +g)(n) 5 f (g(n)) 

5 n,
5 g(2n)

 (g +f )(n) 5 g( f (n))

g(n) 5 c

n
2

if n is even

4 if n is odd.

f (n) 5 2n
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To show that f is not onto, consider the equation f(n) 5 1:

and is not an element of Z. Thus 1 is not in the range of f.
We see that g is not one-to-one since

However, we can show that g is onto. For any m[ Z, the integer 2m is in Z and

Thus every is in the range of g, andg is onto.
Using the computed values from Example 1, we have

and

The value (g +f )(n) 5 n shows that g +f is both onto and one-to-one. Since

f +g is not one-to-one. Since (f +g)(n) is always an even integer, there is no n [ Z such
that

and hence f +g is not onto.
Summarizing our results, we have that

f is one-to-one and not onto.

g is onto and not one-to-one.

g +f is both onto and one-to-one.

f +g is neither onto nor one-to-one. �

Considerations such as those in Example 2 raise the question of how the one-to-one
and onto properties of the mappings f, g, andf +g are related. General statements concern-
ing these relationships are given in the next two theorems, and others can be found in the
exercises.

( f +g)(n) 5 5,

( f +g)(1) 5 8 and ( f +g)(3) 5 8,

( f +g) 5 b
n if n is even
8 if n is odd.

(g +f )(n) 5 n

m [ Z

5 m.

g(2m) 5
2m
2

 since 2m is even

g(3) 5 4 and g(5) 5 4.

1
2

� n 5 1
2 ,

f (n) 5 1 � 2n 5 1
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Theorem 1.16� Composition of Onto Mappings

Let g: A S B andf: B S C. If f andg are both onto, then f +g is onto.

Proof Supposef andg satisfy the stated conditions. The composition f +g mapsA to C.
Supposec [ C. Since f is onto, there exists b [ B such that

Sinceg is onto, every element in B is an image under g. In particular, for the specific b such
thatf(b) 5 c, there exists a [ A such that

Hence, for c [ C, there exists a [ A such that

andf +g is onto. 

Theorem 1.17� Composition of One-to-One Mappings

Let g: A S B andf: B S C. If f andg are both one-to-one, then f +g is one-to-one.

Proof Supposef andg satisfy the stated conditions. Let a1 anda2 be elements in A such
that

or

Sincef is one-to-one, then 

and since g is one-to-one, then 

Thusf +g is one-to-one. 

The mappings in Example 3 provide a combination of properties that is different from
the one in Example 2.

Example 3 Let f: Z S Z andg: Z S Z be defined as follows:

g(x) 5 4x.

f (x) 5 c
x if x is even
x 2 1

2
if x is odd,

a1 5 a2.

g(a1) 5 g(a2),

f (g(a1)) 5 f (g(a2)).

( f +g)(a1) 5 ( f +g)(a2)

( f +g)(a) 5 f (g(a)) 5 f (b) 5 c,

g(a) 5 b.

f (b) 5 c.
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We shall determine which of the mappings f, g, f +g, andg +f are onto, and also which of
these mappings are one-to-one.

For arbitraryn [ Z, 2n 1 1 is odd in Z, andf (2n 1 1) 5 n. Thus f is onto. We have
f (2) 5 2 and also f (5) 5 2, so f is not one-to-one.

Sinceg(x) is always a multiple of 4, there is no x [ Z such that g(x) 5 3. Hence g is
not onto. However,

sog is one-to-one.
Now

This means that (f +g)(x) 5 g(x) for all x [ Z. Therefore,f +g 5 g is not onto and is
one-to-one.

Computing (g +f )(x) , we obtain

Since (g +f )(x) is never odd, there is no x such that (g +f )(x) 5 1, and g +f is not onto. Also,
since (g +f )(2) 5 8 and (g +f )(5) 5 8, g +f is not one-to-one.

We can summarize our results as follows:

f is onto and not one-to-one.

g is one-to-one and not onto.

f +g is one-to-one and not onto.

is neither onto nor one-to-one. �

Exercises1.3
True or False
Label each of the following statements as either true or false.

1. Mapping composition is a commutative operation.

2. The composition of two bijections is also a bijection.

3. Let f, g, andh be mappings from A into A such that f +g 5 h +g. Then f 5 h.

4. Let f, g, andh be mappings from A into A such that f +g 5 f +h. Then g 5 h.

g +f

5 b
4x if x is even

2(x 2 1) if x is odd.

5 c

g(x) if x is even

ga
x 2 1

2
b if x is odd

 (g +f )(x) 5 g( f (x))

( f +g)(x) 5 f (g(x)) 5 f (4x) 5 4x.

� x 5 z,

g(x) 5 g(z) �  4x 5 4z
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5. Let g: A S B andf: B S C such that f +g is onto. Then both f andg are onto.

6. Let g: A S B and f: B S C such that f + g is one-to-one. Then both f and g are
one-to-one.

Exercises

1. For each of the following pairs f : Z S Z andg: Z S Z, decide whether f +g is onto or
one-to-one and justify all negative answers.

a.

b. f (x) 5 2x, g(x) 5 x3

c.

d.

e.

2. For each pair f, g given in Exercise 1, decide whether g +f is onto or one-to-one, and
justify all negative answers.

3. Give an example of mappings f andg such that one of f or g is not onto but f +g
is onto.

4. Give an example of mappings f andg, different from those in Example 3, such that one
of f or g is not one-to-one but f +g is one-to-one.

5. a. Give an example of mappings f andg, different from those in Example 2, where f is
one-to-one,g is onto, and f +g is not one-to-one.

b. Give an example of mappings f andg, different from those in Example 2, where f is
one-to-one,g is onto, and f +g is not onto.

6. a. Give an example of mappings f andg, wheref is onto,g is one-to-one, and f +g is
not one-to-one.

b. Give an example of mappings f andg, different from those in Example 3, where f is
onto,g is one-to-one, and f +g is not onto.

7. Supposef, g, andh are all mappings of a set A into itself.

a. Prove that if g is onto and f +g 5 h +g, thenf 5 h.

b. Prove that if f is one-to-one and f +g 5 f +h, theng 5 h.

8. a. Find mappings f, g, andh of a set A into itself such that f +g 5 h +g andf 2 h.

b. Find mappings f, g, andh of a set A into itself such that f +g 5 f +h andg 2 h.

f (x) 5 x2, g(x) 5 x 2 0x 0

g(x) 5 b
x 2 1 if x is even
2x if x is odd

f (x) 5 c

x
2

if x is even

x 1 1 if x is odd
  ,

f (x) 5 x 1 0x 0, g(x) 5 c

x
2

if x is even

2 x if x is odd

f (x) 5 2x, g(x) 5 b
x if x is even
2x 2 1 if x is odd
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9. Let g: A S B andf : B S C. Prove that f is onto if f +g is onto.

10. Let g: A S B andf : B S C. Prove that g is one-to-one if f +g is one-to-one.

11. Let f : A S B andg: B S A. Prove that f is one-to-one and onto if f +g is one-to-one
andg +f is onto.

1.4 Binary Operations

We are familiar with the operations of addition, subtraction, and multiplication on real
numbers. These are examples of binary operations. When we speak of a binary operation
on a set, we have in mind a process that combines two elements of the set to produce a third
element of the set. This third element, the result of the operation on the first two, must be
unique. That is, there must be one and only one result from the combination. Also, it must
always be possible to combine the two elements, no matter which two are chosen. This
discussion is admittedly a bit vague, in that the terms processandcombineare somewhat
indefinite. To eliminate this vagueness, we make the following formal definition.

Definition 1.18� Binary Operation

A binary operation on a nonempty set A is a mapping f from to A.

It is conventional in mathematics to assume that when a formal definition is made, it is
automatically biconditional. That is, it is understood to be an •if and only ifŽ statement,
without this being written out explicitly. In Definition 1.18, for example, it is understood as
part of the definition that f is a binary operation on the nonempty set A if and only if f is a
mapping from A 3 A to A. Throughout the remainder of this book, we will adhere to this
convention when we make definitions.

We now have a precise definition of the term binary operation, but some of the feel for
the concept may have been lost. However, the definition gives us what we want. Suppose f
is a mapping from A 3 A to A. Then f (x, y) is defined for every ordered pair (x, y) of ele-
ments of A, and the image f (x, y) is unique. In other words, we can combine any two ele-
mentsx andy of A to obtain a unique third element of A by finding the value f(x, y). The
result of performing the binary operation on x andy is f(x, y), and the only thing unfamiliar
about this is the notation for the result. We are accustomed to indicating results of binary op-
erations by symbols such as x 1 y andx 2 y. We can use a similar notation and write x p y
in place of f (x, y). Thus x p y represents the result of an arbitrary binary operationp on A,
just as f (x, y) represents the value of an arbitrary mapping from A 3 A to A.

Example 1 Two examples of binary operations on Z are the mappings from Z 3 Z to
Z, defined as follows:

1.

2. �for (x, y) [ Z 3 Z.x p y 5 1 1 xy,

for (x, y) [ Z 3 Z.x p y 5 x 1 y 2 1,

A 3 A
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Example 2 The operation of forming the intersection A d B of subsets A andB of a
universal set U is a binary operation on the collection of all subsets of U. This is also true
of the operation of forming the union. �

Since we are dealing with ordered pairs in connection with a binary operation, the
resultsx p y andy p x may well be different.

Definition 1.19� Commutativity, Associativity

If p is a binary operation on the nonempty set A, thenp is called commutative if
x p y 5 y p x for all x andy in A. If x p (y p z) 5 (x p y) p z for all x, y, z in A, then we say
that the binary operation is associative.

Example 3 The usual binary operations of addition and multiplication on the integers
are both commutative and associative. However, the binary operation of subtraction on the
integers does not have either of these properties. For example, 52 7 2 7 2 5, and
9 2 (8 2 3) 2 (9 2 8) 2 3. �

Suppose we consider the two binary operations given in Example 1.

Example 4 The binary operationp defined on Z by

is commutative, since

Note thatp is also associative, since

and

�

Example 5 The binary operationp defined on Z by

is commutative, since

To check whetherp is associative, we compute

x p (y p z) 5 x p (1 1 yz) 5 1 1 x(1 1 yz) 5 1 1 x 1 xyz

x p y 5 1 1 xy 5 1 1 yx 5 y p x.

x p y 5 1 1 xy

5 x 1 y 1 z 2 2.

5 (x 1 y 2 1) 1 z 2 1

 (x p y) p z 5 (x 1 y 2 1) p z

5 x 1 y 1 z 2 2

5 x 1 (y 1 z 2 1) 2 1

x p (y p z) 5 x p (y 1 z 2 1)

x p y 5 x 1 y 2 1 5 y 1 x 2 1 5 y p x.

x p y 5 x 1 y 2 1
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and

Thus we can demonstrate thatp is not associative by choosing x, y, andz in Z with
x 2 z. Using x 5 1, y 5 2, z 5 3, we get

and

Hencep is not associative on Z. �

The commutative and associative properties are properties of the binary operation
itself. In contrast, the property described in the next definition depends on the set under
consideration as well as on the binary operation.

Definition 1.20� Closure

Suppose thatp is a binary operation on a nonempty set A, and let B 8 A. If x p y is an ele-
ment of B for all x [ B andy [ B, thenB is closedwith respect to p.

In the special case where B 5 A in Definition 1.20, the property of being closed is
automatic, since the result x p y is required to be in A by the definition of a binary opera-
tion on A.

Example 6 Consider the binary operationp defined on the set of integers Z by

The set B of negative integers is not closed with respect top, sincex 5 2 1 [ B and
y 5 2 2 [ B, but

�

Example 7 The definition of an odd integer that was stated in Section 1.2 can be used
to prove that the set Sof all odd integers is closed under multiplication.

Let x andy be arbitrary odd integers. According to the definition of an odd integer, this
means that x 5 2m 1 1 for some integer m andy 5 2n 1 1 for some integer n. Forming
the product, we obtain

wherek 5 2mn 1 m 1 n [ Z, and therefore xy is an odd integer. Hence the set S of all
odd integers is closed with respect to multiplication. �

5 2k 1 1,

5 2(2mn1 m 1 n) 1 1

5 4mn1 2m 1 2n 1 1

xy 5 (2m 1 1)(2n 1 1)

x p y 5 (2 1) p (2 2) 5 02 1 01 02 2 05 3 o B.

x p y 5 0x 01 0y 0, (x,y) [ Z 3 Z.

(1 p 2) p 3 5 (1 1 2) p 3 5 3 p 3 5 1 1 9 5 10.

1 p (2 p 3) 5 1 p (1 1 6) 5 1 p 7 5 1 1 7 5 8

(x p y) p z 5 (1 1 xy) p z 5 1 1 (1 1 xy)z 5 1 1 z 1 xyz.
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Definition 1.21� Identity Element

Let p be a binary operation on the nonempty set A. An element e in A is called an identity
elementwith respect to the binary operationp if ehas the property that

for all x [ A.

The phrase •with respect to the binary operationŽ is critical in this definition because
the particular binary operation being considered is all-important. This is pointed out in the
next example.

Example 8 The integer 1 is an identity with respect to the operation of multiplication
(1 ?x 5 x ?1 5 x), but not with respect to the operation of addition (11 x 2 x). �

Example 9 The element 1 is the identity element with respect to the binary opera-
tion p given by

since

�

Example 10There is no identity element with respect to the binary operationp
defined by

since there is no fixed integer zsuch that

�

Whenever a set has an identity element with respect to a binary operation on the set, it
is in order to raise the question of inverses.

Definition 1.22� Right Inverse, Left Inverse, Inverse

Suppose that e is an identity element for the binary operationp on the set A, and let a [ A.
If there exists an element b [ A such that a p b 5 e, thenb is called a right inverse of a
with respect to this operation. Similarly, if b p a 5 e, thenb is called a left inverse of a.
If both of a p b 5 eandb p a 5 ehold, then b is called an inverse ofa, anda is called an
invertible element of A.

Sometimes an inverse is referred to as a two-sided inverseto emphasize that both of the
required equations hold.

x p z 5 z p x 5 1 1 xz5 x, for all x [ Z.

x p y 5 1 1 xy,  (x,y) [ Z 3 Z,

x p 1 5 x 1 1 2 1 5 x and 1 p x 5 1 1 x 2 1 5 x.

x p y 5 x 1 y 2 1,  (x,y) [ Z 3 Z,

e p x 5 x p e 5 x
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Example 11Each element x [ Z has a two-sided inverse (2 x 1 2) [ Z with respect
to the binary operation p given by

since

�

Exercises1.4
True or False
Label each of the following statements as either true or false.

1. If a binary operation on a nonempty set A is commutative, then an identity element will
exist in A.

2. If * is a binary operation on a nonempty set A, thenA is closed with respect to *.

3. Let A 5 { a, b, c}. The power set p (A) is closed with respect to the binary operation d
of forming intersections.

4. Let A 5 { a, b, c}. The empty set [ is the identity element in p (A) with respect to the
binary operation d .

5. Let A 5 { a, b, c}. The power set p (A) is closed with respect to the binary operation c
of forming unions.

6. Let A 5 { a, b, c}. The empty set [ is the identity element in p (A) with respect to the
binary operation c .

7. Any binary operation defined on a set containing a single element is commutative and
associative.

8. An identity and inverses exist in a set containing a single element upon which a binary
operation is defined.

9. The set of all bijections from A to A is closed with respect to the binary operation of
composition defined on the set of all mappings from A to A.

Exercises

1. Decide whether the given set B is closed with respect to the binary operation defined
on the set of integers Z. If B is not closed, exhibit elements x [ B andy [ B, such that
x p y o B.

a.

b. x p y 5 x 2 y, B 5 Z1

x p y 5 xy, B 5 52 1, 2 2, 2 3, c 6

x p (2 x 1 2) 5 (2 x 1 2) p x 5 2 x 1 2 1 x 2 1 5 1 5 e.

x p y 5 x 1 y 2 1,  (x,y) [ Z 3 Z,
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Strategy � Exercise 13 of this section requests a proof that the inverse of an element with respect to
an associative binary operation is unique. A standard way to prove the uniqueness of an
entity is to assume that two such entities exist and then prove the two to be equal.



c.

d.

e.

f.

g.

h.

2. In each part following, a rule is given that determines a binary operationp on the set
Z of all integers. Determine in each case whether the operation is commutative or
associative and whether there is an identity element. Also find the inverse of each
invertible element.

a. b.

c. d.

e. f.

g. h.

i. j.

k. l.

m. n.

3. Let Sbe a set of three elements given by S 5 { A, B, C}. In the following table, all of
the elements of Sare listed in a row at the top and in a column at the left. The result
x p y is found in the row that starts with x at the left and in the column that has y at the
top. For example,B p C 5 C andC p B 5 A.

x p y 5 2xy for x, y [ Z 1x p y 5 xy for x, y [ Z 1

x p y 5 0x 2 y 0x p y 5 0x 02 0y 0

x p y 5 x 1 xy 1 y 2 2x p y 5 x 2 y 1 1

x p y 5 x 1 y 1 3x p y 5 x 1 xy 1 y

x p y 5 x 2 yx p y 5 3xy

x p y 5 3(x 1 y)x p y 5 x 1 2y

x p y 5 xx p y 5 x 1 xy

x p y 5 xy, B is the set of positive odd integers.

x p y 5 xy 2 x 2 y, B is the set of all odd integers.

x p y 5 x 1 xy, B 5 Z 1

x p y 5 0x 02 0y 0, B 5 Z 1

sgnx 5 c
2 1 if x . 0
2 0 if x 5 0
2 1 if x , 0.

x p y 5 sgnx 1 sgny, B 5 52 2,2 1, 0, 1, 26 where 

x p y 5 x2 1 y2, B 5 Z1
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* A B C

A C A B

B A B C

C B A C

* A B C

A A B C

B B C A

C C A B

a. Is the binary operationp commutative? Why?

b. Determine whether there is an identity element in Sfor p.

c. If there is an identity element, which elements have inverses?

4. Let S be the set of three elements given by S 5 { A, B, C} with the following table.

Sec. 1.6, #8 !



a. Is the binary operationp commutative? Why?

b. Determine whether there is an identity element in Sfor p.

c. If there is an identity element, which elements have inverses?

5. Let S be a set of four elements given by with the following table.S5 5A, B, C, D6
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* A B C D

A B C A B

B C D B A

C A B C D

D A B D D

* A B C D

A A A A A

B A B A B

C A A C C

D A B C D

a. Is the binary operationp commutative? Why?

b. Determine whether there is an identity element in Sfor p.

c. If there is an identity element, which elements have inverses?

6. Let Sbe the set of four elements given by with the following table.S5 5A, B, C, D6

a. Is the binary operationp commutative? Why?

b. Determine whether there is an identity element in Sfor p.

c. If there is an identity element, which elements have inverses?

7. Prove or disprove that the set of nonzero integers is closed with respect to division.

8. Prove or disprove that the set of all odd integers is closed with respect to addition.

9. The definition of an even integer was stated in Section 1.2. Prove or disprove that the
setE of all even integers is closed with respect to

a. addition

b. multiplication.

10. Assume that p is an associative binary operation on the nonempty set A. Prove that

for all a, b, c, andd in A.

a p 3b p (c p d)45 3a p (b p c)4p d



11. Assume thatp is a binary operation on a nonempty set A, and suppose thatp is both
commutative and associative. Use the definitions of the commutative and associative
properties to show that

for all a, b, c, andd in A.

12. Let p be a binary operation on the nonempty set A. Prove that if A contains an identity
element with respect to p, the identity element is unique. (Hint: Assume that both e1

ande2 are identity elements for p, and then prove that e1 5 e2.)

13. Assume that p is an associative binary operation on A with an identity element. Prove
that the inverse of an element is unique when it exists.

1.5 Permutations and Inverses

The set of all mappings of a set into itself is of special interest, and we consider such
a set next.

Definition 1.23� Permutation

A one-to-one correspondence from a set A to itself is called a permutation on A. For any
nonempty set A, we adopt the notation S(A) as standard for the set of all permutations on
A. The set of all mappings from A to A will be denoted by M (A).

From the discussion at the end of Section 1.2, we know that composition of mappings
is an associative binary operation onM (A). Theidentity mapping IA is defined by

For any f in M (A),

and

so IA +f 5 f +IA 5 f. That is,IA is an identity element for mapping composition. Once an
identity element is established for a binary operation, the next natural question is whether
inverses exist. Consider the mappings in the next example.

Example 1 In Example 1 of Section 1.3, we defined the mappings f : Z S Z and
g: Z S Z by

f (n) 5 2n

( f +IA)(x) 5 f (IA(x)) 5 f (x),

(IA +f )(x) 5 IA( f (x)) 5 f (x)

IA(x) 5 x for all x [ A.

3(a p b) p c4p d 5 (d p c) p (a p b)
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and

For these mappings, (g +f )(n) 5 n for all n [ Z, sog +f 5 IZ andg is a left inverse for f.
Note, however, that

Thusf +g 2 IZ, andg is not a right inverse for f. �

Example 1 furnishes some insight into the next two lemmas.•

( f +g)(n) 5 b
n if n is even
8 if n is odd.

g(n) 5 c

n
2

if n is even

4 if n is odd.

38 Chapter 1 Fundamentals

•A lemma is a proposition whose main purpose is to help prove another proposition.

Strategy � Each of these lemmas makes a statement of the form •p if and only if q.Ž For this kind of
statement, there are two things to be proved:

1. (p � q) The •ifŽ part, where we assume q is true and prove that p must then be
true, and

2. (p � q) The •only ifŽ part, where we assume that p is true and prove that q must
then be true.

Lemma 1.24 � Left Inverses and the One-to-One Property

Let A be a nonempty set, and let f : A S A. Then f is one-to-one if and only if f has a left
inverse.

Proof Assume first that f has a left inverse g, and suppose that f (a1) 5 f(a2). Since
g +f 5 IA, we have

Thusf(a1) 5 f(a2) impliesa1 5 a2, andf is one-to-one.
Conversely, now assume that f is one-to-one. We shall define a left inverse g of f. Leta0

represent an arbitrarily chosen but fixed element in A. For each x in A, g(x) is defined
by this rule:

1. If there is an element y in A such that f (y) 5 x, theng(x) 5 y.

2. If no such element y exists in A, theng(x) 5 a0.

5 (g +f )(a2) 5 IA(a2) 5 a2.

a1 5 IA(a1) 5 (g +f )(a1) 5 g( f (a1)) 5 g( f (a2))

p � q

p � q



When the first part of the rule applies, the element y is unique because f is one-to-one
( f (y1) 5 x 5 f (y2) � y1 5 y2 5 g(x)). Thus g(x) is unique in this case. When the second
part of the rule applies,g(x) 5 a0 is surely unique, and g is a mapping from A to A. For all
a in A, we have

becausex 5 f (a) requires g(x) 5 a. Thus g is a left inverse forf.

There is a connection between the onto property and right inverses that is similar to
the one between the one-to-one property and left inverses. This connection is stated in
Lemma 1.25, and its proof involves using the Axiom of Choice. In one of its simplest
forms, this axiom states that it is possible to make a choice of an element from each of the
sets in a nonempty collection of nonempty sets. We assume the Axiom of Choice in this
text, and it should be noted that this is an assumption.

Lemma 1.25 � Right Inverses and the Onto Property

Let A be a nonempty set, and f : A S A. Thenf is an onto mapping if and only iff has a
right inverse.

Proof Assume that f has a right inverse g, and let a0 be an arbitrarily chosen element of
A. Now g(a0) is an element of A, and

Thus a0 is the image of g(a0) under f, and this proves that f is onto if f has a right
inverse.

Let us assume now that f is onto, and we shall define a right inverse of f as follows:
Let a0 be an arbitrary element of A. Since f is onto, there exists at least one element x of
A such that f (x) 5 a0. Choose• one of these elements, say,x0, and define g(a0) by

For each a0 in A, we have a unique value g(a0) such that

Therefore,f +g 5 IA, andg is a right inverse of f.

Lemmas 1.24 and 1.25 enable us to prove the following important theorem.

5 a0   by the choice of x0.

5 f (x0)

 ( f +g)(a0) 5 f (g(a0))

g(a0) 5 x0.

5 a0.

5 IA(a0)   since g is a right inverse of f

f (g(a0)) 5 ( f +g)(a0)

(g +f )(a) 5 g( f (a)) 5 a
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Theorem 1.26� Inverses and Permutations

Let f : A S A. Then f is invertible if and only if f is a permutation on A.

Proof If f has an inverse g, theng +f 5 IA andf +g 5 IA. Note that g +f 5 IA implies
that f is one-to-one by Lemma 1.24, and f +g 5 IA implies that f is onto by Lemma 1.25.
Thusf is a permutation on A.

Now suppose thatf is a permutation onA. Thenf has a left inverseg by Lemma 1.24
and a right inverse h by Lemma 1.25. We have g +f 5 IA andf +h 5 IA, so

That is,g 5 h, andf has an inverse.

The last theorem shows that the members of the set S(A) are special in that each of
them is invertible. From Exercise 13 of the last section, we know that the inverse of an
element with respect to an associative binary operation is unique. Thus we denote the
unique inverse of a permutation f by f2 1. It is left as an exercise to prove that f2 1 is a per-
mutation on A.

There is one other property of the set S(A) that is significant. Whenever f andg are in
S(A), then f +g is also in S(A). (See Exercise 8 of this section.) Thus S(A) is closedunder
mapping composition.

Some of the preceding results are illustrated in the following example.

Example 2 From Example 11 of Section 1.2, we know that the mapping f : Z S Z
defined by

is one-to-one and not onto. According to Lemmas 1.24 and 1.25,f has a left inverse but fails
to have a right inverse. The two-part rule for g in the proof of Lemma 1.24 can be used as
a guide in defining a left inverse of the f under consideration here.

The first part of the rule reads as follows: If there is an element y in Z such that
f (y) 5 x, theng(x) 5 y. Since we have f (x) 5 2x 1 1 here, the equation f (y) 5 x requires
thatx be odd and that 2y 1 1 5 x. Solving this equation for y, we obtain

Thus the equation g(x) 5 y becomes

in this instance.

g(x) 5
x 2 1

2
 for x odd

y 5
x 2 1

2
.

f (x) 5 2x 1 1

g 5 g +IA 5 g +( f +h) 5 (g +f ) +h 5 IA +h 5 h.
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According to the second part of the rule for g in the proof of Lemma 1.24, we may
choose an arbitrary fixed a0 in Z and define g(x) 5 a0 when x is not in the range of f.
Choosinga0 5 4 gives us a left inverse g of f defined as follows:

�

Exercises1.5
True or False
Label each of the following statements as either true or false.

1. Every permutation has an inverse.

2. Let A Z [ andf: A S A. Thenf is one-to-one if and only if f has a right inverse.

3. Let A Z [ andf: A S A. Thenf is onto if and only if f has a left inverse.

Exercises

1. For each of the following mappings f : Z S Z, exhibit a right inverse of f with respect
to mapping composition whenever one exists.

a. b.

c. d.

e. f.

g. h.

i. j.

k. l.

m. n.

2. For each of the mappings f given in Exercise 1, determine whether f has a left inverse.
Exhibit a left inverse whenever one exists.

3. If n is a positive integer and the set A hasn elements, how many elements are in the set
S(A) of all permutations on A?

4. Let f : A S A, whereA is nonempty. Prove that f has a left inverse if and only if
f2 1( f (S)) 5 Sfor every subset Sof A.

f (x) 5 c
x 1 1 if x is even
x 1 1

2
if x is odd

f (x) 5 c

x
2

if x is even

x 1 2 if x is odd

f (x) 5 b
x 2 1 if x is even
2x if x is odd

f (x) 5 c
x if x is even
x 2 1

2
if x is odd

f (x) 5 x 2 0x 0f (x) 5 0x 0

f (x) 5 b
x if x is even
x 2 1 if x is odd

f (x) 5 b
x if x is even
2x 2 1 if x is odd

f (x) 5 x2f (x) 5 x3

f (x) 5 1 2 xf (x) 5 x 1 2

f (x) 5 3xf (x) 5 2x

g(x) 5 c

x 2 1
2

if x is odd

4 if x is even.
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5. Let f : A S A, whereA is nonempty. Prove that f has a right inverse if and only if
f ( f2 1(T)) 5 T for every subset T of A.

6. Prove that if f is a permutation on A, thenf2 1 is a permutation on A.

7. Prove that if f is a permutation on A, then (f2 1)
2 1

5 f.

8. a. Prove that the set of all onto mappings from A to A is closed under composition
of mappings.

b. Prove that the set of all one-to-one mappings from A to A is closed under mapping
composition.

9. Let f andg be permutations on A. Prove that (f +g)2 1 5 g2 1 +f2 1.

10. Let f andg be mappings from A to A. Prove that if f +g is invertible, then f is onto and
g is one-to-one.

1.6 Matrices

The material in this section provides a rich source of examples for many of the concepts
treated later in the text. The basic element under consideration here will be a matrix (plural
matrices).

The word matrix is used in mathematics to denote a rectangular array of elements in
rows and columns. The elements in the array are usually numbers, and brackets may be used
to mark the beginning and the end of the array. Two illustrations of this type of matrix are

The formal notation for a matrix is introduced in the following definition. We shall
soon see that this notation is extremely useful in proving certain facts about matrices.

Definition 1.27� Matrix

An mby n matrix over a setSis a rectangular array of elements ofS, arranged inmrows and
n columns. It is customary to write anmby n matrix using notation such as

where the uppercase letter A denotes the matrix and the lowercase denotes the element
in row i and column j of the matrix A. The rows are numbered from the top down, and the
columns are numbered from left to right. The matrix A is referred to as a matrix of dimen-
sionm 3 n (read •mby nŽ).

aij

A 5 D

a11 a12
c a1n

a21 a22
c a2n

f f f
am1 am2

c amn

T,

C
5 2 1 2 0 3
2 2 1 2 2 7
4 2 6 2 4 3

S and C
9 1

2 1 0
6 2 3

S.
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The m 3 n matrix A in Definition 1.27 can be written compactly as or
simply as if the dimension is known from the context.

Example 1 In compact notation, is shorthand for the matrix

As a more concrete example, the matrix A defined by A 5 3aij433 3 with aij 5 (2 1)i1 j

would appear written out as

(This matrix describes the sign pattern in the cofactor expansion of third-order determi-
nants that is used with Cramer•s Rule for solving systems of linear equations in intermedi-
ate algebra.) �

An n 3 n matrix is called a square matrix of order n, and a square matrix
A 5 3aij 4n3 n with aij 5 0 whenever i 2 j is known as a diagonal matrix. The matrices

are diagonal matrices.

Definition 1.28� Matrix Equality

Two matrices A 5 3aij4m3 n andB 5 3bij4p3 q over a set S areequal if and only if m 5 p,
n 5 q, andaij 5 bij for all pairs i, j.

The set of all m3 n matrices over Swill be denoted in this book by Mm3 n(S). When
m5 n, we simply write Mn(S) instead of Mn3 n(S). For the remainder of this section, we will
restrict our attention to the sets Mm3 n(R), where R is the set of all real numbers. Our goal
is to define binary operations of addition and multiplication on certain sets of matrices and
to investigate the basic properties of these operations.

Definition 1.29� Matrix Addition

Addition in Mm3 n(R) is defined by

wherecij 5 aij 1 bij .

To form the sum of two elements in Mm3 n(R), we simply add the elements that are
placed in corresponding positions.

3aij4m3 n 1 3bij4m3 n 5 3cij4m3 n

C
5 0 0
0 7 0
0 0 2 2

S and C
8 0 0
0 0 0
0 0 8

S

A 5 C
1 2 1 1

2 1 1 2 1
1 2 1 1

S.

B 5 B
b11 b12 b13 b14

b21 b22 b23 b24
R.

B 5 3bij423 4

A 5 3aij4
A 5 3aij4m3 n
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Example 2 In M23 3(R), an example of addition is

We note that a sum of two matrices with differentdimensions is not defined. For instance,
the sum

is undefined because the dimensions of the two matrices involved are not equal.�

Definition 1.29 can be written in shorter form as

,

and this shorter form is efficient to use in proving the basic properties of addition in
Mm3 n(R). These basic properties are stated in the next theorem.

Theorem 1.30� Properties of Matrix Addition

Addition in Mm3 n(R) has the following properties.

a. Addition as defined in Definition 1.29 is a binary operation on 

b. Addition is associative in Mm3 n(R).

c. Mm3 n(R) contains an identity element for addition.

d. Each element of Mm3 n(R) has an additive inverse in Mm3 n(R).

e. Addition is commutative in Mm3 n(R).

Proof LetA 5 3aij4m3 n, B 5 3bij4m3 n, and C 5 3cij4m3 n be arbitrary elements of Mm3 n(R).

a. The addition defined in Definition 1.29 is a binary operation on Mm3 n(R) because the
rule

yields a result that is both unique and an element of Mm3 n(R).

b. The following equalities establish the associative property for addition.

c. Let Om3 n denote the m3 n matrix that has all elements zero. Then

5 A.

5 3aij4m3 n   since 0 is the additive identity in R

5 3aij 1 04m3 n    by Definition 1.29 

A 1 Om3 n 5 3aij4m3 n 1 304m3 n

5 (A 1 B) 1 C by Definition 1.29

5 3aij 1 bij41 3cij4 by Definition 1.29

5 3(aij 1 bij ) 1 cij4 since addition in R is associative 

5 3aij 1 (bij 1 cij )4 by Definition 1.29 

A 1 (B 1 C) 5 3aij41 3bij 1 cij4 by Definition 1.29 

3aij41 3bij45 3aij 1 bij4

Mm3 n(R).

3aij4m3 n 1 3bij4m3 n 5 3aij 1 bij4m3 n

B
1 2 0
3 4 0

R 1 B
5 6
7 8

R

B
3 2 1 1
2 2 7 2 4

R 1 B
2 1 0
1 3 2 1

R 5 B
5 0 1
3 2 4 2 5

R.
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A similar computation shows that Om3 n 1 A 5 A, and therefore Om3 n is the additive
identity for Mm3 n(R), called the zero matrix of dimension m3 n.

d. It is left as an exercise to verify that the matrix 2 A defined by

is the additive inverse for A in Mm3 n(R).

e. The proof that addition in Mm3 n(R) is commutative is also left as an exercise.

Partd of Theorem 1.30 leads to the definition of subtraction in Mm3 n(R): For A and
B in Mm3 n(R),

where2 B 5 32 bij4is the additive inverse of B 5 3bij4.
The definition of multiplication that we present is a standard definition universally

used in linear algebra, operations research, and other branches of mathematics. Its wide-
spread acceptance is due to its usefulness in a great variety of important applications, not
to its simplicity, for the definition of multiplication is much more complicated and much
less •intuitiveŽ than the definition of addition. We first state the definition and then illus-
trate it with an example.

Definition 1.31� Matrix Multiplication

The product of an m 3 n matrix A over R and ann 3 p matrix B over R is an
m 3 p matrix C 5 AB, where the elementcij in row i and columnj of AB is found by
using the elements in rowi of A and the elements in columnj of B in the following
manner:

columnj
of B columnj

of C

where

That is, the element

in row i and column j of AB is found by adding the products formed from corresponding
elements of row i in A and column j in B (first times first, second times second, and so on).
Note that the elements of C are real numbers.

cij 5 ai1b1j 1 ai2b2j 1 ai3b3j 1 c 1 ainbnj

cij 5 ai1b1j 1 ai 2b2j 1 ai3b3j 1 c 1 ainbnj.

row i
of A

D

f f f f

ai1 ai2 ai3
c ain

f f f f
T ?E

c b1j
c

c b2j
c

c b3j
c

f
c bnj

c

U5 D

f
c cij

c

f
T
 row i
 of C

A 2 B 5 A 1 (2 B),

2 A 5 32 aij4m3 n
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Note that the number of columns in A mustequal the number of rows in B in order
to form the product AB. If this is the case, then A andB are said to be conformable for mul-
tiplication . A simple diagram illustrates this fact.

Example 3 Consider the products that can be formed using the matrices

Since the number of columns in A is equal to the number of rows in B, the product AB is
defined. Performing the multiplication, we obtain

5

ThusAB is the 43 3 matrix given by

Since the number of columns in B is not equal to the number of rows in A, the prod-
uctBA is not defined. Similarly, the products A ?A andB ?B are not defined. �

The work in Example 3 shows that multiplication of matrices does not have the com-
mutative property. Some of the computations in the exercises for this section illustrate cases
whereAB 2 BA, even when both products are defined and have the same dimension.

AB 5 D

2 2 9 2 14
16 2 12 28

2 10 10 2 21
14 2 7

T.

D

3(2) 1 (2 2)(4) 3(1)1 (2 2)(2 3) 3(0) 1 (2 2)(7)
0(2) 1 4(4) 0(1)1 4(2 3) 0(0) 1 4(7)
1(2) 1 (2 3)(4) 1(1)1 (2 3)(2 3) 1(0) 1 (2 3)(7)
5(2) 1 1(4) 5(1)1 1(2 3) 5(0) 1 1(7)

T.

AB 5 D

3 2 2
0 4
1 2 3
5 1

T B
2 1 0
4 2 3 7

R

A 5 D

3 2 2
0 4
1 2 3
5 1

T and B 5 B
2 1 0
4 2 3 7

R.

A m3 n ? Bn 3 p 5      Cm 3 p

must be equal

dimension of product matrix
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It should also be noted in connection with Example 3 that the product of matrices we
are working with is not a true binary operation as defined in Section 1.4. With a binary op-
eration on a set A, it must always be possible to combine any two elements of A and obtain
a unique result of the operation. Multiplication of matrices does not have this feature, since
the product of two matrices may not be defined. If consideration is restricted to the set
Mn(R) of all n 3 n matrices of a fixed order n, this difficulty disappears, and multiplication
is a true binary operation on Mn(R).

Although matrix multiplication is not commutative, it does have several properties that
are analogous to corresponding properties in the set R of all real numbers. The sigma no-
tation is useful in writing out proofs of these properties.

In the sigma notation, the capital Greek letter o (sigma) is used to indicate a sum:

The variable i is called the index of summation, and the notations below and above the
sigma indicate the value of i at which the sum starts and the value of i at which it ends. For
example,

The index of summation is sometimes called a •dummy variableŽ because the value of the
sum is unaffected if the index is changed to a different letter:

Using the distributive properties in R, we can write

Similarly,

In the definition of the matrix product AB, the element

can be written compactly by use of the sigma notation as

If all necessary comformability is assumed, the following theorem asserts that matrix
multiplication is associative.

cij 5 a
n

k5 1
 aik bkj.

cij 5 ai1 b1j 1 ai 2 b2j 1 c 1 ain 

bnj

a a
n

k5 1
 bkba 5 a

n

k5 1
 bka.

5 a
n

k5 1
 abk.

5 ab1 1 ab2 1 c 1 abn

aa a
n

k5 1
 bkb 5 a(b1 1 b2 1 c 1 bn)

a
3

i5 0
 ai 5 a

3

j5 0
 aj 5 a

3

k5 0
 ak 5 a0 1 a1 1 a2 1 a3.

a
5

i5 3
 bi 5 b3 1 b4 1 b5.

a
n

i5 1
 ai 5 a1 1 a2 1 c 1 an.
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Theorem 1.32� Associative Property of Multiplication

Let A 5 3aij4m3 n, B 5 3bij4n3 p, andC 5 3cij4p3 q be matrices over R. Then A(BC) 5 (AB)C.

Proof From Definition 1.31,BC 5 3dij4n3 q where and 

where

Also, AB 5 3fij4m3 p where and where

The last equality follows from the associative property

of multiplication of real numbers. Comparing the elements in row i, columnj, of A(BC)
and (AB)C, we see that

since each of these double sums consists of all the np terms that can be made by using a
product of the form air (brkckj) with 1# r # n and 1# k # p. Thus A(BC) 5 (AB)C.

Similar but simpler use of the sigma notation can be made to prove the distributive
properties stated in the following theorem. Proofs are requested in the exercises.

Theorem 1.33� Distributive Properties

Let A be an m 3 n matrix over R, let B andC be n 3 p matrices over R, and let D be a
p 3 q matrix over R. Then

a. A(B 1 C) 5 AB1 AC, and

b. (B 1 C)D 5 BD 1 CD.

a
n

r5 1
 a a

p

k5 1
 air (brkckj)b 5 a

p

k5 1
 a a

n

r5 1
 air (brkckj)b,

(air brk)ckj 5 air (brkckj)

5 a
p

k5 1
 a a

n

r5 1
 air (brkckj)b.

5 a
p

k5 1
 a a

n

r5 1
 (air brk)ckjb

a
p

k5 1
 fikckj 5 a

p

k5 1
 a a

n

r5 1
 air brkbckj

(AB)C 5 ca
p

k5 1
 fikckjd

m3 q
fij 5 a

n

r5 1
 air brj,

5 a
n

r5 1
 a a

p

k5 1
 air (brkckj)b.

a
n

r5 1
 air drj 5 a

n

r5 1
 air a a

p

k5 1
 brkckjb

ca
n

r5 1
 air drj d

m3 q

A(BC) 5dij 5 a
p

k5 1
 bikckj,
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For each positive integer n, we define a special matrix In by

(The symbol dij used in defining In is called the Kronecker delta.) For n 5 2 and n 5 3,
these special matrices are given by

The matrices In have special properties in matrix multiplication, as stated in Theorem 1.34.

Theorem 1.34� Special Properties of In

Let A be an arbitrary m 3 n matrix over R. With In as defined in the preceding para-
graph,

a. ImA 5 A, and

b. AIn 5 A.

Proof To prove part a, let A 5 3aij4m3 n and consider ImA. By Definition 1.31,

where

Sincedik 5 0 for k 2 i anddii 5 1, the expression for cij simplifies to

Thuscij 5 aij for all pairs i, j andImA 5 A.
The proof that AIn 5 A is left as an exercise.

Because the equations ImA 5 A andAIn 5 A hold for any m 3 n matrix A, the matrix
In is called the identity matrix of order n. In a more general context, the terms left identity
andright identityare defined as follows.

Definition 1.35� Left Identity, Right Identity

Let p be a binary operation on the nonempty set A. If an element e in A has the property
that

e p x 5 x for all x [ A,

cij 5 d ii  aij 5 1 ?aij 5 aij .

cij 5 a
m

k5 1
 dikakj.

ImA 5 3cij4m3 n

I2 5 B
1 0
0 1

R  and  I3 5 C
1 0 0
0 1 0
0 0 1

S.

In 5 3dij4n3 n  where  dij 5 b
1 if i 5 j
0 if i 2 j .
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thene is called a left identity elementwith respect to p. Similarly, if

thene is a right identity element with respect to p.

If the same element e is both a left identity and a right identity with respect to p, thene
is an identity elementas defined in Definition 1.21. An identity element is sometimes called
atwo-sided identity to emphasize that both of the required equations hold.

Even though matrix multiplication is not a binary operation on Mm3 n(R) when m2 n,
we call Im aleft identityandIn aright identityfor multiplication with elements of Mm3 n(R).
In the set Mn(R) of all square matrices of order n overR, In is a two-sided identity element
with respect to multiplication.

The fact that In is a multiplicative identity for Mn(R) leads immediately to the question:
Does every nonzero element A of Mn(R) have a multiplicative inverse? The answer is not
what one might expect, because some nonzero square matrices do not have multiplicative
inverses. This fact is illustrated in the next example.

Example 4 Let and consider the problem of finding a matrix

such that AB 5 I2. Computation of AB leads at once to

or

This matrix equality is equivalent to the following system of four linear equations.

Since requires and this contradicts there is no
solution to the system of equations and therefore no matrix B such that AB 5 I2. That is,A
does not have a multiplicative inverse. �

When we work with matrices, the convention is to use the term inverseto mean •mul-
tiplicative inverse.Ž If the matrix A has an inverse, Exercise 13 of Section 1.4 assures us that
the inverse is unique. In this case,A is invertible , and its inverse is denoted by A2 1. A few
properties of inverses are included in the exercises for this section, but an in-depth
investigation of inverses is more appropriate for a linear algebra course.

2(x 1 3y) 5 0,2(x 1 3y) 5 2,x 1 3y 5 1

2(x 1 3y) 5 0  2(z 1 3w) 5 1

x 1 3y 5 1  z 1 3w 5 0

B
x 1 3y) z 1 3w)

2(x 1 3y) 2(z 1 3w)
R 5 B

1 0
0 1

R.

B
x 1 3y z1 3w

2x 1 6y 2z 1 6w
R 5 B

1 0
0 1

R,

B 5 B
x z
y w

R

A 5 B
1 3
2 6

R,

x p e 5 x for all x [ A,
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Exercises1.6
True or False
Label each of the following statements as either true or false.

1. Matrix addition is a binary operation from Mm3 n(R) 3 Mm3 n(R) to Mm3 n(R).

2. Matrix multiplication is a binary operation from Mm3 n(R) 3 Mm3 n(R) to Mm3 n(R).

3. AB 5 BAfor all square matrices A andB of order n overR.

4. (AB)n 5 AnBn for all square matrices A andB of order n overR.

5. LetA be a nonzero element in Mm3 n(R) and B andC elements in Mn3 p(R). If AB 5 AC,
thenB 5 C.

6. Let A be in Mm3 n(R) and B be in Mn3 p(R). If AB5 Om3 p then either A 5 Om3 n or
B 5 On3 p.

7. The set of diagonal matrices of order n overR is closed with respect to matrix addition.

8. (A 1 B)3 5 A3 1 3A2B 1 3AB2 1 B3 for all square matrices A and B of order n
overR.

9. The products ABandBAare defined if and only if both A andB are square matrices of
the same order.

10. Let A be in Mm3 n(R) and B be in Mn3 p(R). If the jth column of A contains all zeros,
then the jth column of ABcontains all zeros. 

11. Let A be in Mm3 n(R) and B be in Mn3 p(R). If the ith row of A contains all zeros, then
theith row of ABcontains all zeros. 

12. Let A be a square matrix of order n over R such that A2 2 3A 1 In 5 On. Then
A2 1 5 3In 2 A.

Exercises

1. Write out the matrix that matches the given description.

a. A 5 3aij433 2 with aij 5 2i 2 j

b. A 5 3aij443 2 with aij 5 (2 1)i j

c. B 5 3bij423 4 with bij 5 (2 1)i1 j

d. B 5 3bij433 4 with bij 5 1 if i , j andbij 5 0 if i $ j

e. C 5 3cij443 3 with cij 5 i 1 j if i $ j andcij 5 0 if i , j

f. C 5 3cij443 3 with cij 5 0 if i 2 j andcij 5 1 if i 5 j

2. Perform the indicated operations, if possible.

a. b. 

c. d. B
3 0
8 0

R 1 B
2 1

4
RB

1 2 3
0 4 5

R 1 C
4 9

2 5 2 8
6 7

S

B
8 9
3 7

R 2 B
7 0
6 5

RB
2 1 2 5

0 2 3 7
R 1 B

4 2 2 2 9
8 2 5 2 1

R
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3. Perform the following multiplications, if possible.

a. b. 

c. d. 

e. f. 

g. h.

i. j. 

4. Let A 5 3aij42 3 3 whereaij 5 i 1 j, and let B 5 3bij43 3 4 wherebij 5 2i 2 j. If AB 5
3cij42 3 4, write a formula for cij in terms of i andj.

5. Show that the matrix equation

is equivalent to a system of linear equations in x, y, andz.

6. Write a single matrix equation of the form AX 5 B that is equivalent to the following
system of equations.

7. Let dij denote the Kronecker delta:dij 5 1 if i 5 j, anddij 5 0 if i 2 j. Find the value
of the following expressions.

a. b.

c. d. a
n

j5 1
 dij  djka

5

i5 1
 a a

4

j5 1
(2 1)dijb

a
n

i5 1
 a a

n

j5 1
 (1 2 d ij )ba

n

i5 1
 a a

n

j5 1
dij b

 4w 2 7x 1 3y 1 5z 5 0

4w 1 6x 2 3y 1 2z 5 9

C
1 2 2 7
5 2 1 6
3 4 2 8

S C
x
y
z
S 5 C

9
2 4

2
S

C
2 4
2 5

6
S 33 2 2 1433 2 2 14C

2 4
2 5

6
S

32 4 6 24 32 1 0 54C
5

2 3
2

S C
2 1

4
1

S

B
0 1
1 2

R B
2 6 4

1 3
RB

2 6 4
1 3

R B
0 1
1 2

R

C
3 2 2 1
6 2 2 0
1 0 4

S C
2 0
0 2 3

2 1 5
SC

2 0
0 2 3

2 1 5
S C

3 2 2 1
6 2 2 0
1 0 4

S

C
2 1 2

5 6
1 2 1

S B
2 0 2 3

2 4 1 2 1
RB

2 0 2 3
2 4 1 2 1

R C
2 1 2

5 6
1 2 1

S
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8. Let Sbe the set of four matrices S 5 { I, A, B, C}, where

Follow the procedure described in Exercise 3 of Section 1.4 to complete the following
multiplication table for S. (In this case, the product BC 5 A is entered as shown in the
row with B at the left end and in the column with C at the top.) Is S closed under
multiplication?

I 5 B
1 0
0 1

R, A 5 B
0 2 1
1 0

R, B 5 B
2 1 0

0 2 1
R, C 5 B

0 1
2 1 0

R.
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9. Find two square matrices A andB such that AB 2 BA.

10. Find two nonzero matrices A andB such that AB 5 BA.

11. Find two nonzero matrices A andB such that AB 5 On3 n.

12. Let A, B, andC be elements of where A is not a zero matrix. Prove or disprove
that implies

13. Positive integral powers of a square matrix are defined by A1 5 AandAn1 1 5 An ?A for
every positive integer n. Evaluate (A 2 B)(A 1 B) and A2 2 B2 and compare the
results for

14. For the matrices in Exercise 13, evaluate and and com-
pare the results.

15. Assume that A2 1 exists and find a solution X to AX 5 B whereA andB are in Mn(R).

16. Assume that A, B, C, and X are in Mn(R), andAXC 5 B with A andC invertible. Solve
for X.

17. a. Prove part d of Theorem 1.30.

b. Prove part eof Theorem 1.30.

18. a. Prove part a of Theorem 1.33.

b. Prove part b of Theorem 1.33.

A2 1 2AB 1 B2(A 1 B)2

A 5 B
1 2
4 0

R and B 5 B
3 2 1
2 1

R.

B 5 C.AB 5 AC
M2(R),

? I A B C

I

A

B B C I A

C



19. Prove part b of Theorem 1.34.

20. Prove that if A [ Mm3 n(R), thenA ?On3 p 5 Om3 p.

21. Suppose that A is an invertible matrix over R andO is a zero matrix. Prove that if
AX 5 O, thenX 5 O.

22. Let G be the set of all elements of M2(R) that have one row that consists of zeros and
one row of the form 3a a4, with a 2 0.

a. Show that G is closed under multiplication.

b. Show that for each x in G, there is an element y in G such that xy 5 yx 5 x.

c. Show that G does not have an identity element with respect to multiplication.

23. Prove that the set is closed with respect to matrix ad-

dition and multiplication. 

24. Prove or disprove that the set of diagonal matrices of order n over R is closed with
respect to matrix multiplication. 

25. Let A andB be square matrices of order n overR. Prove or disprove that the product
AB is a diagonal matrix of order n overR if B is a diagonal matrix.

26. Let A andB be square matrices of order n over R. Prove or disprove that if AB is a
diagonal matrix of order n overR, then at least one of A or B is a diagonal matrix.

27. A square matrix A 5 [aij ]n with aij 5 0 for all i . j is called upper triangular . Prove
or disprove each of the following statements.

a. The set of all upper triangular matrices is closed with respect to matrix addition.

b. The set of all upper triangular matrices is closed with respect to matrix multiplication.

c. If A andB are square and the product AB is upper triangular then at least one of A
or B is upper triangular.

28. Let a, b, c, andd be real numbers. If ad 2 bc 2 0, show that the multiplicative inverse

of is given by

29. Let over R. Prove that if ad 2 bc 5 0, then A does not have an inverse.

30. Let A, B, andC be square matrices of order n overR. Prove that if A is invertible and
AB 5 AC, thenB 5 C.

31. Let A andB ben 3 n matrices over R such that A2 1 andB2 1 exist. Prove that (AB)2 1

exists and that (AB)2 1 5 B2 1A2 1. (This result is known as the reverse order lawfor
inverses.)

A 5 B
a b
c d

R

D

d
ad 2 bc

    
2 b

ad 2 bc
2 c

ad 2 bc
    

a
ad 2 bc

T.

B
a b
c d

R

S5 b B
a 2 b
b a

R 2a, b [ Rr
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1.7 Relations

In the study of mathematics, we deal with many examples of relations between elements of
various sets. In working with the integers, we encounter relations such as •x is less than yŽ
and •x is a factor of y.Ž In calculus, one function may be the derivative of some other func-
tion, or perhaps an integral of another function. The property that these examples of rela-
tions have in common is that there is an association of some sort between two elements of
a set, and the ordering of the elements is important. These relations can all be described by
the following definition.

Definition 1.36� Relation

A relation (or a binary relation ) on a nonempty set A is a nonempty set Rof ordered pairs
(x, y) of elements x andy of A.

That is, a relation R is a subset of the Cartesian product A 3 A. If the pair (a, b) is
in R, we write aRband say that a has the relation R to b. If (a, b) o R, we write 
This notation agrees with the customary notations for relations, such as a 5 b and
a , b.

Example 1 Let A 5 { 2 2, 2 5, 2, 5} and R 5 {(5, 2 2), (5, 2), (2 5, 2 2), (2 5, 2)}.
Then 5R2, 2 5R2 , 5R(2 2), and (2 5)R(2 2), but and so on. As is frequently
the case, this relation can be described by a simple rule:xRyif and only if the absolute
value of x is the same as y2 1 1„that is, if 0x05 y2 1 1. �

Any mapping from A to A is an example of a relation, but not all relations are map-
pings, as Example 1 illustrates. We have (5, 2)[ R and (5,2 2) [ R, and for a mapping
from A to A, the second element y in (5, y) would have to be unique.

Our main concern is with relations that have additional special properties. More pre-
cisely, we are interested for the most part in equivalence relations.

Definition 1.37� Equivalence Relation

A relation Ron a nonempty set A is an equivalence relationif the following conditions are
satisfied for arbitrary x, y, z in A:

1. xRxfor all x [ A. Ref lexive Property

2. If xRy, thenyRx. Symmetric Property

3. If xRyandyRz, thenxRz. Transitive Property

Properties 1, 2, and 3 of Definition 1.37 are familiar basic properties of equality. 

2R>5, 5R>5,

a R>b.
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Example 2 The relation Rdefined on the set of integers Z by

is reflexive, symmetric, and transitive. For arbitrary x, y, andz in Z,

1. xRx, since0x05 0x0.

2.

3.

�

Example 3 The relation Rdefined on the set of integers Z by

is not an equivalence relation, since it is neither reflexive nor symmetric.

1. x 6 x for all x [ Z .

2.

Note that R is transitive:

3. x . y and y . z � x . z. �

The following example is a special case of an equivalence relation on the integers that
will be extremely important in later work.

Example 4 The relation •congruence modulo 4Ž is defined on the set Z of all integers as
follows: x is congruent to y modulo 4 if and only if x 2 y is a multiple of 4. We write
x ; y (mod 4) as shorthand for •x is congruent to y modulo 4.Ž Thus x ; y (mod 4) if and
only if x 2 y 5 4k for some integer k. We demonstrate that this is an equivalence relation.
For arbitrary x, y, z in Z,

1.

2.

3.

Thus congruence modulo 4 has the reflexive, symmetric, and transitive properties and
is an equivalence relation on Z. �

� x ; z ( mod 4).

� x 2 z 5 x 2 y 1 y 2 z 5 4(k 1 m), andk 1 m [ Z

� x 2 y 5 4k andy 2 z 5 4m for some k, m [ Z

x ; y (mod 4) and y ; z (mod 4)

� y ; x (mod 4).

� y 2 x 5 4(2 k) and2 k [ Z

x ; y (mod 4)� x 2 y 5 4k for some k [ Z

x ; x (mod 4), since x 2 x 5 (4)(0).

x . y �> y . x.

xRy if and only if x . y

� xRz.

� 0x 05 0z0

xRy andyRz� 0x 05 0y 0 and 0y 05 0z0

� yRx.

� 0y 05 0x 0

xRy� 0x 05 0y 0

xRy if and only if  0x 05 0y 0
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Definition 1.38� Equivalence Class

Let Rbe an equivalence relation on the nonempty set A. For each a [ A, the set

is called the equivalence classcontaininga.

Example 5 The relation Rin Example 2 defined on Z by xRy� 0x05 0y0is an equiv-
alence relation. The equivalence class containing 0 is

since 0 is the only element x [ Z such that 0x05 0. Some other equivalence classes are
given by

Fora 2 0, the equivalence class 3a4is given by

sincea and2 a are the only elements in Z with absolute value equal to0a 0. �

Example 6 The relation •congruence modulo 4Ž was shown in Example 4 to be an
equivalence relation. Since x ; y (mod 4) if and only if x 2 y is a multiple of 4, the equiv-
alence class 3a4consists of all those integers that differ from a by a multiple of 4. Thus 304
consists of all multiples of 4:

Similarly, the other equivalence classes are given by:

�

In both Examples 5 and 6, the equivalence classes separate the set Z into mutually dis-
joint nonempty subsets. Recall from Section 1.1 that a separation of the elements of a non-
empty set A into mutually disjoint nonempty subsets is called a partition of A. It is not
difficult to show that if Ris an equivalence relation on A, then the distinct equivalence classes
of Rform a partition of A. Conversely, if a partition of A is given, then we can find an equiv-
alence relation RonA that has the given subsets as its equivalence classes. We simply define
R by xRyif and only if x andy are in the same subset. The proofs of these statements are
requested in the exercises for this section.

The discussion in the last paragraph illustrates a situation where we are dealing with a
collection of sets about which very little is explicit. For example, the collection may be fi-
nite, or it may be infinite. In such situations, it is sometimes desirable to use the notational

3345 5c , 2 5, 2 1, 3, 7, 11, c 6.

3245 5c , 2 6, 2 2, 2, 6, 10, c 6.

3145 5c , 2 7, 2 3, 1, 5, 9, c 6.

3045 5c ,2 8, 2 4,  0,  4,  8,c 6.

3a45 52 a, a6

3145 51,2 16 and 32 345 52 3,  36.

3045 506

3a45 5x [ A 0xRa6
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convenience known as indexing. We assume that the sets in the collection are labeled, or
indexed, by a set + of symbols l . That is, a typical set in the collection is denoted by a
symbol such as Al , and the index l takes on values from the set + . For such a collection
{ Al }, we write for the union of the collection of sets, and we write for
the intersection. That is,

and

If the indexing set is given by then the union of the collection of sets
might be written in any one of the following three ways.

The index notation is useful in describing a partition of a set. An alternative definition
can be made in the following manner.

Definition 1.39� Partition

Let {Al }, l [ + , be a collection of subsets of the nonempty set A. Then {Al } is a partition
of A if all these conditions are satisfied:

1. EachAl is nonempty.

2.

3. If Aa d Ab 2 [ , thenAa 5 Ab.

Exercises1.7
True or False
Label each of the following statements as either true or false.

1. Every mapping on a nonempty set A is a relation.

2. Every relation on a nonempty set A is a mapping.

3. If R is an equivalence relation on a nonempty set A, then the distinct equivalence
classes of R form a partition of A.

4. If R is an equivalence relation on a nonempty set A, then any two equivalence classes
of Rcontain the same number of elements.

A 5 d
l [ +

Al .

A1 h  A2 h c h  An 5 d
i [ +

Ai 5 d
n

i 5 1
Ai

5Ai6
+ 5 51, 2, c , n6,+

t
l [ +

Al 5 5x 0x [ Al  for every l [ + 6.

d
l [ +

Al 5 5x 0x [ Al  for at least one l [ + 6

x l [ + Alh l [ + Al
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5. Let Rbe an equivalence relation on a nonempty set A and let a andb be in A. If b [ [a],
then [b] 5 [a].

6. Let R be a relation on a nonempty set A that is symmetric and transitive. Since R is
symmetricxRyimpliesyRx. Since R is transitive xRyandyRximpliesxRx. Hence R is
also reflexive and thus an equivalence relation on A.

Exercises

1. ForA 5 {1, 3, 5}, determine which of the following relations on A are mappings from
A to A, and justify your answer.

a. {(1, 3), (3, 5), (5, 1)} b. {(1, 1), (3, 1), (5, 1)}

c. {(1, 1), (1, 3), (1, 5)} d. {(1, 3), (3, 1), (5, 5)}

e. {(1, 5), (3, 3), (5, 3)} f. {(5, 1), (5, 3), (5, 5)}

2. In each of the following parts, a relation R is defined on the set Z of all integers. De-
termine in each case whether or not R is reflexive, symmetric, or transitive. Justify
your answers.

a. xRyif and only if x 5 2y.

b. xRyif and only if x 5 2 y.

c. xRyif and only if for some k in Z.

d. xRyif and only if 

e. xRyif and only if x $ y.

f. xRyif and only if 

g. xRyif and only if 0x0# 0y 1 10.

h. xRyif and only if xy $ 0. 

i. xRyif and only if xy # 0.

j. xRyif and only if 0x 2 y05 1. 

k. xRyif and only if 0x 2 y0, 1. 

3. a. Let R be the equivalence relation defined on Z in Example 2, and write out the
elements of the equivalence class 334.

b. Let Rbe the equivalence relation •congruence modulo 4Ž that is defined on Z in Ex-
ample 4. For this R, list five members of the equivalence class 374.

4. Let R be the relation •congruence modulo 5Ž defined on Z as follows:x is congruent
to y modulo 5 if and only if x 2 y is a multiple of 5, and we write x K y (mod 5).

a. Prove that •congruence modulo 5Ž is an equivalence relation.

b. List five members of each of the equivalence classes 304, 314, 324, 384, and32 44.

5. Let R be the relation •congruence modulo 7Ž defined on Z as follows:x is congruent
to y modulo 7 if and only if x 2 y is a multiple of 7, and we write x K y (mod 7).

a. Prove that •congruence modulo 7Ž is an equivalence relation.

b. List five members of each of the equivalence classes 304, 314, 334, 394, and32 24.

x 5 0y 0.

x , y.

y 5 xk
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In Exercises 6…10, a relation R is defined on the set Z of all integers. In each case, prove
thatR is an equivalence relation. Find the distinct equivalence classes of R and list at least
four members of each.

6. xRyif and only if x2 1 y2 is a multiple of 2.

7. xRyif and only if x2 2 y2 is a multiple of 5.

8. xRyif and only if x 1 3y is a multiple of 4.

9. xRyif and only if 3x 2 10y is a multiple of 7.

10. xRyif and only if (2 1)x 5 (2 1)y.

11. Consider the set p (A) 2 { [ } of all nonempty subsets of A 5 {1, 2, 3, 4, 5}. Deter-
mine whether the given relation R on p (A) 2 { [ } is reflexive, symmetric, or transi-
tive. Justify your answers.

a. xRyif and only if x is a subset of y.

b. xRyif and only if x is a proper subset of y.

c. xRyif and only if x andy have the same number of elements.

12. In each of the following parts, a relation is defined on the set of all human beings.
Determine whether the relation is reflexive, symmetric, or transitive. Justify your
answers.

a. xRyif and only if x lives within 400 miles of y.

b. xRyif and only if x is the father of y.

c. xRyif and only if x is a first cousin of y.

d. xRyif and only if x andy were born in the same year.

e. xRyif and only if x andy have the same mother.

f. xRyif and only if x andy have the same hair color.

13. Let A 5 R 2 {0}, the set of all nonzero real numbers, and consider the following rela-
tions on A 3 A. Decide in each case whether R is an equivalence relation, and justify
your answers.

a. (a, b)R(c, d) if and only if ad 5 bc.

b. (a, b)R(c, d) if and only if ab 5 cd.

c. (a, b)R(c, d) if and only if a2 1 b2 5 c2 1 d2.

d. (a, b)R(c, d) if and only if a 2 b 5 c 2 d.

14. Let A 5 {1, 2, 3, 4} and define R on p (A) 2 { [ } by xRyif and only if x d y 2 [ .
Determine whether R is reflexive, symmetric, or transitive.

15. In each of the following parts, a relation Ris defined on the power set p (A) of the non-
empty set A. Determine in each case whether R is reflexive, symmetric, or transitive.
Justify your answers.

a. xRyif and only if x d y 2 [ .

b. xRyif and only if x 8 y.
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16. Let be the power set of the nonempty set A, and let C denote a fixed subset of A.
Define Ronp (A) by xRyif and only if x d C 5 y d C. Prove that Ris an equivalence
relation on p (A).

17. For each of the following relationsR defined on the setA of all triangles in a plane,
determine whetherRis reflexive, symmetric, or transitive. Justify your answers.

a. aRbif and only if a is similar to b.

b. aRbif and only if a is congruent to b.

18. Give an example of a relationRon a nonempty setA that is symmetric and transitive,
but not reflexive.

19. A relation R on a nonempty set A is called irreflexive if for all x [ A. Which of
the relations in Exercise 2 are irreflexive?

20. A relation Ron a nonempty set A is called asymmetric if, for x andy in A, xRyimplies
Which of the relations in Exercise 2 are asymmetric?

21. A relation Ron a nonempty set A is called antisymmetric if, for x andy in A, xRyand
yRxtogether imply x 5 y. (That is,R is antisymmetric if x 2 y implies that either 
or ) Which of the relations in Exercise 2 are antisymmetric?

22. For any relation R on the nonempty set A, theinverseof R is the relation R2 1 defined
by xR2 1y if and only if yRx. Prove the following statements.

a. R is symmetric if and only if R 5 R2 1.

b. R is antisymmetric if and only if R d R2 1 is a subset of {(a, a) a [ A}.

c. R is asymmetric if and only if R d R2 1 5 [ .

23. Let + 5 {1, 2, 3}, A1 5 { a, b, c, d}, A2 5 { c, d, e, f}, and A3 5 { a, c, f, g}. Write out
and

24. Let + 5 { a , b, g}, Aa 5 {1, 2, 3, c }, Ab 5 { 2 1, 2 2, 2 3, c }, and Ag 5 {0}.
Write out 

25. SupposeR is an equivalence relation on the nonempty set A. Prove that the distinct
equivalence classes of Rseparate the elements of A into mutually disjoint subsets.

26. Let A 5 {1, 2, 3}, B1 5 {1, 2}, and B2 5 {2, 3}. Define the relation RonA by aRbif
and only if there is a set Bi (i 5 1 or 2) such that a [ Bi andb [ Bi. Determine which
of the properties of an equivalence relation hold for R, and give an example for each
property that fails to hold.

27. Suppose {Al }, l [ + , represents a partition of the nonempty set A. Define R on A by
xRyif and only if there is a subset Al such that x [ Al andy [ Al . Prove that R is an
equivalence relation on A and that the equivalence classes of Rare the subsets Al .

28. Suppose that f is an onto mapping from A to B. Prove that if {Bl }, l [ + , is a partition
of B, then {f2 1(Bl )}, l [ + , is a partition of A.

h l [ + Al  and x l [ + Al .

x l [ + Al .h l [ + Al

0

y R>x.
x R>y

y R>x.

x R>x

p (A)
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A Pioneer in Mathematics
Arthur Cayley(1821…1895)

The English mathematician Arthur Cayley, one of the three most
prolific writers in mathematics, authored more than 200
mathematical papers. He founded the theory of matrices and was
one of the first writers to describe abstract groups. According to
mathematical historian Howard Eves, Cayley was one of the 19th-
century algebraists who •opened the floodgates of modern abstract
algebra.Ž

Cayley displayed superior mathematical talent early in his life.
At the age of 17 he studied at Trinity College of Cambridge
University. Upon graduation, he accepted a position as assistant
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62 Chapter 1 Fundamentals

Key Words and Phrases

S
S

P
L/

Im
ag

e 
W

or
ks



A Pioneer in Mathematics 63

tutor at the college. At the end of his third year as tutor, his appointment was not renewed
because he declined to take the holy orders to become a parson. Cayley then turned to law
and spent the next 15 years as a practicing lawyer. It was during this period that he wrote
most of his mathematical papers, many of which are now classics.

Mathematics was not Cayley•s only love, though. He was also an avid novel reader, a
talented watercolor artist, an ardent mountain climber, and a passionate nature lover.
However, even on his mountaineering trips, he spent a few hours each day on
mathematics.

Cayley spent the last 32 years of his life as a professor of mathematics at Cambridge
University. During this period, he campaigned successfully for the admission of women to
the university.
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65

C H A P T E R  T W O

Introduction

It is unusual for a chapter to begin with an optional section, but there is an explanation for
doing so here. Whether Section 2.1 is to be included or skipped is a matter of attitude or em-
phasis. If the approach is to emphasize the development of the basic properties of addition,
multiplication, and ordering of integers from an initial list of postulates for the integers, then
Section 2.1 should be included. As an alternative approach, these properties can be taken as
known material from earlier experience, and Section 2.1 can be skipped. Whichever ap-
proach is taken, Section 2.1 summarizes the knowledge that is needed for the subsequent
material in the chapter, and it separates •what we knowŽ from •what we must prove.Ž

Although Section 2.2 on mathematical induction is not labeled as optional, this material
may be familiar from calculus or previous algebra courses, and it might also be skipped.

The set Zn of congruence classes modulo n makes its first appearance in Section 2.5
as a set of equivalence classes. Binary operations of addition and multiplication are defined
on Zn in Section 2.6. Both the additive and the multiplicative structures are drawn upon for
examples in Chapters 3 and 4.

Sections 2.7 and 2.8 present optional introductions to coding theory and cryptography.
The primary purpose of these sections is to demonstrate that the material in this text has
usefulness other than as a foundation for mathematics courses at a higher level.

2.1 Postulates for the Integers (Optional)

The material in this chapter is concerned exclusively with integers. For this reason, we make
a notational agreement that all variables represent integers.As our starting point, we shall
take the system of integers as given and assume that the system of integers satisfies a certain
list of basic axioms, or postulates. More precisely, we assume that there is a set Z of ele-
ments, called the integers, that satisfies the following conditions.

Postulates for the Set Z of Integers
1. Addition postulates. There is a binary operation defined in Z that is called addition,

is denoted by1 , and has the following properties:
a. Z is closedunder addition.
b. Addition is associative.

The Integers
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c. Z contains an element 0 that is an identity element for addition.
d. For each x [ Z, there is an additive inverseof x in Z, denoted by 2 x, such that

x 1 (2 x) 5 0 5 (2 x) 1 x.
e. Addition is commutative.

2. Multiplication postulates. There is a binary operation defined in Z that is called
multiplication , is denoted by ?, and has the following properties:
a. Z is closedunder multiplication.
b. Multiplication is associative.
c. Z contains an element 1 that is different from 0 and that is an identity element for

multiplication .
d. Multiplication is commutative.

3. Thedistributive law ,

holds for all elements [ Z.

4. Z contains a subset Z1 , called the positive integers, that has the following
properties:
a. Z1 is closedunder addition.
b. Z1 is closedunder multiplication.
c. For each x in Z, one and only one of the following statements is true.

i. x [ Z1

ii. x 5 0
iii. 2 x [ Z1

5. Induction postulate. If Sis a subset of Z1 such that
a. 1 [ S, and
b. x [ Salways implies x 1 1 [ S,

thenS 5 Z1 .

Note that we are taking the entire list of postulates as assumptionsconcerningZ. This
list is our set of basic properties. In this section we shall investigate briefly some of the con-
sequences of this set of properties.

After the term grouphas been defined in Chapter 3, we shall see that the addition pos-
tulates state that Z is a commutative group with respect to addition. Note that there is a
major difference between the multiplication and the addition postulates, in that no inverses
are required with respect to multiplication.

Postulate 3, the distributive law, is sometimes known as the left distributive law . The
requirement that

is known as the right distributive law . This property can be deduced from those in our list,
as can all the familiar properties of addition and multiplication of integers.

Postulate 4c is referred to as the law of trichotomy because of its assertion that exactly
one of three possibilitiesmust hold. In case iii, where 2 x [ Z1 , we say that x is a negative
integer and that the set {x 02 x [ Z1 } is the set of all negative integers.

(y 1 z) ?x 5 y ?x 1 z ?x

x, y, z

x ?(y 1 z) 5 x ?y 1 x ?z,
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The induction postulate is so named because it provides a basis for proofs by mathe-
matical induction. Section 2.2 is devoted to the method of proof by induction, and the
method is used from time to time throughout this book.

The right distributive law can be shown to follow from the set of postulates for the
integers. We do this formally in the following theorem.

Theorem 2.1 � Right Distributive Law

The equality

holds for all in Z.

Proof For arbitrary in Z, we have

The foregoing proof is admittedly trivial, but the point is that the usual manipulations
involving integers are indeed consequences of our basic set of postulates. As another
example, consider the statement• that (2 x)y 5 2 (xy). In this equation,2 (xy) denotes the
additive inverse of xy, just as 2 x denotes the additive inverse of x.

Theorem 2.2 � Additive Inverse of a Product

For arbitraryx andy in Z,

Instead of attempting to prove this statement directly, we shall first prove a lemma.

Lemma 2.3 � Cancellation Law for Addition

If a, b, andc are integers and a 1 b 5 a 1 c, thenb 5 c.

Proof of the LemmaSupposea 1 b 5 a 1 c. Now 2 a is in Z, and hence

This completes the proof of the lemma. 

� b 5 c by postulate 1c.
�  0 1 b 5 0 1 c by postulate 1d
� 3(2 a) 1 a41 b 5 3(2 a) 1 a41 c    by postulate 1b

a 1 b 5 a 1 c � (2 a) 1 (a 1 b) 5 (2 a) 1 (a 1 c)

(2 x)y 5 2 (xy).

5 y ?x 1 z ?x by postulate 2d.

5 x ?y 1 x ?z by postulate 3 

 (y 1 z) ?x 5 x ?(y 1 z) by postulate 2d

x, y, z

x, y, z

(y 1 z) ?x 5 y ?x 1 z ?x

p � q

•We adopt the usual convention that the juxtaposition of x andy in xy indicates the operation of
multiplication.
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Proof of the TheoremReturning to the theorem, we see that we only need to show that
xy1 (2 x)y 5 xy1 32 (xy)4. That is, we need only show that xy1 (2 x)y 5 0. We have

We have shown that xy1 (2 x)y 5 0, and the theorem is proved. 

The proof of Theorem 2.2 would have been shorter if the fact that 0 ?y 5 0 had
been available. However, our approach at present is to use in a proof only the basic pos-
tulates for Z and those facts previously proved. Several statements similar to the last
two theorems are given to be proved in the exercises at the end of this section. After this
section, we assume the usual properties of addition and multiplication in Z.

Postulate 4, which asserts the existence of the set Z1 of positive integers, can be used
to introduce the order relation •less thanŽ on the set of integers. We make the following def-
inition.

Definition 2.4 � The Order Relation Less Than

For integers x andy,

wherey 2 x 5 y 1 (2 x).

The symbol is read •less than,Ž as usual. Here we have defined the relation, but we
have not assumed any of its usual properties. However, they can be obtained by use of this
definition and the properties of Z1 . Before illustrating this with an example, we note that
0 , y if and only if y [ Z1 .

For an arbitrary x [ Z and a positive integer n, we define xn as follows:

Similarly, positive multiples nxof x are defined by

 (k 1 1)x 5 kx 1 x for any positive integer k.

 1x 5 x

xk1 1 5 xk ?x for any positive integer k.

x1 5 x

,

x , y if and only if y 2 x [ Z1

5 0 by postulate 1d.

5 0 ?y 1 32 (0 ?y)4 by postulate 1c

5 (0 1 0)y 1 32 (0 ?y)4 by Theorem 2.1

5 (0 ?y 1 0 ?y) 1 32 (0 ?y)4  by postulate 1b

5 0 ?y 1 50 ?y 1 32 (0 ?y)46 by postulate 1d

5 0 ?y 1 0 by postulate 1c

5 0 ?y by postulate 1d

xy 1 (2 x)y 5 3x 1 (2 x)4y by Theorem 2.1



2.1 Postulates for the Integers (Optional) 69

Theorem 2.5 � Squares of Nonzero Integers

For any x 2 0 in Z, x2 [ Z1 .

Proof Let x 2 0 in Z. By postulate 4, either x [ Z1 or 2 x [ Z1 . If x [ Z1 , then
x2 5 x ?x is in Z1 by postulate 4b. And if 2 x [ Z1 , then (2 x)2 5 (2 x) ? (2 x) is in Z1 ,
by the same postulate. But

sox2 is in Z1 if 2 x [ Z1 . In each possible case,x2 is in Z1 , and this completes the proof.

As a particular case of this theorem, 1[ Z1 , since 15 (1)2. That is, 1 must be a
positive integer, a fact that may not be immediately evident in postulate 4. This in turn
implies that 25 1 1 1 is in Z1 , by postulate 4a. Repeated application of 4a gives
3 5 2 1 1 [ Z1 , 4 5 3 1 1 [ Z1 , 5 5 4 1 1 [ Z1 , and so on. It turns out that Z1

must necessarily be the set

Although our discussion of order has been in terms of less than, the relations greater
than, less than or equal to, andgreater than or equal tocan be introduced in Z and simi-
larly treated. We consider this treatment to be trivial and do not bother with it. At the same
time, we accept terms such as nonnegativeandnonpositivewith their usual meanings and
without formal definitions.

Exercises2.1
True or False
Label each of the following statements as either true or false.

1. The set Z of integers is closed with respect to subtraction.

2. The set Z 2 Z1 is closed with respect to subtraction.

3. The set Z 2 Z1 is closed with respect to multiplication.

4. If xy 5 xzfor all x, y, andz in Z, theny 5 z.

5. Let A be a set of integers closed under subtraction. If x andy are elements of A then
x 2 ny is in A for any n in Z.

6. for all x in Z. (See the exercises for the definition of , the absolute valueof x.)0x 00x 0# x

Z1 5 51, 2, 3, c , n, n 1 1, c 6.

5 (2 x) ?(2 x) by Exercise 5 in this section,

x2 5 x ?x

Strategy � Some proofs must be divided into different cases because the same argument does not
apply to all elements under consideration. The proof of the next theorem separates natu-
rally into two cases, based on the law of trichotomy (postulate 4c). 

p � q
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7. for all x andy in Z.

8. If then for all x andy in Z.

9. If then for all x andy in Z.

10. for all x andy in Z.

Exercises

Prove that the equalities in Exercises 1…11 hold for all x, y, z, andw in Z. Assume only the
basic postulates for Z and those properties proved in this section. Subtraction is defined
by x 2 y 5 x 1 (2 y).

1. x ?0 5 0

2. 2 x 5 (2 1) ?x

3. 2 (2 x) 5 x

4. (2 1)(2 1) 5 1

5. (2 x)(2 y) 5 xy

6. x 2 0 5 x

7. x(y 2 z) 5 xy2 xz

8. (y 2 z)x 5 yx2 zx

9. 2 (x 1 y) 5 (2 x) 1 (2 y)

10. (x 2 y) 1 (y 2 z) 5 x 2 z

11. (x 1 y)(z1 w) 5 xz1 xw1 yz1 yw

12. Let A be a set of integers closed under subtraction. 

a. Prove that if A is nonempty, then 0 is in A.

b. Prove that if x is in A then2 x is in A.

In Exercises 13…24, prove the statements concerning the relation, on the set Z of
all integers.

13. If x , y, thenx 1 z , y 1 z.

14. If x , y andz , w, thenx 1 z , y 1 w.

15. If x 5 y and 0 , z, theny , x 1 z.

16. If x 5 y andz , 0, then x 1 z , y.

17. If x , y andy , z, thenx , z.

18. If x , y and 0, z, thenxz , yz.

19. If x , y andz , 0, then yz , xz.

0 0x 02 0y 0 0# 0x 2 y 0

x3 , y3x , y

x2 , y2x , y

0x 1 y 02 # 0x 02 1 0y 02

Sec. 2.2, #21 �
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20. If 0 , x , y, thenx2 , y2.

21. If 0 , x , y and 0, z , w, thenxz , yw.

22. If 0 , zandxz , yz, thenx , y.

23. z 2 x , z2 y if and only if y , x.

24. If x , y, then2 y , 2 x.

25. Prove that if x andy are integers and xy 5 0, then either x 5 0 or y 5 0. (Hint: If
x 2 0, then either x [ Z1 or 2 x [ Z1 , and similarly for y. Consider xy for the vari-
ous cases.)

26. Prove that the cancellation law for multiplication holds in Z. That is, if xy5 xz and
x 2 0, then y 5 z.

27. Let x andy be in Z, not both zero, then x2 1 y2 [ Z1 .

For an integer x, theabsolute valueof x is denoted by 0x0and is defined by

Use this definition for the proofs in Exercises 28…30.

28. Prove that2 0x 0# x # 0x 0for any integer x.

29. Prove that 0xy05 0x 0?0y 0for all x andy in Z.

30. Prove that 0x 1 y 0# 0x 01 0y 0for all x andy in Z.

31. Prove that if a is positive and b is negative, then ab is negative.

32. Prove that if a is positive and ab is positive, then b is positive.

33. Prove that if a is positive and ab is negative, then b is negative.

34. Prove or disprove that 0 # x2 2 xy1 y2 for all x andy in Z.

35. Consider the set consisting of 0 alone, with and . Which of
the postulates for Z are satisfied?

2.2 Mathematical Induction

From this point on, full knowledge of the properties of addition, subtraction, and multipli-
cation of integers is assumed. A study of divisibility begins in Section 2.3.

As mentioned in the last section, the induction postulate forms a basis for the method
of proof known as mathematical induction. Some students may have encountered this
method of proof in calculus or in other previous courses. In this case, it is possible to skip
this section and continue with Section 2.3.

0 ?0 5 00 1 0 5 0506

0x 05 b
x if  0 # x.

2 x  if x , 0.

Sec. 2.2, #44 !
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Principle of Mathematical Induction
The logic of the method is that

a. if Pn is true for n 5 1, and

b. if the truth of Pk always implies that Pk1 1 is true,

then the statement Pn is true for all positive integers n. This logic fits the induction postu-
late perfectly if we let Sbe the set of all positive integers n for which Pn is true. When the
induction postulate is used in this form, it is frequently called the Principle of Mathemat-
ical Induction.

Example 1 We shall prove that

for every positive integer n.
For each positive integer n, let Pn be the statement

In an equation of this type, it is understood that 1>3(2n 2 1) (2n 1 1)4is the last term on
the left side. When n 5 1, there is only one term, and no addition is actually performed.

Whenn 5 1, the value of the left side is

and the value of the right side is

ThusP1 is true.

1
2(1) 1 1

5
1
3

.

1
32(1) 2 14 32(1) 1 14

5
1

1 ?3
5

1
3

1
1 ?3

1
1

3 ?5
1

1
5 ?7

1 c 1
1

(2n 2 1)(2n 1 1)
5

n
2n 1 1

.

1
1 ?3

1
1

3 ?5
1

1
5 ?7

1 c 1
1

(2n 2 1)(2n 1 1)
5

n
2n 1 1

Strategy � Proof by Mathematical Induction In a typical proof by induction, there is a statement
Pn to be proved true for every positive integer n. The proof consists of three steps:

1. The statement is verified for n 5 1.

2. The statement is assumed true for n 5 k.

3. With this assumption made, the statement is then proved to be true forn 5 k 1 1.

The assumption that is made in step 2 is called the inductive assumptionor the induc-
tion hypothesis.
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Assume now that Pk is true. That is, assume that the equation

is true. With this assumption made, we need to prove that Pk1 1 is true. By adding

to both sides of the assumed equality, we obtain

The last expression matches exactly the fraction

whenn is replaced by k 1 1. Thus Pk1 1 is true whenever Pk is true.
It follows from the induction postulate that Pn is true for all positive integers n. �

Example 2 We shall prove that any even positive power of a nonzero integer is posi-
tive. That is, if x 2 0 in Z, thenx2n is positive for every positive integer n.

The second formulation of the statement is suitable for a proof by induction on n. For
n 5 1, x2n 5 x2, and x2 is positive by Theorem 2.5. Assume the statement is true for
n 5 k; that is,x2k is positive. For n 5 k 1 1, we have

Since and are positive, the product is positive by postulate 4b. Thus the statement is
true for n 5 k 1 1. It follows from the induction postulate that the statement is true for all
positive integers. �

x2x2k

5 x2k ?x2.

5 x2k1 2

x2n 5 x2(k1 1)

n
2n 1 1

5
k 1 1

2(k 1 1) 1 1
.

5
(2k 1 1)(k 1 1)
(2k 1 1)(2k 1 3)

5
2k2 1 3k 1 1

(2k 1 1)(2k 1 3)

5
k(2k 1 3) 1 1

(2k 1 1)(2k 1 3)

5
k

2k 1 1
1

1
(2k 1 1)(2k 1 3)

1
1 ?3

1
1

3 ?5
1 c 1

1
(2k 2 1)(2k 1 1)

1
1

(2k 1 1)(2k 1 3)

1
32(k 1 1) 2 14 32(k 1 1) 1 14

5
1

(2k 1 1)(2k 1 3)

1
1 ?3

1
1

3 ?5
1

1
5 ?7

1 c 1
1

(2k 2 1)(2k 1 1)
5

k
2k 1 1
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In Section 2.3 and in some of the exercises at the end of this section, we need to use
the fact that 1 is the least positive integer. It might seem a bit strange to prove something so
obvious, but the proof does reveal how this familiar fact is a consequence of the induction
postulate.

Theorem 2.6 � Least Positive Integer

The integer 1 is the least positive integer. That is, 1# x for all x [ Z1 .

Proof Let S be the set of all positive integers x such that 1# x. Then 1[ S. Suppose
k [ S. Now 0, 1 implies k 5 k 1 0 , k 1 1, by Exercise 13 of Section 2.1, so we have
1 # k , k 1 1. Thus k [ Simpliesk 1 1 [ S, andS5 Z1 by postulate 5. 

Mathematical induction can sometimes be used in more complicated situations in-
volving integers. Some statements that involve positive integers n are false for some values
of the positive integer n but are true for all positive integers that are sufficiently large.
Statements of this type can be proved by a modified form of mathematical induction. If a
is a positive integer, and we wish to prove that a statement Pn is true for all positive integers
n $ a, we alter the three steps described in the strategy box of this section to the following
form.

Induction

Strategy � Proof by Generalized Induction

1. The statement is verified for n 5 a.

2. The statement is assumed true for n 5 k, wherek $ a.

3. With this assumption made, the statement is then proved to be true for n 5 k 1 1.

A proof of this type with a 5 4 is given in Example 3.

Example 3 We shall prove that

for every positive integer n $ 4.
Note that the statement is actually false for n 5 1, 2, and 3. For n 5 4,

Since 13, 16, the statement is true for n 5 4.
Assume now that the inequality is true for k wherek $ 4:

1 1 3k , k2.

1 1 3n 5 1 1 12 5 13 and n2 5 42 5 16.

1 1 3n , n2



2.2 Mathematical Induction 75

When , the left side of the inequality is , and

(In the steps involving, , we have used Exercises 13 and 18 of Section 2.1.) Since (k 1 1)2

is the right side of the inequality when n 5 k 1 1, we have proved that

is true whenn 5 k 1 1. Therefore, the inequality is true for all positive integersn $ 4. �

The modification of mathematical induction that is described just before Example 3
can be extended even more by allowing a to be 0 or a negative integer and using the same
three steps listed in the strategy box to prove that a statement Pn is true for all integers
n $ a. This type of proof is requested in Exercise 23 of this section.

In some cases, it is more convenient to use yet another form of the induction postulate.
This form is known by three different titles: It is called the Second Principle of Finite
Induction, the method of proof by Complete Induction, and the method of Strong Math-
ematical Induction. In this form, a proof that a statement Pn is true for all integers n $ a
consists of the following three steps.

1 1 3n , n2

5 (k 1 1)2.

, k2 1 2k 1 1 since 1, k implies 2, 2k

5 k2 1 2 1 1

, k2 1 3      since 11 3k , k2

 1 1 3(k 1 1) 5 1 1 3k 1 3

1 1 3(k 1 1)n 5 k 1 1

Strategy � Proof by Complete Induction

1. The statement is proved true for n 5 a, wherea [ Z.

2. For an integer k, the statement is assumed true for all integers msuch that
a # m , k.

3. Under this assumption, the statement is proved to be true for m 5 k.

Our next example presents a proof by complete induction, and another example is pro-
vided by the proof of Theorem 2.18 in Section 2.4.

The fact stated in Example 4 is that every positive integer can be written as a sum of
nonnegative powers of 2. This fact is a point of departure for developing the binary repre-
sentationof real numbers, a representation that uses 2 as the number base instead of 10 as
used in our familiar decimal system. Binary representations are used extensively in com-
puter science.

Example 4 We shall use complete induction to prove the statement that every positive
integer n can be expressed in the form

wherej is a nonnegative integer,ci [ {0, 1} for all , and cj 5 1.i , j

n 5 c0 1 c1 ?2 1 c2 ?22 1 c 1 cj2 1 ?2j2 1 1 cj ?2j,
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For let and Then

and the statement is true for n 5 1.
Assume now that k . 1 and the statement is true for all positive integers m such that

m , k. We consider two cases: where k is even and where k is odd.
If k is even, then k 5 2p for some p [ Z1 with p , k. Since p , k, the induction

hypothesis applies to p, andp can be written in the form

wherej is a nonnegative integer,ci [ {0, 1} for all i, andcj 5 1. Multiplying both sides of
the equation for p by 2 gives

,

and this is an equation for k that has the required form (when k is even).
Suppose now that k is odd, say,k 5 2p 1 1 for some p [ Z1 . Since k . 1, this means

thatk 2 1 5 2p is in Z1 and

But p , k implies that p can be written in the form

whereci [ {0, 1}, and cj 5 1. Therefore,

and

which is an equation for k of the required form (when k is odd).
Combining the arguments for k even and k odd, we have proved that if k . 1 and the

statement is true for all positive integers less than k, then it is also true for n 5 k. By the
Second Principle of Finite Induction, the statement is true for all positive integers n. �

Exercises2.2
Prove that the statements in Exercises 1…14 are true for every positive integer n.

1.

2.

3.

4. 12 1 32 1 52 1 c 1 (2n 2 1)2 5
n(2n 2 1)(2n 1 1)

3

12 1 22 1 32 1 c 1 n2 5
n(n 1 1)(2n 1 1)

6

1 1 3 1 5 1 c 1 (2n 2 1) 5 n2

1 1 2 1 3 1 c 1 n 5
n(n 1 1)

2

5 1 1 c0 ?2 1 c1 ?22 1 c 1 cj 2 1 ?2j 1 cj ?2j 1 1,

k 5 2p 1 1

 2p 5 c0 ?2 1 c1 ?22 1 c2 ?23 1 c 1 cj 2 1 ?2j 1 cj ?2j 1 1

p 5 c0 1 c1 ?2 1 c2 ?22 1 c 1 cj 2 1 ?2j 2 1 1 cj ?2j

0 , p 5
k 2 1

2
,

k 1 k
2

5 k.

k 5 2p 5 c0 ?2 1 c1 ?22 1 c2 ?23 1 c 1 cj 2 1 ?2j 1 cj ?2j 1 1

p 5 c0 1 c1 ?2 1 c2 ?22 1 c 1 cj 2 1 ?2j 2 1 1 cj ?2j,

c0 ?20 5 (1)(1) 5 1,

c0 5 1.j 5 0n 5 1,
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5. 2 1 22 1 23 1 c 1 2n 5 2(2n 2 1)

6.

7. 13 1 33 1 53 1 c 1 (2n 2 1)3 5 n2(2n2 2 1)

8.

9. 1?2 1 2?2 2 1 3?2 3 1 c 1 n ?2 n 5 (n 2 1)2n1 1 1 2

10.

11.

12.

13.

14.

Let x andy be integers, and let mandn be positive integers. Use mathematical induction to
prove the statements in Exercises 15…20. (The definitions of xn andnx are given before
Theorem 2.5 in Section 2.1.)

15. (xy)n 5 xnyn 16. xm?xn 5 xm1 n

17. (xm)n 5 xmn 18. n(x 1 y) 5 nx1 ny

19. (m1 n)x 5 mx1 nx 20. m(nx) 5 (mn)x

21. Let A be a set of integers closed under subtraction. Prove that if x andy are in A, then
x 2 ny is in A for every positive integer n.

22. Let a andb be real numbers, and let n andr be integers with 0# r # n. The binomial
theoremstates that

where the binomial coefficients are defined by

an
r
b 5

n!
(n 2 r)!r!

,

An
r B

5 a
n

r 5 0
a
n
r ban2 rbr,

1 a
n

n 2 2
ba2bn2 2 1 a

n
n 2 1

babn2 1 1 a
n
nbbn

 (a 1 b)n 5 a
n
0
ban 1 a

n
1
ban2 1b 1 a

n
2
ban2 2b2 1 c 1 a

n
r ban2 rbr 1 c

a 1 ar 1 ar2 1 c 1 arn2 1 5 a
1 2 rn

1 2 r
 if r 2 1

a 1 (a 1 d) 1 (a 1 2d) 1 c 1 3a 1 (n 2 1)d45
n
2

32a 1 (n 2 1)d4

1
1 ?2 ?3

1
1

2 ?3 ?4
1

1
3 ?4 ?5

1 c 1
1

n(n 1 1)(n 1 2)
5

n(n 1 3)
4(n 1 1)(n 1 2)

1
1 ?4

1
1

4 ?7
1

1
7 ?10

1 c 1
1

(3n 2 2)(3n 1 1)
5

n
3n 1 1

1
1 ?2

1
1

2 ?3
1

1
3 ?4

1 c 1
1

n(n 1 1)
5

n
n 1 1

1 ?2 1 2 ?3 1 3 ?4 1 c 1 n(n 1 1) 5
n(n 1 1)(n 1 2)

3

13 1 23 1 33 1 c 1 n3 5
n2(n 1 1)2

4

Sec. 2.1, #12 �



78 Chapter 2 The Integers

with r! 5 r(r 2 1) (2)(1) for r $ 1 and 0!5 1. Prove that the binomial coeffi-
cients satisfy the equation

23. Use Exercise 22 and generalized induction to prove that is an integer for all
integers n andr with 0 # r # n.

24. Use the equation

and mathematical induction on n to prove the binomial theorem as it is stated in
Exercise 22.

If B1, B2, and B3 are matrices in Mn3 p(R), part b of Theorem 1.30 implies that
B1 1 (B2 1 B3) 5 (B1 1 B2) 1 B3. For each positive integer j $ 3, this associative prop-
erty can be extended to the following generalized statement: Regardless of how symbols of
grouping are introduced in the sum B1 1 B2 1 c 1 Bj, the resulting value is the same
matrix, and this justifies writing the sum without symbols of grouping. The generalized
statement for sums is proved in Exercise 25 of Section 3.2 and for products in Theorem 3.7.
Use these results in Exercises 25…27.

25. Let A be an m 3 n matrix over R, and let B1, B2, c , Bj ben 3 p matrices over R.
Use Theorem 1.33 and mathematical induction to prove that

for every positive integer j.

26. Let C be a p 3 q matrix over R, and let B1, B2, c , Bj be n 3 p matrices over R.
Use Theorem 1.33 and mathematical induction to prove that

for every positive integer j.

27. If A1, A2, c , An are square matrices of order moverR and each Ai is invertible, then
the product A1A2

c An is invertible. Use the reverse order law for inverses and math-
ematical induction to prove 

for all positive integers n.

In Exercises 28…32, use mathematical induction to prove that the given statement is true for
all positive integers n.

28. 4n . n 1 2

29. n , 2n

(A1A2
c An)

2 1 5 A2 1
n

c A2 1
2 A2 1

1

(B1 1 B2 1 c 1 Bj)C 5 B1C 1 B2C 1 c 1 Bj C

A(B1 1 B2 1 c 1 Bj) 5 AB1 1 AB2 1 c 1 ABj

a
n

r 2 1
b 1 a

n
r b 5 a

n 1 1
r b for 1 # r # n

An
r B

a
n

r 2 1
b 1 a

n
r b 5 a

n 1 1
r b for 1 # r # n.

c

Sec. 8.4, #35 �

Sec. 2.3, #48 �

Sec. 6.3, #12 �

Sec. 1.6, #31 �
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30. 1 1 2n # 3n

31. xn , yn , wherex andy are integers with 0, x , y

32. n! # nn

In Exercises 33…35, use mathematical induction on n to prove that the given statement
is true.

33. If n is a nonnegative integer and the set A hasn elements, then the power set p (A) has
2n elements.

34. If n $ 2 and the set Ahasnelements, then the number of elements of the power set p (A)
containing exactly 2 elements is .

35. If n $ 3 and the set Ahasnelements, then the number of elements of the power set p (A)
containing exactly 3 elements is .

36. Exercises 33…35 can be generalized as follows: If 0 # k # n and the set A hasn ele-
ments, then the number of elements of the power set p (A) containing exactly kelements
is .

a. Use this result to write an expression for the total number of elements in the power
setp (A).

b. Use the binomial theorem as stated in Exercise 22 to evaluate the expression
in part a and compare this result to Exercise 33. (Hint: Set a 5 b 5 1 in the
binomial theorem.)

In Exercises 37…41, use generalized induction to prove the given statement.

37. 1 1 n , n2 for all integers n $ 2

38. 1 1 2n , n3 for all integers n $ 2

39. 1 1 2n , 2n for all integers n $ 3

40. 2n , n! for all integers n $ 4

41. n3 , n! for all integers n $ 6

42. Use generalized induction and Exercise 37 to prove that n2 , n! for all integers n $ 4.

43. Use generalized induction and Exercise 39 to prove that n2 , 2n for all integers n $ 5.
(In connection with this result, see the discussion of counterexamplesin the Appendix.)

44. Assume the statement from Exercise 30 in Section 2.1 that for all
x andy in Z. Use this assumption and mathematical induction to prove that

for all integers n $ 2 and arbitrary integers a1, a2, c ,an.

45. Show that if the statement

is assumed to be true for n 5 k, then it can be proved to be true for n 5 k 1 1. Is the
statement true for all positive integers n? Why?

1 1 2 1 22 1 c 1 2n2 1 5 2n

0a1 1 a2 1 c 1 an 0# 0a1 01 0a2 01 c 1 0an 0

0x 1 y 0# 0x 01 0y 0

An
kB

An
3B5 n(n 2 1)(n 2 2)

3!

An
2B5

n(n 2 1)
2

Sec. 1.1, #10 �

Sec. 1.1, #10 �

Sec. 1.1, #10 �

Sec. 1.1, #10 �

Sec. 2.1, #30 �
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46. Show that if the statement

is assumed to be true for n 5 k, the same equation can be proved to be true for
n 5 k 1 1. Explain why this does not prove that the statement is true for all positive
integers. Is the statement true for all positive integers? Why?

47. Given the recursively defined sequence a1 5 1, a2 5 4, and an 5 2an2 1 2
an2 2 1 2, use complete induction to prove that an 5 n2 for all positive integers n.

48. Given the recursively defined sequence a1 5 1, a2 5 3, a3 5 9, and an 5 an2 1 1
3an2 2 1 9an2 3, use complete induction to prove that an 5 3n2 1 for all positive integers n.

49. Given the recursively defined sequence 
use complete induction to prove that for all positive integers n.

50. Given the recursively defined sequence 
use complete induction to prove that for all positive

integers n.

51. TheFibonacci• sequence{ fn} 5 1, 1, 2, 3, 5, 8, 13, 21,c is defined recursively by

a. Prove for all positive integers n.

b. Use complete induction to prove that fn , 2n for all positive integers n.

c. Use complete induction to prove that fn is given by the explicit formula

(This equation is known as Binet•s formula, named after the 19th-century French
mathematician Jacques Binet•• .)

52. Let be permutations on a nonempty set A. Prove that

for all positive integers n.

( f1 +f2 +c +fn)
2 1 5 fn

2 1 +c +f2
2 1 +f 2 1

1

f1, f2, c , fn

fn 5
11 1 ! 52n 2 11 2 ! 52n

2n! 5
.

f1 1 f2 1 c 1 fn 5 fn1 2 2 1

f1 5 1, f2 5 1, fn1 2 5 fn1 1 1 fn for n 5 1, 2, 3, c .

an 5 n2 1 n 1 13an2 2 1 an2 3,
a1 5 3, a2 5 7, a3 5 13, and an 5 3an2 1 2

an 5 5 ?3n 2 3 ?5n
15an2 2,a1 5 0, a2 5 2 30, and an 5  8an2 1 2

1 1 2 1 3 1 c 1 n 5
n(n 1 1)

2
1 2

•The Fibonacci sequence was first introduced to the western world in 1202 by Leonardo of Pisa (c. 1170…c. 1250),
who was posthumously given the nickname Fibonacci. Considered as one of the most talented mathematicians
of the Middle Ages, Fibonacci appreciated the superiority of the Hindu-Arabic numeral system (as opposed to
the Roman numeral system) for its ease in performing the basic arithmetic operations and is credited for
introducing this system into Europe.
•• Jacques Binet (1786…1856) is credited for this formula for the nth term in the Fibonacci sequence (although it
was known by Euler over a century earlier) and for developing the rule for matrix multiplication in 1812. Binet
was also a noted physicist and astronomer.
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53. Define powers of a permutation f onA by the following:

Let f andg be permutations on a nonempty set A. Prove that

for all positive integers n.

2.3 Divisibility

We turn now to a study of divisibility in the set of integers. Our main goal in this section is
to obtain the Division Algorithm (Theorem 2.10). To achieve this, we need an important
consequence of the induction postulate, known as the Well-Ordering Theorem.

Theorem 2.7 � The Well-Ordering Theorem

Every nonempty set S of positive integers contains a least element. That is, there is an
elementm[ Ssuch that m # x for all x [ S.

Proof Let Sbe a nonempty set of positive integers. If 1[ S, then 1# x for all x [ S, by
Theorem 2.6. In this case,m 5 1 is the least element in S.

Consider now the case where 1o S, and let L be the set of all positive integers p such
thatp , x for all x [ S. That is,

Since 1o S, Theorem 2.6 assures us that 1[ L. We shall show that there is a positive integer
p0 such that p0 [ L andp0 1 1 o L. Suppose this is not the case. Then we have that p [ L
impliesp 1 1 [ L, andL 5 Z1 by the induction postulate. This contradicts the fact that Sis
nonempty (note that L d S5 [ ). Therefore, there is a p0 such that p0 [ L andp0 1 1 o L.

We must show that p0 1 1 [ S. We have p0 , x for all x [ S, sop0 1 1 # x for all
x [ S (see Exercise 28 at the end of this section). If p0 1 1 , x were always true, then
p0 1 1 would be in L. Hence p0 1 1 5 x for some x [ S, andm 5 p0 1 1 is the required
least element in S.

Definition 2.8 � Divisor, Multiple

Let a andb be integers. We say that a divides b if there is an integer c such that b 5 ac.
If a divides b, we write . Also, we say that b is a multiple of a, or that a is a factor

of b, or that a is a divisor of b. If a does not divide b, we write 

It may come as a surprise that we can use our previous results to prove the following
simple theorem.

a 0>b.
a 0b

L 5 5p [ Z1 0p , x for all x [ S6.

( f 2 1 +g +f )n 5 f 2 1 +gn +f

f 0 5 IA, f1 5 f, and f n 5 f n2 1 +f for n . 1.

p � q
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•The proof for this case is similar to that where a [ Z1 , but we include it here because it illustrates several uses
of results from Section 2.1.

Existence

p � (q ¡ r)

Theorem 2.9 � Divisors of 1

The only divisors of 1 are 1 and 2 1.

Proof Supposea is a divisor of 1. Then 15 ac for some integer c. The equation 15 ac
requiresa 2 0, so either a [ Z1 or 2 a [ Z1 .

Consider first the case where a [ Z1 . This requires c [ Z1 (see Exercise 32 of
Section 2.1), so we have 1# a and 1# c, by Theorem 2.6. Now

and this is a contradiction of 1# c. Thus 15 a is the only possibility when a [ Z1 .
Consider• now the case where 2 a [ Z1. By Exercise 5 of Section 2.1, we have

and2 a [ Z1 implies that 2 c [ Z1 by Exercise 32 of Section 2.1. Therefore, 1# 2 a and
1 # 2 c by Theorem 2.6. Now

and2 c , 1 is a contradiction to 1# 2 c. Therefore, 15 2 a is the only possibility when
2 a [ Z1 , and we have

Combining the cases where a [ Z1 and where 2 a [ Z1 , we have shown that either
a 5 1 or a 5 2 1 if a is a divisor of 1. 

Our next result is the basic theorem on divisibility.

Theorem 2.10� The Division Algorithm

Let a andb be integers with b . 0. Then there exist unique integers q andr such that

Proof Let S be the set of all integers x that can be written in the form x 5 a 2 bn
for n [ Z, and let Sr denote the set of all nonnegative integers in S. The set Sr is nonempty.

a 5 bq 1 r with  0 # r , b.

5 2 1 since2 a 5 1.

a 5 2 (2 a) by Exercise 3 of Section 2.1 

� 2 c , 1  since (2 a)(2 c) 5 1,

 1 , 2 a � (1)(2 c) , (2 a)(2 c) by Exercise 18 of Section 2.1 

(2 a)(2 c) 5 ac 5 1,

� c , 1 sinceac 5 1,

 1 , a � 1 ?c , a ?c by Exercise 18 of Section 2.1 
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(See Exercise 29 at the end of this section.) If 0[ Sr, we have a 2 bq 5 0 for some q, and
a 5 bq 1 0. If , then Sr contains a least element r 5 a 2 bq, by the Well-Ordering
Theorem, and

wherer is positive. Now

sor 2 b [ S. Since r is the least element in Sr andr 2 b , r, it must be true that r 2 b is
negative. That is,r 2 b , 0, and r , b. Combining the two cases (where 0[ Sr and
where ), we have

To show that q and r are unique, suppose a 5 bq1 1 r1 and a 5 bq2 1 r2, where
0 # r1 , b and 0# r2 , b. We may assume that r1 # r2 without loss of generality. This
means that

However, we also have

That is,r2 2 r1 is a nonnegative multiple of b that is less than b. For any positive integer n,
1 # n implies b # bn. Therefore,r2 2 r1 5 0 and r1 5 r2. It follows that bq1 5 bq2,
whereb 2 0. This implies that q1 5 q2 (see Exercise 26 of Section 2.1). We have shown
thatr1 5 r2 andq1 5 q2, and this proves that q andr are unique. 

The word algorithmin the heading of Theorem 2.10 may seem strange at first glance,
since an algorithm is usually a repetitive procedure for obtaining a result. The use of the
word here is derived from the fact that the elements a 2 bnof Sr in the proof may be found
by repeated subtraction of b:

,

and so on.
In the Division Algorithm, the integer q is called the quotient and r is called the

remainder in the division of a by b. The conclusion of the theorem may be more familiar
in the form

but we are restricting our work here so that only integers are involved.

a
b

5 q 1
r
b

,

a 2 b, a 2 2b, a 2 3b

0 # r2 2 r1 5 (a 2 bq2) 2 (a 2 bq1) 5 b(q1 2 q2).

0 # r2 2 r1 # r2 , b.

a 5 bq 1 r with  0 # r , b.

0 o Sr

r 2 b 5 a 2 bq 2 b 5 a 2 b(q 1 1), 

a 5 bq 1 r

0 o Sr

Uniqueness
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Example 1 Whena andb are both positive integers, the quotient q and remainderr can
be found by the familiar routine of long division. For instance, if a 5 357 and b 5 13, long
division gives

soq 5 27 and r 5 6 in a 5 bq 1 r, with 0 # r , b:

If a is negative, a minor adjustment (see Exercise 30 of this section) can be made to obtain
the expression in the Division Algorithm. With a 5 2 357 and b 5 13, the preceding equa-
tion can be multiplied by 2 1 to obtain

To obtain an expression with a positive remainder, we need only subtract and add 13 in the
right member of the equation:

Thusq 5 2 28 and r 5 7 in the Division Algorithm, with a 5 2 357 and b 5 13. �

Exercises2.3
True or False
Label each of the following statements as either true or false.

1. The Well-Ordering Theorem implies that the set of even integers contains a least
element.

2. Let b be any integer. Then .

3. Let b be any integer. Then .

4. only if b 5 0.

5. Let a andb be integers with b . 0. Then if and only if the remainder r in the
Division Algorithm, when a is divided by b, is 0.

6. Let a andb be integers with a Z 0, such that . Then and and .

7. Let a andb be integers. Then .

8. If and , then .

9. If and , then a 5 b.b 0aa 0b

ab0cb 0ca 0c

2 0ab(a 1 b)

2 a 02 b2 a 0ba 02 ba 0b

b 0a

0 0b

b 00

0 0b

5 (13)(2 28) 1 7.

2 3575 (13)(2 27) 1 (13)(2 1) 1 (2 6) 1 13

2 3575 (13)(2 27) 1 (2 6). 

3575 (13)(27)1 6.

27
13q357

260
097
91
06
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Exercises

1. List all divisors of the following integers.

a. 30 b. 42 c. 28 d. 45

e. 24 f. 40 g. 32 h. 210

2. List all common divisors of each of the following pairs of integers.

a. 30, 28 b. 42, 45 c. 24, 32 d. 210, 40

e. 2 40, 24 f. 2 30,2 50

With a andb as given in Exercises 3…16, find the q andr that satisfy the conditions in the
Division Algorithm.

3. a 5 796,b 5 26 4. a 5 512,b 5 15

5. a 5 1149,b 5 52 6. a 5 1205,b 5 37

7. a 5 2 12,b 5 5 8. a 5 2 27,b 5 7

9. a 5 2 863,b 5 17 10. a 5 2 921,b 5 18

11. a 5 26,b 5 796 12. a 5 15,b 5 512

13. a 5 2 4317,b 5 12 14. a 5 2 5316,b 5 171

15. a 5 0, b 5 3 16. a 5 0, b 5 5

17. Prove that if a, b, andc are integers such that a0b anda0c, thena0(b 1 c).

18. Let R be the relation defined on the set of integers Z by aRbif and only if a0b. Prove
or disprove that R is an equivalence relation.

19. Let be integers such that a0b anda0c. Prove that 

20. Let a, b, c, andd be integers such that a0b andc0d. Prove that ac0bd.

21. Prove that if a andb are integers such that a0b andb0a, then either a 5 b or a 5 2 b.

22. Prove that if a andb are integers such that b 2 0 and a0b, then 0a0# 0b0.

23. Let a andb be integers such that a0b and0b0, 0a0. Prove that b 5 0.

24. Let a, b, andc be integers. Prove or disprove that a0b impliesac0bc .

25. Let a, b, andc be integers. Prove or disprove that a0bc impliesa0b or a0c.

26. Let a be an integer. Prove that 20a(a 1 1). (Hint: Consider two cases.)

27. Let a be an integer. Prove that 30a(a 1 1) (a 1 2). (Hint: Consider three cases.)

28. Let m be an arbitrary integer. Prove that there is no integer n such that
m , n , m 1 1.

29. Let Sbe as described in the proof of Theorem 2.10. Give a specific example of a pos-
itive element of S.

30. Let a andb be integers with b . 0 and a 5 bq 1 r with 0 # r , b. Use this result to
find the unique quotient and remainder as described by the Division Algorithm when
2 a is divided by b.

a 0(mb1 nc).a, b, c, m,  and n
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31. Use the Division Algorithm to prove that if a andb are integers, with b 2 0, then there
exist unique integers q andr such that a 5 bq 1 r, with 0 # r , 0b0.

32. Prove that the Well-Ordering Theorem implies the induction postulate 5 in Section 2.1.

33. Assume that the Well-Ordering Theorem holds, and prove the second principle of
finite induction.

In Exercises 34…47, use mathematical induction to prove that the given statement is true for
all positive integers n.

34. 3 is a factor of n3 1 2n 35. 3 is a factor of n3 2 7n

36. 3 is a factor of n3 2 n 37. 3 is a factor of n3 1 5n

38. 6 is a factor of n3 2 n 39. 6 is a factor of n3 1 5n

40. 3 is a factor of 4n 2 1 41. 8 is a factor of 9n 2 1

42. 5 is a factor of 7n 2 2n 43. 4 is a factor of 9n 2 5n

44. 4 is a factor of 32n 2 1 45. 5 is a factor of 32n 2 22n

46. For all a andb in Z, a 2 b is a factor of an 2 bn. (Hint: ak1 1 2 bk1 1 5 ak(a 2 b) 1
(ak 2 bk)b.)

47. For all a andb in Z, is a factor of 

48. a. The binomial coefficients are defined in Exercise 22 of Section 2.2. Use induc-
tion on r to prove that if p is a prime integer, then p is a factor of for r 5 1, 2,c ,
p 2 1. (From Exercise 23 of Section 2.2, it is known that is an integer.)

b. Use induction on n to prove that if p is a prime integer, then p is a factor of np 2 n.

2.4 Prime Factors and Greatest Common Divisor
In this section, we establish the existence of the greatest common divisor of two integers
when at least one of them is nonzero. The Unique Factorization Theorem, also known as
theFundamental Theorem of Arithmetic, is obtained.

Definition 2.11� Greatest Common Divisor

An integer d is a greatest common divisorof a andb if all these conditions are satisfied:

1. d is a positive integer.

2. d0a andd0b.

3. c0a andc0b imply c0d.

The next theorem shows that the greatest common divisor d of a andb exists when
at least one of them is not zero. Our proof also shows that d is a linear combination of a
andb; that is,d 5 ma 1 nb for integers mandn.

(p
r )

(p
r )

(n
r )

a2n 2 b2n.a 1 b

Sec. 2.2, #23 @



Theorem 2.12� Greatest Common Divisor

Let a andb be integers, at least one of them not 0. Then there exists a unique greatest com-
mon divisor d of a andb. Moreover,d can be written as

for integers m andn, and d is the smallest positive integer that can be written in this form.

Proof Let a andb be integers, at least one of them not 0. If b 5 0, then a 2 0, so 0a 0. 0.
It is easy to see that d 5 0a0is a greatest common divisor of a andb in this case, and either
d 5 a ?(1) 1 b ?(0) ord 5 a ?(2 1) 1 b ?(0).

Suppose now that b 2 0. Consider the set Sof all integers that can be written in the
form ax 1 by for some integers x andy, and let S1 be the set of all positive integers in S.
The set Scontainsb 5 a?(0) 1 b ?(1) and2 b 5 a?(0) 1 b ?(2 1), soS1 is not empty.
By the Well-Ordering Theorem,S1 has a least element d,

.

We have d positive, and we shall show that d is a greatest common divisor of a andb.
By the Division Algorithm, there are integers q andr such that

.

From this equation,

Thusr is in S 5 { ax 1 by}, and 0# r , d. By choice of d as the least element in S1 , it
must be true that r 5 0, and d0a. Similarly, it can be shown that d0b.

If c0a andc0b, thena 5 chandb 5 ck for integers h andk. Therefore,

and this shows that c0d. By Definition 2.11,d 5 am 1 bn is a greatest common divisor of
a andb. It follows from the choice of d as least element of S1 thatd is the smallest positive
integer that can be written in this form.

To show that the greatest common divisor of a andb is unique, assume that d1 andd2 are
both greatest common divisors of a andb. Then it must be true that Since d1

andd2 are positive integers, this means that (see Exercise 21 of Section 2.3). 

Whenever the greatest common divisor of a and b exists, we shall write or
gcd to indicate the unique greatest common divisorof a andb.(a, b)

(a, b)

d1 5 d2

d2 0d1.d1 0d2 and

5 c(hm1 kn),
5 chm1 ckn

d 5 am1 bn

5 a(1 2 mq) 1 b(2 nq).
5 a 2 (am1 bn)q

r 5 a 2 dq

a 5 dq 1 r with  0 # r , d

d 5 am1 bn

d 5 am1 bn
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Strategy � The technique of proof by use of the Well-Ordering Theorem in Theorem 2.12 should be
compared to that used in the proof of the Division Algorithm (Theorem 2.10). 

Existence

Uniqueness



When at least one of a andb is not 0, the proof of the last theorem establishes the ex-
istence of , but looking for a smallest positive integer in S 5 { ax 1 by} is not a very
satisfactory method for finding this greatest common divisor. A procedure known as the
Euclidean Algorithm furnishes a systematic method for finding where b . 0. It can
also be used to find integers m andn such that 5 am 1 bn. This procedure consists
of repeated applications of the Division Algorithm according to the following pattern,
wherea andb are integers with b . 0.

The Euclidean Algorithm

Since the integers r1, r2, c , rk1 2 are decreasing and are all nonnegative, there is a small-
est integer n such that rn1 1 5 0:

If we put r0 5 b, this last nonzero remainder rn is always the greatest common divisor of a
andb. The proof of this statement is left as an exercise.

As an example, we shall find the greatest common divisor of 1492 and 1776.

Example 1 Performing the arithmetic for the Euclidean Algorithm, we have

Thus the last nonzero remainder is rn 5 r4 5 4, and (1776, 1492)5 4. �

As mentioned earlier, the Euclidean Algorithm can also be used to find integers mand
n such that

We can obtain these integers by solving for the last nonzero remainder and substituting the
remainders from the preceding equations successively until a andb are present in the equa-
tion. For example, the remainders in Example 1 can be expressed as

4 5 (72)(1) 1 (68)(2 1).

68 5 (284)(1)1 (72)(2 3)

72 5 (1492)(1)1 (284)(2 5)

2845 (1776)(1)1 (1492)(2 1)

(a, b) 5 am1 bn.

68 5 (4)(17)   (q4 5 17,r5 5 0).

72 5 (1)(68) 1 4  (q3 5 1, r4 5 4)

2845 (3)(72) 1 68  (q2 5 3, r3 5 68) 

 14925 (5)(284) 1 72  (q1 5 5, r2 5 72) 

 17765 (1)(1492)1 284  (q0 5 1, r1 5 284) 

rn2 1 5 rnqn 1 rn1 1,  0 5 rn1 1.

rk 5 rk1 1qk1 1 1 rk1 2,    0 # rk1 2 , rk1 1.

f    0 # f
r1 5 r2q2 1 r3,    0 # r3 , r2

b 5 r1q1 1 r2,    0 # r2 , r1

a 5 bq0 1 r1,    0 # r1 , b

(a, b)
(a, b)

(a, b)
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Substituting the remainders from the preceding equations successively, we have

Thusm 5 2 21 and n 5 25 are integers such that

The remainders are printed in bold type in each of the preceding steps, and we carefully
avoided performing a multiplication that involved a remainder.

Themandn are not unique in the equation

To see this, simply add and subtract the product ab:

Thusmr 5 m 1 b andnr 5 n 2 a are another pair of integers such that

Definition 2.13� Relatively Prime Integers

Two integers a andb arerelatively prime if their greatest common divisor is 1. 

In the next two sections of this chapter, we prove some interesting results concerning
those integers that are relatively prime to a given integer n. Theorem 2.14 is useful in the
proofs of those results.

Theorem 2.14�

If a andb are relatively prime and a0bc, thena0c.

Proof Assume that 5 1 and a0bc. Since 5 1, there are integers mandn such
that 15 am 1 bn, by Theorem 2.12. Since a0bc, there exists an integer q such that
bc 5 aq. Now,

Thus the theorem is proved. 

� a 0c.
� c 5 a(cm1 qn)
� c 5 acm1 aqn sincebc 5 aq

 1 5 am1 bn � c 5 acm1 bcn

(a, b)(a, b)

(a, b) 5 amr 1 bnr.

5 a(m 1 b) 1 b(n 2 a). 
(a, b) 5 am1 ab 1 bn 2 ab

(a, b) 5 am1 bn.

4 5 1776m 1 1492n.

5 (1776)(2 21) 1 (1492)(25) after the third substitution. 
5 (1492)(4)1 (1776)(2 21) 1 (1492)(21) 
5 (1492)(4)1 3(1776)(1)1 (1492)(2 1)4(2 21) 
5 (1492)(4)1 (284)(2 21) after the second substitution 
5 (1492)(4)1 (284)(2 20) 1 (284)(2 1)
5 3(1492)(1)1 (284)(2 5)4(4) 1 (284)(2 1)
5  (72)(4) 1 (284)(2 1) after the first substitution 
5  (72)(1) 1 (284)(2 1) 1 (72)(3) 

 4 5  (72)(1) 1 3(284)(1) 1 (72)(2 3)4(2 1)
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(p ¿ q) � r



Among the integers, there are those that have the fewest number of factors possible.
Some of these are the prime integers.

Definition 2.15� Prime Integer

An integer p is a prime integer if p . 1 and the only divisors of p are6 1 and 6 p.

Note that the condition p . 1 makes p positive and ensures that p 2 1. The exclu-
sion of 1 from the set of primes makes possible the statement of the Unique Factoriza-
tion Theorem. Before delving into that, we prove the important property of primes in
Theorem 2.16.
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Strategy � The conclusion in the next theorem has the form •r or s.Ž One technique that can be
used to prove an •orŽ statement such as this is to assume that one part (such as r) does
not hold, and use this assumption to help prove that the other part must then hold.

Theorem 2.16� Euclid•s• Lemma

If p is a prime and p0ab, then either p0a or p0b.

Proof Assumep is a prime and p0ab. If p0a, the conclusion of the theorem is satisfied.
Suppose, then, that p does not divide a. This implies that 15 (p, a), since the only

positive divisors of p are 1 and p. Then Theorem 2.14 implies that p0b. Thus p0b if p does
not divide a, and the theorem is true in any case. 

The following corollary generalizes Theorem 2.16 to products with more than two fac-
tors. Its proof is requested in the exercises. A direct result of this corollary is that if p is
prime and p0an, thenp0a.

Corollary 2.17�

If p is a prime and p0(a1a2
p an), thenp divides some aj .

This brings us to the Unique Factorization Theorem, a result of such importance that
it is frequently called the Fundamental Theorem of Arithmetic.

(p ¿ q) � (r ¡ s)

•Euclid (c. 325 B.C.…c. 265 B.C.), a Greek mathematician considered to be the •Father of Geometry,Ž presented
the principles of Euclidean geometry in his Elements, the most famous mathematics works in all of history.

Strategy � Note the proof of the uniqueness part of Theorem 2.18: Two factorizations are assumed,
and then it is proved that the two are equal. 



Theorem 2.18� Unique Factorization Theorem

Every positive integer n either is 1 or can be expressed as a product of prime integers, and
this factorization is unique except for the order of the factors.

Proof In the statement of the theorem, the word productis used in an extended sense: The
productmay have just one factor.

Let Pn be the statement that either n 5 1 or n can be expressed as a product of primes.
We shall prove that Pn is true for all n [ Z1 by the Second Principle of Finite Induction.

Now P1 is trivially true. Assume that Pm is true for all positive integers m , k. If k is a
prime, then k is a product with one prime factor, and Pk is true. Suppose k is not a prime.
Thenk 5 ab, where neither a norb is 1. Therefore, 1, a , k and 1, b , k. By the in-
duction hypothesis,Pa is true and Pb is true. That is,

for primes pi andqj. These factorizations give

andk is thereby expressed as a product of primes. Thus Pk is true, and therefore Pn is true
for all positive integers n.

To prove that the factorization is unique, suppose that

are factorizations of n as products of prime factors pi andqj. Then

sop10(q1q2
c qv). By Corollary 2.17,p10qj for some j, and there is no loss of generality if

we assume j 5 1. However,p1 andq1 are primes, so p10q1 impliesq1 5 p1. This gives

and therefore

by the cancellation law. This argument can be repeated, removing one factor pi with each
application of the cancellation law, until we obtain

Since the only positive factors of pt are 1 and pt, and since each qj is a prime, this means
that there must be only one qj on the right in this equation, and it is qt. That is,v 5 t and
qt 5 pt. This completes the proof. 

The Unique Factorization Theorem can be used to describe a standard form of a posi-
tive integer n. Suppose p1, p2, c , pr are the distinctprime factors of n, arranged in order
of magnitude so that

p1 , p2 , c , pr.

pt 5 qt
c qv.

p2
c pt 5 q2

c qv

p1p2
c pt 5 p1q2

c qv,

p1p2
c pt 5 q1q2

c qv,

n 5 p1p2
c pt and n 5 q1q2

c qv

k 5 ab 5 p1p2
c pr q1q2

c qs,

a 5 p1p2
c pr and b 5 q1q2

c qs
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Then all repeated factors may be collected together and expressed by use of exponents to
yield

where each mi is a positive integer. Each mi is called the multiplicity of pi, and this factor-
ization is known as the standard form for n.

Example 2 The standard forms for two positive integers a andb can be used to find
their greatest common divisor (a, b) and their least common multiple (see Exercises 28 and
29 at the end of this section). For instance, if

then (a, b) can be found by forming the product of all the common prime factors, with each
common factor raised to the least power to which it appears in either factorization:

�

From one point of view, the Unique Factorization Theorem says that the prime in-
tegers are building blocks for the integers, where the •buildingŽ is done by using mul-
tiplication and forming products. A natural question, then, is: How many blocks? Our
next theorem states the answer given by the ancient Greek mathematician Euclid„that
the number of primes is infinite. The proof is also credited to Euclid.

Theorem 2.19� Euclid•s Theorem on Primes

The number of primes is infinite.

Proof Assume there are only a finite number,n, of primes. Let these n primes be denoted
by p1, p2, c , pn, and consider the integer

It is clear that the remainder in the division of mby any prime pi is 1, so each pi is not a fac-
tor of m. Thus there are two possibilities: Either m is itself a prime, or it has a prime factor
that is different from every one of the pi. In either case, we have a prime integer that was
not in the list p1, p2, c , pn. Therefore, there are more than n primes, and this contradiction
establishes the theorem. 

Exercises2.4
True or False
Label each of the following statements as either true or false.

1. The set of prime numbers is closed with respect to multiplication.

2. The set of prime numbers is closed with respect to addition.

3. The greatest common divisor is a binary operation from Z 2 {0} 3 Z to Z1 .

m 5 p1p2
c pn 1 1.

(a,b) 5 23 ?32 ?7 5 504.

a 5 31,7525 23 ?34 ?72 and b 5 126,0005 24 ?32 ?53 ?7,

n 5 pm1
1 pm2

2
c pmr

r
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4. The least common multiple is a binary operation from Z 2 {0} 3 Z 2 {0} to Z1 .

5. The greatest common divisor is unique, when it exists.

6. Let a andb be integers, not both zero, such that 15 (a, b). Then there exist integers x
andy such that 15 ax1 byand (x, y) 5 1.

7. Let a andb be integers, not both zero, such that d 5 ax1 by for integers x andy. Then
d 5 (a, b).

8. Let a andb be integers, not both zero, such that d 5 (a, b). Then there exist unique
integers x andy such that d 5 ax1 by.

9. Let a andb be integers, not both zero. Then (a, b) 5 (2 a, b).

10. Let a be an integer, then (a, a 1 1) 5 1.

11. Let a be an integer, then (a, a 1 2) 5 2.

12. If (a, b) 5 1 and (a, c) 5 1, then (b, c) 5 1.

Exercises

In this set of exercises, all variables represent integers.

1. List all the primes less than 100.

2. For each of the following pairs, write a andb in standard form and use these factor-
izations to find (a, b).

a. a 5 1400,b 5 980

b. a 5 4950,b 5 10,500

c. a 5 3780,b 5 16,200

d.

3. In each part, find the greatest common divisor (a, b) and integers m andn such that
(a, b) 5 am1 bn.

a. a 5 0, b 5 2 3 b. a 5 65,b 5 2 91

c. a 5 102,b 5 66 d. a 5 52,b 5 124

e. a 5 414,b 5 2 33 f. a 5 252,b 5 2 180

g. a 5 414,b 5 693 h. a 5 382,b 5 26

i. a 5 1197,b 5 312 j. a 5 3780,b 5 1200

k. a 5 6420,b 5 132 l. a 5 602,b 5 252

m. a 5 5088,b 5 2 156 n. a 5 8767,b 5 252

4. Find the smallest integer in the given set.

a. { x [ Z 0x . 0 and x 5 4s 1 6t for somes, t in Z }

b. { x [ Z 0x . 0 andx 5 6s 1 15t for somes, t in Z }

5. Prove that if p andq are distinct primes, then there exist integers m andn such that
pm 1 qn 5 1.

a 5 52,920,b 5 25,200
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6. Show that n2 2 n 1 5 is a prime integer when n 5 1, 2, 3, 4 but that it is not true that
n2 2 n 1 5 is always a prime integer. Write out a similar set of statements for the
polynomialn2 2 n 1 11.

7. If a . 0 and a0b, then prove or disprove that (a, b) 5 a.

8. Let a, b, andc be integers such that a Z 0. Prove that if a 0bc, thena 0c ?(a, b).

9. Let a be a nonzero integer and b a positive integer. Prove or disprove that (a, b) 5
(a, a 1 b).

10. Let a0c andb0c, and (a, b) 5 1, prove that abdivides c.

11. Prove that if d 5 (a, b), a0c, andb0c, thenab0cd.

12. If b . 0 and a 5 bq 1 r, prove that (a, b) 5 (b, r).

13. Let r0 5 b . 0. With the notation used in the description of the Euclidean
Algorithm, use the result in Exercise 12 to prove that (a, b) 5 rn, the last nonzero
remainder.

14. Prove that every remainder rj in the Euclidean Algorithm is a •linear combinationŽ of
a andb: rj 5 sja 1 tjb, for integers sj andtj .

15. Let a and b be integers, at least one of them not 0. Prove that an integer c can be
expressed as a linear combination of a andb if and only if (a, b) 0c.

16. Prove Corollary 2.17: If p is a prime and p0(a1a2
p an), thenp divides some aj. (Hint:

Use induction on n.)

17. Prove that if n is a positive integer greater than 1 such that n is not a prime, then n has
a divisor d such that 1, d # .

18. Prove that (ab, c) 5 1 if and only if (a, c) 5 1 and (b, c) 5 1.

19. Let (a, b) 5 1 and (a, c) 5 1. Prove or disprove that (ac, b) 5 1.

20. Let (a, b) 5 1. Prove (a, bc) 5 (a, c), where c is any integer.

21. Let (a, b) 5 1. Prove (a2, b2) 5 1.

22. Let (a, b) 5 1. Prove that for all positive integers n.

23. Prove that if m . 0 and (a, b) exists, then (ma, mb) 5 m?(a, b).

24. Prove that if d 5 (a, b), a 5 a0d, andb 5 b0d, then (a0, b0) 5 1.

25. A least common multipleof two nonzero integers a andb is an integer m that satisfies
all the following conditions:

1. m is a positive integer.
2. a0mandb0m.
3. a0c andb0c imply m0c.

Prove that the least common multiple of two nonzero integers exists and is unique.

26. Let a andb be positive integers. If d 5 (a, b) and m is the least common multiple of a
andb, prove that dm 5 ab. Note that it follows that the least common multiple of two
positive relatively prime integers is their product.

(a, bn) 5 1

! n
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27. Let a andb be positive integers. Prove that if d 5 (a, b), a 5 a0d, andb 5 b0d, then
the least common multiple of a andb is a0b0d.

28. Describe a procedure for using the standard forms of two positive integers to find their
least common multiple.

29. For each pair of integers a, b in Exercise 2, find the least common multiple of a andb
by using their standard forms.

30. Let a, b, andc be three nonzero integers.
a. Use Definition 2.11 as a pattern to define a greatest common divisor of a, b, andc.
b. Use Theorem 2.12 and its proof as a pattern to prove the existence of a greatest

common divisor of a, b, andc.
c. If d is the greatest common divisor of a, b, andc, show that .
d. Prove ((a, b), c) 5 (a, (b, c)).

31. Find the greatest common divisor of a, b, andc and write it in the form ax 1 by 1 cz
for integers x, y, andz.
a. a 5 14,b 5 28,c 5 35
b. a 5 26,b 5 52,c 5 60
c. a 5 143,b 5 385,c 5 2 65
d. a 5 60,b 5 2 84,c 5 105

32. Use the Second Principle of Finite Induction to prove that every positive integer n can
be expressed in the form

wherej is a nonnegative integer,ci [ {0, 1, 2} for all and cj [ {1, 2}.

33. Use the fact that 2 is a prime to prove that there do not exist nonzero integers a andb
such that a2 5 2b2. Explain how this proves that is not a rational number.

34. Use the fact that 3 is a prime to prove that there do not exist nonzero integers aandbsuch
thata2 5 3b2. Explain how this proves that is not a rational number.

2.5 Congruence of Integers

In Example 4 of Section 1.7, we defined the relation •congruence modulo 4Ž on the set Z
of all integers, and we proved this relation to be an equivalence relation on Z. That exam-
ple is a special case of congruence modulo n, as defined next.

Definition 2.20� Congruence Modulo n

Let n be a positive integer,n . 1. For integers x andy, x is congruent to y modulo n if and
only if x 2 y is a multiple of n. We write

to indicate that x is congruent to y modulon.

x ; y (modn)

! 3

! 2

i , j,

n 5 c0 1 c1 ?3 1 c2 ?32 1 c 1 cj2 1 ?3j2 1 1 cj ?3j,

d 5 ((a, b), c)
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Thus x ; y (mod n) if and only if n divides x 2 y, and this is equivalent to
x 2 y 5 nq, or x 5 y 1 nq. Another way to describe this relation is to say that x andy
yield the same remainder when each is divided by n. To see that this is true, let

x 5 nq1 1 r1 with 0 # r1 , n

and

Then

Thusx 2 y is a multiple of n if and only if r1 2 r2 5 0„ that is, if and only if r1 5 r2. In
particular, any integer x is congruent to its remainder when divided by n. This means that
any x is congruent to one of

Congruence modulo n is an equivalence relation on Z, and this fact is important
enough to be stated as a theorem.

Theorem 2.21� Equivalence Relation

The relation of congruence modulo n is an equivalence relation on Z.

Proof We shall show that congruence modulo n is (1) reflexive, (2) symmetric, and
(3) transitive. Let n . 1, and let x, y, andzbe arbitrary in Z.

1. x ; x (modn) sincex 2 x 5 (n)(0).

2. x ; y (modn) � x 2 y 5 nq for someq [ Z

3. x ; y (modn) and y ; z (modn)

As with any equivalence relation, the equivalence classes for congruence modulo n
form a partition of Z; that is, they separate Z into mutually disjoint subsets. These subsets
are called congruence classesor residue classes. Referring to our discussion concerning

� x ; z (modn). 

   5 n(q 1 k), and q 1 k [ Z

� x 2 z 5 x 2 y 1 y 2 z

� x 2 y 5 nq and y 2 z 5 nk and q,k [ Z

� y ; x (modn). 

� y 2 x 5 n(2 q) and 2 q [ Z

0, 1, 2, c , n 2 1.

x 2 y 5 n(q1 2 q2) 1 (r1 2 r2) with  0 # |r1 2 r2| , n.

y 5 nq2 1 r2 with  0 # r2 , n.
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remainders, we see that there are n distinct congruence classes modulo n, given by

When , these classes appear as

Congruence classes are useful in connection with numerous examples, and we shall see
more of them later.

Althoughx ; y (modn) is certainly not an equation, in many ways congruences can
be handled in the same fashion as equations. The next theorem asserts that the same
integer can be added to both members and that both members can be multiplied by the
same integer.

Theorem 2.22� Addition and Multiplication Properties

If a ; b (modn) andx is any integer, then

Proof Let a ; b (modn) and x [ Z. We shall prove that ax ; bx (modn) and leave the
other part as an exercise. We have

Congruence modulo n also has substitution properties that are analogous to those
possessed by equality. Suppose we wish to compute the product (25) (17) (mod 6). Since
25; 1 (mod 6) and 17; 5 (mod 6), the following theorem allows us to compute the prod-
uct (25) (17) (mod 6) as (1) (5); 5 (mod 6) instead of (25) (17); 425 (mod 6); 5 (mod 6).

Theorem 2.23� Substitution Properties

Supposea ; b (modn) andc ; d (modn). Then

a 1 c ; b 1 d (modn) and ac ; bd (modn). 

� ax ; bx (modn).  

� ax 2 bx 5 n(qx) for qx [ Z

� (a 2 b)x 5 (nq)x for q, x [ Z

a ; b (modn) � a 2 b 5 nq for q [ Z

a 1 x ; b 1 x (modn) and ax ; bx (modn). 

3345 5c , 2 5, 2 1, 3, 7, 11, c 6.

3245 5c , 2 6, 2 2, 2, 6, 10, c 6

3145 5c , 2 7, 2 3, 1, 5, 9, c 6

3045 5c , 2 8, 2 4, 0, 4, 8, c 6

n 5 4

3n 2 145 5c , 2 n 2 1, 2 1, n 2 1, 2n 2 1, 3n 2 1, c 6.

f

3245 5c , 2 2n 1 2, 2 n 1 2, 2, n 1 2, 2n 1 2, c 6

3145 5c , 2 2n 1 1, 2 n 1 1, 1, n 1 1, 2n 1 1, c 6

3045 5c , 2 2n, 2 n, 0, n, 2n, c 6
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Proof Let a ; b (modn) and c ; d (modn). By Theorem 2.22,

and

But ac ; bc (mod n) and bc ; bd (mod n) imply ac ; bd (mod n), by the transitive
property.

The proof that a 1 c ; b 1 d (modn) is left as an exercise. 

Example 1 Since exponentiation is just repeated multiplication, Theorem 2.23 can be
used to evaluate powers modulo n. Consider 5823 (mod 9). Since

58 ; 4 (mod 9),

then by Theorem 2.23,

5823 ; 423 (mod 9).

Also since

,

then

�

It is easy to show that there is a •cancellation lawŽ for addition that holds for congru-
ences:a 1 x ; a 1 y (modn) impliesx ; y (modn). This is not the case, however, with
multiplication:

As an example,

It is important to note here that a 5 4 and n 5 30 are not relatively prime. When the
condition that a andn be relatively prime is imposed, we can obtain a cancellation law for
multiplication.

Theorem 2.24� Cancellation Law

If ax ; ay (modn) and (a, n) 5 1, then

x ; y (modn).

(4)(6) ; (4)(21)(mod 30) but 6 [ 21(mod 30). 

ax ; ay (modn) and a [ 0 (mod n) do not imply  x ; y (modn). 

; 7 (mod 9).
; (7) (1)7 (mod 9)

; (16) (64)7 (mod 9)

; 42 ?(43)7 (mod 9)

 5823 ; 423 (mod 9)

423 5 42 ?(43)7

c ; d (modn) � bc ; bd (modn). 

a ; b (modn) � ac ; bc (modn)
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Proof Assume that ax ; ay (modn) and that a andn are relatively prime.

This completes the proof. 

We have seen that there are analogues for many of the manipulations that may be
performed with equations. There are also techniques for obtaining solutions to congru-
ence equations of certain types. The basic technique makes use of Theorem 2.23 and the
Euclidean Algorithm. The use of the Euclidean Algorithm is illustrated in Example 2.

Theorem 2.25� Linear Congruences

If a and n are relatively prime, the congruence ax ; b (mod n) has a solution x in the
integers, and any two solutions in Z are congruent modulo n.

Proof Sincea andn are relatively prime, there exist integers sandt such that

Thusx 5 sbis a solution to ax ; b (modn).
To complete the proof, suppose that both x and y are integers that are solutions to

Then we have

Using the symmetric and transitive properties of congruence modulo n, we conclude that
these relations imply

Since (a, n) 5 1, this requires that x ; y (modn), by Theorem 2.24. Hence any two
solutions in Z are congruent modulo n.

ax ; ay (modn). 

ax ; b (modn) and ay ; b (modn). 

ax ; b (modn).

� a(sb) ; b (modn). 

� n 0 3a(sb) 2 b4

� a(sb) 2 b 5 n(2 tb)

� b 5 asb1 ntb

   1 5 as1 nt

� x ; y (modn)

� n 0(x 2 y) by Theorem 2.14 

� n 0a(x 2 y)

ax ; ay (modn) � n 0(ax 2 ay)
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any two solutions to the system are •equalŽ but rather that they are congruent modulo n.
This same type of proof is also used in Theorem 2.26.
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Example 2 When , the Euclidean Algorithm can be used to find a solution x
to Consider the congruence

We first obtain sandt such that

Applying the Euclidean Algorithm, we have

Solving for the nonzero remainders,

Substituting the remainders in turn, we obtain

Multiplying this equation by b 5 14, we have

Thusx 5 2 308 is a solution. However, any number is congruent modulo 63 to its remain-
der when divided by 63, and

Thusx 5 7 is also a solution, one that is in the range 0# x , 63. �

The preceding example illustrates the basic technique for obtaining a solution to
whena andn are relatively prime, but other methods are also very use-

ful. Some of them make use of Theorems 2.23 and 2.24. Theorem 2.24 can be used to
remove a factor c from both sides of the congruence, provided c and n are relatively
prime. That is,c may be canceled from crx ; ct (modn) to obtain the equivalent con-
gruencerx ; t (modn). 

ax ; b (modn)

2 3085 (63)(2 5) 1 7.

� 14 ; (20)(2 308) (mod 63). 

 14 5 (20)(2 308) 1 (63)(98) 

5 (20)(2 22) 1 (63)(7). 

5 363 2 (20)(3)4(7) 1 (20)(2 1)

5 (3)(7) 1 (20)(2 1)

5 3 2 320 2 (3)(6)4(1)

 1 5 3 2 (2)(1)

1 5 3 2 (2)(1). 

2 5 20 2 (3)(6) 

3 5 63 2 (20)(3) 

2 5 (1)(2). 

3 5 (2)(1) 1 1

 20 5 (3)(6) 1 2

 63 5 (20)(3) 1 3

1 5 20s 1 63t.

20x ; 14 (mod 63). 

ax ; b(modn).
(a, n) 5 1
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Example 3 Since 2 and 63 are relatively prime, the factor 2 in both sides of

can be removed to obtain

Theorem 2.21 allows us to replace an integer by any other integer that is congruent to it
modulon. Now 7; 70 (mod 63), and this substitution yields

Removing the factor 10 from both sides, we have

Thus we have obtained the solution x 5 7 much more easily than by the method of
Example 1. However, this method is less systematic, and it requires more ingenuity.�

Some systems of congruences can be solved using the result of the next theorem.

Theorem 2.26� System of Congruences

Let mandn be relatively prime and a andb integers. There exists an integer x that satisfies
the system of congruences

Furthermore, any two solutions x andy are congruent modulo mn.

Proof Suppose (m, n) 5 1. Let x be a solution to the first congruence in the system

Thusx 5 a 1 mkfor some integer k, and this k must be such that

or

Since (m, n) 5 1, Theorem 2.25 guarantees the existence of such an integer k, and
x 5 a 1 mksatisfies the system.

Now let y be another solution to the system of congruences; that is,

By Theorem 2.21,

x ; y (modn)

x ; y (modm)

y ; b (modn).

y ; a (modm)

mk ; b 2 a (modn).

a 1 mk ; b (modn)

x ; b (modn).

x ; a (modm)

x ; b (modn).

x ; a (modm)

x ; 7 (mod 63). 

10x ; 70 (mod 63). 

10x ; 7 (mod 63). 

20x ; 14 (mod 63) 
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and

Then

by Exercise 10 of Section 2.4. So x ; y (modmn).

Example 4 Since (7, 5)5 1, we use Theorem 2.26 to solve the system of congruences

From the first congruence we write x 5 5 1 7k for some integer k and substitute this
expression for x into the second congruence.

or

Thusx 5 5 1 7(4)5 33 satisfies the system and or 
gives all solutions to the system of congruences. �

An extension of Theorem 2.26 is the Chinese Remainder Theorem. In this theorem, we
use the term •pairwise relatively primeŽ to mean that every pairing of integers ni andnj for
all i Z j are relatively prime.

Theorem 2.27� Chinese Remainder Theorem

Let n1, n2, . . . , nm be pairwise relatively prime. There exists an integer x that satisfies the
system of congruences

Furthermore, any two solutions x andy are congruent modulo n1n2
c nm.

The proof of the Chinese Remainder Theorem is requested in the exercises and we
illustrate the technique in the next example.

x ; am (modnm).

f

x ; a2 (modn2)

x ; a1 (modn1)

x ; 33 (mod 35)x ; 33 (mod 7?5)

� k ; 4 (mod 5).

� k ; 2 1 (mod 5) since (2, 5)5 1

� 2k ; 2 2 (mod 5)

 7k ; 2 2 (mod 5)

5 1 7k ; 3 (mod 5)

x ; 3 (mod 5).

x ; 5 (mod 7)

mn0x 2 y

m0x 2 y and n 0x 2 y.
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Example 5 Consider the system of congruences

Example 4 showed that (mod 35) is a solution to the first 2 congruences. Pairing
this congruence with the third in the system gives

So with x 5 331 35k for some k [ Z gives

Thus satisfies the first three congruences of the system. Pairing this
with the last gives the system

Settingx 5 1381 280k for some integer k in the second congruence of the system gives

Thus satisfies the original system. �

Exercises2.5
True or False
Label each of the following statements as either true or false.

1. implies for c [ Z1 .

2. and implies for c [ Z1 .a ; b (modc)c 0na ; b (modn)

ac ; bc (modnc)a ; b (modn)

x ; 698 (mod 280?3) ; 698 (mod 840)

5 698.

� x 5 1381 280?2

� k ; 2 (mod 3)

�  280k ; 2 136 (mod 3)

1381 280k ; 2 (mod 3)

x ; 2 (mod 3).

x ; 138 (mod 280)

x ; 2 (mod 3)
x ; 138 (mod 280)

5 138.

� x 5 33 1 35 ?3

� k ; 3 (mod 8)

�  3k ; 1 (mod 8)

�  35k ; 2 31 (mod 8)

33 1 35k ; 2 (mod 8)

x ; 2 (mod 8).

x ; 33 (mod 35)

x ; 2 (mod 8)
x ; 33

x ; 2 (mod 3).

x ; 2 (mod 8)

x ; 3 (mod 5)

x ; 5 (mod 7)
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3. implies or .

4. a is congruent to b modulon if and only if a andb yield the same remainder when each
is divided by n.

5. The congruence classes for congruence modulo n form a partition of Z.

6. If , then either or .

7. If (a, n) 5 1, then .

Exercises

In this exercise set, all variables are integers.

1. List the distinct congruence classes modulo 5, exhibiting at least three elements in
each class.

2. Follow the instructions in Exercise 1 for the congruence classes modulo 6.

Find a solution x [ Z, 0 # x , n, for each of the congruences ax ; b (modn) in Exer-
cises 3…24. Note that in each case,a andn are relatively prime.

3. 4. 2x ; 3 (mod 5)

5. 3x ; 7 (mod 13) 6. 3x ; 4 (mod 13)

7. 8x ; 1 (mod 21) 8. 14x ; 8 (mod 15)

9. 11x ; 1 (mod 317) 10. 11x ; 3 (mod 138)

11. 8x ; 66 (mod 79) 12. 6x ; 14 (mod 55)

13. 8x 1 3 ; 5 (mod 9) 14. 19x 1 7 ; 27 (mod 18)

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. Complete the proof of Theorem 2.22: If a ; b (modn) and x is any integer, then
a 1 x ; b 1 x (modn).

26. Complete the proof of Theorem 2.23: If a ; b (mod n) and c ; d (mod n), then
a 1 c ; b 1 d (modn).

27. Prove that if a 1 x ; a 1 y (modn), then x ; y (modn).

28. If ca ; cb (modn) and d 5 (c, n) where n 5 dm, prove thata ; b (modm).

29. Find the least positive integer that is congruent to the given sum, product, or power.

a. (3 1 19 1 23 1 52) (mod 6) b. (2 1 17 1 43 1 117) (mod 4)

c. (14 1 46 1 65 1 92) (mod 11) d. (9 1 25 1 38 1 92) (mod 7)

e. (7)(17)(32)(62) (mod 5) f. (6)(16)(38)(118) (mod 9)

82x 1 23 ; 2 (mod 47)35x 1 14 ; 3 (mod 27)

57x 1 7 ; 78 (mod 53)92x 1 17 ; 29 (mod 37)

79x ; 83 (mod 61)55x ; 59 (mod 42)

358x ; 17 (mod 313)25x ; 31 (mod 7)

5x 1 43 ; 15 (mod 22)13x 1 19 ; 2 (mod 23)

2x ; 3 (mod 7) 

a ; 1 (mod n)

b ; 0 (mod n)a ; 0 (mod n)ab ; 0 (mod n)

a ; 2 b (modn)a ; b (modn)a2 ; b2 (modn)
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g. (4)(9)(15)(59) (mod 7) h. (5)(11)(17)(65) (mod 7)

i. 4315 (mod 4) j. 2538 (mod 7)

k. 6233 (mod 5) l. 5226 (mod 9)

30. If a ; b (modn), prove that am ; bm (modn) for every positive integer m.

31. Prove that if m is an integer, then either m2 ; 0 (mod 4) or m2 ; 1 (mod 4). (Hint:
Consider the cases where m is even and where m is odd.)

32. Prove or disprove that if n is odd, then n2 ; 1 (mod 8).

33. If m is an integer, show thatm2 is congruent modulo 8 to one of the integers 0, 1, or 4.
(Hint: Use the Division Algorithm, and consider the possible remainders in
m 5 4q 1 r.)

34. Prove that n3 ; n (mod 6) for every positive integer n.

35. Let x andy be integers. Prove that if there is an equivalence class 3a4modulon such that
x [ 3a4andy [ 3a4, then (x, n) 5 (y, n).

36. Prove that ifp is a prime andc [ 0 (mod p), then cx ; b (mod p) has a unique
solution modulop. That is, a solution exists, and any two solutions are congruent
modulop.

37. Let d 5 (a, n) where n . 1. Prove that if there is a solution to ax ; b (modn), then d
divides b.

38. (See Exercise 37.) Suppose that n . 1 and that d 5 (a, n) is a divisor of b. Let a 5 a0d,
n 5 n0d, andb 5 b0d, wherea0, n0, andb0 are integers. The following statements a…e
lead to a proof that the congruence has exactly d incongruent solutions
modulon, and they show how such a set of solutions can be found.

a. Prove that if and only if a0x ; b0 (modn0).

b. Prove that if x1 andx2 are any two solutions to a0x ; b0 (modn0), then it follows that
x1 ; x2 (modn0). 

c. Let x1 be a fixed solution to a0x ; b0 (modn0), and prove that each of the d inte-
gers in the list

is a solution to ax ; b (modn).

d. Prove that no two of the solutions listed in part c are congruent modulo n.

e. Prove that any solution to ax ; b (modn) is congruent to one of the numbers listed
in part c.

In the congruences ax ; b (mod n) in Exercises 39…50,a and n may not be relatively
prime. Use the results in Exercises 37 and 38 to determine whether there are solutions. If
there are, find d incongruent solutions modulo n.

39. 6x ; 33 (mod 27) 40. 18x ; 33 (mod 15)

41. 8x ; 66 (mod 78) 42. 35x ; 10 (mod 20)

43. 44. 21x ; 18 (mod 30)

45. 24x 1 5 ; 50 (mod 348) 46. 36x 1 1 ; 49 (mod 270)

68x ; 36 (mod 40)

x1, x1 1 n0, x1 1 2n0, c , x1 1 (d 2 1)n0

ax ; b (modn)

ax ; b (modn)
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47. 15x 1 23 ; 153 (mod 110) 48. 20x 1 13 ; 137 (mod 76)

49. 42x 1 67 ; 23 (mod 74) 50. 38x 1 54 ; 20 (mod 60)

51. Let p be a prime integer. Prove Fermat•s• Little Theorem: For any positive
integer a, ap ; a (modp). (Hint: Use induction on a, with p held fixed.)

52. Prove the Chinese Remainder Theorem: Let n1, n2, . . . , nm be pairwise relatively
prime. There exists an integer x that satisfies the system of congruences

Furthermore, any two solutions x andy are congruent modulo n1n2
c nm.

53. Solve the following systems of congruences.

a. x ; 2 (mod 5) b. x ; 4 (mod 5)
x ; 3 (mod 8) x ; 2 (mod 3)

c. x ; 4 (mod 7) d. 2x ; 5 (mod 3)
3x 1 2 ; 3 (mod 8) 5x 1 4 ; 5 (mod 7)

e. x ; 4 (mod 5) f. x ; 3 (mod 4)
x ; 6 (mod 8) x ; 4 (mod 5)
x ; 2 (mod 3) x ; 6 (mod 7)

g. x ; 2 (mod 3) h. x ; 3 (mod 5)
x ; 2 (mod 5) x ; 7 (mod 8)
x ; 4 (mod 7) x ; 3 (mod 9)
x ; 3 (mod 8) x ; 10 (mod 11)

54. a. Prove that 10n ; 1 (mod 9) for every positive integer n.

b. Prove that a positive integer is divisible by 9 if and only if the sum of its digits is
divisible by 9. (Hint: Any integer can be expressed in the form

where each ai is one of the digits 0, 1, . . . , 9.)

55. a. Prove that 10n ; (2 1)n (mod 11) for every positive integer n.

b. Prove that a positive integer z is divisible by 11 if and only if 11 divides
whenz is written in the form as described in the

previous problem. 
a0 2 a1 1 a2 2 c 1 (2 1)nan,

an10n 1 an2 110n2 1 1 c 1 a110 1 a0

x ; am (modnm).

f

x ; a2 (modn2)

x ; a1 (modn1)
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•Pierre de Fermat (1601…1665) a French mathematician, is credited for work that led to modern calculus. He is
most widely known for his famous Last Theorem:xn 1 yn 5 zn has no nonzero integral solutions for x, y, andz
whenn . 2. This unproven theorem was found by his son with a note by Fermat stating, •I have a truly
marvelous demonstration of this proposition which this margin is too small to contain.Ž After many failed
attempts by numerous mathematicians, a proof by Andrew Wiles and Richard Taylor was finally accepted as
valid over 350 years later using techniques unknown to Fermat.



2.6 Congruence Classes

In connection with the relation of congruence modulo n, we have observed that there are n
distinct congruence classes. Let Zn denote this set of classes:

When addition and multiplication are defined in a natural and appropriate manner in Zn,
these sets provide useful examples for our work in later chapters.

Theorem 2.28� Addition in Zn

Consider the rule given by

a. This rule defines an addition that is a binary operation on Zn.

b. Addition is associative in Zn:

c. Addition is commutative in Zn:

d. Zn has the additive identity 304.

e. Each3a4in Zn has32 a4as its additive inverse in Zn.

Proof
a. It is clear that the rule 3a41 3b45 3a 1 b4yields an element of Zn, but the uniqueness

of this result needs to be verified. In other words, closure is obvious, but we need
to show that the operation is well-defined. To do this, suppose that and
3b45 3y4. Then

and

By Theorem 2.23,

,

and therefore 3a 1 b45 3x 1 y4.

b. The associative property follows from

5 13a41 3b421 3c4.

5 3a 1 b41 3c4

5 3(a 1 b) 1 c4

5 3a 1 (b 1 c)4

3a41 13b41 3c425 3a41 3b 1 c4

a 1 b ; x 1 y (modn)

3b45 3y4� b ; y (modn). 

3a45 3x4� a ; x (modn)

3a45 3x4

3a41 3b45 3b41 3a4.

3a41 13b41 3c425 13a41 3b421 3c4.

3a41 3b45 3a 1 b4.

Zn 5 5304, 314, 324, c , 3n 2 146.
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Note that the key step here is the fact that addition is associative in Z:

c. The commutative property follows from

d. 304is the additive identity, since addition is commutative in Zn and

e. is the additive inverse of , since addition is commutative in Zn and

Example 1 Following the procedure described in Exercise 3 of Section 1.4, we can
construct an addition table for Z4 5 E304, 314, 324, 334 F. In computing the entries for this table,
3a41 3b4is entered in the row with 3a4at the left and in the column with 3b4at the top. For in-
stance,

is entered in the row with 334at the left and in the column with 324at the top. The complete
addition table is shown in Figure 2.1.

�

In the following theorem, multiplication in Zn is defined in a natural way, and the basic
properties for this operation are stated. The proofs of the various parts of the theorem are
quite similar to those for the corresponding parts of Theorem 2.28, and are left as exercises.

Theorem 2.29� Multiplication in Zn

Consider the rule for multiplication in Zn given by

a. Multiplication as defined by this rule is a binary operation on Zn.

b. Multiplication is associative in Zn:

3a413b4 3c425 13a4 3b423c4.

3a4 3b45 3ab4.

3341 3245 3545 314

32 a41 3a45 32 a 1 a45 304.

3a432 a45 3n 2 a4

3a41 3045 3a 1 045 3a4.

5 3b41 3a4.

5 3b 1 a4

3a41 3b45 3a 1 b4

a 1 (b 1 c) 5 (a 1 b) 1 c.
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1 304 314 324 334

304 304 314 324 334

314 314 324 334 304

324 324 334 304 314

334 334 304 314 324



c. Multiplication is commutative in Zn:

d. Zn has the multiplicative identity 314.

When we compare the properties listed in Theorems 2.28 and 2.29, we see that the
existence of multiplicative inverses, even for the nonzero elements, is conspicuously miss-
ing. The following example shows that this is appropriate because it illustrates a case where
some of the nonzero elements of Zn do not have multiplicative inverses.

Example 2 A multiplication table for Z4 is shown in Figure 2.2. The third row of
the table shows that 324is a nonzero element of Z4 that has no multiplicative inverse;
there is no 3x4in Z4 such that 324 3x45 314. Another interesting point in connection with

3a4 3b45 3b4 3a4.
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3 304 314 324 334

304 304 304 304 304

314 304 314 324 334

324 304 324 304 324

334 304 334 324 314

this table is that the equality 324 3245 304shows that in Z4, the product of nonzero factors
may be zero. �

Any nonzero element 3a4in Zn for which the equation 3a4 3x45 304has a nonzero solution
3x4Z 304in Zn is a zero divisor. The element 324in Z4 is an example of a zero divisor.

The next theorem characterizes those elements ofZn that have multiplicative
inverses.

Theorem 2.30� Multiplicative Inverses in Zn

An element 3a4of Zn has a multiplicative inverse in Zn if and only if a andn are relatively
prime.

Proof Suppose first that 3a4has a multiplicative inverse 3b4in Zn. Then

This means that

Therefore,

ab 2 1 5 nq

3ab45 314 and ab ; 1 (mod n). 

3a4 3b45 314.

p � q



for some integer q, and

By Theorem 2.12, we have (a, n) 5 1.
Conversely, if (a, n) 5 1, then Theorem 2.25 guarantees the existence of a solution s

to the congruence 

Thus,

and3a4has a multiplicative inverse 3s4in Zn.

Corollary 2.31� Multiplicative Inverses in Zp

Every nonzero element of Zn has a multiplicative inverse if and only if n is a prime.

Proof The corollary follows from the fact that n is a prime if and only if every integer a
such that 1# a , n is relatively prime to n.

Example 3 The elements of Z15 that have multiplicative inverses can be listed by writ-
ing down those 3a4that are such that (a, 15) 5 1. These elements are

�

Example 4 Suppose we wish to find the multiplicative inverse of 3134in Z191. The
modulusn 5 191 is so large that it is not practical to test all of the elements in Z191, so
we utilize the Euclidean Algorithm and proceed according to the last part of the proof of
Theorem 2.30:

Substituting the remainders in turn, we have

Thus

(13)(2 44) ; 1 (mod 191) 

5 (191)(3)1 (13)(2 44). 

5 31912 (13)(14)4(3) 2 (13)(2) 

5 (9)(3) 2 (13)(2) 

5 9 2 313 2 (9)(1)4(2)

1 5 9 2 (4)(2) 

9 5 (4)(2) 1 1.

 13 5 (9)(1) 1 4

 1915 (13)(14)1 9

314, 324, 344, 374, 384, 3114, 3134, 3144.

3a4 3s45 314,

as ; 1 (mod n).

a(b) 1 n(2 q) 5 1.
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or

The desired inverse is

�

Since every element in Zn has an additive inverse,subtraction can be defined in Zn by
the equation

We now have at hand the basic knowledge about addition, subtraction, multiplication,
and multiplicative inverses inZn. Utilizing this knowledge, we can successfully imitate
many of the techniques that we use to solve equations in real numbers to solve equations
involving elements ofZn. For example, Exercise 9 of this section states that3x45 3a42 13b4
is the unique solution to3a4 3x45 3b4in Zn whenever3a42 1 exists. In Exercise 19, some
quadratic equations are to be solved by factoring. The next example shows how we can
solve a simple system of linear equations in by using the same kinds of steps that we
use when working in R.

Example 5 We shall solve the following system of linear equations in Z26.

We can eliminate 3y4by subtracting the top equation from the bottom one:

This simplifies to

or

Using the Euclidean Algorithm as we did in Example 4, we find that 3154in Z26 has the
multiplicative inverse given by 31542 1 5 374. Using the result in Exercise 9 of this section,
we find that the solution 3x4to 3154 3x45 3194is

5 334.

5 31334

5 374 3194

3x45 31542 13194

3154 3x45 3194.

3154 3x45 32 74

3194 3x42 344 3x45 31542 3224.

3194 3x41 3y45 3154

344 3x41 3y45 3224

Zn

5 3a 2 b4.

5 3a41 32 b4

3a42 3b45 3a41 12 3b42

31342 1 5 32 4445 31474.

313432 4445 314.
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Solving for 3y4in the equation 344 3x41 3y45 3224, yields

It is easy to check that 3x45 334, 3y45 3104is indeed a solution to the system. �

Exercises2.6
True or False
Label each of the following statements as either true or false.

1. Every element 3a4in Zn has an additive inverse.

2. Every element 3a4Z 304in Zn has a multiplicative inverse.

3. 3a4 3b45 304implies either 3a45 304or 3b45 304.

4. 3a4 3x45 3a4 3y4and3a4Z 304implies3x45 3y4.

Exercises

1. Perform the following computations in Z12.

a. 3841 374 b. 31041 394

c. 384 3114 d. 364 394

e. 364 1 3941 374 2 f. 354 1 3841 3114 2

g. 364 3941 364 374 h. 354 3841 354 3114

2. a. Verify that 314 324 334 3445 344in Z5.

b. Verify that 314 324 334 344 354 3645 364in Z7.

c. Evaluate 314 324 334in Z4.

d. Evaluate 314 324 334 344 354in Z6.

3. Make addition tables for each of the following.

a. Z2 b. Z3 c. Z5

d. Z6 e. Z7 f. Z8

4. Make multiplication tables for each of the following.

a. Z2 b. Z3 c. Z6

d. Z5 e. Z7 f. Z8

5. Find the multiplicative inverse of each given element.

a. [3] in Z13 b. [7] in Z11 c. [17] in Z20

d. [16] in Z27 e. [17] in Z42 f. [33] in Z58

g. [11] in Z317 h. [9] in Z128

5 3104.

5 32242 3124

5 32242 344 334

3y45 32242 344 3x4
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6. For each of the following Zn, list all the elements in Zn that have multiplicative
inverses in Zn.

a. Z6 b. Z8 c. Z10

d. Z12 e. Z18 f. Z20

7. Find all zero divisors in each of the following Zn.

a. Z6 b. Z8 c. Z10

d. Z12 e. Z18 f. Z20

8. Whenever possible, find a solution for each of the following equations in the given Zn.

a. 344 3x45 324in Z6 b. 364 3x45 344in Z12

c. 364 3x45 344in Z8 d. 3104 3x45 364in Z12

e. 384 3x45 364in Z12 f. 344 3x45 364in Z8

g. 384 3x45 344in Z12 h. 344 3x45 3104in Z14

i. 3104 3x45 344in Z12 j. 394 3x45 334in Z12

9. Let 3a4be an element of Zn that has a multiplicative inverse 3a42 1 in Zn. Prove that
3x45 3a42 1 3b4is the unique solution in Zn to the equation 3a4 3x45 3b4.

10. Solve each of the following equations by finding 3a42 1 and using the result in
Exercise 9.

a. 344 3x45 354in Z13 b. 384 3x45 374in Z11

c. 374 3x45 3114in Z12 d. 384 3x45 3114in Z15

e. 394 3x45 3144in Z20 f. 384 3x45 3154in Z27

g. 364 3x45 354in Z319 h. 394 3x45 384in Z242

In Exercises 11…14, solve the systems of equations in Z7.

11.

12.

13.

14.

15. Prove Theorem 2.29.

16. Prove the following distributive property in 

3a413b41 3c425 3a4 3b41 3a4 3c4.

Zn:

344 3x41 364 3y45 364

324 3x41 354 3y45 364

354 3x41 364 3y45 354

334 3x41 324 3y45 314

334 3x41 324 3y45 354

344 3x41 324 3y45 314

324 3x41 344 3y45 354

324 3x41 3243y45 344
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17. Prove the following equality in Zn:

18. Let p be a prime integer. Prove that if 3a4 3b45 304 in Zp, then either 3a45 304
or 3b45 304.

19. Use the results in Exercises 16…18 and find all solutions 3x4to the following quadratic
equations by the factoring method.

a. 3x42 1 354 3x41 3645 304in Z7 b. 3x42 1 344 3x41 3345 304in Z5

c. 3x42 1 3x41 3545 304in Z7 d. 3x42 1 3x41 3345 304in Z5

20. Let p be a prime integer. Prove that 314and3p 2 14are the only elements in Zp that are
their own multiplicative inverses.

21. Show that if n is not a prime, then there exist 3a4and3b4in such that 3a42 304and
3b42 304, but3a4 3b45 304; that is, zero divisors exist in Zn if n is not prime.

22. Let p be a prime integer. Prove the following cancellation law in Zp: If 3a4 3x45
3a4 3y4and3a42 304, then3x45 3y4.

23. Show that if n is not a prime, the cancellation law stated in Exercise 22 does not hold
in Zn.

24. Prove that a nonzero element 3a4in Zn is a zero divisor if and only if a andn are not
relatively prime.

2.7 Introduction to Coding Theory (Optional)

In this section, we present some applications of congruence modulo n found in basic cod-
ing theory. When information is transmitted from one satellite to another or stored and
retrieved in a computer or on a compact disc, the information is usually expressed in some
sort of code. The ASCII code (American Standard Code for Information Interchange) of
256 characters used in computers is one example. However, errors can occur during the
transmission or retrieval processes. The detection and correction of such errors are the fun-
damental goals of coding theory.

In binary coding theory, we omit the brackets on the elements in Z2 and call {0, 1} the
binary alphabet. A bit • is an element of the binary alphabet. A word (or block) is a se-
quence of bits, where all words in a message have the same length; that is, they contain the
same number of bits. Thus a 2-bit word is an element of Z2 3 Z2. For notational conven-
ience, we omit the comma and parentheses in the 2-bit word (a, b) and write ab, where
a [ {0, 1} and b [ {0, 1}. Thus

000 010 001 011

100 110 101 111

Zn

13a41 3b4213c41 3d425 3a4 3c41 3a4 3d41 3b4 3c41 3b4 3d4.
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are all eight possible 3-bit words using the binary alphabet. There are thirty-two 5-bit
words, so 5-bit words are frequently used to represent the 26 letters of our alphabet, along
with 6 punctuation marks.

During the process of sending a message using k-bit words, one or more bits may be
received incorrectly. It is essential that errors be detected and, if possible, corrected. The
general idea is to generate a code, send the coded message, and then decode the coded mes-
sage, as illustrated here:

Ideally, the code is devised in such a way as to detect and/or correct any errors in the
received message. Most codes require appending extra bits to each k-bit word, forming an
n-bit code word. The next example illustrates an error-detecting scheme.

Example 1 Parity Check Consider 3-bit words of the form abc. One coding scheme
mapsabcontoabcd, where

is called the parity check digit. If d 5 0, we say that the word abc haseven parity. If
d 5 1, we say abchasodd parity. Thus the eight possible 3-bit words are mapped onto the
eight 4-bit code words as follows:

Note that each 4-bit code word has even parity. Therefore, a simple parity check on the
code word will detect any single-bit error. For example, suppose that the coded message of
five 4-bit code words

1101 1011 0000 0110 0011

is received. It is obvious that each of the first two code words 1101 and 1011 contains at
least one error. This parity check scheme does not correct single-bit errors, nor will it detect
which bit is in error. It also will not detect 2-bit errors. In this situation, the safest action is
to request retransmission of the message, if retransmission is feasible. �

 111 h
encode

1111.

 101 h
encode

1010

 110 h
encode

1100

 100 h
encode

1001

 011 h
encode

0110

 001 h
encode

0011

 010 h
encode

0101

 000 h
encode

0000

word h
encode

code word 

d ; a 1 b 1 c(mod 2) 

messageh
encode

 coded messageh
send

received messageh
decode

message.
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Example 2 Repetition Codes Multiple errors can be detected (but not corrected) in
a scheme in which a k-bit word is mapped onto a 2k-bit code word according to the fol-
lowing scheme:

.

In the coded message with 

110110 010011 011011 101000,

errors occur in the second code word 010011 and in the last code word 101000. All other
code words seem to be correct. If, upon retransmission, the coded message is received as

110110 011011 011011 100100,

it will be decoded as

110 011 011 100. �

Example 3 Maximum Likelihood Decoding Multiple errors can be detected and
correctedif each k-bit word is mapped onto a 3k-bit code word according to the following
scheme (called a triple repetition code):

.

For example, if the 6-bit code word (for a 2-bit word)

010111

is received, then an error is detected. By separating the code word into three equal parts

01 01 11

and comparing bit by bit, we note that the first bits in each part do not agree. We correct the
error by choosing the digit that occurs most often, in this case a 0. Thus the corrected code
word is

010101,

and more than likely the correct message is 01. The main disadvantage of this type of cod-
ing is that each message requires three times as many bits as the decoded message, whereas
with the parity check scheme, only one extra bit is needed for each word. �

A combination of a parity check and a repetition code allows detection and correction
of coded messages without requiring quite as many bits as in the maximum likelihood
scheme. We illustrate this in the next example.

Example 4 Error Detection and Correction Suppose 4-bit words are mapped onto
9-bit code words using the scheme

x1x2x3x4 h
encode

x1x2x3x4x1x2x3x4p,

x1x2
c xk h

encode
x1x2

c xkx1x2
c xkx1x2

c xk

k 5 3,

x1x2
c xk h

encode
x1x2

c xkx1x2
c xk
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wherep is the parity check digit

For example, the 4-bit word 0110 is encoded as 011001100. Suppose, upon transmission,
a code word 101011100 is received. Breaking 101011100 into three parts,

1010 1110 0,

indicates that an error occurs in the second bit. To have parity 0, the correct word must
be 1010.

Errors might also occur in the parity digit. For example, if 001100111 is received, an
error is detected, and more than likely the error has been made in the parity check digit.
Thus the correct word is 0011. �

The last two examples bring up the question of probability of errors occurring in any
one or more bits of an n-bit code word. We make the following assumptions:

1. The probability of any single bit being transmitted incorrectly is P.

2. The probability of any single bit being transmitted correctly or incorrectly is inde-
pendent of the probability of any other single bit being transmitted correctly or
incorrectly.

Thus the probability of transmitting a 5-bit code word with only one incorrect bit is
. If it happens that P 5 0.01 (approximately 1 of every 100 bits are transmit-

ted incorrectly), then the probability of transmitting a 5-bit code word with only one incor-
rect bit is and the probability of transmitting a 5-bit code word
with no errors is Hence the probability of transmitting a 5-bit
code word with at most one error is 

Up to this point,Z2 has been used in all of our examples. We next look at some in-
stances in which other congruence classes play a role.

Example 5 Using Check Digits Many companies use check digitsfor security pur-
poses or for error detection. For example, an 11th digit may be appended to a 10-bit iden-
tification number to obtain the 11-digit invoice number of the form

where the 11th bit,c, is the check digit, computed as

If congruence modulo 9 is used, then the check digit for an identification number
3254782201 is 7, since 3254782201; 7 (mod 9). Thus the complete correct invoice 
number would appear as 32547822017. If the invoice number 31547822017 were used 
instead and checked, an error would be detected, since 3154782201[ 7 (mod 9).
[3154782201; 6 (mod 9).]

This particular scheme is not infallible in detecting errors. For example, if a transposi-
tion error (a common keyboarding error) occurred and the invoice number were erroneously

x1x2x3x4x5x6x7x8x9x10 ; c(modn). 

x1x2x3x4x5x6x7x8x9x10c,

A5
0B(0.01)0(0.99)5 5 0.99902.A5

1B0.01(0.99)4 1
A5
0B(0.01)0(0.99)5 5 0.95099.

A5
1B0.01(0.99)4 5 0.04803,

A5
1BP(1 2 P)4

p ; x1 1 x2 1 x3 1 x4 (mod 2). 
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entered as 32548722017, an error would not be detected, since 3254872201; 7 (mod 9). It
can be shown that transposition errors will never be detected with this scheme (using con-
gruence modulo 9) unless one of the digits is the check digit. (See Exercise 12.) �

Even more sophisticated schemes for using check digits appear in such places as the
ISBN numbers assigned to all books, the UPCs (Universal Product Codes) assigned to
products in the marketplace, passport numbers, and the driver•s licenses and license
plate numbers in some states. Some of the schemes are very good at detecting errors,
and others are surprisingly faulty. In these schemes, a weighting vectoris used in con-
junction with arithmetic on congruence classes modulo n (modular arithmetic). The
dot product notation is useful in describing the situation. We define the dot product
(x1, x2, c , xn) ?(y1, y2, c , yn) of two ordered n-tuples (vectors) (x1, x2, c , xn) and
(y1, y2, c , yn) by

For example, (1, 2, 3)?(2 3, 7, 2 1) 5 2 3 1 14 2 3 5 8. The next example describes
the use of the dot product and weighting vector in bank identification numbers.

Example 6 Bank Identification Numbers Identification numbers for banks have
eight digits,x1x2, c , x8, and a check digit,x9, given by

The weighting vector is (7, 3, 9, 7, 3, 9, 7, 3). Thus a bank with identification number
05320044 has check digit

and appears as 053200446 at the bottom of the check. This particular scheme detects all
one-digit errors. However, suppose that this same bank identification number is coded in as
503200446, with a transposition of the first and second digits. The check digit 6 does not
detect the error:

Transposition errors of adjacent digits xi andxi1 1 will be detected by this scheme except
when0xi 2 xi1 1 05 5. (See Exercise 13.) �

The next example illustrates the use of another weighting vector in Universal Product
Codes.

; 6 (mod 10).

5 116

 (5, 0, 3, 2, 0, 0, 4, 4)?(7, 3, 9, 7, 3, 9, 7, 3)5 35 1 0 1 27 1 14 1 0 1 0 1 28 1 12

; 6 (mod 10) 

5 96

 (0, 5, 3, 2, 0, 0, 4, 4)?(7, 3, 9, 7, 3, 9, 7, 3)5 0 1 15 1 27 1 14 1 0 1 0 1 28 1 12

(x1, x2, c , x8) ?(7, 3, 9, 7, 3, 9, 7, 3); x9 (mod 10). 

(x1, x2, c , xn) ?(y1, y2, c , yn) 5 x1 y1 1 x2 y2 1 c 1 xnyn.
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Example 7 UPC Symbols UPC symbols consist of 12 digits, with the
last, x12, being the check digit. The weighting vector used for the UPC symbols is the
11-tuple (3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3). The check digit x12 can be computed as

.

The computation

verifies the check digit 3 shown in the UPC symbol in Figure 2.3. As in the bank identifi-
cation scheme, some transposition errors may go undetected.

�

; 3 (mod 10) 

2 (0, 2, 1, 2, 0, 0, 6, 9, 1, 1, 3)?(3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3)5 2 47

2 (x1, x2, c , x11) ?(3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3); x12 (mod 10) 

x1x2
c x12,
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� Figure 2.3
UPC Symbol

In this section, we have attempted to introduce only the basic concepts of coding
theory; more sophisticated coding schemes are constantly being developed. Much re-
search is being done in this branch of mathematics, research based not only on group and
field theory but also on linear algebra and probability theory.

Exercises2.7
True or False
Label each of the following statements as either true or false.

1. Parity check schemes will always detect the position of an error.

2. All errors in a triple repetition code can be corrected by choosing the digit that occurs
most often.

3. In parity check schemes, errors might occur in the parity check digit.

4. In a check digit scheme using congruence modulo 9, transposition errors will never
be detected.

Exercises

1. Suppose 4-bit words abcdare mapped onto 5-bit code words abcde, wheree is the
parity check digit. Detect any errors in the following six-word coded message.

11101 00101 00010 11100 00011 10100

2. Suppose 3-bit words abcare mapped onto 6-bit code words abcabcunder a repetition
scheme. Detect any errors in the following five-word coded message.

111011 101101 011110 001000 011011



3. Use maximum likelihood decoding to correct the following six-word coded message
generated by a triple repetition code. Then decode the message.

101101101 110110101 110100101 101000111 110010011 011011011

4. Suppose 2-bit words ab are mapped onto 5-bit code words ababc, wherec is the par-
ity check digit. Correct the following seven-word coded message. Then decode the
message.

11100 01011 01010 10101 00011 10111 11111

5. Suppose a coding scheme is devised that maps k-bit words onto n-bit code words. The
efficiency of the code is the ratio k>n. Compute the efficiency of the coding scheme
described in each of the following examples.

a. Example 1

b. Example 2

c. Example 3

d. Example 4

6. Suppose the probability of erroneously transmitting a single digit is P 5 0.03. Com-
pute the probability of transmitting a 4-bit code word with (a) at most one error, and
(b) exactly four errors.

7. Suppose the probability of erroneously transmitting a single digit is P 5 0.0001.
Compute the probability of transmitting an 8-bit code word with (a) no errors,
(b) exactly one error,(c) at most one error,(d) exactly two errors, and (e) at most
two errors.

8. Suppose the probability of incorrectly transmitting a single bit isP 5 0.001. Compute
the probability of correctly receiving a 100-word coded message made up of 4-bit
words.

9. Compute the check digit for the 8-digit identification number 41126450 if the check
digit is computed using congruence modulo 7.

10. Is the identification number 11257402 correct if the last digit is the check digit com-
puted using congruence modulo 7?

11. Show that the check digit x9 in bank identification numbers satisfies the congruence
equation

12. Suppose that the check digit is computed as described in Example 5. Prove that trans-
position errors of adjacent digits will not be detected unless one of the digits is the
check digit.

13. Verify that transposition errors of adjacent digits xi andxi1 1 will be detected in a bank
identification number except when 0xi 2 xi1 1 05 5.

(x1, x2, c , x8, x9) ?(7, 3, 9, 7, 3, 9, 7, 3, 9); 0 (mod 10).
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14. Compute the check digit for the UPC symbols whose first 11 digits are given.

a. b.

c. d.

15. Verify that the check digit x12 in a UPC symbol satisfies the following congruence
equation:

16. Show that transposition errors of the type

(i 5 2, 3,c , 11) in a UPC symbol will not be detected by the check digit.

17. Passports contain identification codes of the following form.

passport check birth check date of check final
number digit date digit expiry digit check

012345678 4 USA 480517 7 F 020721 2,,,,,,,,,,,,,,, 8

Each of the first three check digits is computed on the preceding identification num-
bers by using a weighting vector of the form

in conjunction with congruence modulo 10. For example, in this passport identifica-
tion code, the check digit 4 checks the passport number, the check digit 7 checks the
birth date, and the check digit 2 checks the date of expiry. The final check digit is then
computed by using the same type of weighting vector with all the digits (including
check digits, excluding letters). Verify that this passport identification code is valid.
Then check the validity of the following passport identification codes.

a. 0987654326USA1512269F9901018,,,,,,,,,,,,,,, 4

b. 0444555331USA4609205M0409131,,,,,,,,,,,,,,, 8

c. 0123987457USA7803012M9711219,,,,,,,,,,,,,,, 3

d. 0246813570USA8301047F0312203,,,,,,,,,,,,,,, 6

(7, 3, 1, 7, 3, 1, c )

x1c xi 2 1xi xi 1 1 c x12 S x1 c xi 1 1xi xi 2 1 c x12

(x1, x2, c , x12) ?(3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1); 0 (mod 10).
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18. ISBN numbers are ten-digit numbers that identify books, where x10 is the check digit
and (x1, x2, c , x10) ?(10, 9, 8, 7, 6, 5, 4, 3, 2, 1); 0 (mod 11). Only digits 0 through
9 are used for the first nine digits, and if the check digit is required to be 10, then an X
is used in place of the 10. If possible, detect any errors in the following ISBN numbers.

a. ISBN 0-534-92888-9

b. ISBN 0-543-91568-X

c. ISBN 0-87150-334-X

d. ISBN 0-87150-063-4

19. In the ISBN scheme, write the check digit x10 in the form

wherey is obtained from the weighting vector (10, 9, 8, 7, 6, 5, 4, 3, 2, 1). 

20. Supposex 5 x1x2 c xk andy 5 y1y2 c yk arek-bit words. The Hamming• distance
betweenx andy is defined to be the number of bits in which x andy differ. More

precisely,d(x, y) is the number of indices in which xi 2 yi . Find the Hamming distance
between the following pairs of words.

a. 0011010 and 1011001

b. 01000 and 10100

c. 11110011 and 00110001

d. 011000 and 110111

21. Let x, y, andz bek-bit words. Prove the following properties of the Hamming distance.

a. d(x, y) 5 d(y, x)

b. d(x, y) 5 0 if and only if x 5 y

c. d(x, z) # d(x, y) 1 d(y, z)

22. TheHamming weight wt(x) of a k-bit word is defined to be wt(x) 5 d(x, 0), where0
is the k-bit word in which every bit is 0. Find the Hamming weight of each of the
following words.

a. 0011100

b. 11110

c. 10100001

d. 000110001

23. Theminimum distanceof a code is defined to be the smallest distance between any
pair of distinct code words in a code. Suppose a code consists of the following code
words. This is the repetition code on 2-bit words.

0000 0101 1010 1111

Find the minimum distance of this code.

d(x,y)

(x1, x2, c , x9) ?y ; x10(mod 11),
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24. Repeat Exercise 23 for the code consisting of the following code words. This code is a
repetition code on 3-bit words with a parity check digit.

0000000 0100101 0010011 0110110

1001001 1101100 1011010 1111111

25. Repeat Exercise 23 for the code consisting of the following code words.

0000000 0001011 0010111 0011100

0100101 0101110 0110010 0111001

1000110 1001101 1010001 1011010

1100011 1101000 1110100 1111111

This code is called the Hamming (7,4) code. Each code word x1x2x3x4x5x6x7, with
xi [ {0, 1}, can be decoded by using the first four digits x1x2x3x4. The last three digits
are parity check digits, where

26. Write out the eight code words in the (5, 3) code where each code word x1x2x3x4x5 is
generated in the following way:

2.8 Introduction to Cryptography (Optional)

An additional application of congruence modulo n is found in cryptography, the design-
ing of secret codes. Cryptanalysis is the process of breaking the secret codes, and cryp-
tology encompasses both cryptography and cryptanalysis. Cryptography differs from code
theory in that code theory concentrates on the detection and correction of errors in mes-
sages, whereas cryptography concentrates on concealing a message from an unauthorized
person.

History is rich with examples of secret writings, dating back as far as 1900 B.C. when
an Egyptian master scribe altered hieroglyphic writing, thus forming •secret messagesŽ in
the tomb of the nobleman Khnumhotep II. Later, in 400 B.C., the Spartans used a device
called a skytaleto conceal messages. A ribbon was wound around a cylinder (the skytale);
then a message was written on the ribbon. When the ribbon was removed, the message
appeared scrambled. However, the recipient of the ribbon had a similar skytale upon which
he wound the ribbon and then easily read the message. An early cryptological system,
called the Caesar cipher, was employed by Julius Caesar in the Gallic wars. In this system,

x5 ; x1 1 x3 (mod 2). 

x4 ; x1 1 x2 (mod 2)

xi [ 50, 16

x7 ; x2 1 x3 1 x4 (mod 2).

x6 ; x1 1 x3 1 x4 (mod 2) 

x5 ; x1 1 x2 1 x3 (mod 2) 
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Caesar simply replaced (substituted) each letter of the alphabet (the plaintext) by the letter
three positions to the right (the ciphertext). The complete substitution for our alphabet•

would thus appear as

Plaintext: a b c d e f g t u v w x y z

Ciphertext: D E F G H I J W X Y Z A B C,

and the plaintext message •attack at dawnŽ could easily be enciphered and deciphered
using the substitution alphabet:

Plaintext: a t t a c k a t d a w n

Ciphertext: D W W D F N D W G D Z Q.

The Caesar cipher is an example of an additive cipher, or translation cipher. All
such translation ciphers can be illustrated in a cipher wheel made up of two concentric cir-
cles each containing the entire alphabet. One such cipher wheel is shown in Figure 2.4. The
inner alphabet, representing the plaintext, is fixed, while the outer alphabet, representing
the ciphertext, spins. One pair of plaintext/ciphertext letters determines the entire scheme.
This key is all that is needed to decipher any message. Caesar•s plaintext/ciphertext key
would appear as a>D.

c

c
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A translation cipher, as used by Caesar, and other, more sophisticated ciphers can be
described mathematically. We first accept the following notational convention:

a modn is the remainder when a is divided by n,

or, in symbols,

r 5 a modn � a 5 nq 1 r whereq andr are integers with 0# r , n.

Although this notation closely resembles the congruence notation defined in Section 2.5, the
meaning is quite different and the distinction must be kept in mind. For a fixed y, the notation

x ; y (modn)

� Figure 2.4
Cipher Wheel
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•The letters j, u, and w were not in the Roman alphabet.



allows x to be any integersuch that x 2 y is a multiple of n, but the notation

requiresx to be the unique integerin the range 0# x , n such that x 2 y is a multiple of
n. All of the statements

are true, but the statement

is true if and only if x 5 3.

Example 1
a. 3 5 23 mod 5 since 235 5(4) 1 3.

b. 1 5 37 mod 4 since 375 4(9) 1 1.

c. 21 5 47 mod 26 since 475 26(1) 1 21.

d. 19 5 2 7 mod 26 since2 7 5 26(2 1) 1 19. �

Next we describe a translation cipher in terms of congruence modulo n.

Example 2 Translation Cipher Associate the n letters of the •alphabetŽ with the in-
tegers 0, 1, 2, 3,c , n 2 1. Let A 5 {0, 1, 2, 3, c , n 2 1} and define the mapping
f:A S A by

wherek is the key, the number of positions from the plaintext to the ciphertext. If our
alphabet consists of a throughz, in natural order, followed by a blank, then we have 27
•lettersŽ that we associate with the integers 0, 1, 2,c , 26 as follows:

Alphabet: a b c d e f c v w x y z •blankŽ

A: 0 1 2 3 4 5 c 21 22 23 24 25 26

Now if our key is k 5 12, then the plaintext message •send moneyŽ translates into the
ciphertext message •DQZPLY ZQJŽ as follows:

18 4 13 3 26 12 14 13 4 24

3 16 25 15 11 24 26 25 16 9

D Q Z P L Y Z Q J

The mappingf, given by

can be shown to be one-to-one and onto, so the inverse exists and is given by

f2 1(x) 5 x 2 k mod n.

f (x) 5 x 1 k mod n

h
translate from A

h
f (x)5 x1 12 mod 27

send moneyh
translate to A

 

f (x) 5 x 1 k mod n

x 5 19 mod 8

27 ; 19 (mod 8), 11 ; 19 (mod 8), and 3 ; 19 (mod 8) 

x 5 y mod n
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The mapping can then be used to decipher the ciphertext.

DQZPLY ZQJ 3 16 25 15 11 24 26 25 16 9

18 4 13 3 26 12 14 13 4 24

s e n d m o n e y �

A natural extension of the translation (or shift) cipher is found in a mapping of the
form

f(x) 5 ax 1 b modn

wherea andb are fixed integers. This type of mapping is called an affine mapping. The
ordered pair a, b of integers forms the key for this type of cipher. If a 5 1, we simply have
a translation cipher, whereas if b 5 0, we have what•s called a multiplicative cipher . It
follows from Theorem 2.25 that an affine mapping f:A S A has an inverse f2 1:A S A if a
andn are relatively prime. When (a, n) 5 1, it can be shown that the inverse f2 1 is given by

wherear is defined by

and

Example 3 Affine Mapping We shall use an affine mapping with a 5 5 and b 5 7
as the key in our 27-letter alphabet. The mapping f:A S A, whereA 5 {0, 1, 2, c , 26}, is
given by

The plaintext message •hi momŽ is translated into the ciphertext •PUCNXNŽ as follows:

hi mom 7 8 26 12 14 12

15 20 2 13 23 13

P U C N X N

Note that (5, 27)5 1, so the mapping f has an inverse given by

5 11x 1 4 mod 27,  

5 11x 1 112 mod 27  

5 11x 1 16(7) mod 27  since 165 2 11 mod 27

f 2 1(x) 5 11x 2 11(7) mod 27 since 15 11 ?5 mod 27

h
translate from A

h
f(x)5 5x1 7 mod 27

h
translate to A

f (x) 5 5x 1 7 mod 27.

br 5 2 arb modn.

1 5 ara mod n, with 0 , ar , n

f2 1(x) 5 arx 1 br mod n

h
translate from A

h
f (x)5 x2 12 mod 27

h
translate to A

f2 1
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which can then be used to decipher the ciphertext.

PUCNXN 15 20 2 13 23 13

7 8 26 12 14 12

h i m o m �

Example 4 Affine Mapping with Unknown Key If a ciphertext message is rela-
tively long, a frequency analysis of letters in a ciphertext can be used to •break the codeŽ
when the key to the affine mapping f(x) 5 ax 1 b modn is not known. Suppose we asso-
ciate the letters a throughz, in natural order, with the integers 0 through 25, respectively, to
form the 26-•letterŽ alphabet A 5 {0, 1, 2, c , 25}. In the English language, with this
alphabet the letter e occurs most often in a lengthy message, and the letters t, a, ando are
the next most common. With this in mind, suppose that in a ciphertext message the letter W
occurred most frequently, followed in frequency by P. It seems reasonable that the cipher-
text letters W and P correspond to the plaintext letters e and t, respectively. Translating
these into the set A, we have

CIPHERTEXT PLAINTEXT

most frequent: W 22 e 4

.

Therefore, we can determine the key from the solution of the following system of equations
for a andb:

From Example 5 in Section 2.6, this solution is given by a 5 3, b 5 10. Thus we find the
affine mapping f: A S A to be given by

with inverse defined by

�

In each of the preceding examples, once the mapping f was known, finding the inverse
mappingf2 1 was not difficult. In other words, once the key is known, a message can easily
be deciphered. If security is an important issue (which is usually the case in sending secret
messages), then it would certainly be advantageous to devise a system that would be diffi-
cult to break even if the key were known. Such systems are called Public Key Cryptosys-
tems. We examine the RSA• cryptosystem next. The RSA system is based on the difficulty
of factoring large numbers.

f 2 1(x) 5 9x 1 14 mod 26.

f 2 1: A S A

f(x) 5 3x 1 10 mod 26,

 15 5 a(19) 1 b mod 26.

 22 5 a(4) 1 b mod 26

next most frequent:  P h
translate to A

 15   t  h
translate to A

 19

h
translate to A

h
translate to A

h
translate from A

h
f(x)5 11x1 4 mod 27

h
translate to A
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We begin by first choosing two distinct prime numbers, which we label as p andq.
Then we form the product

The value of m can be made known to the public. However, the factorization of m aspq
shall be kept secret. The larger the value of m, the more secure this system will be, since
breaking the code relies on knowing the prime factors p andq of m. Next we choose eto be
relatively prime to the product (p 2 1)(q 2 1); that is,e is defined by

Finally, we solve for d in the equation

The public keys (the keys to be made known) are eandm, whereas the secret keys are p, q,
andd.

Theorem 2.32� RSA Public Key Cryptosystem

SupposeA 5 {0, 1, 2,c , m2 1} is an alphabet, consisting of m•letters.Ž With m, p, q, e, and
d as described in the preceding paragraph, let the mapping f:A S A be defined by

Thenf has the inverse mapping g:A S A given by

Proof Let y 5 xemodm. Then

Since

then

for some integer k.
If x [ 0 (modp), then

sincexp2 1 ; 1 (modp), from Exercise 51 and Theorem 2.24 in Section 2.5.

; x (modp)

; (1)k(q2 1)x (modp)

; (xp2 1)k(q2 1)x (modp)

; xk( p2 1)(q2 1)x (modp)

xed ; xk( p2 1)(q2 1)1 1 (modp)

ed5 k(p 2 1)(q 2 1) 1 1

1 5 ed mod (p 2 1)(q 2 1), 

; xed (modm). 

yd ; (xe)d (modm)

g(x) 5 xd mod m.

f(x) 5 xe mod m.

1 5 ed mod (p 2 1)(q 2 1). 

(e, (p 2 1)(q 2 1)) 5 1.

m 5 pq.
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If x ; 0 (mod p), it is clear that xed ; 0ed (mod p) ; 0 (mod p). Thus we have
in all cases.

Similarly,

Hence

By Exercise 10 in Section 2.4, this implies that

and since m 5 pq, we have

Thusyd ; xed (modm) ; x (modm), and it follows that yd modm5 x modm.
We have shown that g( f (x)) 5 x, and analogous steps can be used to verify that

f (g(x)) 5 x. Therefore,g is the inverse mapping off.

We illustrate the RSA cryptosystem with relatively small primes p andq. For the RSA
system to be secure, it is recommended that the primes p andq be chosen so as to contain
more than 100 digits.

Example 5 RSA Public Key Cryptosystem We first choose two primes (which are
to be kept secret):

Then we compute m(which is to be made public):

Next we choose e (which is to be made public), where e must be relatively prime to
(p 2 1)(q 2 1) 5 16?42 5 672. Suppose we take e 5 205. The Euclidean Algorithm can
be used to verify that (205, 672)5 1. Then d is determined by the equation

Using the Euclidean Algorithm, we find d 5 613 (which is kept secret). The mapping
f:A S A, whereA 5 {0, 1, 2, c , 730}, defined by

is used to encrypt a message. Then the inverse mapping g:A S A, defined by

can be used to recover the original message.

g(x) 5 x613 mod 731

f (x) 5 x205 mod 731

1 5 205d mod 672.

m 5 pq 5 17 ?43 5 731.

p 5 17, and q 5 43.

xed ; x (modm). 

pq0(xed 2 x), 

p 0(xed 2 x) and q 0(xed 2 x). 

xed ; x (modq). 

xed ; x (modp)
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Using the 27-letter alphabet as in Examples 2 and 3, the plaintext message •no prob-
lemŽ is translated into the message as follows:

plaintext: n o p r o b l e m

message: 13 14 26 15 17 14 01 11 04 12

The message becomes

13142615171401110412.

This message must be broken into blocks mi, each of which is contained in A. If we choose
three-digit blocks, each block mi , m 5 731.

The enciphered message becomes

082 715 376 459 551 593 320

where we choose to report each ci with three digits by appending any leading zeros as
necessary.

To decipher the message, one must know the secret key d 5 613 and apply the inverse
mappingg to each enciphered message block ci 5 f(mi):

Finally, by rebreaking the •messageŽ back into two-digit blocks, one can translate it back
into plaintext.

three-digit block message: 131 426 151 714 011 104 12

two-digit block message: 13 14 26 15 17 14 01 11 04 12

plaintext: n o p r o b l e m �

The RSA Public Key Cipher is an example of an exponentiation cipher. As in coding
theory, we have barely touched on the basics of cryptography. It is our hope that this short
introduction may spark further interest in a topic whose basis lies in modern algebra.

Exercises2.8
True or False
Label each of the following statements as either true or false.

1. The notation x 5 y mod n is used to indicate the unique integer x in the range
0 # x , n such that x 2 y is a multiple of n.

2. In order for an affine mapping f(x) 5 ax1 b modn to have an inverse,a andn must
be relatively prime.

3. An example of an exponentiation cipher is the RSA Public Key Cipher.

g(ci) 5 c613
i mod 731:  131 426 151 714 011 104  12

ci: 082 715 376 459 551 593  320

f(mi) 5 m205
i  mod 7315 ci :  082 715 376 459 551 593 320

mi :  131 426 151 714 011 104 012
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Exercises

1. In the 27-letter alphabet A described in Example 2, use the translation cipher with key
k 5 8 to encipher the following message.

the check is in the mail

What is the inverse mapping that will decipher the ciphertext?

2. Suppose the alphabet consists of a throughz, in natural order, followed by a blank,
a comma, a period, an apostrophe, and a question mark, in that order. Associate these
•lettersŽ with the numbers 0, 1, 2,c , 30, respectively, thus forming a 31-letter
alphabetB. Use the translation cipher with key k 5 21 to encipher the following
message.

what•s up, doc?

What is the inverse mapping that will decipher the ciphertext?

3. In the 31-letter alphabet B as in Exercise 2, use the translation cipher with key k 5 11
to decipher the following message.

?T R P. H G O Z G E Z A G. P L O G X P K

What is the inverse mapping that deciphers this ciphertext?

4. In the 27-letter alphabet A described in Example 2, use the translation cipher with key
k 5 15 to decipher the following message.

F X G T O P B S O G W X B T

What is the inverse mapping that deciphers this ciphertext?

5. In the 27-letter alphabet A described in Example 2, use the affine cipher with key
a 5 7 and b 5 5 to encipher the following message.

all systems go

What is the inverse mapping that will decipher the ciphertext?

6. In the 31-letter alphabet B described in Exercise 2, use the affine cipher with key
a 5 15 and b 5 22 to encipher the following message.

Houston, we have a problem.

What is the inverse mapping that will decipher the ciphertext?

7. Suppose the alphabet consists of a throughz, in natural order, followed by a blank and
then a period. Associate these •lettersŽ with the numbers 0, 1, 2,c , 27, respectively,
thus forming a 28-letter alphabet,C. Use the affine cipher with key a 5 3 and b 5 22 to
decipher the message

E E E T Z R I I Y U A I . GTAI C

and state the inverse mapping that deciphers this ciphertext.
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8. Use the alphabet C from the preceding problem and the affine cipher with key a 5 11
andb 5 7 to decipher the message

Z Z Z Y D J B J Y X M D

and state the inverse mapping that deciphers this ciphertext.

9. Suppose that in a long ciphertext message the letter X occurred most frequently, fol-
lowed in frequency by C. Using the fact that in the 26-letter alphabet A, described in
Example 4,e occurs most frequently, followed in frequency by t, read the portion of
the message

R N CY X R N CH F T

enciphered using an affine mapping onA. Write out the affine mappingf and its
inverse.

10. Suppose that in a long ciphertext message the letter D occurred most frequently,
followed in frequency by N. Using the fact that in the 27-letter alphabet A, described in
Example 2, •blankŽ occurs most frequently, followed in frequency by e, read the
portion of the message

G E N DOC FA ADOQ N I D P G MDC F E

enciphered using an affine mapping on A. Write out the affine mapping f and its
inverse.

11. Suppose the alphabet consists of a throughz, in natural order, followed by a blank and
then the digits 0 through 9, in natural order. Associate these •lettersŽ with the numbers
0, 1, 2,c , 36, respectively, thus forming a 37-letter alphabet,D. Use the affine cipher
to decipher the message

X 0 1 9 1 6R9 1 6 5 4 6M 9C N1L 6B 1L L 6X 0R Z6U I I

if you know that the plaintext message begins with •thŽ. Write out the affine mapping
f and its inverse.

12. Suppose the alphabet consists of a throughz, in natural order, followed by a blank, a
comma, and a period, in that order. Associate these •lettersŽ with the numbers 0, 1,
2, c , 28, respectively, thus forming a 29-letter alphabet,E. Use the affine cipher to
decipher the message

B Z Z K , AU Z N Z G, R S K Z, A U WAO

if you know that the plaintext message begins with •bŽ and ends with •.Ž. Write out the
affine mapping f and its inverse.

13. Let f:A S A be defined by f (x) 5 ax 1 b mod n. Show that f2 1:A S A exists if
(a, n) 5 1, and is given by f2 1(x) 5 arx 1 br modn, wherear is defined by

and

br 5 2 arb mod n.

1 5 ara mod n, with 0 , ar , n
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14. Suppose we encipher a plaintext message M using the mapping f1:A S A resulting in
the ciphertext C. Next we treat this ciphertext as plaintext and encipher it using the
mappingf2: A S A resulting in the ciphertext D. The composition mapping f:A S A,
wheref 5 f2 +f1, could be used to encipher the plaintext message M resulting in the
ciphertext D.

a. Prove that if f1 andf2 are translation ciphers, then f 5 f2 +f1 is a translation cipher.

b. Prove that if f1 andf2 are affine ciphers, then f 5 f2 +f1 is an affine cipher.

15. a. Excluding the identity cipher, how many different translation ciphers are there
using an alphabet of n •lettersŽ?

b. Excluding the identity cipher, how many different affine ciphers are there using an
alphabet of n •letters,Ž where n is a prime?

16. Rework Example 5 by breaking the message into two-digit blocks instead of three-
digit blocks. What is the enciphered message using the two-digit blocks?

17. Suppose that in an RSA Public Key Cryptosystem, the public key is e 5 13,m 5 77.
Encrypt the message •go for itŽ using two-digit blocks and the 27-letter alphabet A
from Example 2. What is the secret key d?

18. Suppose that in an RSA Public Key Cryptosystem, the public key is e 5 35,m 5 64.
Encrypt the message •pay me laterŽ using two-digit blocks and the 27-letter alpha-
betA from Example 2. What is the secret key d?

19. Suppose that in an RSA Public Key Cryptosystem,p 5 11, q 5 13, and e 5 7.
Encrypt the message •algebraŽ using the 26-letter alphabet from Example 4.

a. Use two-digit blocks.

b. Use three-digit blocks.

c. What is the secret key d?

20. Suppose that in an RSA Public Key Cryptosystem,p 5 17, q 5 19, and e 5 19.
Encrypt the message •pascalŽ using the 26-letter alphabet from Example 4.

a. Use two-digit blocks.

b. Use three-digit blocks.

c. What is the secret key d?

21. Suppose that in an RSA Public Key Cryptosystem, the public key is e 5 23, m 5 55.
The ciphertext message

26 25 00 39 09 18 52 17 49 52 02

was intercepted. What was the message that was sent? Use the 27-letter alphabet from
Example 2.

22. Suppose that in an RSA Public Key Cryptosystem, the public key is e 5 5, m 5 51.
The ciphertext message

04 05 32 44 26 39 04 00 13 08 00 44 24 29 17 26 49 28 03

was intercepted. What was the message that was sent? Use the 27-letter alphabet
from Example 2.
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Key Words and Phrases

23. TheEuler• phi-function is defined for positive integers n as follows: is the num-
ber of positive integers m such that 1# m # n and (m, n) 5 1. Evaluate each of the
following and list each of the integers mrelatively prime to the given n.

a. f (5) b. f (19)

c. f (15) d. f (27)

e. f (12) f. f (36)

24. Prove that the number of ordered pairs a, b that form a key for an affine cipher
f(x) 5 ax1 b modn is f (n)n.

25. a. Evaluate each of the following.

i. f (2 � 3) ii. f (2 � 5) iii. f (3 � 5) iv. f (3 � 7)

b. If p is a prime, then f (p) 5 p 2 1, since all positive integers less than p are rela-
tively prime to p. Prove that if p and q are distinct primes, then f (pq) 5
(p 2 1)(q 2 1).

26. a. Evaluate each of the following.

i. f (2) ii. iii. iv.

v. f (3) vi. vii. viii.

b. If p is a prime and j is a positive integer, prove f (pj ) 5 pj2 1(p 2 1). 

f  (34)f  (33)f  (32)

f  (24)f  (23)f  (22)

f (n)
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has an asteroid named in his honor.
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A Pioneer in Mathematics
Blaise Pascal (1623…1662)

Blaise Pascal is most commonly associated with Pascal•s triangle,a
triangular-shaped pattern in which the binomial coefficients are
generated. Although Pascal was not the first to discover this pattern,
it was through his study of the pattern that he became the first writer
to describe precisely the process of mathematical induction.

As a child, Pascal was frequently ill. His father, a mathematician
himself, used to hide all his own mathematics books because he felt
that his son•s study of mathematics would be too strenuous. But
when he was 12, Pascal was found in his playroom folding pieces of
paper, doing an experiment by which he discovered that the sum of

the angles in any triangle is equal to 180°. Pascal•s father was so impressed that he gave his
son Euclid•s Elements to study, and Pascal soon discovered, on his own, many of the
propositions of geometry.

At the age of 14, Pascal was allowed to participate actively in the gatherings of a group
of French mathematicians. At 16, he had established significant results in projective
geometry. Also at this time, he began developing a calculator to facilitate his father•s work
of auditing chaotic government tax records. Pascal perfected the machine over a period of
ten years by building 50 various models, but ultimately it was too expensive to be practical.

Pascal made many contributions in the fields of mechanics and physics as well. The one-
wheeled wheelbarrow is another of his inventions. Through his correspondence with the
French mathematician Pierre de Fermat, he and Fermat laid the foundations of probability
theory.

Pascal died in 1662 at the age of 39. His contributions to 17th-century mathematics
were stunning, expecially in view of his short life. Scholars wonder how much more
mathematics would have issued from his gifted mind had he lived longer.
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C H A P T E R  T H R E E

Introduction

Some of the standard topics in elementary group theory are treated in this chapter: sub-
groups, cyclic groups, isomorphisms, and homomorphisms.

In the development here, the topic of isomorphism appears before homomorphism.
Some instructors prefer a different order and teach Section 3.6 (Homomorphisms) before
Section 3.5 (Isomorphisms). Logic can be used to support either approach. Isomorphism
is a special case of homomorphism, while homomorphism is a generalization of isomor-
phism. Isomorphisms were placed first in this book with the thought that •same structureŽ
is the simpler idea.

Both the additive and the multiplicative structures in Zn serve as a basis for some of the
examples in this chapter.

3.1 Definition of a Group

The fundamental notions of set, mapping, binary operation, and binary relation were pre-
sented in Chapter 1. These notions are essential for the study of an algebraic system. An
algebraic structure, or algebraic system, is a nonempty set in which at least one equiva-
lence relation (equality) and one or more binary operations are defined. The simplest struc-
tures occur when there is only one binary operation, as is the case with the algebraic system
known as a group.

An introduction to the theory of groups is presented in this chapter, and it is appropriate
to point out that this is only an introduction. Entire books have been devoted to the theory of
groups; the group concept is extremely useful in both pure and applied mathematics.

A group may be defined as follows.

Definition 3.1 � Group

Suppose the binary operationp is defined for elements of the set G. Then G is a group with
respect top provided the following four conditions hold:

1. G is closedunderp. That is, and imply that is in G.

2. p is associative. For all x, y, z in G, x * (y * z) 5 (x * y) * z.

x * yy [ Gx [ G

Groups



3. G has an identity element e. There is an e in G such that for all

4. G containsinverses. For each there exists such that 

The phrase •with respect topŽ should be noted. For example, the set Z of all integers
is a group with respect to addition but not with respect to multiplication (it has no inverses
for elements other than6 1). Similarly, the set G 5 {1, 2 1} is a group with respect to
multiplication but not with respect to addition. In most instances, however, only one binary
operation is under consideration, and we say simply that •G is a group.Ž If the binary
operation is unspecified, we adopt the multiplicative notation and use the juxtaposition xy
to indicate the result of combining x andy. Keep in mind, though, that the binary operation
is not necessarily multiplication.

Definition 3.2 � Abelian Group

Let G be a group with respect top. Then G is called a commutative group, or an abelian•

group, if p is commutative. That is, for all x, y in G.

Example 1 We can obtain some simple examples of groups by considering appropriate
subsets of the familiar number systems.

a. The set C of all complex numbersis an abelian group with respect to addition.

b. The set Q � {0} of all nonzero rational numbersis an abelian group with respect to
multiplication.

c. The set R+ of all positive real numbersis an abelian group with respect to multiplica-
tion, but it is not a group with respect to addition (it has no additive identity and no
additive inverses). �

The following examples give some indication of the great variety there is in groups.

Example 2 Recall from Chapter 1 that a permutation on a setA is a one-to-one mapping
fromAontoAand that denotes the set of all permutations onA. We have seen that
is closed with respect to the binary operation+of mapping composition and that the
operation+is associative. The identity mappingIA is an identity element:

f +IA 5 f 5 IA +f

for all and each has an inverse in Thus we may conclude from
results in Chapter 1 that is a group with respect to composition of mappings. However

is not abelian since mapping composition is not a commutative operation. �

Example 3 We shall take A 5 {1, 2, 3} and obtain an explicit example of . In
order to define an element f of , we need to specify f (1), f (2), andf (3). There are three
possible choices for f (1). Sincef is to be bijective, there are two choices for f (2) after

S(A)
S(A)

S(A)
S(A)

S(A).f [ S(A)f [ S(A),

S(A)S(A)

x * y 5 y * x

b * a 5 e.a * b 5b [ Ga [ G,

x [ G.
x * e 5 e* x 5 x
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f (1) has been designated, and then only one choice for f (3). Hence there are 3!5 3 ?2 ?1
different mappings f in . These are given by

Thus 5 {e, r , t , s , g, d}. Following the same convention as in Exercise 3 of Section 1.4,
we shall construct a •multiplicationŽ table for . As shown in Figure 3.1, the result of f +g
is entered in the row with f at the left and in the column with g at the top.

S(A)
S(A)

t  : c
t (1) 5 3
t (2) 5 1
t (3) 5 2

  d : c
d(1) 5 1
d(2) 5 3
d(3) 5 2.

r  : c
r (1) 5 2
r (2) 5 3
r (3) 5 1

  g : c
g(1) 5 3
g(2) 5 2
g(3) 5 1

e 5 IA: c
e(1) 5 1
e(2) 5 2
e(3) 5 3

  s  : c
s (1) 5 2
s (2) 5 1
s (3) 5 3

S(A)
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r r r 2 e g d s

r 2 r 2 e r d s g

s s d g e r 2 r

g g s d r e r 2

d d g s r 2 r e
�

In constructing the table for , we list the elements of in a column at the left
and in a row at the top, as shown in Figure 3.2. When the product r 2 5 r +r is computed,
we have

sor 2 5 t . Similarly, r +s 5 g , s +r 5 d , and so on.

r 2(3) 5 r (r (3)) 5 r (1) 5 2,

r 2(2) 5 r (r (2)) 5 r (3) 5 1

r 2(1) 5 r (r (1)) 5 r (2) 5 3

S(A)S(A)

A table such as the one in Figure 3.2 is referred to in various texts as amultiplication
table, agroup table, or aCayley table.• With such a table, it is easy to locate the identity

•The term Cayley tableis in honor of Arthur Cayley (1821…1895). A biographical sketch of Cayley appears on
the last page of Chapter 1.



and inverses of elements. An elemente is a left identity if and only if the row headed bye
at the left end reads exactly the same as the column headings in the table. Similarly,e is a
right identity if and only if the column headed byeat the top reads exactly the same as the
row headings in the table. If it exists, the inverse of a certain elementa can be found by
searching for the identitye in the row headed bya and again in the column headed bya.

If the elements in the row headings are listed in the same order from top to bottom as the
elements in the column headings are listed from left to right, it is also possible to use the table
to check for commutativity. The operation is commutative if and only if equal elements appear
in all positions that are symmetrically placed relative to the diagonal from upper left to lower
right. In Example 3, the group is not abelian since the table inFigure 3.2 is notsymmetric. For
example,g +r 2 5 d is in row 5, column 3, andr 2 +g 5 s is in row 3, column 5.

Example 4 Let G be the set of complex numbers given by G 5 {1, 2 1, i, 2 i}, where
and consider the operation of multiplication of complex numbers in G. The

table in Figure 3.3 shows that G is closed with respect to multiplication.
Multiplication in G is associative and commutative, since multiplication has these prop-

erties in the set of all complex numbers. We can observe from Figure 3.3 that 1 is the iden-
tity element and that all elements have inverses. Each of 1 and 2 1 is its own inverse, and i
and2 i are inverses of each other. Thus G is an abelian group with respect to multiplication.

i 5 ! 2 1,
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3 1 2 1 i 2 i

1 1 2 1 i 2 i

2 1 2 1 1 2 i i

i i 2 i 2 1 1

2 i 2 i i 1 2 1
� Figure 3.3

Example 5 It is an immediate corollary of Theorem 2.28 that the set

of congruence classes modulo n forms an abelian group with respect to addition. �

Example 6 Let G 5 {e, a, b, c} with multiplication as defined by the table in Figure 3.4.

Zn 5 5 304, 314, 324, c , 3n 2 14 6

�

� Figure 3.4

e a b c

e e a b c

a a b c e

b b c e a

c c e a b

?

From the table, we observe the following:

1. G is closed under this multiplication.

2. e is the identity element.



3. Each of eandb is its own inverse, and c anda are inverses of each other.

4. This multiplication is commutative.

This multiplication is also associative, but we shall not verify it here because it is a labori-
ous task. It follows that G is an abelian group. �

Example 7 The table in Figure 3.5 defines a binary operationp on the set S 5
{ A, B, C, D}.
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� Figure 3.5

* A B C D

A B C A B

B C D B A

C A B C D

D A B D D

From the table, we make the following observations:

1. Sis closed underp.

2. C is an identity element.

3. D does not have an inverse sinceDX 5 C has no solution.

ThusSis not a group with respect top. �

Definition 3.3 � Finite Group, Infinite Group, Order of a Group

If a groupG has a finite number of elements,G is called afinite group, or agroup of finite
order. The number of elements inG is called theorder of G and is denoted by either
o(G) or 0G0. If G does not have a finite number of elements,G is called aninfinite group .

Example 8 In Example 3, the group

has order o(G) 5 6. In Example 5,o(Zn) 5 n. The set Z of all integers is a group under ad-
dition, and this is an example of an infinite group. If A is an infinite set, then furnishes
an example of an infinite group. �

Exercises3.1
True or False
Label each of the following statements as either true or false.

1. The identity element in a group G is its own inverse.

2. If G is an abelian group, then x� 1 � x for all x in G.

S(A)

G 5 5e, r , r 2, s , g, d6



3. Let G be a group that is not abelian. Then xy yxfor all x andy in G.

4. The set of all nonzero elements in Z8 is an abelian group with respect to multiplication.

5. The Cayley table for a group will always be symmetric with respect to the diagonal
from upper left to lower right.

6. If a set is closed with respect to the operation, then every element must have an inverse.

Exercises

In Exercises 1…12, decide whether each of the given sets is a group with respect to the
indicated operation. If it is not a group, state a condition in Definition 3.1 that fails to hold.

1. The set of all rational numbers with operation addition.

2. The set of all irrational numbers with operation addition.

3. The set of all positive irrational numbers with operation multiplication.

4. The set of all positive rational numbers with operation multiplication.

5. The set of all real numbers x such that 0, x # 1, with operation multiplication.

6. For a fixed positive integer n, the set of all complex numbers x such that xn 5 1 (that
is, the set of all nth roots of 1), with operation multiplication.

7. The set of all complex numbers x that have absolute value 1, with operation multipli-
cation. Recall that the absolute value of a complex number x written in the form

with a andb real, is given by 

8. The set in Exercise 7 with operation addition.

9. The set E of all even integers with operation addition.

10. The set E of all even integers with operation multiplication.

11. The set of all multiples of a positive integer n with operation addition.

12. The set of all multiples of a positive integer n with operation multiplication.

In Exercises 13 and 14, the given table defines an operation of multiplication on the set
S 5 { e, a, b, c}. In each case, find a condition in Definition 3.1 that fails to hold, and
thereby show that Sis not a group.

13. See Figure 3.6.

14. See Figure 3.7.

0x 05 0a 1 bi 05 ! a2 1 b2.x 5 a 1 bi,

2
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3 e a b c

e e a b c

a a b a b

b b c b c

c c e c e

3 e a b c

e e a b c

a e a b c

b e a b c

c e a b c
� Figure 3.6 � Figure 3.7



In Exercises 15…20, let the binary operation p be defined on Z by the given rule. Determine
in each case whether Z is a group with respect top and whether it is an abelian group. State
which, if any, conditions fail to hold.

15. x p y 5 x 1 y 1 1 16. x p y 5 x 1 y 2 1

17. x p y 5 x 1 xy 18. x p y 5 xy 1 y

19. x p y 5 x 1 xy 1 y 20. x p y 5 x 2 y

In Exercises 21…26, decide whether each of the given sets is a group with respect to the
indicated operation. If it is not a group, state all of the conditions in Definition 3.1 that fail
to hold. If it is a group, state its order.

21. The set 8 Z8 with operation multiplication.

22. The set 314, 324, 334, 344 8 Z5 with operation multiplication.

23. The set 304, 324, 344 8 Z8 with operation multiplication.

24. The set 304, 324, 344, 364, 384 8 Z10 with operation multiplication.

25. The set 304, 324, 344, 364, 384 8 Z10 with operation addition.

26. The set 304, 324, 344, 364 8 Z8 with operation addition.

27. a. Let G 5 3a4 0 3a42 304 8 Zn. Show that G is a group with respect to multiplica-
tion in Zn if and only if n is a prime. State the order of G.

b. Construct a multiplication table for the group G of all nonzero elements in Z7,
and identify the inverse of each element.

28. Let G be the set of eight elements G 5 {1, i, j, k, 2 1, 2 i, 2 j, 2 k} with identity ele-
ment 1 and noncommutative multiplication given by•

(The circular order of multiplication is indicated by the diagram in Figure 3.8.) Given
that G is a group of order 8, write out the multiplication table for G. This group is
known as the quaternion group.

2 x 5 (2 1)x 5 x(2 1) for all x in G.

ki 5 2 ik 5 j,

jk 5 2 kj 5 i,

ij 5 2 ji 5 k,

i2 5 j2 5 k2 5 2 1,

  (2 1)2 5 1,

65

65

65

65

65

65

5314, 3346
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Sec. 3.4, #11 �

Sec. 3.5, #17 �

Sec. 4.4, #13, 20 �

• In a multiplicative group,a2 is defined by a2 5 a ?a.

Sec. 3.3, #18a, 27a �

Sec. 3.4, #2 �

Sec. 3.5, #11 �

Sec. 4.4, #17 �

Sec. 4.5, #10 �

Sec. 4.6, #3, 11, 16 �
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29. A permutation matrix is a matrix that can be obtained from an identity matrix In by
interchanging the rows one or more times (that is, by permutingthe rows). For n 5 3,
the permutation matrices are I3 and the five matrices

Given that G 5 { I3, P1, P2, P3, P4, P5} is a group of order 6 with respect to matrix mul-
tiplication, write out a multiplication table for G.

30. Consider the matrices

in M2(R), and let G 5 { I2, R, R2, R3, H, D, V, T}. Given that G is a group of order 8
with respect to multiplication, write out a multiplication table for G.

31. Prove or disprove that the set of all diagonal matrices in Mn(R) forms a group with
respect to addition.

32. Let G be the set of all matrices in M3(R) that have the form

with all three numbers a, b, andc nonzero. Prove or disprove that G is a group with
respect to multiplication.

C
a 0 0
0 b 0
0 0 c

S

D 5 B
0 1
1 0

R T 5 B
0 2 1

2 1 0
R

R 5 B
0 2 1
1 0

R H 5 B
1 0
0 2 1

R V 5 B
2 1 0

0 1
R

P4 5 C
0 0 1
0 1 0
1 0 0

S P5 5 C
0 0 1
1 0 0
0 1 0

S.

P1 5 C
1 0 0
0 0 1
0 1 0

S P2 5 C
0 1 0
1 0 0
0 0 1

S P3 5 C
0 1 0
0 0 1
1 0 0

S

Sec. 3.3, #18b, 27b �

Sec. 4.1, #20 �

Sec. 4.6, #14 �

j

i

k

� Figure 3.8



33. Let G be the set of all matrices in M3(R) that have the form

for arbitrary real numbers a, b, andc. Prove or disprove that G is a group with respect
to multiplication.

34. Prove or disprove that the set G in Exercise 32 is a group with respect to addition.

35. Prove or disprove that the set G in Exercise 33 is a group with respect to addition.

36. For an arbitrary set A, the power set p (A) was defined in Section 1.1 by p (A) 5
{ X 0X 8 A}, and addition in p (A) was defined by

a. Prove that p (A) is a group with respect to this operation of addition.

b. If A hasn distinct elements, state the order of p (A).

37. Write out the elements of p (A) for the set A 5 { a,b,c}, and construct an addition
table for p (A) using addition as defined in Exercise 36.

38. Let A 5 { a, b, c}. Prove or disprove that p (A) is a group with respect to the operation
of union.

39. Let A 5 {a, b, c}. Prove or disprove that p (A) is a group with respect to the operation
of intersection.

3.2 Properties of Group Elements

Several consequences of the definition of a group are recorded in Theorem 3.4.

5 (X 2 Y) c (Y 2 X).
X 1 Y 5 (X c Y) 2 (X d Y)

C
1 a b
0 1 c
0 0 1

S
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Strategy � Partsa and b of the next theorem are statements about uniqueness, and they can be
proved by the standard type of uniqueness proof: Assume that two such quantities exist,
and then prove the two to be equal. 

Theorem 3.4 � Properties of Group Elements

Let G be a group with respect to a binary operation that is written as multiplication.

a. The identity element e in G is unique.

b. For each x [ G, the inverse x2 1 in G is unique.

c. For each x [ G, (x2 1)2 1 5 x.



d. Reverse order law. For any x andy in G, (xy)2 1 5 y2 1x2 1.

e. Cancellation laws. If a, x, andy are in G, then either of the equations ax 5 ay or
xa 5 ya implies that x 5 y.

Proof We prove partsb and d and leave the others as exercises. To prove part b, let
x [ G, and suppose that each of y andz is an inverse of x. That is,

Then

Thusy 5 z, and this justifies the notation x2 1 as the unique inverse of x in G.
We shall use partb in the proof of partd. Specifically, we shall use the fact that the in-

verse (xy)2 1 is unique. This means that in order to show thaty2 1x2 1 5 (xy)2 1, we need only
to verify that (xy) (y2 1x2 1) 5 e 5 (y2 1x2 1) (xy). These calculations are straightforward:

and

The order of the factors y2 1 andx2 1 in the reverse order law (xy)2 1 5 y2 1x2 1 is crucial
in a nonabelian group. An example where (xy)2 1 2 x2 1y2 1 is requested in Exercise 5 at the
end of this section.

Part e of Theorem 3.4 implies that in the table for a finite group G, no element of G
appears twice in the same row, and no element of G appears twice in the same column.
These results can be extended to the statement in the following strategy box. The proof of
this fact is requested in Exercise 10.

(xy)(y2 1x2 1) 5 x(yy2 1)x2 1 5 xex2 1 5 xx2 1 5 e.

(y2 1x2 1)(xy) 5 y2 1(x2 1x)y 5 y2 1ey5 y2 1y 5 e

5 z since e is an identity.

5 z(e) since xy 5 e

5 z(xy) by associativity

5 (zx)y since zx5 e

y 5 ey since e is an identity

xy 5 e 5 yx and xz5 e 5 zx.
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(p ¿ q) � r

Uniqueness

Although our definition of a group is a standard one, alternative forms can be made.
One of these is given in the next theorem.

Theorem 3.5 � Equivalent Conditions for a Group

Let G be a nonempty set that is closed under an associative binary operation called multi-
plication. Then G is a group if and only if the equations ax 5 b andya 5 b have solutions
x andy in G for all choices of a andb in G.

Strategy � In the multiplication table for a group G, each element of G appears exactly once in each
row and also appears exactly once in each column. 



Proof Assume first that G is a group, and let a andb represent arbitrary elements of G.
Now a2 1 is in G, and so are x 5 a2 1b and With these choices for x andy, we have

and

ThusG contains solutions x andy to ax 5 b andya 5 b.
Suppose now that the equations always have solutions inG. We first show thatG

has an identity element. Leta represent an arbitrary but fixed element inG. The equa-
tion ax 5 a has a solutionx 5 u in G. We shall show thatu is a right identity for every
element inG. To do this, letb be arbitrary inG. With z a solution toya 5 b, we have
za 5 b and

Thus u is a right identity for every element inG. In a similar fashion, there exists an
elementv in G such thatvb 5 b for all b in G. Thenvu 5 v, sinceu is a right identity,
andvu 5 u, sincev is a left identity. That is, the elemente 5 u 5 v is an identity ele-
ment forG.

Now for any a in G, let x be a solution to ax 5 e, and let y be a solution to ya 5 e.
Combining these equations, we have

andx 5 y is an inverse for a. This proves that G is a group. 

In a group G, the associative property can be extended to products involving more than
three factors. For example, if a1, a2, a3, anda4 are elements of G, then applications of con-
dition 2 in Definition 3.1 yield

and

These equalities suggest (but do not completely prove) that regardless of how symbols
of grouping are introduced in a product a1a2a3a4, the resulting expression can be
reduced to

With these observations in mind, we make the following definition.

3(a1 a2)a34a4.

(a1 a2)(a3 a4) 5 3(a1 a2)a34a4.

3a1(a2 a3)4a4 5 3(a1 a2)a34a4

5 y,

5 ye

5 yax

x 5 ex

bu 5 (za)u 5 z(au) 5 za5 b.

ya 5 (ba2 1)a 5 b(a2 1a) 5 be5 b.

ax 5 a(a2 1b) 5 (aa2 1)b 5 eb5 b

y 5 ba2 1.
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Definition 3.6 � Product Notation

Let n be a positive integer,n $ 2. For elements a1, a2, c , an in a group G, the expression
a1a2 c an is defined recursively by

We can now prove the following generalization of the associative property.

Theorem 3.7 � Generalized Associative Law

Let n $ 2 be a positive integer, and let a1, a2, c , an denote elements of a group G. For
any positive integer msuch that 1# m , n,

Proof Forn $ 2, let Pn denote the statement of the theorem. With n 5 2, the only possi-
ble value for m is m 5 1, and P2 asserts the trivial equality

Assume now that Pk is true: For any positive integer msuch that 1# m , k,

Consider the statement Pk1 1, and let m be a positive integer such that 1# m , k 1 1. We
treat separately the cases where m 5 k and where 1# m , k. If m 5 k, the desired equality
is true at once from Definition 3.6, as follows:

If 1 # m , k, then

by Definition 3.6, and consequently,

ThusPk1 1 is true whenever Pk is true, and the proof of the theorem is complete. 

The material in Section 1.6 on matrices leads to some interesting examples of groups,
both finite and infinite. This is pursued now in Examples 1 and 2.

Example 1 Theorem 1.30 translates directly into the statement that Mm3 n(R) is an
abelian group with respect to addition. This is an example of another infinite group.

When the proof of each part of Theorem 1.30 is examined, it becomes clear that each
group property in Mm3 n(R) derives in a natural way from the corresponding property in R.

5 a1 a2
c ak1 1    by Definition 3.6.

5 3a1 a2
c ak4ak1 1 by Pk

5 3(a1 a2
c am)(am1 1

c ak)4ak1 1  by the associative property

5 (a1 a2
c am)3(am1 1

c ak)ak1 14

  (a1 a2
c am)(am1 1

c ak ak1 1)    

am1 1
c ak ak1 1 5 (am1 1

c ak)ak1 1

(a1 a2
c am)(am1 1

c ak1 1) 5 (a1 a2
c ak)ak1 1.

(a1 a2
c am)(am1 1

c ak) 5 a1 a2
c ak.

(a1)(a2) 5 a1 a2.

(a1 a2
c am)(am1 1

c an) 5 a1 a2
c an.

a1 a2
c ak ak1 1 5 (a1 a2

c ak)ak1 1 for k $ 1.
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If the set R is replaced by the set Z of all integers, the steps in the proof of each part of
Theorem 1.30 can be paralleled to prove the same group property for Mm3 n(Z). Thus
Mm3 n(Z) is also a group under addition. The same reasoning is valid if R is replaced by the
setQ of all rational numbers, by the set C of all complex numbers, or by the set Zk of all
congruence classes modulo k. That is, each of Mm3 n(Q), Mm3 n(C), andMm3 n(Zk) is a group
with respect to addition.

We thus have a family of groups, with Mm3 n(Zk) finite and all the others infinite. Some
aspects of computation in Mm3 n(Zk) may appear strange at first. For instance,

is the additive inverse of

in M23 3(Z5), since

�

In Example 4 of Section 1.6, it was shown that the matrix

in M2(R) does not have an inverse, so the nonzero elements of M2(R) do not form a group
with respect to multiplication. This result generalizes to arbitrary Mn(R) with n . 1; that
is, the nonzero elements of Mn(R) do not form a group with respect to multiplication. How-
ever, the next example shows that the invertible elements• of Mn(R) form a group under
multiplication.

Example 2 We shall show that the invertible elements of Mn(R) form a group G with
respect to matrix multiplication.

We have seen in Section 1.6 that matrix multiplication is a binary operation on Mn(R), that
this operation is associative (Theorem 1.32), and that In 5 3dij4n3 n is an identity element
(Theorem 1.34). These properties remain valid when attention is restricted to the set G of
invertible elements of Mn(R), so we need only show that G is closed under multiplication. To
this end, suppose that A andB are elements of Mn(R) such that A2 1 andB2 1 exist. Using the
associative property of matrix multiplication, we can write

5 In.

5 AA2 1

5 AIn A2 1

  (AB)(B2 1A2 1) 5 A(BB2 1)A2 1

A 5 B
1 3
2 6

R

A 1 B 5 B
304 304 304
304 304 304

R 5 B 1 A.

A 5 B
344 324 304
334 314 334

R

B 5 B
314 334 304
324 344 324

R
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•Recall that a square matrix A is called invertibleif its multiplicative inverse,A2 1, exists.



Although matrix multiplication is not commutative, a similar simplification shows that

and it follows that (AB)2 1 exists and that (AB)2 1 5 B2 1A2 1. Thus G is a group.
As in Example 1, the discussion in the preceding paragraph can be extended by re-

placingR with one of the systems Z, Q, C, or Zk. That is, the invertible elements in each
of the sets Mn(Z), Mn(Q), Mn(C), and Mn(Zk) form a group with respect to multiplication.
Once again, the computations in may seem strange. As an illustration, it can be
verified by multiplication that

in the group of invertible elements of M2(Z7). �

Exercises3.2
True or False
Label each of the following statements as either true or false.

1. Let x, y, andzbe elements of a group G. Then (xyz)� 1 � x� 1y� 1z� 1.

2. In a Cayley table for a group, each element appears exactly once in each row.

3. The Generalized Associative Law applies to any group, no matter what the group
operation is.

4. The nonzero elements of Mm� n (R) form a group with respect to matrix multiplication.

5. The nonzero elements of Mn (R) form a group with respect to matrix multiplication.

6. The invertible elements of Mn(R) with respect to matrix multiplication form an abelian
group.

Exercises

1. Prove part a of Theorem 3.4.

2. Prove part c of Theorem 3.4.

3. Prove part eof Theorem 3.4.

4. An element x in a multiplicative group G is called idempotent if x2 5 x. Prove that
the identity element e is the only idempotent element in a group G.

5. In Example 3 of Section 3.1, find elements a andb of such that (ab)2 1 2 a2 1b2 1.

6. In Example 3 of Section 3.1, find elements a, b, andc of such that ab 5 bc but
a 2 c.

7. In Example 3 of Section 3.1, find elements a andb of such that (ab)2 2 a2b2.

8. Prove that in Theorem 3.5, the solutions to the equations ax 5 b andya 5 b are actu-
ally unique.

S(A)

S(A)

S(A)

B
334 314
354 324

R is the inverse of B
324 364
324 334

R

Mn(Zk)

(B2 1A2 1)(AB) 5 In,
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9. Let G be a group.

a. Prove that the relation R on G, defined by xRyif and only if there exists an 
such that y 5 a2 1 xa, is an equivalence relation.

b. Let . Find [x], the equivalence class containing x, if G is abelian.

10. Suppose that G is a finite group. Prove that each element of G appears in the multipli-
cation table for G exactly once in each row and exactly once in each column.

In Exercises 11 and 12, part of the multiplication table for the group G 5 { a, b, c, d} is
given. In each case, complete the table.

11. See Figure 3.9.

12. See Figure 3.10.

x [ G

a [ G
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� Figure 3.9

3 a b c d

a d

b

c c

d c
� Figure 3.10

3 a b c d 

a

b a

c a

d

13. Prove that if x 5 x2 1 for all x in the group G, thenG is abelian.

14. Let a and b be elements of a group G. Prove that G is abelian if and only if
(ab)2 1 5 a2 1b2 1.

15. Let a and b be elements of a group G. Prove that G is abelian if and only if
(ab)2 5 a2b2.

16. Use mathematical induction to prove that if a is an element of a group G, then
(a2 1)n 5 (an)2 1 for every positive integer n.

17. Let a, b, c, andd be elements of a group G. Find an expression for (abcd)2 1 in terms
of a2 1, b2 1, c2 1, andd2 1.

18. Use mathematical induction to prove that if a1, a2, c , an are elements of a group G,
then (This is the general form of the reverse
order law for inverses.)

19. Let G be a group that has even order. Prove that there exists at least one element 
G such that and .

20. Prove or disprove that every group of order 3 is abelian.

21. Prove or disprove that every group of order 4 is abelian.

22. SupposeG is a finite set with n distinct elements given by 
Assume that G is closed under an associative binary operationp and that the following

G 5 5a1, a2, . . . , an6.

a 5 a2 1a 2 ea [

a2 1
n  a2 1

n2 1
c a2 1

2  a2 1
1 .(a1 a2

c an)
2 1 5

Sec. 4.4, #24 !



two cancellation laws hold for all a, x, andy in G:

Prove that G is a group with respect top.

23. Suppose thatG is a nonempty set that is closed under an associative binary opera-
tion p and that the following two conditions hold:

1. There exists a left identity e in G such that for all 
2. Each has a left inverse in G such that 

Prove that G is a group by showing that e is in fact a two-sided identity for G and that
is a two-sided inverse of a.

24. Reword Definition 3.6 for a group with respect to addition.

25. State and prove Theorem 3.7 for an additive group.

26. Find the additive inverse of in the given group.

a. b.

27. Find the multiplicative inverse of in the given group.

a. Invertible elements of b. Invertible elements of 

3.3 Subgroups

Among the nonempty subsets of a group G, there are some that themselves form a group
with respect to the binary operationp in G. That is, a subset H 8 G may be such that H is
also a group with respect top. Such a subset H is called a subgroupof G.

Definition 3.8 � Subgroup

Let G be a group with respect to the binary operationp. A subsetH of G is called asubgroup
of G if H forms a group with respect to the binary operationp that is defined inG.

The subsets H 5 {e} and H 5 G are always subgroups of the group G. They are
referred to as trivial subgroups, and all other subgroups of G are called nontrivial .

Example 1 The set Z of all integers is a group with respect to addition, and 
the set E of all even integers is a nontrivial subgroup of Z. (See Exercise 9 of Sec-
tion 3.1.) �

Example 2 The set of all nonzero complex numbers is a group under multiplication,
andG 5 {1, 2 1, i, 2 i } is a nontrivial subgroup of this group. (See Example 4 of Sec-
tion 3.1.) �

M2 (Z7)M2 (Z5)

B
314 324
334 344

R

M23 3 (Z7)M23 3 (Z6)

B
324 344 314
304 354 334

R

al

al * a 5 e.ala [ G
x [ G.e* x 5 x

x p a 5 y p a implies x 5 y.
a p x 5 a p y implies x 5 y;
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Example 3 From the discussion in Example 1 of Section 3.2, it is clear that for fixed m
andn, each of the additive groups in the list

is a subgroup of every listed group in which it is contained. �

If G is a group with respect top, thenp is an associative operation on any nonempty
subset of G. A subset H of G is a subgroup, provided that

1. H contains the identity;

2. H is closed underp; and

3. H contains an inverse for each of its elements.

In connection with condition 1, consider the possibility that H might contain an identity er
for its elements that could be different from the identity eof G. Such an element er would
have the property that er p er 5 er, and Exercise 4 of Section 3.2 then implies that er 5 e.
In connection with condition 3, we might consider the possibility that an element a [ H
might have one inverse as an element of the subgroup H and a different inverse as an ele-
ment of the group G. In fact, this cannot happen because part b of Theorem 3.4 guarantees
that the solution y to a p y 5 y p a 5 e is unique in G. The following theorem gives a set
of conditions that is slightly different from 1, 2, and 3.

Theorem 3.9 � Equivalent Set of Conditions for a Subgroup

A subset H of the group G is a subgroup of G if and only if these conditions are satisfied:

a. H is nonempty;

b. x [ H andy [ H imply xy [ H; and

c. x [ H impliesx2 1 [ H.

Proof If H is a subgroup of G, the conditions follow at once from Definitions 3.8 and 3.1.
Suppose that H is a subset of G that satisfies the conditions. Since H is nonempty, there

is at least one a [ H. By condition c, a2 1 [ H. But a [ H and a2 1 [ H imply
aa2 1 5 e [ H, by condition b. Thus H containse, is closed, and contains inverses. Hence
H is a subgroup. 

Example 4 It follows from Example 5 of Section 3.1 that

forms an abelian group with respect to addition 3a41 3b45 3a 1 b4. Consider the subset

of G. An addition table for H is given in Figure 3.11. The subset H is nonempty, and it is
evident from the table that H is closed and contains the inverse of each of its elements.
HenceH is a nontrivial abelian subgroup of Z8 under addition. 

H 5 5 304, 324, 344, 364 6

G 5 Z8 5 5 304, 314, 324, 334, 344, 354, 364, 374 6

Mm3 n (Z) 8 Mm3 n (Q) 8 Mm3 n (R) 8 Mm3 n (C)

3.3 Subgroups 153

p � q
p � q



Example 5 In Exercise 27 of Section 3.1, it was shown that

is a group with respect to multiplication in Z7. The multiplication table in Figure 3.12
shows that the nonempty subset

is closed and contains inverses and therefore is an abelian subgroup of G.

H 5 5 314, 324, 344 6

G 5 5 314, 324, 334, 344, 354, 364 68 Z7
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� Figure 3.11 �

1

304 304 324 344 364

324 324 344 364 304

344 344 364 304 324

364 364 304 324 344

364344324304

p � q

p � q

�� Figure 3.12

314 314 324 344

324 324 344 314

344 344 314 324

344324314?

An even shorter set of conditions for a subgroup is given in the next theorem.

Theorem 3.10� Equivalent Set of Conditions for a Subgroup

A subset H of the group G is a subgroup of G if and only if

a. H is nonempty, and

b. a [ H andb [ H imply ab2 1 [ H.

Proof AssumeH is a subgroup of G. Then H is nonempty since e [ H. Let a [ H and
b [ H. Then b2 1 [ H sinceH contains inverses. Since a [ H andb2 1 [ H, the product
ab2 1 [ H becauseH is closed. Thus conditions a andb are satisfied.

Suppose, conversely, that conditions a andb hold for H. There is at least one a [ H,
and condition b implies that aa2 1 5 e [ H. For an arbitrary x [ H, we have e [ H and
x [ H, which implies that ex2 1 5 x2 1 [ H. Thus H contains inverses. To show closure, let
x [ H and y [ H. Since H contains inverses,y2 1 [ H. But x [ H and y2 1 [ H imply
x(y2 1)2 1 5 xy [ H, by condition b. Hence H is closed; therefore,H is a subgroup of G.



When the phrase •H is a subgroup of GŽ is used, it indicates that H is a group with
respect to the group operation in G. Consider the following example.

Example 6 The operation of multiplication is defined in Z10 by

This rule defines a binary operation that is associative, and Z10 is closed under this
multiplication. Also, [1] is an identity element. However,Z10 is nota group with respect to
multiplication, since some of its elements do not have inverses. For example, the products

show that 324 3x45 314has no solution in Z10.
Now let us examine the multiplication table for the subset of

Z10 (see Figure 3.13). It is surprising, perhaps, but the table shows that [6] is an identity
element for H and that H actually forms a group with respect to multiplication. However,
H is not a subgroup of Z10 sinceZ10 is not a group with respect to multiplication.

H 5 5324, 344, 364, 3846

324 3845 364 324 3945 384

324 3645 324 324 3745 344

324 3445 384 324 3545 304

324 3245 344 324 3345 364

324 3045 304  324 3145 324

3a4 3b45 3ab4 .
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� Figure 3.13 �

3

324 344 384 324 364

344 384 364 344 324

364 324 344 364 384

384 364 324 384 344

384364344324

Integral exponentscan be defined for elements of a group as follows.

Definition 3.11� Integral Exponents

Let G be a group with the binary operation written as multiplication. For any a [ G, we
define nonnegative integral exponentsby

and

Negative integral exponentsare defined by

a2 k 5 (a2 1)k for any positive integer k.

ak1 1 5 ak ?a for any positive integer k.

a0 5 e,  a1 5 a,



It is common practice to write the binary operation as addition in the case of abelian
groups. When the operation is addition, the corresponding multiples of a are defined in a
similar fashion. The following list shows how the notations correspond, where k is a posi-
tive integer.
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Induction

Multiplicative Notation Additive Notation

  (2 k)a 5 k(2 a)a2 k 5 (a2 1)k

  (k 1 1)a 5 ka 1 aak1 1 5 ak ?a

1a 5 aa1 5 a

0a 5 0a0 5 e

The notation kain additive notation does not represent a product of k anda but, rather, a sum

with k terms. In 0a 5 0, the zero on the left is the zero integer, and the zero on the right
represents the additive identity in the group.

Considering the rich variety of operations and sets that have been involved in our
examples, it may be surprising and reassuring to find, in the next theorem, that the familiar
laws of exponentshold in a group.

Theorem 3.12� Laws of Exponents

Let x andy be elements of the group G, and let mandn denote integers. Then

a. xn ?x2 n 5 e

b. xm ?xn 5 xm1 n

c. (xm)n 5 xmn

d. If G is abelian, (xy)n 5 xnyn.

Proof The proof of each statement involves the use of mathematical induction. It would
be redundant, and even boring, to include a complete proof of the theorem, so we shall
assume statement a and prove b for the case where m is a positive integer. Even then, the
argument is lengthy. The proofs of the statements a, c, andd are left as exercises.

Let mbe an arbitrary, but fixed, positive integer. There are three cases to consider for n:

i. n 5 0

ii. n a positive integer

iii. n a negative integer.

First, let n 5 0 for case i. Then

Thusxm xn 5 xm1 n in the case where n 5 0.?

xm ?xn 5 xm ?x0 5 xm ?e 5 xm and xm1 n 5 xm1 0 5 xm.

ka 5 a 1 a 1 c 1 a



Second, we shall use induction on n for case ii where n is a positive integer. If n 5 1,
we have

and statement b of the theorem holds when n 5 1. Assume that b is true for n 5 k. That is,
assume that

.

Then, for n 5 k 1 1, we have

Thusb is true for n 5 k 1 1, and it follows that it is true for all positive integers n.
Third, consider case iii where n is a negative integer. This means that n 5 2 p, wherep is

a positive integer. We consider three possibilities for p: p 5 m, p , m, andm , p.
If p 5 m, thenn 5 2 p 5 2 m, and we have

by statement a of the theorem, and

We have xm ?xn 5 xm1 n whenp 5 m.
If p , m, let m 2 p 5 q, so that m 5 q 1 p whereq andp are positive integers. We

have already proved statement b when m and n are positive integers, so we may use
xq1 p 5 xq ?xp. This gives

That is,xm ?xn 5 xm1 n for the case where p , m.
Finally, suppose that m , p. Let r 5 p 2 m, so that r is a positive integer and

p 5 m 1 r. By the definition of x2 p,

5 x2 m ?x2 r.
5 (x2 1)m ?(x2 1)r sincem and r are positive integers

5 (x2 1)m1 r

x2p 5 (x2 1)p

5 xm1 n.
5 xq1 p2 p
5 xq
5 xq ?e by statement a
5 xq ?xp ?x2p  

xm ?xn 5 xq1 p ?x2p

xm1 n 5 xm2 m 5 x0 5 e.

xm ?xn 5 xm ?x2 m 5 e

5 xm1 n  since n 5 k 1 1.
5 xm1 k1 1   by definition of x(m1 k)1 1

5 xm1 k ?x   by the induction hypothesis

5 (xm ?xk) ?x  by associativity

5 xm ?(xk ?x)   by definition of xk1 1

xm ?xn 5 xm ?xk1 1

xm ?xk 5 xm1 k

xm ?xn 5 xm ?x 5 xm1 1 5 xm1 n
 ,
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Substituting this value for x2 p in xm ?xn 5 xm ?x2 p, we have

We also have

soxm ?xn 5 xm1 n whenm , p.
We have proved that xm ?xn 5 xm1 n in the cases where mis a positive integer and n is

any integer (zero, positive, or negative). Of course, this is not a complete proof of statement
b of the theorem. A complete proof would require considering cases where m 5 0 or where
m is a negative integer. The proofs for these cases are similar to those given here, and we
omit them entirely. 

The laws of exponents in Theorem 3.12 translate into the following laws of multiples
for an additive group G.

Laws of Multiples
a. nx 1 (2 n)x 5 0

b. mx 1 nx 5 (m 1 n)x

c. n(mx) 5 (nm)x

d. If G is abelian,n(x 1 y) 5 nx 1 ny.

In connection with integral exponents, consider the following example.

Example 7 Let G be a group, let a be an element of G, and let H be the set of all
elements of the form an, wheren is an integer. That is,

Then H is nonempty and actually forms a subgroup of G. For if x 5 am [ H and
y 5 an [ H, thenxy 5 am1 n [ H andx2 1 5 a2 m [ H. It follows from Theorem 3.9 that
H is a subgroup. �

Definition 3.13� Cyclic Subgroup

Let G be a group. For any a [ G, the subgroup

H 5 5x [ G 0x 5 an for n [ Z6

H 5 5x [ G 0x 5 an for n [ Z6.

5 x2 r,
5 xm2 (m1 r)

xm1 n 5 xm2p

5 x2 r.
5 e ?x2 r

5 (xm ?x2 m) ?x2 r

xm ?xn 5 xm ?(x2 m ?x2 r)
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is the subgroup generated by a and is denoted by HaI. A given subgroup K of G is a cyclic
subgroup if there exists an element b in G such that

In particular,G is a cyclic group if there is an element a [ G such that G 5 HaI.

Example 8
a. The set Z of integers is a cyclic group under addition. We have Z 5 H1I andZ 5 H2 1I.
b. The subgroup E 8 Z of all even integers is a cyclic subgroup of the additive group Z,

generated by 2. Hence E 5 H2I.
c. In Example 6, we saw that

is an abelian group with respect to multiplication. Since

then

d. The group 5 { e, r , r 2, s , g, d} of Example 3 in Section 3.1 is not a cyclic group.
This can be verified by considering HaI for all possible choices of a in �

Exercises3.3
True or False
Label each of the following statements as either true or false, where H is a subgroup of G.

1. Every group G contains at least two subgroups.

2. The identity element in a subgroup H of a group G must be the same as the identity
element in G.

3. An element x in H has an inverse x� 1 in H that may be different than its inverse inG.

4. The generator of a cyclic group is unique.

5. Any subgroup of an abelian group is abelian.

6. If a subgroup H of a group G is abelian, then G must be abelian.

7. The relation R on the set of all groups defined by HRK if and only if H is a subgroup
of K is an equivalence relation.

8. The empty set is a subgroup of any group G.

9. Any group of order 3 has no nontrivial subgroups.

10. Z5 under addition modulo 5 is a subgroup of the group Z under addition.

[

S(A).
S(A)

H 5 8 324 9.

3242 5 344, 3243 5 384, 3244 5 364,

H 5 5 324, 344, 364, 384 6 8 Z10

K 5 8b95 5y [ G 0y 5 bn for some n [ Z6.
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Exercises

1. Let 5 { e, r , r 2, s , g, d} be as in Example 3 in Section 3.1. Decide whether each
of the following subsets is a subgroup of . If a set is not a subgroup, give a reason
why it is not. (Hint: Construct a multiplication table for each subset.)
a. { e, s } b. { e, d}
c. { e, r } d. { e, r 2}
e. { e, r , r 2} f. { e, r , s }
g. { e, s , g} h. { e, s , g, d}

2. Decide whether each of the following sets is a subgroup of G 5 {1, 2 1, i, 2 i } under
multiplication. If a set is not a subgroup, give a reason why it is not.
a. {1, 2 1} b. {1, i }
c. { i, 2 i } d. {1, 2 i }

3. Consider the group Z16 under addition. List all the elements of the subgroup H 364 I, and
state its order. 

4. List all the elements of the subgroup H 384 Iin the group Z18 under addition, and state its
order.

5. Assume that the nonzero elements of Z13 form a group G under multiplication
3a4 3b45 3ab4.
a. List the elements of the subgroup H344 Iof G, and state its order.
b. List the elements of the subgroup H 384 Iof G, and state its order.

6. Let G be the group of all invertible matrices in M2(R) under multiplication. List the
elements of the subgroup HAI of G for the given A, and give o AHAIB.

a. b.

c. d.

7. Let G be the group M2(Z5) under addition. List the elements of the subgroup HAI of G
for the given A, and give o AHAIB.

a. b.

8. Find a subset of Z that is closed under addition but is not a subgroup of the additive
groupZ.

9. Let G be the group of all nonzero real numbers under multiplication. Find a subset of
G that is closed under multiplication but is not a subgroup of G.

10. Let n . 1 be an integer, and let a be a fixed integer. Prove or disprove that the set

is a subgroup of Z under addition.

H 5 5x [ Z 0ax ; 0 (mod n)6

A 5 B
304 314
324 344

RA 5 B
324 304
304 334

R

A 5 B
1 2 1
1 0

RA 5 B
0 2 1
1 2 1

R

A 5 B
0 2 1

2 1 0
RA 5 B

0 2 1
1 0

R

S(A)
S(A)
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11. Let H be a subgroup of G, let a be a fixed element of G, and let K be the set of all ele-
ments of the form aha2 1, whereh [ H. That is,

Prove or disprove that K is a subgroup of G.

12. Prove or disprove that H 5 { h [ G 0h2 1 5 h} is a subgroup of the group G if G is
abelian.

13. Prove that each of the following subsets H of M2(Z) is a subgroup of the group M2(Z)
under addition.

a. b.

c. d.

14. Prove that each of the following subsets H of M2(R) is a subgroup of the group G of
all invertible matrices in M2(R) under multiplication.

a. b.

c. d.

e.

f.

g.

15. Prove that each of the following sets H is a subgroup of the group G of all invertible
matrices in M2(C) under multiplication.

a.

b.

16. Consider the set of matrices H 5 { I2, M1, M2, M3, M4, M5}, where

Show that H is a subgroup of the multiplicative group of all invertible matrices in
M2(R).

M3 5 B
2 1 2 1

1 0
R, M4 5 B

2 1 2 1
0 1

R, M5 5 B
0 1
1 0

R.

I2 5 B
1 0
0 1

R, M1 5 B
1 0

2 1 2 1
R, M2 5 B

0 1
2 1 2 1

R,

H 5 b B
1 0
0 1

R, B
i 0
0 2 i

R, B
2 i 0

0 i
R, B

2 1 0
0 2 1

R r

H 5 b B
1 0
0 1

R, B
1 0
0 2 1

R, B
2 1 0

0 1
R, B

2 1 0
0 2 1

R r

H 5 b B
a b
c d

R 2ad 2 bc 5 1r

H 5 b B
a 0
0 b

R 2a 2 0, b 2 0r

H 5 b B
a b
c d

R 2a 1 c 5 1, b 1 d 5 1, and ad 2 bc 2 0r

H 5 b B
1 a
0 b

R 2b 2 0rH 5 b B
a 2 b
b a

R 2a2 1 b2 2 0r

H 5 b B
a 2 b
b a

R 2a2 1 b2 5 1rH 5 b B
1 a
0 1

R 2a [ Rr

H 5 b B
x y
z w

R 2x 1 y 1 z 1 w 5 0rH 5 b B
x y
0 0

R 2x 5 yr

H 5 b B
x y
z w

R 2z 5 w 5 0rH 5 b B
x y
z w

R 2w 5 0r

K 5 5x [ G 0x 5 aha2 1 for some h [ H6.
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17. a. For any group G, the set of all elements that commute with every element of G is
called the centerof G and is denoted by Z(G):

Prove that Z(G) is a subgroup of G.

b. Let Rbe the equivalence relation onG defined by xRyif and only if there exists an
elementa in G such thaty 5 a� 1xa. If , find [x], the equivalence class
containingx.

18. (See Exercise 17.) Find the center Z(G) for each of the following groups G.

a. G 5 {1, i, j, k, 2 1, 2 i, 2 j, 2 k} in Exercise 28 of Section 3.1.

b. G 5 { I2, R, R2, R3, H, D, V, T} in Exercise 30 of Section 3.1.

c. G 5 { I3, P1, P2, P3, P4, P5} in Exercise 29 of Section 3.1.

d. G is the group of all invertible matrices in M2(R) under multiplication.

19. LetGbe a group and Z(G) its center. Prove or disprove that if ab is in Z(G), then a and
b are in Z(G).

20. Let G be a group and Z(G) its center. Prove or disprove that if ab is in Z(G), then
ab � ba.

21. Let A be a given nonempty set. As noted in Example 2 of Section 3.1, is a group
with respect to mapping composition. For a fixed elementa in A, let Ha denote the set
of all f [ such thatf(a) 5 a. Prove thatHa is a subgroup of

22. (See Exercise 21.) Let A be an infinite set, and let H be the set of all f [ such that
f(x) 5 x for all but a finite number of elements x of A. Prove that H is a subgroup of

23. For each n [ Z, define .

a. Show that fn is an element of .

b. Let for each }. Prove that H is a subgroup of
under mapping composition. 

c. Prove that H is abelian, even though is not.

24. Let G be an abelian group. For a fixed positive integer n, let

Prove that Gn is a subgroup of G.

25. For fixed integers a andb, let

Prove that S is a subgroup of Z under addition. (A special form of this S is used in
proving the existence of a greatest common divisor in Theorem 2.12.)

26. For a fixed element a of a group G, the set Ca 5 { x [ G 0ax 5 xa} is the centralizer
of a in G. Prove that for any a [ G, Ca is a subgroup of G.

S5 5ax 1 by 0x [ Z and y [ Z6.

Gn 5 5a [ G 0a 5 xn for some x [ G6.

S(Z)

S(Z)
n [ ZH 5 5fn [ S(Z) 0fn(x) 5 x 1 n

S(Z)

fn: Z S Z by fn (x) 5 x 1 n for x [ Z

S(A).

S(A)

S(A).S(A)

S(A)

x [ Z(G)

Z(G) 5 5a [ G 0ax 5 xa for every x [ G6.
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27. Find the centralizer for each element a in each of the following groups.

a. The quaternion group G 5 {1, i, j, k, 2 1,2 i, 2 j, 2 k} in Exercise 28 of Section 3.1

b. G 5 { I2, R, R2, R3, H, D, V, T} in Exercise 30 of Section 3.1

c. G 5 { I3, P1, P2, P3, P4, P5} in Exercise 29 of Section 3.1

28. Prove that , where Ca is the centralizer of a in the group G.

29. Suppose that H1 andH2 are subgroups of the group G. Prove that H1 d H2 is a sub-
group of G.

30. For an arbitrary n in Z, the cyclic subgroup HnI of Z, generated by n under addition, is the
set of all multiples of n. Describe the subgroup HmI d HnI for arbitrary mandn in Z.

31. Let {Hl }, l [ l , be an arbitrary nonempty collection of subgroups Hl of the group G,
and let K 5 d l [ l Hl . Prove that K is a subgroup of G.

32. If G is a group, prove that , where Z(G) is the center of G andCa is the
centralizer of a in G.

33. Find subgroups H and K of the group in Example 3 of Section 3.1 such that
is not a subgroup of .

34. Assume that H andK are subgroups of the abelian group G. Prove that the set of prod-
ucts for and is a subgroup of G.

35. Find subgroups H andK of the group in Example 3 of Section 3.1 such that the
setHK defined in Exercise 34 is not a subgroup of .

36. Let G be a cyclic group,G 5 HaI. Prove that G is abelian.

37. Prove statement a of Theorem 3.12:xn ?x2 n 5 e for all integers n.

38. Prove statement c of Theorem 3.12: (xm)n 5 xmn for all integers mandn.

39. Prove statementd of Theorem 3.12: IfG is abelian, (xy)n 5 xnyn for all integersn.

40. Suppose that H is a nonempty subset of a group G. Prove that H is a subgroup of G if
and only if a2 1b [ H for all a [ H andb [ H.

41. Assume that G is a finite group, and let H be a nonempty subset of G. Prove that H is
closed if and only if H is a subgroup of G.

3.4 Cyclic Groups

In the last section a group G was defined to be cyclic if there exists an element a [ G such
thatG 5 HaI. It may happen that there is more than one element a [ G such that G 5 HaI.
For the additive group Z, we have Z 5 H1I and also Z 5 H2 1I, since any n [ Z can be writ-
ten as (2 n)(2 1). Here (2 n)(2 1) does not indicate a product but rather a multiple of 2 1, as
described in Section 3.3.

Definition 3.14� Generator

Any element a of the group G such that G 5 HaI is a generatorof G.

S(A)
S(A)

k [ K6h [ HHK 5 5g [ G 0g 5 hk

S(A)H c K
S(A)

Z(G) 5 d a[ GCa

Ca 5 Ca2 1
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If a is a generator of G, thena2 1 is also, since any element x [ G can be written as

for some integer n.

Example 1 The additive group

is a cyclic group with generator [1], since any 3k4in Zn can be written as

wherek314indicates a multiple of [1] as described in Section 3.3. Elements other than [1]
may also be generators. To illustrate this, consider the particular case

The element [5] is also a generator of Z6 since [5] is the additive inverse of [1]. The follow-
ing list shows how Z6 is generated by [5]„that is, how Z6 consists of multiples of [5].

The cyclic subgroups generated by the other elements of Z6 under addition are

Thus [1] and [5] are the only elements that are generators of the entire group. �

Example 2 We saw in Example 8 of Section 3.3 that

forms a cyclic group with respect to multiplication and that is a generator of The ele-
ment3845 3242 1 is also a generator of H, as the following computations confirm:

�

Example 3 In the quaternion group G 5 { 6 1, 6 i, 6 j, 6 k}, described in Exercise 28 of
Section 3.1, we have

i4 5 i 3 ?i 5 2 i2 5 1.
i 3 5 i 2 ?i 5 2 i
i 2 5 2 1

3842 5 344,  3843 5 324,  3844 5 364.

H.324

H 5 5324, 344, 364, 38468 Z10

8 344 95 5344, 324, 30465 8 324 9.
8 334 95 5334, 3046
8 324 95 5324, 344, 3046
8 304 95 53046

  63545 304
  53545 314
  43545 324
  33545 3541 3541 3545 334
  23545 3541 3545 344
  13545 354

Z6 5 5 304, 314, 324, 334, 344, 354 6.

3k45 k314

Zn 5 5 304, 314, c , 3n 2 14 6

x 5 an 5 (a2 1)2 n
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Thusi generates the cyclic subgroup of order 4 given by

although the group G itself is not cyclic. �

Whether a groupG is cyclic or not, each elementa of G generates the cyclic subgroup
HaI, and

.

We shall see that the structure of HaI depends entirely on whether or not an 5 e for some
positive integer n. The next two theorems state the possibilities for the structure of HaI.

Strategy � The method of proof of the next theorem is by contradiction. A statementp � q may be
proved by assuming thatp is true andq is false and then proving that this assumption
leads to a situation where some statement is both true and false„a contradiction.

Theorem 3.15� Infinite Cyclic Group

Let a be an element in the group G. If an 2 e for every positive integer n, thenap 2 aq

whenever p 2 q in Z, andHaI is an infinite cyclic group.

Proof Assume that a is an element of the group G such that an 2 e for every posi-
tive integer n. Having made this assumption, suppose now that

wherep 2 q in Z. We may assume that p . q. Then

Sincep 2 q is a positive integer, this result contradicts an 2 e for every positive integer n.
Therefore, it must be that ap 2 aq whenever p 2 q. Thus all powers of a are distinct, and
thereforeHaI is an infinite cyclic group. 

Corollary 3.16� 

If G is a finite group and a [ G, thenan 5 e for some positive integer n.

Proof SupposeG is a finite group and a [ G. Since the cyclic subgroup

is a subset ofG, HaI must also be finite. It must therefore happen thatap 5 aq for some integers
p andq with p 2 q. It follows from Theorem 3.15 thatan 5 efor some positive integern.

8a95 5x [ G 0x 5 am for m [ Z6

   � ap2 q 5 e.

ap 5 aq � ap ?a2 q 5 aq ?a2 q

ap 5 aq

8a95 5x [ G 0x 5 an for n [ Z6

8i95 5i, 2 1, 2 i, 16,
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If it happens thatan 2 e for every positive integern, then Theorem 3.15 states that all
the powers ofa are distinct and thatHaI is an infinite group. Of course, it may happen that
an 5 e for some positive integersn. In this case, Theorem 3.17 describesHaI completely.

Theorem 3.17� Finite Cyclic Group

Let a be an element in a group G, and suppose an 5 e for some positive integer n. If m is
the least positive integer such that am 5 e, then

a. HaI has order m, andHaI 5 { a0 5 e 5 am, a1, a2, c , am2 1}

b. as 5 at if and only if

Proof Assume that mis the least positive integer such that am 5 e. We first show that the
elements

are all distinct. Suppose

There is no loss of generality in assuming i $ j. Then ai 5 aj implies

Sincemis the least positive integer such that am 5 e, and since i 2 j , m, it must be true
that i 2 j 5 0, and therefore i 5 j. Thus HaI contains the m distinct elements a0 5 e, a,
a2, c , am2 1. The proof of part a will be complete if we can show that any power of a is
equal to one of these elements. Consider an arbitrary ak. By the Division Algorithm, there
exist integers q andr such that

Thus

wherer is in the set It follows that

To obtain part b, we first observe that if k 5 mq 1 r, with 0 # r , m, thenak 5 ar,
wherer is in the set {0, 1, 2,c , m 2 1}. In particular,ak 5 e if and only if r 5 0„that
is, if and only if k ; 0 (modm). Thus

and the proof is complete. 

� s ; t (modm),
� s 2 t ; 0 (mod m)

as 5 at � as2 t 5 e

8a95 5e, a, a2, c , am2 16, and8a9 has order m.

50, 1, 2, . . . , m 2 16.

5 ar
5 eq ?ar
5 (am)q ?ar  by part c of Theorem 3.12
5 amq ?ar   by part b of Theorem 3.12

ak 5 amq1 r

k 5 mq1 r, with 0 # r , m.

ai 2 j 5 ai ?a2 j 5 e where 0 # i 2 j , m.

ai 5 aj where 0 # i , m and 0 # j , m.

a0 5 e, a, a2, c , am2 1

s ; t (modm).
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We have defined the order o(G) of a group G to be the number of elements in the group.

Definition 3.18� Order of an Element

Theorder o(a) of an element a of the group G is the order of the subgroup generated by a.
That is,o(a) 5 oAHaIB.

Parta of Theorem 3.17 immediately translates into the following corollary.

Corollary 3.19 � Finite Order of an Element

If o(a) is finite, then m 5 o(a) is the least positive integer such that am 5 e.

The next example illustrates the results of Theorem 3.17 and its corollary. 

Example 4 It can be shown (see Exercise 16 at the end of this section) that 

is a group with respect to multiplication in The element of G generates a cyclic sub-
group of order 4 since and 4 is the least positive integer m such that 
Thus

and the order of the element is 4. Also, powers larger than 4 of are easily computed
using part b of Therom 3.17. For example,

since �

The multiplicative group in Example 4
consists of all [a] in Z16 that have multiplicative inverses. This group is called the group of
units in Z16 and is designated by the symbol U16.

As might be expected, every subgroup of a cyclic group is also a cyclic group. It is
even possible to predict a generator of the subgroup, as stated in Theorem 3.20.

Strategy � The conclusion of the next theorem has the form •either a or b.Ž To prove this statement,
we can assume that a is false and prove that b must then be true. 

Theorem 3.20� Subgroup of a Cyclic Group

Let G be a cyclic group with a [ G as a generator, and let H be a subgroup of G. Then either

a. H 5 { e} 5 HeI, or

b. if H 2 { e}, then H 5 HakI wherek is the least positive integer such that ak [ H.

G 5 5314, 334, 354, 374, 394, 3114, 3134, 31546# Z16

191 ; 3 (mod 4).

334191 5 3343 5 3114

334334

833495 53340 5 314, 334, 394, 31146,

334m 5 314.3344 5 314,
334Z16.

G 5 5314, 334, 354, 374, 394, 3114, 3134, 315468 Z16
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Proof Let G 5 HaI, and suppose H is a subgroup and H 2 { e}. Then H contains an
element of the form aj with j 2 0. Since H contains inverses and (aj)2 1 5 a2 j, bothaj and
a2 j are in H. Thus H contains positive powers of a. Let k be the least positive integer such
thatak [ H.

SinceH is closed and contains inverses, and since ak [ H, all powers (ak)t 5 akt are in
H. We need to show that any element of H is a power of ak. Let an [ H. There are integers
q andr such that

Now a2 kq 5 (ak)2 q [ H andan [ H imply that

is in H. Since 0# r , k andk is the least positive integer such that ak [ H, r must be zero
andan 5 akq. Thus H 5 HakI.

Corollary 3.21� 

Any subgroup of a cyclic group is cyclic. 

Note that Theorem 3.20 and Corollary 3.21 apply to infinite cyclic groups as well as to
finite ones. The next theorem, however, applies only to finite groups.

Strategy � In the proof of Theorem 3.22, we use the standard technique to prove that two sets A and
B are equal: We show that A 8 B and then that B 8 A.

Theorem 3.22� Generators of Subgroups

Let G be a finite cyclic group of order n with a [ G as a generator. For any integer m, the
subgroup generated by am is the same as the subgroup generated by ad, whered 5 (m, n). 

Proof Let d 5 (m, n), and let m 5 dp. Since am 5 adp 5 (ad)p, thenam is in HadI, and
thereforeHamI 8 HadI. (See Exercise 27 at the end of this section.)

Similarly, to show that HadI 8 HamI, it is sufficient to show that ad is in HamI. By
Theorem 2.12, there exist integers x andy such that

Sincea is a generator of G ando(G) 5 n, an 5 e. Using this fact, we have

Thusad is in HamI, and the proof of the theorem is complete. 

5 (am)x.
5 (am)x ?(e)y
5 (am)x ?(an)y
5 amx ?any

ad 5 amx1 ny

d 5 mx1 ny.

an ?a2 kq 5 akq1 r ?a2 kq 5 ar

n 5 kq 1 r with 0 # r , k.



As an immediate corollary to Theorem 3.22, we have the following result.

Corollary 3.23 � Distinct Subgroups of a Finite Cyclic Group

Let G be a finite cyclic group of order n with a [ G as a generator. The distinct subgroups
of G are those subgroups HadI whered is a positive divisor of n.

Corollary 3.23 provides a systematic way to obtain all the subgroups of a cyclic group
of order n. In the subgroup generated by ad, the exponent d divides n, the order of G. Then
there is a positive integer k such that n � dk andHadI � { ad, a2d, a3d, . . . , akd � an � e}.
Thus the order of HadI is k, ando .

Example 5 Let G 5 HaI be a cyclic group of order 12. The divisors of 12 are 1, 2, 3, 4,
6, and 12, so the distinct subgroups of G are

Thus Corollary 3.23 makes it easy to list all the distinct subgroups of a cyclic group.
Theorem 3.22 itself makes it easy to determine which subgroup is generated by each
element of the group. For our cyclic group of order 12,

�

The results in Example 5 lead us to a method for finding all generators of a finite cyclic
group. This method is described in the next theorem.

Theorem 3.24� Generators of a Finite Cyclic Group

Let G 5 HaI be a cyclic group of order n. Then am is a generator of G if and only if m and
n are relatively prime.

Proof On the one hand, if m is such that m and n are relatively prime, then d 5
(m, n) 5 1, and am is a generator of G by Theorem 3.22.

8a1195 8a95 G since (11, 12)5 1.

8a1095 8a29 since (10, 12)5 2

8a995 8a39 since (9, 12)5 3

8a895 8a49 since (8, 12)5 4

8a795 8a95 G since (7, 12)5 1

8a595 8a95 G since (5, 12)5 1

8a1295 8e95 5e6.

8a695 5a6, a12 5 e6

8a495 5a4, a8, a12 5 e6

8a395 5a3, a6, a9, a12 5 e6

8a295 5a2, a4, a6, a8, a10, a12 5 e6

8a95 G

18ad92 0o(G)
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On the other hand, if am is a generator of G, thena 5 (am)p for some integer p. By part
b of Theorem 3.17, this implies that 1; mp(modn). That is,

for some integer q. This gives

and it follows from Theorem 2.12 that (m, n) 5 1.

The Euler phi-function (n) was defined for positive integers n in Exercise 23 of Sec-
tion 2.8 as follows: (n) is the number of positive integers m such that and

. It follows, from Theorems 3.17 and 3.24, that the cyclic group HaI of order n
has distinct generators.

Example 6 Let G 5 HaI be a cyclic group of order 10. The positive integers less than
10 and relatively prime to 10 are 1, 3, 7, and 9. Therefore, all generators of G are included
in the list

andG has  distinct generators. �

Example 7 Some other explicit uses of Theorem 3.24 can be demonstrated by using Z7.
The generators of the additive group Z7 are those 3a4in Z7 such that a and 7 are

relatively prime, and this includes all nonzero 3a4. Thus every element of Z7, except [0],
generatesZ7 under addition.

The situation is quite different when we consider the group G of nonzero elements of
Z7 under multiplication. It is easy to verify that [3] is a generator:

According to Theorem 3.24, the only other generator of G is 3345 5 354, since 2, 3, 4, and 6
are not relatively prime to 6. �

Exercises3.4
True or False
Label each of the following statements as either true or false.

1. The order of the identity element in any group is 1.

2. Every cyclic group is abelian.

3. Every abelian group is cyclic.

4. If a subgroup H of a group G is cyclic, then G must be cyclic.

5. Whether a group G is cyclic or not, each element a of G generates a cyclic subgroup.

3345 5 354, 3346 5 314, 3347 5 334.

3342 5 324, 3343 5 364, 3344 5 344,

f (10) 5 4

a, a3, a7, and a9,

f  (n)
(m, n) 5 1

1 # m # nf
f

1 5 mp1 nq,

1 2 mp5 nq
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6. Every subgroup of a cyclic group is cyclic. 

7. If there exists an such that am � e, wherea is an element of a group G, then
.

8. Any group of order 3 must be cyclic.

9. Any group of order 4 must be cyclic.

10. Let a be an element of a group G. Then .

Exercises

1. List all cyclic subgroups of the group in Example 3 of Section 3.1.

2. Let G 5 {6 1, 6 i, 6 j, 6 k} be the quaternion group. List all cyclic subgroups of G.

3. Find the order of each element of the group in Example 3 of Section 3.1.

4. Find the order of each element of the group G in Exercise 2.

5. The elements of the multiplicative group G of 3 3 3 permutation matrices are given in
Exercise 29 of Section 3.1. Find the order of each element of the group.

6. In the multiplicative group of invertible matrices in M4(R), find the order of the given
elementA.

a. b.

7. Let a be an element of order 8 in a group G. Find the order of each of the following.

a. a2 b. a3 c. a4 d. a5 e. a6 f. a7 g. a8

8. Let a be an element of order 9 in a group G. Find the order of each of the following.

a. a2 b. a3 c. a4 d. a5 e. a6 f. a7 g. a8 h. a9

9. For each of the following values of n, find all distinct generators of the cyclic group Zn

under addition.

a. n 5 8 b. n 5 12 c. n 5 10

d. n 5 15 e. n 5 16 f. n 5 18

10. For each of the following values of n, find all subgroups of the cyclic group Zn under
addition and state their order.

a. n 5 12 b. n 5 8 c. n 5 10

d. n 5 15 e. n 5 16 f. n 5 18

11. According to Exercise 27 of Section 3.1, the nonzero elements of Zn form a group G
with respect to multiplication if n is a prime. For each of the following values of n,
show that this group G is cyclic.

a. n 5 7 b. n 5 5 c. n 5 11

d. n 5 13 e. n 5 17 f. n 5 19

A 5 D

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

TA 5 D

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

T

S(A)

S(A)

8a95 8a2 19

o(a) 5 m
m [ Z1

3.4 Cyclic Groups 171

Sec. 3.1, #28 @

Sec. 3.1, #29 @

Sec. 3.1, #27 @



12. For each of the following values of n, find all distinct generators of the group G
described in Exercise 11.

a. n 5 7 b. n 5 5 c. n 5 11

d. n 5 13 e. n 5 17 f. n 5 19

13. For each of the following values of n, find all subgroups of the group G described in 
Exercise 11, and state their order.

a. n 5 7 b. n 5 5 c. n 5 11

d. n 5 13 e. n 5 17 f. n 5 19

14. Prove that the set

is a cyclic subgroup of the group of all invertible matrices in M2(R). 

15. a. Use trigonometric identities and mathematical induction to prove that

for all integers n (positive, zero, or negative). Hence conclude that for a constant u,
the set

is a cyclic subgroup of the group of all invertible matrices in M2(R). 

b. Evaluate each element of H for u 5 90°.

c. Evaluate each element of H for u 5 120°.

16. For an integer n . 1, let G � Un, the group of units in Zn; that is, the set of all 3a4in Zn

that have multiplicative inverses. Prove that Un is a group with respect to multiplication.

17. Let Un be the group of units as described in Exercise 16. Prove that 3a4[ Un if and only
if a andn are relatively prime.

18. Let Un be the group of units as described in Exercise 16. For each value of n, write out
the elements of Un and construct a multiplication table for Un.

a. n 5 20 b. n 5 8 c. n 5 24 d. n 5 30

19. Which of the groups in Exercise 18 are cyclic?

20. Consider the group U9 of all units in Z9. Given that U9 is a cyclic group under multi-
plication, find all subgroups of U9.

21. SupposeG 5 HaI is a cyclic group of order n. Determine the number of generators of
G for each value of n and list all the distinct generators of G.

a. n 5 8 b. n 5 14 c. n 5 18

d. n 5 24 e. n 5 7 f. n 5 13

22. List all the distinct subgroups of each group in Exercise 21.

H 5 b B
cos nu 2 sin nu
sin nu cos nu

R2n [ Z r

B
cos u 2 sin u
sin u cos u

R
n

5 B
cos nu 2 sin nu
sin nu cos nu

R

H 5 b B
1 n
0 1

R2n [ Z r
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23. Let G 5 HaI be a cyclic group of order 24. List all elements having each of the follow-
ing orders in G.

a. 2 b. 3 c. 4 d. 10

24. Let G 5 HaI be a cyclic group of order 35. List all elements having each of the follow-
ing orders in G.

a. 2 b. 5 c. 7 d. 10

25. Describe all subgroups of the group Z under addition.

26. Find all generators of an infinite cyclic group G 5 HaI.

27. Let a andb be elements of the group G. Prove that if a [ HbI, thenHaI 8 HbI.

28. Let a andb be elements of a finite group G.

a. Prove that a anda2 1 have the same order.

b. Prove that a andbab2 1 have the same order.

c. Prove that abandbahave the same order.

29. Let G be a group and define the relation RonG by aRbif and only if a andb have the
same order. Prove that R is an equivalence relation.

30. Prove that a subset H of a finite group G is a subgroup of G if and only if

a. H is nonempty, and

b. a [ H andb [ H imply ab [ H.

(Hint: Use Corollary 3.16.)

31. In Exercise 17 of Section 3.3, the center Z(G) is defined as

Prove that if b is the only element of order 2 in G, thenb [ Z(G).

32. If a is an element of order m in a group G andak 5 e, prove thatmdivides k.

33. If G is a cyclic group, prove that the equation x2 5 ehas at most two distinct solutions
in G.

34. Let G be a finite cyclic group of order n. If d is a positive divisor of n, prove that the
equationxd 5 ehas exactly d distinct solutions in G.

35. If G is a cyclic group of order p andp is a prime, how many elements in G are generators
of G?

36. Suppose that a andb are elements of finite order in a group such that ab 5 ba and
HaI d HbI 5 { e}. Prove that o(ab) is the least common multiple of o(a) and o(b). 

37. Suppose that a is an element of order min a group G, andk is an integer. If d 5 (k, m),
prove that ak has order m>d.

38. Assume that is a cyclic group of order . Prove that if divides , then has
a subgroup of order . 

39. Supposea is an element of order mnin a group G, wheremandn are relatively prime.
Prove thata is the product of an element of ordermand an element of ordern.

r
GnrnG 5 8a9

Z(G) 5 5a [ G 0ax 5 xa for every x [ G6.
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40. Prove or disprove: If every nontrivial subgroup of the group G is cyclic, then G is a
cyclic group.

41. Let G be an abelian group. Prove that the set of all elements of finite order in G forms
a subgroup of G. This subgroup is called the torsion subgroupof G.

42. Let d be a positive integer and the Euler phi-function. Use Corollary 3.23 and the
additive groups Zd to show that

where the sum has one term for each positive divisor d of n.

3.5 Isomorphisms

It turns out that the permutation groups can serve as models for all groups. For this reason,
we examine permutation groups in great detail in the next chapter. In order to describe their
relation to groups in general, we need the concept of an isomorphism. Before formally in-
troducing this concept, however, we consider some examples.

Example 1 Consider a cyclic group of order 4. If G is a cyclic group of order 4, it
must contain an identity element eand a generator a 2 ein G. The proof of Theorem 3.17
shows that

wherea4 5 e. A multiplication table for G would have the form shown in Figure 3.14.

G 5 5e, a, a2, a3
 6

n 5 a
d 0n

f (d)

f (d)

174 Chapter 3 Groups

Sec. 4.5, #5 !

Sec. 4.6, #23 !

Sec. 2.8, #23 �

e a a2 a3

e e a a2 a3

a a a2 a3 e

a2 a2 a3 e a

a3 a3 e a a2

?

� Figure 3.14

In a very definite way, then, the structure of G is determined. The details as to what the
elementa might be and what the operation in G might be may vary, but the basic structure
of G fits the pattern in the table. �

Example 2 Let us consider a group related to geometry. We begin with an equilateral
triangleT with center point O and vertices labeled V1, V2, andV3 (see Figure 3.15).



The equilateral triangle, of course, consists of the set of all points on the three sides of the
triangle. By a rigid motion of the triangle, we mean a bijection of the set of points of the tri-
angle onto itself that leaves the distance between any two points unchanged. In other words,
a rigid motion of the triangle is a bijection that preserves distances. Such a rigid motion must
map a vertex onto a vertex, and the entire mapping is determined by the images of the vertices
V1,V2, andV3. These rigid motions (or symmetries,as they are often called) form a group with
respect to mapping composition. (Verify this.) There are a total of six elements in the group,
and they may be described as follows:

1. e, the identity mapping, that leaves all points unchanged.

2. r, a counterclockwise rotation through 120° about O in the plane of the triangle.

3. r2 5 r +r, a counterclockwise rotation through240° about O in the plane of the
triangle.

4. A reflection f about the line L1 throughV1 andO.

5. A reflection g about the line L2 throughV2 andO.

6. A reflection h about the line L3 throughV3 andO.

These rigid motions can be described by indicating their values at the vertices as follows:

r2: c
r2(V1) 5 V3

r2(V2) 5 V1

r2(V3) 5 V2

  f: c
f (V1) 5 V1

f (V2) 5 V3

f (V3) 5 V2 .

r : c
r(V1) 5 V2

r(V2) 5 V3

r(V3) 5 V1

  g: c
g(V1) 5 V3

g(V2) 5 V2

g(V3) 5 V1

e: c
e(V1) 5 V1

e(V2) 5 V2

e(V3) 5 V3

  h: c
h(V1) 5 V2

h(V2) 5 V1

h(V3) 5 V3
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V3

V2V1

L 1L 2

L 3

O



We have a group

andG has the multiplication table shown in Figure 3.16.

G 5 5e, r, r2, h, g, f 6,
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e r r2 h g f

e e r r2 h g f

r r r 2 e g f h

r2 r2 e r f h g

h h f g e r2 r

g g h f r e r2

f f g h r2 r e

°

� Figure 3.16

� Figure 3.17

We shall compare this group G with the group from Example 3 of Section 3.1,
and we shall see that they are the same except for notation. Let the elements of G corre-
spond to those of according to the mapping f : G S given by

This mapping is a one-to-one correspondence from G to . Moreover,f has the prop-
erty that

for all x andy in G. This statement can be verified by using the multiplication tables for G and
in the following manner: In the entire multiplication table for G, we replace each element

x [ G by its image f (x) in . This yields the table in Figure 3.17, which hasf (xy) in the
row with f (x) at the left and in the column with f (y) at the top.

S(A)
S(A)

f (xy) 5 f (x) ?f (y)

S(A)

f (r2) 5 r 2  f ( f ) 5 d .

f (r) 5 r   f (g) 5 g

f (e) 5 IA  f (h) 5 s

S(A)S(A)

S(A)

IA

IA IA r r 2 s g d

r r r 2 IA g d s

r 2 r 2 IA r d s g

s s d g IA r 2 r

g g s d r IA r 2

d d g s r 2 r IA

dgsr 2r



The multiplication table for given in Example 3 of Section 3.1 furnishes a table
of values forf (x) ? f (y), and the two tables agree in every position.• This means that
f (xy) 5 f (x) ? f (y) for all x and y in G. Thus G and are the same except for
notation. �

A mapping such as f in the preceding example is called an isomorphism.

Definition 3.25� Isomorphism, Automorphism

Let G be a group with respect to and let Gr be a group with respect to A mapping
f : G S Gr is an isomorphism from G to Gr if

1. f is a one-to-one correspondence from G to Gr, and

2. f (x y) 5 f (x) f (y) for all x andy in G.

If an isomorphism from G to Gr exists, we say that G is isomorphic to Gr, and we use the
notation as shorthand for this phrase. An isomorphism from a group G to G itself
is called an automorphism of G.

The use of and in Definition 3.25 is intended to emphasize the fact that the group
operations may be different. Now that this point has been made, we revert to our conven-
tion of using the multiplicative notation for the group operation. An isomorphism is said to
•preserve the operation,Ž since condition 2 of Definition 3.25 requires that the result be the
same whether the group operation is performed before or after the mapping.

The notation > in Definition 3.25 is not standardized. The notations. , , and are
used for the same purpose in some other texts.

Because an isomorphism preserves the group operation between two groups, it is not sur-
prising that the identity elements always correspond under an isomorphism and that inverses
are always mapped onto inverses. These results are stated more precisely in the next theorem.

Theorem 3.26� Images of Identities and Inverses

Supposef is an isomorphism from the group G to the group Gr. If edenotes the identity in
G ander denotes the identity in Gr, then

a. f (e) 5 er, and

b. f (x2 1) 5 3f (x)42 1 for all x in G.

Proof We have

� f (e) 5 er by Theorem 3.4e.

� f (e) ?f (e) 5 f (e) ?er since er is an identity

� f (e) ?f (e) 5 f (e) since f  is an isomorphism

e ?e 5 e � f (e ?e) 5 f (e)    

<.,

u*s*

G > Gr

u*s*

u* .s* ,

S(A)

S(A)
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•Note that the e in Example 3 of Section 3.1 stands for IA.

p � q



For any x in G,

Similarly, x2 1 ?x 5 e impliesf (x2 1) ?f (x) 5 er, and therefore f (x2 1) 5 3f (x)42 1.

The concept of isomorphism introduces the relation of being isomorphic on a collection
g of groups. This relation is an equivalence relation, as the following statements show.

1. Any group G in the collection g is isomorphic to itself. The identity mapping IG is an
automorphism of G.

2. If G andGr are in g andG is isomorphic to Gr, thenGr is isomorphic to G. In fact, if
f is an isomorphism from G to Gr, thenf 2 1 is an isomorphism from Gr to G. (See Ex-
ercise 1 at the end of this section.)

3. SupposeG1, G2, G3 are in g . If G1 is isomorphic to G2 andG2 is isomorphic to G3, then
G1 is isomorphic to G3. It is left as an exercise to show that if f 1 is an isomorphism
from G1 to G2 andf 2 is an isomorphism from G2 to G3, thenf 2f 1 is an isomorphism
from G1 to G3.

The fundamental idea behind isomorphisms is this: Groups that are isomorphic have
the same structure relative to their respective group operation. They are algebraically the
same, although details such as the appearance of the elements or the rule defining the op-
eration may vary.

From our discussion at the beginning of this section, we see that any two cyclic groups
of order 4 are isomorphic. In fact, any two cyclic groups of the same order are isomorphic
(see Exercises 25 and 26 at the end of this section).

The next two examples emphasize the fact that the elements of two isomorphic groups
and their group operations may be quite different from each other.

Example 3 Consider G 5 {1, i, 2 1, 2 i } under multiplication and Gr 5 Z4 5
under addition. Let f : G S Gr be defined by

This defines a one-to-one correspondence f from G to Gr. To see that f is an isomorphism
from G to Gr, we use the group tables for G andGr in the same way as in Example 2 of this
section. Beginning with the multiplication table for G, we replace each x in the table with
f (x) (see Figures 3.18 and 3.19). Since the resulting table (Figure 3.19) agrees completely
with the addition table for Z4, we conclude that

for all x [ G, y [ G and therefore that f is an isomorphism from G to Gr.

f (xy) 5 f (x) 1 f (y)

f (1) 5 304,  f (i) 5 314,  f (2 1) 5 324,  f (2 i) 5 334.

5304, 314, 324, 3346

� f (x) ?f (x2 1) 5 er.  

� f (x ?x2 1) 5 er  by part a

x ?x2 1 5 e � f (x ?x2 1) 5 f (e)
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We conclude this section with an example involving matrices.

Example 4 The multiplicative groupG of 3 3 3 permutation matrices was introduced
in Exercise 29 of Section 3.1. This groupG is given byG 5 { I3, P1, P2, P3, P4, P5}, where

We shall show that this group is isomorphic to the group 5 { IA, r , r 2, s , g, d} that
appears in Example 2 of this section.

A multiplication table for G is needed as a guide in defining an isomorphism from G
to . In constructing this table, we find that

Using the group table for in Figure 3.17 as a pattern, we list the elements of G across
the table in the order

and evaluate all the products as shown inFigure 3.20. Acomparison of the group tables
for G and suggests that the one-to-one correspondencef : G S given by

might be an isomorphism. To verify the property we replace each x in
the table for G with its image in . The resulting table is shown in Figure 3.21, and
it agrees in every position with the group table for in Figure 3.17. Thus is an iso-
morphism from G to . S(A)

fS(A)
S(A)f (x)

f (xy) 5 f (x) f (y),

f (P1) 5 s  f (P4) 5 g  f (P2) 5 d
f (I3) 5 IA f (P3) 5 r  f AP2

3B5 r 2

S(A)S(A)

I3, P3, P2
3, P1, P4, P2

S(A)

P2
3 5 P5,  P3

3 5 I3,  P3 P1 5 P4,  and  P3 P4 5 P2.

S(A)

S(A)

P4 5 C
0 0 1
0 1 0
1 0 0

S,  P5 5 C
0 0 1
1 0 0
0 1 0

S.

P1 5 C
1 0 0
0 0 1
0 1 0

S,  P2 5 C
0 1 0
1 0 0
0 0 1

S,  P3 5 C
0 1 0
0 0 1
1 0 0

S,
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Multiplication Table for G

1 i 2 1 2 i

1 1 i 2 1 2 i

i i 2 1 2 i 1

2 1 2 1 2 i 1 i

2 i 2 i 1 i 2 1

?

Table of f (xy )

304 304 314 324 334

314 314 324 334 304

324 324 334 304 314

334 334 304 314 324

334324314304

h
f

� Figure 3.18 � Figure 3.19



Exercises3.5
True or False
Label each of the following statements as either true or false.

1. Any two cyclic groups of the same order are isomorphic.

2. Any two abelian groups of the same order are isomorphic.

3. Any isomorphism is an automorphism.

4. Any automorphism is an isomorphism.

5. If two groups G and have order 3, then G and are isomorphic.

6. Any two groups of the same finite order are isomorphic.

7. Two groups can be isomorphic even though their group operations are different.

8. The relation of being isomorphic is an equivalence relation on a collection of groups.

Exercises

1. Prove that if f is an isomorphism from the group G to the group Gr, thenf 2 1 is an
isomorphism from Gr to G.

2. Let G1, G2, andG3 be groups. 

a. Prove that if f 1 is an isomorphism from G1 to G2 andf 2 is an isomorphism from G2

to G3, thenf 2f 1 is an isomorphism from G1 to G3.

b. If f 1 is an isomorphism from G1 to G3andf 2 is an isomorphism from G2 to G3, find
an isomorphism from G1 to G2.

3. Find an isomorphism from the additive group• Z4 5 3044, 3144, 3244, 3344 to the mul-
tiplicative group of units U5 5 3145, 3245, 3345, 3445 8 Z5.65

65

GrGr

180 Chapter 3 Groups

Multiplication Table for G

I3 P3 P P1 P4 P2

I3 I3 P3 P1 P4 P2

P3 P3 I3 P4 P2 P1

I3 P3 P2 P1 P4

P1 P1 P2 P4 I3 P3

P4 P4 P1 P2 P3 I3

P2 P2 P4 P1 P3 I3P 2
3

P 2
3

P 2
3

P 2
3P 2

3

P 2
3

P 2
3

2
3?

Table of f (xy)

IA r r 2 s g d

IA IA r r 2 s g d

r r r 2 IA g d s

r 2 r 2 IA r d s g

s s d g IA r 2 r

g g s d r IA r 2

d d g s r 2 r IA

h
f

�� Figure 3.20 � Figure 3.21

Sec. 3.4, #16 @

•For clarity, we are temporarily writing 3a4n for 3a4[ Zn.



4. Let G 5 {1, i, 2 1, 2 i} under multiplication, and let Gr 5 Z4 5 304, 314, 324, 334
under addition. Find an isomorphism from G to Gr that is different from the one given
in Example 3 of this section.

5. Let H be the group given in Exercise 16 of Section 3.3, and let be as given in
Example 4 of this section. Find an isomorphism from H to . 

6. Find an isomorphism from the additive group Z6 5 3a46 to the multiplicative group
of units U7 5 3a47 [ Z7 3a47 2 3047 .

7. Find an isomorphism f from the additive group Z to the multiplicative group

and prove that f (x 1 y) 5 f (x)f (y). 

8. Find an isomorphism from the group G 5 {1, i, 2 1, 2 i} in Example 3 of this section
to the multiplicative group

.

9. Find an isomorphism f from the multiplicative group G of nonzero complex numbers
to the multiplicative group

and prove that f (xy) 5 f (x)f (y). 

10. Find an isomorphism from the multiplicative group

to the group with multiplication table in Figure 3.22. This group is
known as the Klein • four group.

G 5 5e, a, b, ab6

H 5 b B
1 0
0 1

R, B
1 0
0 2 1

R, B
2 1 0

0 1
R, B

2 1 0
0 2 1

R r

H 5 b B
a 2 b
b a

R 2a,b [ R and a2 1 b2 2 0r

H 5 b B
1 0
0 1

R, B
i 0
0 2 i

R, B
2 i 0

0 i
R, B

2 1 0
0 2 1

R r

H 5 b B
1 n
0 1

R 2n [ Z r

605
65

S(A)
S(A)

65
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e a b ab

e e a b ab

a a e ab b

b b ab e a

ab ab b a e

?

� Figure 3.22

•Felix Christian Klein (1849…1925) was a German mathematician known for his work on the connections
between geometry and group theory. Klein successfully worked toward the admission of women to the
University of Göttingen in Germany in 1893, and supervised the first Ph.D. thesis by a woman at Göttingen.



11. The following set of matrices

forms a group H with respect to matrix multiplication. Find an isomorphism from H to
the quaternion group.

12. Let G be the additive group of all real numbers, and let Gr be the group of all positive
real numbers under multiplication. Verify that the mapping f : G S Gr defined by
f (x) 5 10x is an isomorphism from G to Gr.

13. Let G andGrbe as given in Exercise 12. Verify that the mapping u: Gr S G defined by
u(x) 5 log x is an isomorphism from Gr to G.

14. Assume that the nonzero complex numbers form a group G with respect to multipli-
cation. If a andb are real numbers and the conjugate of the complex
numbera 1 bi is defined to be a 2 bi. With this notation, let f : G S G be defined
by f (a 1 bi) 5 a 2 bi for all a 1 bi in G. Prove that f is an automorphism of G.

15. Let G be a group. Prove that G is abelian if and only if the mapping f : G S G defined
by f (x) 5 x� 1 for all x in G is an automorphism.

16. Suppose and let be defined by Prove or dis-
prove that is an automorphism of the additive group 

17. According to Exercise 27a of Section 3.1,Un, the set of nonzero elements of Zn, forms
a group with respect to multiplication if n is prime. Prove or disprove that the mapping
f : Un S Un defined by the rule in Exercise 16 is an automorphism of Un.

18. For each a in the group G, define a mapping ta: G S G by ta(x) 5 axa2 1. Prove that
ta is an automorphism of G.

19. For a fixed group G, prove that the set of all automorphisms of G forms a group with
respect to mapping composition.

20. AssumeG is a (not necessarily finite) cyclic group generated by a in G, and let f be
an automorphism of G. Prove that each element of G is equal to a power of f (a); that
is, prove that f (a) is a generator of G.

21. Let G be as in Exercise 20. Suppose also that ar is a generator of G. Define f on G by
f(a) 5 ar, f(ai) 5 (ar)i 5 ari. Prove that f is an automorphism of G.

22. Let G be the multiplicative group of units Un. For each value of n, use the results of
Exercises 20 and 21 to list all the automorphisms of G. For each automorphism f ,
write out the images f (x) for all x in G.

a. n 5 5 b. n 5 7

23. Use the results of Exercises 20 and 21 to find the numberof automorphisms of the
additive group Zn for the given value of n.

a. n 5 3 b. n 5 4 c. n 5 8 d. n 5 6

Zn.f
f 13a425 m3a4.f : Zn S Zn(m, n) 5 1

i 5 ! 2 1,

B
i 0
0 2 i

R, B
2 i 0

0 i
R, B

0 i
i 0

R, B
0 2 i

2 i 0
R

B
1 0
0 1

R, B
2 1 0

0 2 1
R, B

0 1
2 1 0

R, B
0 2 1
1 0

R,
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24. Prove that any cyclic group of finite order n is isomorphic to Zn under addition.

25. For an arbitrary positive integern, prove that any two cyclic groups of ordern are
isomorphic.

26. Prove that any infinite cyclic group is isomorphic to Z under addition.

27. Let H be the group Z6 under addition. Find all isomorphisms from the multiplicative
groupU7 of units in Z7 to H.

28. Suppose that G andH are isomorphic groups. Prove that G is abelian if and only if H
is abelian.

29. Prove that if G andH are two groups that contain exactly two elements each, then G
andH are isomorphic.

30. Prove that any two groups of order 3 are isomorphic.

31. Exhibit two groups of the same finite order that are not isomorphic.

32. Let f be an isomorphism from group G to group H. Let x be in G. Prove that f (xn) �
(f (x))n for every integer n.

33. If G andH are groups and f : G S H is an isomorphism, prove that a andf (a) have the
same order, for any a [ G.

34. Suppose that f is an isomorphism from the group G to the group Gr.
a. Prove that if H is any subgroup of G, thenf (H) is a subgroup of Gr.
b. Prove that if K is any subgroup of Gr, thenf 2 1(K) is a subgroup of G.

3.6 Homomorphisms

We saw in the last section that an isomorphism between two groups provides a connection
that shows that the two groups have the same structure relative to their group operations. It
is for this reason that the concept of an isomorphism is extremely important in algebra.

The namehomomorphismis given to another important type of mapping that is related to,
but different from, the isomorphism. The basic differences are that a homomorphism is not
required to be one-to-one and also not required to be onto. The formal definition is as follows.

Definition 3.27� Homomorphism, Endomorphism, Epimorphism, Monomorphism

Let G be a group with respect to and let Gr be a group with respect to A homomor-
phism from G to Gr is a mapping f : G S Gr such that

for all x andy in G. If G � Gr, the homomorphism f is an endomorphism.A homomor-
phismf is called an epimorphism if f is onto, and a monomorphismif f is one-to-one. 

As we did with isomorphisms, we drop the special symbols and and simply write
f (xy) 5 f (x)f (y) for the given condition.

As already noted, a homomorphism f from G to Gr need not be one-to-one or onto. If
f is both (that is, if f is a bijection), then f is an isomorphism as defined in Definition 3.25.

u*s*

f (x s* y) 5 f (x) u* f (y)

u* .s* ,
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Our first example of a homomorphism has a natural connection with our work in
Chapter 2.

Example 1 For a fixed integer n . 1, consider the mapping f from the additive group
Z to the additive group Zn defined by

where3x4is the congruence class in Zn that contains x. From the properties of addition in Zn

(see Section 2.6), it follows that

Thusf is a homomorphism. It follows from the definition of Zn thatf is onto, so f is, in
fact, an epimorphism from Z to Zn. Since f (0) 5 f (n) 5 [0], then f is not one-to-one
and hence not a monomorphism. �

Example 2 For two arbitrary groups G andGr, let er denote the identity element in Gr
and define f : G S Gr by f (x) 5 er for all x [ G. Then, for all x andy in G,

andf is a homomorphism from G to Gr. If Gr has order greater than 1, then f is not onto
and hence not an epimorphism. Also f is not one-to-one, since for any we have

. Thus f is not a monomorphism. �

The two previous examples show that, unlike the situation with isomorphisms, the
existence of a homomorphism from G to Gr does not imply that G andGr have the same
structure. However, we shall see that the existence of a homomorphism can reveal impor-
tant and interesting information relating their structures. As with isomorphisms, we say
that a homomorphism •preserves the group operation.Ž Two simple consequences of this
condition are that identities must correspond and inverses must be mapped onto inverses.
This is stated in our next theorem, and the proofs are requested in the exercises.

Theorem 3.28� Images of Identities and Inverses

Let f be a homomorphism from the group G to the group Gr. If edenotes the identity in G,
ander denotes the identity in Gr, then

a. f (e) 5 er, and

b. f (x2 1) 5 3f (x)42 1 for all x in G.

f (x) 5 f (y) 5 er
x 2 y,

5 f (xy),

5 er

f (x) ?f (y) 5 er ?er

5 f (x) 1 f (y).

5 3x41 3y4

f (x 1 y) 5 3x 1 y4

f (x) 5 3x4,
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The following examples give some indication of the variety that is in homomorphisms.
Other examples appear in the exercises for this section.

Example 3 Consider the group G of nonzero real numbers under multiplication and the
additive group Z. Define f : Z S G by

Since every integer is either even or odd and not both,f (n) is well-defined. The following
table systematically checks the equality f (m 1 n) 5 f (m) ?f (n). 

f (n) 5 b
2 1 if n is even
2 1 if n is odd.

3.6 Homomorphisms 185

m 1 n f (m) ?f (n) f (m 1 n)

m, n both even even (1)(1) 1

one even, one odd odd (1)(2 1) 2 1

m, n both odd even (2 1)(2 1) 1

A comparison of the last two columns shows that f is indeed a homomorphism from Z to
G. However since f is not onto, it is not an epimorphism. Since f (0) � f (2) � 1, then f
is not one-to-one and hence not a monomorphism. �

Example 4 Consider the additive group Z and the mapping f : Z S Z defined by
f (x) 5 5x for all x [ Z. Since

f is an endomorphism. Clearly,f is not an epimorphism since f is not onto. However,
sincef (x) � f (y) implies 5x � 5y andx � y, thenf is a monomorphism. �

We saw in the last section that the relation of being isomorphic is an equivalence rela-
tion on a given collection Gof groups. The concept of homomorphism leads to a correspon-
ding, but different, relation. If there exists an epimorphism from the group G to the group Gr,
thenGr is called a homomorphic imageof G. Example 1 in this section shows that the
additive group Zn is a homomorphic image of the additive group Z.

On a given collection of groups, the relation of being a homomorphic image is
reflexive and transitive but may not be symmetric. These facts are brought out in the exer-
cises for this section.

The real importance of homomorphisms will be much clearer at the end of Section 4.6
in the next chapter. The kernel of a homomorphism is one of the key concepts in that
section.

G

5 f (x) 1 f (y),
5 5x 1 5y

f (x 1 y) 5 5(x 1 y)



Definition 3.29� Kernel

Let f be a homomorphism from the groupG to the groupGr. Thekernel of f is the set

whereer denotes the identity in Gr.

Example 5 To illustrate Definition 3.29, we list the kernels of the homomorphisms
from the preceding examples in this section.

The kernel of the homomorphism f : Z S Zn defined by f (x) 5 3x4in Example 1 is
given by

sincef (x) 5 3x45 304if and only if x is a multiple of n.
The homomorphism f : Z S G in Example 3 defined by

has the set E of all even integers as its kernel, since 1 is the identity in G.
Forf : Z S Z defined by f (x) 5 5x in Example 4, we have kerf 5 {0}, since 5x 5 0

if and only if x 5 0. This kernel is an extreme case since part a of Theorem 3.28 assures us
that the identity is always an element of the kernel.

At the other extreme, the homomorphism f : G S Grdefined in Example 2 by f (x) 5 er
for all x [ G has ker f 5 G. �

Exercises3.6
True or False
Label each of the following statements as either true or false.

1. Every homomorphism is an isomorphism.

2. Every isomorphism is a homomorphism.

3. Every endomorphism is an epimorphism.

4. Every epimorphism is an endomorphism.

5. Every monomorphism is an isomorphism.

6. Every isomorphism is an epimorphism and a monomorphism.

7. The relation of being a homomorphic image is an equivalence relation on a collection
of groups.

8. The kernel of a homomorphism is never empty.

9. It is possible to find at least one homomorphism from any group G to any group .

10. If there exists a homomorphism from group G to group , then is said to be a
homomorphic image of G.

GrGr

Gr

f (n) 5 b
2 1  if n is even
2 1  if n is odd

ker f 5 5x [ Z 0x 5 kn for some k [ Z6,

ker f 5 5x [ G 0f (x) 5 er6
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Exercises

1. Each of the following rules determines a mapping f : G S G, whereG is the group
of all nonzero real numbers under multiplication. Decide in each case whether or not
f is an endomorphism. For those that are endomorphisms, state the kernel and decide
whetherf is an epimorphism or a monomorphism.

a. f (x) 5 0x0 b. f (x) 5 1>x

c. f (x) 5 2 x d. f (x) 5 x2

e. f.

g. h.

2. Each of the following rules determines a mapping f from the additive group Z4 to
the additive groups Z2. In each case prove or disprove that f is a homomorphism. If
f is a homomorphism, find ker f and decide whether f is an epimorphism or a
monomorphism.

a. b.

3. Consider the additive groups of real numbers R and complex numbers C and define  f :
R S C by . Prove that f is a homomorphism and find ker f . Is f an epi-
morphism? Is f a monomorphism?

4. Consider the additive group Z and the multiplicative group and
define f : Z S G by . Prove that f is a homomorphism and find ker f . Is f
an epimorphism? Is f a monomorphism?

5. Consider the additive group Z12 and define f : Z12 S Z12 by . Prove that
f is a homomorphism and find ker f . Is f an epimorphism? Is f a monomorphism?

6. Consider the additive groups Z12 andZ6 and define f : Z12 S Z6 by
Prove that f is a homomorphism and find ker f . Is f an epimorphism? Is f a
monomorphism?

7. Consider the additive groups Z8 andZ4 and define f : Z8 S Z4 by Prove
thatf is a homomorphism and find ker f . Is f an epimorphism? Is f a monomorphism?

8. Consider the additive groups M2(Z) and Z and define f : M2(Z) S Z by

a. Prove that f is a homomorphism and find ker f . Is f an epimorphism? Is f a
monomorphism?

9. Let G be the multiplicative group of invertible matrices in M2(R), and let Gr be the
group of nonzero real numbers under multiplication. Prove that the mapping f :
G S Gr defined by

is a homomorphism. Is f an epimorphism? Is f a monomorphism? (The value of this
mapping is called the determinant of the matrix.)

f a c
a b
c d

d b5 ad 2 bc

f a c
a b
c d

d b5

f (3x48) 5 3x44.

f (3x412) 5 3x46.

f (3x4) 5 33x4

f (n) 5 in
G 5 51, i, 2 1, 2 i6

f (x) 5 x 1 0i

f (3x4) 5 3x 1 24f (3x4) 5 b
 304  if x is even
 314  if x is odd

f (x) 5
x
2

f (x) 5 "3 x

f (x) 5 x2 1 1f (x) 5
|x|
x
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10. Find an example of G, Gr, andf such that G is a nonabelian group,Gr is an abelian
group, and f is an epimorphism from G to Gr.

11. Let f be a homomorphism from the group G to the group Gr.

a. Prove part a of Theorem 3.28: If e denotes the identity in G ander denotes the
identity in Gr, thenf (e) 5 er.

b. Prove part b of Theorem 3.28:f (x2 1) 5 3f (x)42 1 for all x in G.

12. Prove that on a given collection G of groups, the relation of being a homomorphic
image has the reflexive property.

13. Suppose that G, Gr, and Gs are groups. If Gr is a homomorphic image of G, andGs is
a homomorphic image of Gr, prove that Gs is a homomorphic image of G. (Thus the
relation in Exercise 12 has the transitive property.)

14. Find two groups G andGr such that Gr is a homomorphic image of G but G is not a
homomorphic image of Gr. (Thus the relation in Exercise 12 does not have the symmet-
ric property.)

15. Suppose that f is an epimorphism from the group G to the group Gr. Prove that f is an
isomorphism if and only if ker f 5 { e}, where edenotes the identity in G.

16. If G is an abelian group and the group Gr is a homomorphic image of G, prove that Gr
is abelian.

17. Let a be a fixed element of the multiplicative group G. Define f from the additive
groupZ to G by f (n) 5 an for all n [ Z. Prove that f is a homomorphism.

18. With f as in Exercise 17, show that f (Z) 5 HaI, and describe the kernel of f .

19. Assume that f is a homomorphism from the group G to the group Gr.

a. Prove that if H is any subgroup of G, thenf (H) is a subgroup of Gr.

b. Prove that if K is any subgroup of Gr, thenf 2 1(K) is a subgroup of G.

20. Assume that the group Gr is a homomorphic image of the group G.

a. Prove that Gr is cyclic if G is cyclic.

b. Prove that o(Gr) divideso(G), whetherG is cyclic or not.

21. Let f be a homomorphism from the group G to the group , where the cyclic
group generated by a. Show that f is completely determined by the image of the gen-
eratora of G.

G 5 8a9,Gr
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A Pioneer in Mathematics
Niels Henrik Abel (1802…1829)

Niels Henrik Abel was a leading 19th-century Norwegian mathematician.
Although he died at the age of 27, his accomplishments were
extraordinary, and he is Norway•s most noted mathematician. His
memory is honored in many ways. A monument to him was erected at
Froland Church, his burial place, by his friend Baltazar Mathias Keilhau.
History tells us that on his deathbed, Abel jokingly asked his friend to
care for his fiancée after his death, perhaps by marrying her. (After Abel
died, Keilhau did marry Abel•s fiancée.) A statue of Abel stands in the
Royal Park of Oslo, and Norway has issued five postage stamps in his

honor. Many theorems of advanced mathematics bear his name. Probably the most lasting
and significant recognition is in the term abelian group, coined around 1870.

Abel was one of seven children of a pastor. When he was 18 his father died, and
supporting the family became his responsibility. In spite of this burden, Abel continued his
study of mathematics and successfully solved a problem that had baffled mathematicians
for more than 300 years: He proved that the general fifth-degree polynomial equation could
not be solved using the four basic arithmetic operations and extraction of roots.

Although Abel never held an academic position, he continued to pursue his
mathematical research, contributing not only to the groundwork for what later became
known as abstract algebra but also to the theory of infinite series, elliptic functions, elliptic
integrals, and abelian integrals.

In Berlin, Abel became friends with August Leopold Crelle (1780…1856), a civil
engineer and founder of the first journal devoted entirely to mathematical research. It was
only through Crelle•s friendship and respect for Abel•s talent that many of Abel•s papers
were published. In fact, Crelle finally obtained a faculty position for Abel at the University of
Berlin, but unfortunately, the news reached Norway two days after Abel•s death.
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inverse, 138
isomorphism, 177
kernel of a homomorphism, 186
monomorphism, 183

nontrivial subgroup, 152
order of a group, 141
order of an element, 167
reverse order law, 146

rigid motion, 175
subgroup, 152
subgroup generated by a, 159
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C H A P T E R  F O U R

Introduction

The first two sections of this chapter present the standard material on permutation groups,
and the optional Section 4.3 contains some real-world applications of such groups. The next
section introduces cosets of a subgroup, a concept necessary to the study of normal sub-
groups and quotient groups in the next two sections. The chapter then concludes with two
optional sections that present some results on finite abelian groups and give a sample of
more advanced work.

The set Zn of congruence classes modulo n makes isolated appearances in this chapter.

4.1 Finite Permutation Groups

An appreciation of the importance of permutation groups must be based to some extent on a
knowledge of their structures. The basic facts about finite permutation groups are presented
in this section, and their importance is revealed in the next two sections.

SupposeA is a finite set of n elements„say,

Any permutation f onA is determined by the choices for the n values

In assigning these values, there are n choices for f (a1), then n 2 1 choices of f (a2), then
n 2 2 choices of f (a3), and so on. Thus there are n(n 2 1) g (2)(1)5 n! different ways in
which f can be defined, and S(A) has n! elements. Each element f in S(A) can be repre-
sented by a matrix (rectangular array) in which the image of ai is written under ai:

Each permutation f on A can be made to correspond to a permutation f r on B 5
{1, 2, c , n} by replacing ak with k for k 5 1, 2,c , n:

f r 5 B
1 2 c n

f r(1) f r(2) c f r(n)
R.

f 5 B
a1 a2

c an

f (a1) f (a2) c f (an)
R.

f (a1), f (a2), c , f (an).

A 5 5a1, a2, c , an6.

More on Groups 



The mapping f S f r is an isomorphism from S(A) to S(B), and the groups are the same
except for notation. For this reason, we will henceforth consider a permutation on a set of
n elements as being written on the set B 5 {1, 2, c , n} . The group S(B) is known as the
symmetric group onn elements, and it is denoted by Sn.

Example 1 As an illustration of the matrix representation, the notation

indicates that f is an element of S5 and that f (1) 5 3, f(2) 5 5, f(3) 5 1, f(4) 5 4, and
f(5) 5 2. �

Definition 4.1 � Cycle

An element f of Sn is a cycleif there exists a set {i1, i2, c , ir} of distinct integers such that

and f leaves all other elements fixed. 

By this definition,f is a cycle if there are distinct integers i1, i2, c , ir such thatf maps
these elements according to the cyclic pattern

and f leaves all other elements fixed. A cycle such as this can be written in the form

,

where it is understood thatf (ik) 5 ik1 1 for 1 # k , r, and f (ir) 5 i1.

Example 2 The permutation

can be written simply as

This expression is not unique, because

�5 (7, 2, 6, 4).
5 (4, 7, 2, 6)
5 (6, 4, 7, 2)

f 5 (2, 6, 4, 7)

f 5 (2, 6, 4, 7).

f 5 B
1 2 3 4 5 6 7
1 6 3 7 5 4 2

R

f 5 (i1, i2, c , ir)

i1 S i2 S i3 S c S ir 2 1 S ir ,

f (i1) 5 i2, f (i2) 5 i3, c , f (ir 2 1) 5 ir , f (ir) 5 i1,

f 5 B
1 2 3 4 5
3 5 1 4 2

R
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Example 3 It is easy to write the inverse of a cycle. Since f (ik) 5 ik1 1 implies
f 2 1(ik1 1) 5 ik, we only need to reverse the order of the cyclic pattern. For 

we have

�

Not all elements of Sn are cycles, but every permutation can be written as a product of
mutually disjoint cycles. As an example, consider the permutation

When we use the same representation scheme withf (k) written beneath k, the result of a
rearrangement of the columns in the matrix still represents f :

The columns have been arranged in a special way: Iff (p) 5 q, the column with q at the
top has been written next after the column with p at the top. This arranges the elements in
the first row so thatf maps them according to the following pattern:

Thus 1, 3, 2, and 8 are mapped in a circular pattern, and so are 4 and 6, and 5, 7, and 9. This
procedure has led to a separation of the elements of {1, 2, 3, 4, 5, 6, 7, 8, 9} into disjoint
subsets {1, 3, 2, 8}, {4, 6}, and {5, 7, 9} according to the pattern determined by the
following computations:•

The disjoint subsets {1, 3, 2, 8}, {4, 6}, and {5, 7, 9} are called the orbits of f.
For each orbit off, we define a cycle that maps the elements in that orbit in the same

way as doesf:

g3 5 (5, 7, 9).

g2 5 (4, 6)

g1 5 (1, 3, 2, 8)

f 4(1) 5 f (8) 5 1     

f 3(1) 5 f (2) 5 8    f 3(5) 5 f (9) 5 5.

f 2(1) 5 f (3) 5 2 f 2(4) 5 f (6) 5 4 f 2(5) 5 f (7) 5 9

f (1) 5 3 f (4) 5 6 f (5) 5 7

5 S 7 S 9 S 5.

4 S 6 S 4

1 S 3 S 2 S 8 S 1

f 5 B
1 3 2 8 4 6 5 7 9
3 2 8 1 6 4 7 9 5

R.

f 5 B
1 2 3 4 5 6 7 8 9
3 8 2 6 7 4 9 1 5

R.

5  (1, 9, 8, 7, 6, 5, 4, 3, 2).

f 2 1 5 (9, 8, 7, 6, 5, 4, 3, 2, 1)

f 5 (1, 2, 3, 4, 5, 6, 7, 8, 9), 
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• and so on.f 2 5 f +f, f 3 5 f +f 2 5 f +f +f



These cycles are automatically on disjoint sets of elements since the orbits are disjoint, and
we see that their product isf :

Note that these cycles commute with each other because they are on disjoint sets of elements.

Example 4 The positive integral powers of a cyclef are easy to compute sincef m will
map each integer in the cycle onto the integer located m places farther along in the cycle.
For instance, if

thenf 2 maps each element onto the element two places farther along, according to the pattern

Similarly, f 3 maps each element onto the element three places farther along, and so on for
higher powers:

�

In connection with Example 4, we note that theorder of an r-cycle (a cycle withr
elements) isr.

Ordinarily, cycles that are not on disjoint sets of elements will not commute, but their
product is defined using mapping composition. For example, supposef 5 (1, 3, 2, 4) and
g 5 (1, 7, 6, 2). Then•

since

 5 h
g

5 h  5.
f

 3 h
g

3 h  2
f

 2 h
g

1 h  3
f

 4 h
g

4 h  1
f

 6 h
g

2 h  4
f

 7 h
g

6 h  6
f

 1 h
g

7 h  7
f

fg

fg 5 (1, 3, 2, 4)(1, 7, 6, 2)5 (1, 7, 6, 4)(2, 3), 

f 4 5 (1, 5, 9, 4, 8, 3, 7, 2, 6). 

f 3 5 (1, 4, 7)(2, 5, 8)(3, 6, 9)

f 2 5 (1, 3, 5, 7, 9, 2, 4, 6, 8).

1, 2, 3, 4, 5, 6, 7, c

f 5 (1, 2, 3, 4, 5, 6, 7, 8, 9), 

5 (1, 3, 2, 8)(4, 6)(5, 7, 9).

f 5 g1g2g3
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The computation offg may be easier to see in the following diagram:

A similar diagram for gf appears as follows:

Thusgf 2 fg. We adopt the notation that a 1-cycle such as (5) indicates that the element is
left fixed. For example,gf could also be written as

This allows expressions such as e5 (1) or e5 (1)(2) for the identity permutation.

Example 5 A product of cycles with any number of factors can be expressed as a
product of disjoint cycles by the same procedure that we used in computing fg with
f 5 (1, 3, 2, 4) and g 5 (1, 7, 6, 2). To illustrate, suppose we wish to express

as a product of disjoint cycles. Let

The following computations can be done mentallyto obtain fghas a product of disjoint cycles:

Thus

�(1, 4, 3, 2)(1, 6, 2, 5)(1, 5, 3, 6, 2)5 (1, 4, 3)(2, 6, 5).

 5 h
h

3 h
g

3 h
f

2.

 6 h
h

2 h
g

5 h
f

5

 2 h
h

1 h
g

6 h
f

6

 3 h
h

6 h
g

2 h
f

1

 4 h
h

4 h
g

4 h
f

3

 1 h
h

5 h
g

1 h
f

4

fgh

h 5 (1, 5, 3, 6, 2).

g 5 (1, 6, 2, 5)

f 5 (1, 4, 3, 2)

(1, 4, 3, 2)(1, 6, 2, 5)(1, 5, 3, 6, 2)

gf 5 (1, 3)(2, 4, 7, 6)(5).

gf 5 (1, 7, 6, 2)(1, 3, 2, 4)5 (1, 3)(2, 4, 7, 6).

3 4 1 7 5 2 6
g

3 4 2 1 5 6 7gf
f 1 2 3 4 5 6 7

fg 5 (1, 3, 2, 4)(1, 7, 6, 2)5 (1, 7, 6, 4)(2, 3).

7 3 2 1 5 4 6
f

7 1 3 4 5 2 6fg

g 1 2 3 4 5 6 7
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When a permutation is written as a product of disjoint cycles, it is easy to find the order
of the permutation if we use the result in Exercise 36 of Section 3.4: The order of the prod-
uct is simply the least common multiple of the orders of the cycles. For example, the
product (1, 2, 3, 4)(5, 6, 7, 8, 9, 10) has order 12, the least common multiple of 4 and 6.

Example 6 The expression of permutations as products of cycles enables us to write
the elements of Sn in a very compact form. The elements of S3 are given by

�

A 2-cycle such as (3, 7) is called a transposition. Every permutation can be written as
a product of transpositions, for every permutation can be written as a product of cycles, and
any cycle (i1, i2, c , ir) can be written as

.

For example,

The factorization into a product of transpositions is not unique, as the next example shows.

Example 7 Consider the product fg, wheref 5 (1, 3, 2, 4) and g 5 (1, 7, 6, 2). This
product can be written as

and also as

�

Although the expression of a permutation as a product of transpositions is not unique,
the number of transpositions used for a certain permutation is either always oddor else
always even.Our proof of this fact takes us somewhat astray from our main course in this
chapter. It involves consideration of a polynomial P in n variablesx1, x2, c , xn that is the
product of all factors of the form (xi 2 xj) with 1# i , j # n:

(The symbol indicates a product in the same way that is used to indicate sums.) For
example, if n 5 3, then

5 (x1 2 x2)(x1 2 x3)(x2 2 x3).

P 5 q
3

i , j
(xi 2 xj)

aq

P 5 q
n

i , j
(xi 2 xj).

5 (1, 4)(1, 6)(1, 7)(2, 3).

 (1, 3, 2, 4)(1, 7, 6, 2)5 (1, 7, 6, 4)(2, 3)

(1, 3, 2, 4)(1, 7, 6, 2)5 (1, 4)(1, 2)(1, 3)(1, 2)(1, 6)(1, 7)

(1, 3, 2, 4)5 (1, 4)(1, 2)(1, 3).

(i1, i2, c , ir) 5 (i1, ir)(i1, ir 2 1) c (i1, i3)(i1, i2)

r 2 5 (1, 3, 2)   d 5 (2, 3).

r 5 (1, 2, 3)  g 5 (1, 3)
e 5 (1)  s 5 (1, 2)
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Forn 5 4, P is given by

and similarly for larger values of n.
If f is any permutation on {1, 2,c , n}, then f is applied to P by the rule

As an illustration, let us apply the transposition t 5 (2, 4) to the polynomial

We have

,

since 2 and 4 are interchanged by t. Analyzing this result, we observe the following:

1. The factor (x2 2 x4) in P is changed to (x4 2 x2) in t(P), so this factor changes sign.

2. The factor is unchanged.

3. The remaining factors in t(P) may be grouped in pairs as

The products of these pairs are unchanged by t.

Thust(P) 5 (2 1)P, in this particular case. The sort of analysis we have used here can be
used to prove the following lemma.

Lemma 4.2 �

If t 5 (r, s) is any transposition on {1, 2,c , n} and then

Proof Sincet 5 (r, s) 5 (s, r), we may assume that r , s. We have

The factors of t(P) may be analyzed as follows:

1. The factor (xr 2 xs) in P is changed to (xs 2 xr) in t(P), so this factor changes sign.

2. The factors (xi 2 xj ) in P with both subscripts different from r andsare unchanged by t.

t(P) 5 q
n

i , j
(xt(i ) 2 xt( j )).

t(P) 5 (2 1)P.

P 5 q
n

i , j
(xi 2 xj), 

(x1 2 x4)(x1 2 x2) and (x4 2 x3)(x3 2 x2) 5 (x3 2 x4)(x2 2 x3).

(x1 2 x3)

t(P) 5 (x1 2 x4)(x1 2 x3)(x1 2 x2)(x4 2 x3)(x4 2 x2)(x3 2 x2)

5 (x1 2 x2)(x1 2 x3)(x1 2 x4)(x2 2 x3)(x2 2 x4)(x3 2 x4).

P 5 q
4

i , j
(xi 2 xj)

f (P) 5 q
n

i , j
(xf(i ) 2 xf( j )).

5 (x1 2 x2)(x1 2 x3)(x1 2 x4)(x2 2 x3)(x2 2 x4)(x3 2 x4),

P 5 q
4

i , j
(xi 2 xj)
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3. The remaining factors in P have exactly one subscript different from r ands and may
be grouped into pairs according to the following plan.

a. If the pair becomes and their
product is unchanged by the transposition 

b. Similarly, if the product is also unchanged by 

c. Finally, if then the pair is unchanged by since

Thust(P) 5 (2 1)P, and the proof of the lemma is complete.

5 (xk 2 xs)(xr 2 xk). 
 (xs 2 xk)(xk 2 xr) 5 32 (xk 2 xs)432 (xr 2 xk)4

t(xr 2 xk) (xk 2 xs)r , k , s,

t.(xr 2 xk) (xs 2 xk)r , s , k,

t.
(xk 2 xs) (xk 2 xr),(xk 2 xr) (xk 2 xs)k , r , s,

k
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Strategy � The conclusion in the next theorem has the form •r or s.Ž In previous conclusions of this
type, we have assumed that r was false and proved that smust then be true. It is interesting
to note that this time, our technique is different and uses no negative assumption. 

Theorem 4.3 � Products of Transpositions

If a certain permutationf is expressed as a product of p transpositions and also as a prod-
uct of q transpositions, then either p andq are both even, or else p andq are both odd.

Proof Suppose

where each ti and each are transpositions. With the first factorization, the result of apply-
ing f to

can be obtained by successive application of the transpositions tp, tp2 1, c , t2, t1. By
Lemma 4.2, each ti changes the sign of P, so

Repeating this same line of reasoning with the second factorization, we obtain

This means that

and consequently,

Therefore, either p or q are both even, or p andq are both odd. 

(2 1)p 5 (2 1)q.

(2 1)pP 5 (2 1)qP,

f (P) 5 (2 1)qP.

f (P) 5 (2 1)pP.

P 5 q
n

i , j
(xi 2 xj)

t rj

f 5 t1t2 c tp  and f 5 tr1tr2 c trq

(u ¿ v)
� (r ¡ s)



Theorem 4.3 assures us that when a particular permutation is expressed in different
ways as a product of transpositions, the number of transpositions used either will always
be an even number or else will always be an odd number. This fact allows us to make the
following definition.

Definition 4.4 � Even, Odd Permutations

A permutation that can be expressed as a product of an even number of transpositions is
called an even permutation, and a permutation that can be expressed as a product of an
odd number of transpositions is called an odd permutation.

The productfg in Example 7 was written as a product of six transpositions and then as
a product of four transpositions, andfg is an even permutation.

The factorization of an r-cycle (i1, i2, c , ir) as

(i1, i2, c , ir) 5 (i1, ir)(i1, ir2 1) c (i1, i3)(i1, i2)

usesr 2 1 transpositions. This shows that an r-cycle is an even permutation if r is odd and
an odd permutation if r is even.The identity is an even permutation sincee5 (1, 2)(1,2).
The product of two even permutations is clearly an even permutation. Since any permuta-
tion can be written as a product of disjoint cycles, and since the inverse of an r-cycle is an
r-cycle, the inverse of an even permutation is an even permutation. These remarks show
that the set An of all even permutations in Sn is a subgroup of Sn. It is called the alternating
grouponn elements.

Definition 4.5 � Alternating Group

Thealternating group An is the subgroup of Sn that consists of all even permutations in Sn.

Example 8 The elements of the group A4 are as follows:

�

The concept of conjugate elements in a group is basic to the study of normal subgroups.
This concept is defined as follows.

Definition 4.6 � Conjugate Elements

If a andb are elements of the groupG, theconjugateof a by b is the elementbab2 1. We
say thatc [ G is aconjugateof a if and only if c 5 bab2 1 for someb in G.

We should point out that this concept is trivial in an abelian group G, because
bab2 1 5 bb2 1a 5 ea5 a for all b [ G.

(1, 3, 2)   (1, 3, 4)   (2, 4, 3)   (1, 4)(2, 3).

(1, 2, 3)   (1, 4, 3)   (2, 3, 4)   (1, 3)(2, 4)

(1)    (1, 2, 4)   (1, 4, 2)   (1, 2)(3, 4)
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There is a procedure by which conjugates of elements in a permutation group may
be computed with ease. To see how this works, suppose thatf andg are permutations on
{1, 2, c , n} that have been written as products of disjoint cycles, and consider g fg2 1.
If i1 andi2 are integers such thatf (i1) 5 i2, thengfg2 1 mapsg(i1) to g(i2), as the follow-
ing diagram shows:

This means that if

is one of the disjoint cycles inf, then

is a corresponding cycle in gfg2 1. Thus, if

then

Example 9 If

and

thengfg2 1 may be obtained fromf as follows:

,

where the arrows indicate replacement of i by g(i). This result may be verified by direct
computation of g2 1 and the product gfg2 1. �

The procedure for computing conjugates described just before Example 9 shows that
any conjugate of a given permutation f has the same type of factorization into disjoint
cycles asf does. If suitable permutations f andh are given, the procedure also indicates
how g may be found so that g fg2 1 5 h. This is illustrated in Example 10.

Example 10Supposef 5 (1, 4, 2)(3, 5),h 5 (6, 8, 9)(5, 7), and we wish to find g such
thatg fg2 1 5 h. Using arrows to indicate replacements in the same way as in Example 9,
we wish to obtain g fg2 1 5 h from f as follows:

.g fg2 1 5 (6,  8,  9)( 5,  7)

T T T T T

f 5 (1,  4,  2)( 3,  5)

5 (2,  6,  3,  9,  7)( 4,  8,  5)

gfg2 1 5 (2,  6,  3,  9,  7)( 8,  5,  4)

   T T T T T T T T

f 5 (1,  3,  6,  9,  5)( 2,  4,  7)

g 5 (1, 2, 8)(3, 6)(4, 5, 7), 

f 5 (1, 3, 6, 9, 5)(2, 4, 7), 

gfg2 1 5 (g(i1), g(i2), c , g(ir))(g( j1), c , g( js)) c (g(k1), c , g(kt)).

f 5 (i1, i2, c , ir)( j1, j2, c , js) c (k1, k2, c , kt), 

(g(i1), g(i2), c , g(ir))

(i1, i2, c , ir)

g(i1) h
g2 1

i1 h
f

i2 h
g

g(i2).
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From this diagram it is easy to see that

is a solution to our problem. It is also easy to see that g is not unique. For example,

is another value of g that works just as well. �

In Example 2 of Section 3.5, we considered the group of all rigid motions,or symme-
tries,of an equilateral triangle. Every geometric figure has an associated group of rigid mo-
tions. (We are considering only rigid motions in space here. For a plane figure, one can
similarly consider rigid motions of the figure in that plane.) For simple figures such as a
square, a regular pentagon, or a cube, a rigid motion is completely determined by the
images of the vertices. If the vertices are labeled 1, 2, 3,c rather than V1, V2, V3, c ,
the rigid motions may be represented by permutation notation. In Example 2 of Section 3.5,
the mappings

can be written simply as

Example 11Using the notational convention described in the preceding paragraph, we
shall write out the (space) group G of rigid motions of a square (see Figure 4.1).

h 5 (1, 2) and r 5 (1, 2, 3).

h: c
h(V1) 5 V2

h(V2) 5 V1

h(V3) 5 V3

 and r: c
r(V1) 5 V2

r(V2) 5 V3

r(V3) 5 V1

(1, 6, 4, 8, 2, 9)(3, 5, 7)

g 5 (1, 6)(4, 8)(2, 9)(3, 5, 7)
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� Figure 4.1 d2d1 v

h

O

1

4 3

2

The elements of the group G are as follows:

1. the identity mapping e5 (1)

2. the counterclockwise rotation a 5 (1, 2, 3, 4) through 90° about the center O

3. the counterclockwise rotation a2 5 (1, 3)(2, 4) through 180° about the center O

4. the counterclockwise rotation a3 5 (1, 4, 3, 2) through 270° about the center O

5. the reflection b 5 (1, 4)(2, 3) about the horizontal line h



6. the reflection g 5 (2, 4) about the diagonal d1

7. the reflection D 5 (1, 2)(3, 4) about the vertical line v

8. the reflection u 5 (1, 3) about the diagonal d2.

The group G 5 { e, a, a2, a3, b, g, D, u} of rigid motions of the square is known as the octic
group. The multiplication table for G is requested in Exercise 18 of this section. �

Exercises4.1
True or False 
Label each of the following statements as either true or false.

1. Every permutation can be written as a product of transpositions.

2. A permutation can be uniquely expressed as a product of transpositions.

3. The product of cycles under mapping composition is a commutative operation.

4. Disjoint cycles commute under mapping composition.

5. The identity permutation can be expressed in more than one way.

6. Every permutation can be expressed as a product of disjoint cycles.

7. An r-cycle is an even permutation if r is even and an odd permutation if r is odd.

8. The set of all odd permutations in Sn is a subgroup of Sn.

9. The symmetric group Sn onn elements has order n.

10. A transposition leaves all elements except two fixed.

11. The order of an r-cycle is r.

12. The mutually disjoint cycles of a permutation are the same as its orbits.

Exercises

1. Express each permutation as a product of disjoint cycles and find the orbits of each
permutation.

a. b.

c. d.

e. f.

g.

h. B
1 2 3 4 5
2 3 4 1 5

R B
1 2 3 4 5
1 3 5 4 2

R

B
1 2 3 4 5
1 3 4 5 2

R B
1 2 3 4 5
3 2 4 1 5

R

B
1 2 3 4 5 6 7
5 1 3 7 2 6 4

RB
1 2 3 4 5 6 7
3 4 5 6 1 2 7

R

B
1 2 3 4 5
3 5 2 4 1

RB
1 2 3 4 5
4 1 3 5 2

R

B
1 2 3 4 5
1 3 2 5 4

RB
1 2 3 4 5
4 5 3 1 2

R
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2. Express each permutation as a product of disjoint cycles and find the orbits of each
permutation.

a. (1, 9, 2, 3)(1, 9, 6, 5)(1, 4, 8, 7)

b. (1, 2, 9)(3, 4)(5, 6, 7, 8, 9)(4, 9)

c. (1, 4, 8, 7)(1, 9, 6, 5)(1, 5, 3, 2, 9)

d. (1, 4, 2, 3, 5)(1, 3, 4, 5)

e. (1, 3, 5, 4, 2)(1, 4, 3, 5)

f. (1, 9, 2, 4)(1, 7, 6, 5, 9)(1, 2, 3, 8)

g. (2, 3, 7)(1, 2)(3, 5, 7, 6, 4)(1, 4)

h. (4, 9, 6, 7, 8)(2, 6, 4)(1, 8, 7)(3, 5)

3. In each part of Exercise 1, decide whether the permutation is even or odd.

4. In each part of Exercise 2, decide whether the permutation is even or odd.

5. Find the order of each permutation in Exercise 1.

6. Find the order of each permutation in Exercise 2.

7. Express each permutation in Exercise 1 as a product of transpositions.

8. Express each permutation in Exercise 2 as a product of transpositions.

9. Compute for each of the following permutations.

a. b.

c. d.

e. f.

10. Computeg fg2 1, the conjugate off by g, for each pairf, g.

a. f 5 (1, 2, 4, 3); g 5 (1, 3, 2)

b. f 5 (1, 3, 5, 6); g 5 (2, 5, 4, 6)

c. f 5 (2, 3, 5, 4); g 5 (1, 3, 2)(4, 5)

d. f 5 (1, 4)(2, 3); g 5 (1, 2, 3)

e. f 5 (1, 3, 5)(2, 4); g 5 (2, 5)(3, 4)

f. f 5 (1, 3, 5, 2)(4, 6); g 5 (1, 3, 6)(2, 4, 5)

11. For the given permutations,f andh, find a permutation g such that is the conjugate
of by „that is, such that h 5 g fg2 1.

a. f 5 (1, 5, 9); h 5 (2, 6, 4)

b. f 5 (1, 3, 5, 7); h 5 (3, 4, 6, 8)

c. f 5 (1, 3, 5)(2, 4); h 5 (2, 4, 3)(1, 5)

d. f 5 (1, 2, 3)(4, 5); h 5 (2, 3, 4)(1, 6)

e. f 5 (1, 4, 7)(2, 5, 8); h 5 (1, 5, 4)(2, 3, 6)

f. f 5 (1, 3, 5)(2, 4, 6); h 5 (1, 2, 4)(3, 5, 6)

gf
h

f 5 (1, 3, 7, 4)(2, 5, 9, 8, 6)f 5 (1, 2, 8)(3, 4, 7, 5, 6)

f 5 (1, 2)(3, 5, 7, 4)f 5 (1, 6, 2)(3, 4, 5)

f 5 (2, 7, 4, 3, 5)f 5 (1, 5, 2, 4)

f 2, f 3, and f 2 1
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12. Write the permutationf 5 (1, 2, 3, 4, 5, 6) as a product of a permutation g of order 2
and a permutation h of order 3. 

13. Write the permutation as a product of a
permutation of order 3 and of order 4.

14. List all the elements of the alternating group A3, written in cyclic notation.

15. List all the elements of S4, written in cyclic notation.

16. Find all the distinct cyclic subgroups of A4.

17. Find cyclic subgroups of S4 that have three different orders.

18. Construct a multiplication table for the octic group described in Example 11 of this
section.

19. Find all the distinct cyclic subgroups of the octic group in Exercise 18.

20. Find an isomorphism from the octic group G in Example 11 of this section to the group
Gr 5 { I2, R, R2, R3, H, D, V, T} in Exercise 30 of Section 3.1.

21. Prove that in any group, the relation •x is a conjugate ofyŽ is an equivalence
relation.

22. As stated in Exercise 26 of Section 3.3, the centralizer of an element a in the group G
is the subgroup given by Ca 5 { x [ G 0ax 5 xa}. Use the multiplication table con-
structed in Exercise 18 to find the centralizer Ca for each element a of the octic group.

23. A subgroup H of the group Sn is called transitive onB 5 {1, 2, c , n} if for each pair
i, j of elements of B there exists an element h [ H such that h(i) 5 j. Show that there
exists a cyclic subgroup H of Sn that is transitive on B.

24. Let f be the mapping from Sn to the additive group Z2 defined by

a. Prove that f is a homomorphism.

b. Find the kernel of f .

c. Prove or disprove that f an epimorphism.

d. Prove or disprove that f an isomorphism.

25. Let f andg be disjoint cycles inSn. Prove thatfg 5 gf.

26. Prove that the order of An is . n!
2

f ( f ) 5 b
304 if f  is an even permutation
314 if f  is an odd permutation.

hg
f 5 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
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4.2 Cayley•s• Theorem

At the opening of Section 3.5, we stated that permutation groups can serve as models for
all groups. A more precise statement is that every group is isomorphic to a group of per-
mutations; this is the reason for the fundamental importance of permutation groups in
algebra.

Theorem 4.7 � Cayley•s Theorem

Every group is isomorphic to a group of permutations.

Proof Let G be a given group. The permutations that we use in the proof will be map-
pings defined on the set of all elements in G.

For each element a in G, we define a mapping fa: G S G by

That is, the image of each x in G is obtained by multiplying x on the left by a. Now fa is
one-to-one since

To see that fa is onto, let b be arbitrary in G. Then x 5 a2 1b is in G, and for this particular
x we have

Thusfa is a permutation on the set of elements of G.
We shall show that the set

actually forms a group of permutations. Since mapping composition is always associative,
we need only show that Gr is closed, has an identity, and contains inverses.

For any fa andfb in Gr, we have

for all x in G. Thus fa fb 5 fab, andGr is closed. Since

for all x in G, fe is the identity permutation,fe 5 IG. Using the result fa fb 5 fab, we have

fa fa2 1 5 faa2 1 5 fe

fe(x) 5 ex5 x

fa fb(x) 5 fa( fb(x)) 5 fa(bx) 5 a(bx) 5 (ab)(x) 5 fab(x)

Gr 5 5fa 0a [ G6

5 a(a2 1b) 5 b.

fa(x) 5 ax

� x 5 y.

fa(x) 5 fa(y) � ax 5 ay

fa(x) 5 ax  for all x in G.
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and

Thus (fa)2 1 5 fa2 1 is in Gr, andGr is a group of permutations.
All that remains is to show that G is isomorphic to Gr. The mapping f : G S Gr

defined by

is clearly onto. It is one-to-one since

Finally, f is an isomorphism since

for all a, b in G.

Note that the group Gr 5 { fa 0a [ G} is a subgroup of the group S(G) of all permuta-
tions on G, andGr 2 S(G) in most cases.

Example 1 We shall follow the proof of Cayley•s Theorem with the group G 5
{1, i, 2 1, 2 i} to obtain a group of permutations Gr that is isomorphic to G and an isomor-
phism from G to Gr.

With fa: G S G defined by fa(x) 5 ax for each a [ G, we obtain the following permu-
tations on the set of elements of G:

In a more compact form, we write

According to the proof of Cayley•s Theorem, the set

Gr 5 5f1, fi, f2 1, f2 i6

f2 i 5 (1, 2 i, 2 1, i).f2 1 5 (1, 2 1)(i, 2 i)

fi 5 (1, i, 2 1, 2 i)f1 5 (1)

f2 1: d

f2 1(1) 5 2 1
f2 1(i) 5 2 i
f2 1(2 1) 5 1
f2 1(2 i) 5 i

  f2 i : d

f2 i(1) 5 2 i
f2 i(i) 5 1
f2 i(2 1) 5 i
f2 i(2 i) 5 2 1.

f1: d

f1(1) 5 1
f1(i) 5 i
f1(2 1) 5 2 1
f1(2 i) 5 2 i

  fi : d

fi(1) 5 i
fi(i) 5 2 1
fi(2 1) 5 2 i
fi(2 i) 5 1

f (a)f (b) 5 fa fb 5 fab 5 f (ab)

� a 5 b.

� ax 5 bx for all x [ G

� fa(x) 5 fb(x) for all x [ G

f (a) 5 f (b) � fa 5 fb

f (a) 5 fa

fa2 1fa 5 fa2 1a 5 fe.
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is a group of permutations, and the mapping f : G S Gr defined by

is an isomorphism from G to Gr. �

Exercises4.2
True or False 
Label the following statement as either true or false.

1. Every finite group G of order n is isomorphic to a subgroup of order n of the group
S(G) of all permutations on G.

Exercises

In Exercises 1…7, let G be the given group. Write out the elements of a group of permuta-
tions that is isomorphic to G, and exhibit an isomorphism from G to this group.

1. Let G be the additive group Z3.

2. Let G be the cyclic group of order 5.

3. Let G be the Klein four group {e, a, b, ab} with its multiplication table given in Fig-
ure 4.2.

HaI

f : d

f (1) 5 f1
f (i) 5 fi
f (2 1) 5 f2 1

f (2 i) 5 f2 i
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� Figure 4.2

. e a b ab

e e a b ab

a a e ab b

b b ab e a

ab ab b a e

4. Let G be the multiplicative group of units U5 5 314, 324, 334, 344 8 Z5.

5. Let G be the multiplicative group 324, 344, 364, 384 8 Z10.

6. Let G be the group of permutations matrices {I3, P1, P2, P3, P4, P5} as given in
Exercise 29 of Section 3.1.

7. Let G be the octic group5e, a, a2, a3, b, g, D, u6.
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8. For eacha in the groupG, define a mappingha: G S G by ha(x) 5 xafor all x in G.

a. Prove that each ha is a permutation on the set of elements in G.

b. Prove that H 5 { ha 0a [ G} is a group with respect to mapping composition.

c. Define f : G S H by f (a) 5 ha for each in . Determine whetherf is always
an isomorphism.

9. For each element in the group define a mapping for
all x in G.

a. Prove that each ka is a permutation on the set of elements of G.

b. Prove that K 5 { ka 0a [ G} is a group with respect to mapping composition.

c. Define f : G S K by f (a) 5 ka for each a in G. Determine whether f is always an
isomorphism.

10. For each a in the group G, define a mapping ma: G S G by ma(x) 5 a2 1x for all x in G.

a. Prove that each ma is a permutation on the set of elements of G.

b. Prove that M 5 { ma 0a [ G} is a group with respect to mapping composition.

c. Define f : G S M by f (a) 5 ma for each a in G. Determine whether f is always an
isomorphism.

4.3 Permutation Groups in Science and Art (Optional)

Often, the usefulness of some particular knowledge in mathematics is neither obvious nor
simple. So it is with permutation groups. Their applications in the real world come about
through connections that are somewhat involved. Nevertheless, we shall indicate here some
of their uses in both science and art.

Most of the scientific applications of permutation groups are in physics and chemistry.
One of the most impressive applications occurred in 1962. In that year, physicists Murray
Gell-Mann and Yuval Ne•eman used group theory to predict the existence of a new parti-
cle, which was designated the omega minus particle.It was not until 1964 that the existence
of this particle was confirmed in laboratory experiments.

One of the most extensive uses made of permutation groups has been in the science of
crystallography. As mentioned in Section 4.1, every geometric figure in two or three di-
mensions has its associated rigid motions, or symmetries.This association provides a natu-
ral connection between permutation groups and many objects in the real world. One of the
most fruitful of these connections has been made in the study of the structure of crystals.
Crystals are classified according to geometric symmetry based on a structure with a bal-
anced arrangement of faces. One of the simplest and most common examples of such a
structure is provided by the fact that a common table salt (NaCl) crystal is in the shape of a
cube. (See photo on the next page.)

In this section, we examine some groups related to the rigid motions of a plane figure.
We have already seen two examples of this type of group. The first was the group of sym-
metries of an equilateral triangle in Example 2 of Section 3.5, and the other was the group
of symmetries of a square in Example 11 of Section 4.1.

ka: G S G by ka(x) 5 xa2 1G,a

Ga
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It is not hard to see that the symmetries of any plane figure F form a group under map-
ping composition. We already know that the permutations on the set F form a group S(F)
with respect to mapping composition. The identity permutation IF preserves distances and
consequently is a symmetry of F. If two permutations on F preserve distances, their com-
position does also, and if a given permutation preserves distances, its inverse does also.
Thus the symmetries of F form a subgroup of S(F).

Before we consider some other specific plane figures F, a discussion of the term sym-
metryis in order. In agreement with conventional terminology in algebra, we have used the
word symmetryto refer to a rigid motion of a geometric figure. However, the term is com-
monly used in another way. For example, the pentagon shown in Figure 4.3 is said to have
symmetrywith respect to the vertical line / through the center O and the vertex at the top,
or to be symmetricwith respect to / . To make a distinction between the two uses, we shall
use the phrase geometric symmetryfor the latter type of symmetry.

4.3 Permutation Groups in Science and Art (Optional) 209

S
ci

M
A

T
/P

ho
to

 R
es

ea
rc

he
rs

Salt crystals are in the form of cubes.

� Figure 4.3

O

�

The groups of symmetries for regular polygons with three or four sides generalize to a
regular polygon P with n sides, for any positive integer n . 4. Any symmetry f of P is
determined by the images of the vertices of P. Let the vertices be numbered 1, 2,c , n,



and consider the mapping that makes the symmetryf of P correspond to the permutation
on {1, 2,c , n} that has the matrix form

.

Sincef is completely determined by the images of the vertices, this mapping is clearly a
bijection between the rigid motions of P and a subset Dn of the symmetric group Sn of all
permutations on {1, 2,c , n}. This mapping is in fact an isomorphism,Dn is a subgroup
(called the dihedral group) of Sn, and we identify the rigid motions of P with the elements
of Dn in the same way that we did in Example 11 of Section 4.1.

Regular polygons with n 5 5 (a pentagon) and n 5 6 (a hexagon) are shown in Figure
4.4. Bearing in mind that a symmetry is determined by the images of the vertices, it can be
seen that Dn consists of n counterclockwise rotations and n reflections about a line through
the center O of P. If n is odd, each reflection is about a line through a vertex and the mid-
point of the opposite side. If n is even, half of the reflections are about lines through pairs
of opposite vertices, and the other half are about lines through midpoints of opposite sides.
ThusDn has order 2n.

B
1 2 c n

f (1) f (2) c f (n)
R
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� Figure 4.4
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n = 5
Pentagon

� 1

� 2

� 3

� 4

� 5

� 6 3

2

4

5

6

1

n = 6
Hexagon

O

Example 1 Consider the pentagon in Figure 4.4. If we let R denote the rotation of
counterclockwise about the center O, then all possible rotations in D5 are found

in the following list:

.

If we let Lk denote the reflection about line / k for k 5 1, 2, 3, 4, 5, then the reflections in
D5 appear as follows in cyclic notation:

L4 5 (1, 2)(3, 5),   L5 5 (1, 4)(2, 3).

L1 5 (2, 5)(3, 4),   L2 5 (1, 3)(4, 5),   L3 5 (1, 5)(2, 4), 

R4 5 (1, 5, 4, 3, 2),   R5 5 (1)

R 5 (1, 2, 3, 4, 5),   R2 5 (1, 3, 5, 2, 4),   R3 5 (1, 4, 2, 5, 3), 

360°
5 5 72°



Direct computations verify that

Thus the elements of D5 can be listed in the form

�

All the symmetries in our examples have been either rotations or reflections about a
line. This is no accident because these are the only kinds of symmetries that exist for a
bounded nonempty set. If the group of symmetries of a certain figure contains a rotation
different from the identity mapping, then the figure is said to possess rotational symme-
try . A figure with a group of symmetries that includes a reflection about a line is said to
have reflective symmetry.

Example 2 Each part of Figure 4.5 has a group of symmetries that consists entirely of
rotations, and each possesses only rotational symmetry. In contrast, the group of symme-
tries of the pentagon contains both reflections and rotations, and the pentagon has both
reflective symmetry and rotational symmetry. 

D5 5 5I, R, R2, R3, R4, L1, L1R, L1R
2, L1R

3, L1R
46.

L1R 5 L3, L1R
2 5 L5, L1R

3 5 L2,  and L1R
4 5 L4.
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� Figure 4.5
(a) (b) (c) �

We have barely touched on the subject of symmetries in this section, concentrating pri-
marily on bounded nonempty sets in the plane. When attention is extended to unbounded
sets in the plane, there are two more types of symmetries that can be considered: translations
and glide reflections.

A translation is simply a sliding (or glide) of the entire object through a certain dis-
tance in a fixed direction. A glide reflection consists of a translation (or glide) followed
by a reflection about a line parallel to the direction of the translation. These types of
symmetries are treated in detail in more advanced books than this one, and it can be
shown that there are only four kinds of symmetries for plane figures:rotations, reflec-
tions, translations,andglide reflections.

As our final example in this section, we consider the group of symmetries of an
unbounded set.

Example 3 The unbounded set shown in Figure 4.6 is composed of a horizontal string
of copies of the letter R, equally spaced one unit from the beginning of one R to the
beginning of the next R, and endless in both directions.

� Figure 4.6 c h
1 unit

R R  R  R  R  R  R c



If t denotes a translation of the set in Figure 4.6 one unit to the right, then t2 is a trans-
lation two units to the right and tn is a translation n units to the right for any positive inte-
gern. Thus all positive integral powers of t are symmetries on the set of R•s. The inverse
mappingt2 1 is a translation of the set one unit to the left, and t2 n is a translation n units to
the left for any positive integer n. Thus all integral powers of t are symmetries on the set of
R•s, and the set

is the (infinite) group of symmetries of this set. �

Translations and glide reflections are common in the group of symmetries for wall-
paper patterns, textile patterns, pottery, ribbons, and all sorts of decorative art. The inter-
ested reader can find an excellent exposition of the applications that we have touched on
in Tannenbaum and Arnold•s Excursions in Modern Mathematics,3rd ed. (Englewood
Cliffs, NJ: Prentice Hall, 1998).

The outstanding connection between permutation groups and art is provided by the
famous works of the great Dutch artist M. C. Escher.• Concerning Escher, J. Taylor Hollist
said, •Mathematicians continue to use his periodic patterns of animal figures as clever
illustrations of translation, rotation and reflection symmetry. Psychologists use his optical
illusions and distorted views of life as enchanting examples in the study of vision.Ž••

Exercises4.3
True or False 
Label each of the following statements as either true or false.

1. The symmetries of any plane figure form a group under mapping composition.

2. The regular pentagon possesses only rotational symmetry.

3. The regular hexagon possesses both rotational and reflective symmetry.

4. The group Dn of symmetries for a regular polygon with n sides has order n.

5. The symmetric group S3 on 3 elements is the same as the group D3 of symmetries for
an equilateral triangle. That is,S3 5 D3.

6. The symmetric group S4 on 4 elements is the same as the group D4 of symmetries for
a square. That is,S4 5 D4.

7. The alternating group A4 on 4 elements is the same as the group D4 of symmetries for
a square. That is,A4 5 D4.

5c , t2 2, t2 1, t 0 5 I, t, t 2, c 6
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•Maurits Cornelis Escher (1898…1972) was a Dutch graphic artist. He is known for his explorations of infinity in
his mathematically inspired art. Some of his original works are housed in leading public and private collections.
The asteroid 4444 is named in his honor.
•• J. Taylor Hollist, •Escher Correspondence in the Roosevelt Collection,ŽLeonardo,Vol. 24, No. 3 (1991), p. 329. 



Exercises

List all elements in the group of symmetries of the given set.

1. The letter T

2. The letter M

3. The letter S

4. The letter H

Determine whether the given figure has rotational symmetry or reflective symmetry.

5. 6. 7.

8. 9. 10.

Describe the elements in the group of symmetries of the given bounded figure.

11. 12. 13.

14. 15. 16.

Describe the elements in the groups of symmetries of the given unbounded figures.

17.

18.

19.

20. c h
1 unit

w w   w  w  w  w  w c

c h
1 unit

T T  T  T  T  T  T c

c h
1 unit

x x   x   x   x   x   x  c

c h
1 unit

E E  E  E  E  E  E c
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21. Show that the group of symmetries in Example 3 of this section is isomorphic to the
group of integers under addition.

22. Construct a multiplication table for the group G of rigid motions of an isosceles triangle
with vertices 1, 2, 3 if the isosceles triangle is not an equilateral triangle.

23. Construct a multiplication table for the group G of rigid motions of a rectangle with
vertices 1, 2, 3, 4 if the rectangle is not a square.

24. Construct a multiplication table for the group G of rigid motions of the rhombus in
Figure 4.7 with vertices 1, 2, 3, 4 if the rhombus is not a square.
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� Figure 4.7

2 3

1

4

� Figure 4.8 21

4

3

25. Construct a multiplication table for the group G of rigid motions of a regular pentagon
with vertices 1, 2, 3, 4, 5.

26. List the elements of the group G of rigid motions of a regular hexagon with vertices 1,
2, 3, 4, 5, 6.

27. Let G be the group of rigid motions of a cube. Find the order o(G).

28. Let G be the group of rigid motions of a regular tetrahedron (see Figure 4.8). Find the
ordero(G).

29. Find an isomorphism from the group G in Exercise 23 of this exercise set to the mul-
tiplicative group

H 5 b B
1 0
0 1

R, B
1 0
0 2 1

R, B
2 1 0

0 1
R, B

2 1 0
0 2 1

R r.
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4.4 Cosets of a Subgroup

The binary operation in a given group can be used in a natural way to define a product
between subsets of the group. The importance of this product is difficult to appreciate at
this point in our development. It leads to the definition of cosets; cosets in turn lead to
quotient groups; and quotient groups provide a systematic description of all homomor-
phic imagesof a group in Section 4.6.

Definition 4.8 � Product of Subsets

Let A andB be nonempty subsets of the group G. The product AB is defined by

This product is formed by using the group operation in G. A more precise formulation
would be

where is the group operation in G.
Several properties of this product are worth mentioning. For nonempty subsets A, B,

andC of the group G,

It is obvious that

but we must be careful about the order because ABandBAmay be different sets.

Example 1 Consider the subsetsA 5 {(1, 2, 3), (1, 2)} and B 5 {(1, 3), (2, 3)} in
G 5 S3. We have

and

soAB 2 BA. �

For a nonabelian group G, we would probably expect ABandBAto be different. A fact
that is not quite so •naturalŽ is that

AB 5 AC >� B 5 C.

5 5(1, 2), (1, 3), (1, 2, 3), (1, 3, 2)6,

BA 5 5(1, 3)(1, 2, 3), (2, 3)(1, 2, 3), (1, 3)(1, 2), (2, 3)(1, 2)6

5 5(2, 3), (1, 3, 2), (1, 2), (1, 2, 3)6

AB 5 5(1, 2, 3)(1, 3), (1, 2)(1, 3), (1, 2, 3)(2, 3), (1, 2)(2, 3)6

B 5 C � AB 5 AC and BA 5 CA,

5 (AB)C.

5 5(ab)c 0a [ A, b [ B, c [ C6

A(BC) 5 5a(bc) 0a [ A, b [ B, c [ C6

p

A p B 5 5x [ G 0x 5 a p b for some a [ A, b [ B6,

AB 5 5x [ G 0x 5 ab for some a [ A, b [ B6.
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Example 2 An example where AB5 AC but B 2 C is provided by A 5 {(1, 2, 3),
(1, 3, 2)},B 5 {(1, 3), (2, 3)}, and C 5 {(1, 2), (1, 3)} in G 5 S3. Straightforward calcula-
tions show that

butB 2 C. �

If B 5 { g} consists of a single element g of a group G, thenABis written simply as Ag
instead of as A{ g}:

Similarly,

This is one instance in which a cancellation law does hold:

This is true because

For convenience of reference, we summarize these results in a theorem.

Theorem 4.9 � Properties of the Product of Subsets

Let A, B, andC denote nonempty subsets of the group G, and let g denote an element of G.
Then the following statements hold:

a. A(BC) 5 (AB)C.

b. B 5 C impliesAB5 ACandBA5 CA.

c. The product AB is not commutative.

d. AB5 ACdoes not imply B 5 C.

e. gA5 gB impliesA 5 B.

Statementsd ande have obvious duals in which the common factor is on the right
side.

We shall be concerned mainly with products of subsets in which one of the factors is a
subgroup. The cosets of a subgroup are of special importance.

� A 5 B.

� eA5 eB

�  (g2 1g)A 5 (g2 1g)B

gA 5 gB � g2 1(gA) 5 g2 1(gB)

gA 5 gB � A 5 B.

gA 5 5x [ G 0x 5 ga for some a [ A6.

Ag 5 5x [ G 0x 5 ag for some a [ A6.

AB 5 5(2, 3), (1, 2), (1, 3)6 5 AC,
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Definition 4.10� Cosets

Let H be a subgroup of the group G. For any a in G,

is a left cosetof H in G. Similarly,Ha is called a right cosetof H in G.

The left coset aH and the right coset Ha are never disjoint, since a 5 ae5 eais in both
sets. In spite of this,aH andHa may happen to be different sets, as the next example shows.

Example 3 Consider the subgroup

of

Fora 5 (1, 2, 3), we have

and

In this case,aK 2 Ka. �

Although a left coset of H and a right coset of H may be neither equal nor disjoint,
this cannot happen with two left cosets of H. This fact is fundamental to the proof of
Lagrange•s Theorem (Theorem 4.13), so we designate it as a lemma.

5 5(1, 2, 3), (2, 3)6.

Ka 5 5(1, 2, 3), (1, 2)(1, 2, 3)6

5 5(1, 2, 3), (1, 3)6

aK 5 5(1, 2, 3), (1, 2, 3)(1, 2)6

G 5 S3 5 5(1), (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3)6.

K 5 5(1), (1, 2)6

aH 5 5x [ G 0x 5 ah for some h [ H6
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Strategy � The proof of this lemma is by use of the contrapositive. The contrapositive of  is
. As shown in the Appendix to this book, any statement and its contrapositive

are logically equivalent. 
, q � , p

p � q

The following proof illustrates a case where it is easier to prove the contrapositive than
the original statement.

Lemma 4.11 � Left Coset Partition

Let H be a subgroup of the group G. The distinct left cosets of H in G form a partition of
G; that is, they separate the elements of G into mutually disjoint subsets.



Proof It is sufficient to show that any two left cosets of H that are not disjoint must be the
same left coset.

SupposeaH andbH have at least one element in common„say, Then
z 5 ah1 for some and z 5 bh2 for some This means that ah1 5 bh2 and

. We have that is in H since H is a subgroup, so a 5 bh3 where
Now, for every h [ H,

whereh4 5 h3?h is in H. That is, for all This proves that A
similar argument shows that and thus aH 5 bH.

The distinct right cosets of a subgroup H of a group G also form a partition of G.
That is, Lemma 4.11 can be restated in terms of right cosets (see Exercise 7).

Example 4 Consider again the subgroup

of

In Example 3 of this section, we saw that

Since (1, 3) is in this left coset, it follows from Lemma 4.11 that

Straightforward computations show that

and

Thus the distinct left cosets of K in G are given by

and a partition of G is

�

Definition 4.12� Index

Let H be a subgroup ofG. The number of distinct left cosets ofH in G is called theindex
of H in Gand is denoted by [G: H].

In the proof of the next theorem, we show that if o(G) is finite, then the order of any
subgroup of G must divide the order of the group G.

G 5 K c (1, 2, 3)K c (1, 3, 2)K.

K,  (1, 2, 3)K,  (1, 3, 2)K

(2, 3)K 5 (1, 3, 2)K 5 5(1, 3, 2), (2, 3)6.

(1)K 5 (1, 2)K 5 5(1), (1, 2)6 5 K

(1, 3)K 5 (1, 2, 3)K 5 5(1, 2, 3), (1, 3)6.

(1, 2, 3)K 5 5(1, 2, 3), (1, 3)6.

G 5 S3 5 5(1), (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3)6.

K 5 5(1), (1, 2)6

bH 8 aH,
aH 8 bH.h [ H.ah [ bH

5 bh4

ah 5 bh3h

h3 5 h2h
2 1
1 [ H.

h2h1
2 1a 5 bh2h1

2 1
h2 [ H.h1 [ H,

z [ aH d bH.
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Theorem 4.13� Lagrange•s• Theorem

If G is a finite group and H is a subgroup of G, then

Proof Let G be a finite group of order n, and let H be a subgroup of G with order k. We
shall show that k divides n.

From Lemma 4.11, we know that the left cosets ofH in G separate the elements ofG
into mutually disjoint subsets. Letmbe the index ofH in G; that is, there aremdistinct left
cosets ofH in G. We shall show that each left coset has exactlyk elements.

Let aH represent an arbitrary left coset ofH. The mappingf : H S aH defined by

is one-to-one, because the left cancellation law holds in G. It is also onto, since any x in aH
can be written as x 5 ah for h [ H. Thus f is a one-to-one correspondence from H to aH,
and this means that aH has the same number of elements as does H.

We have the n elements of G separated into m disjoint subsets, and each subset has k
elements. Therefore,n 5 km, and

Lagrange•s Theorem is of great value if we are interested in finding all the subgroups
of a finite group. In connection with this task, it is worthwhile to record this immediate
corollary.

Corollary 4.14� o(a) 0o(G)

The order of an element of a finite group must divide the order of the group. 

Example 5 To illustrate the usefulness of the foregoing results, we shall exhibit all of
the subgroups of S3. Any subgroup of S3 must be of order 1, 2, 3, or 6, since o(S3) 5 6. An
element in a subgroup of order 3 must have order dividing 3, and therefore any subgroup of
order 3 is cyclic. Similarly, any subgroup of order 2 is cyclic. The following list is thus a
complete list of the subgroups of S3:

�H3 5 5(1), (1, 3)6  H6 5 S3.

H2 5 5(1), (1, 2)6 H5 5 5(1), (1, 2, 3), (1, 3, 2)6

H1 5 5(1)6 H4 5 5(1), (2, 3)6

o(G) 5 o(H) ?3G: H4.

f (h) 5 ah

order of G 5 (order of H) ?(index of H in G).
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•Joseph-Louis Lagrange (1736…1813) made significant contributions to analysis, number theory, ordinary and
partial differential equations, calculus, analytical geometry, theory of equations, and to classical and celestial
mechanics. Lagrange was responsible for the metric system, which resulted from his tenure on a commission for
the reform of weights and measures. Napoleon designated Lagrange a count, and the crater Lagrange is so
named in his honor.



It can be shown that if p is a prime, then any group of order p must be cyclic (see
Exercise 21 at the end of this section). This means that, up to an isomorphism, there is only
one group of order p, if p is a prime. In particular, the only groups of order 2, 3, or 5 are the
cyclic groups.

By examination of the possible orders of the elements and the possible multiplication
tables, it can be shown that a group of order 4 either is cyclic or is isomorphic to the Klein
four group

of Exercise 10 in Section 3.5. Hence every group of order 4 is abelian.

Exercises4.4
True or False 
Label each of the following statements as either true or false.

1. aH d Ha Z [ whereH is any subgroup of a group G anda [ G.

2. Let H be any subgroup of a group G. Then H is a left coset of H in G.

3. Let H be any subgroup of a group G anda [ G. Then aH 5 Ha.

4. The elements of G can be separated into mutually disjoint subsets using either left
cosets or right cosets of a subgroup H of G.

5. The order of an element of a finite group divides the order of the group.

6. The order of any subgroup of a finite group divides the order of the group.

7. Let H be a subgroup of a finite group G. The index of H in G must divide the order
of G.

8. Every left coset of a group G is a subgroup of G.

Exercises

In Exercises 1 and 2, let G be the octic group in Example 11 of
Section 4.1, with its multiplication table requested in Exercise 18 of the same section.

1. Let H be the subgroup of the octic group G.

a. Find the distinct left cosets of H in G, write out their elements, and partition G into
left cosets of H.

b. Find the distinct right cosets of H in G, write out their elements, and partition G into
right cosets of H.

2. Let H be the subgroup of the octic group G.

a. Find the distinct left cosets of H in G, write out their elements, and partition G into
left cosets of H.

b. Find the distinct right cosets of H in G, write out their elements, and partition G into
right cosets of H.

5e, D6

5e, b6

5e, a, a2, a3, b, g, D, u6

G 5 5e, a, b, ab 5 ba6
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3. Let H be the subgroup of S3.

a. Find the distinct left cosets of H in S3, write out their elements, and partition S3 into
left cosets of H.

b. Find the distinct right cosets of H in S3, write out their elements, and partition S3

into right cosets of H.

4. Let H be the subgroup of S3.

a. Find the distinct left cosets of H in S3, write out their elements, and partition S3 into
left cosets of H.

b. Find the distinct right cosets of H in S3, write out their elements, and partition S3

into right cosets of H.

In Exercises 5 and 6, let G be the multiplicative group of permutation matrices
in Example 4 of Section 3.5.

5. Let H be the subgroup of G given by

.

a. Find the distinct left cosets of H in G, write out their elements, and partition G into
left cosets of H.

b. Find the distinct right cosets of H in G, write out their elements, and partition G into
right cosets of H.

6. Let H be the subgroup of G given by

a. Find the distinct left cosets of H in G, write out their elements, and partition G into
left cosets of H.

b. Find the distinct right cosets of H in G, write out their elements, and partition G into
right cosets of H.

7. LetH be a subgroup of the group G. Prove that if two right cosets Ha andHb are not dis-
joint, then Ha 5 Hb„that is, the distinct right cosets of H in G form a partition of G.

8. Let H be a subgroup of a group G.

a. Prove that gHg� 1 is a subgroup of G for any g [ G. We say that gHg� 1 is a
conjugateof H and that H andgHg� 1 areconjugate subgroups.

b. Prove that if H is abelian, then gHg� 1 is abelian.

c. Prove that if H is cyclic, then gHg� 1 is cyclic.

d. Prove that H andgHg� 1 are isomorphic.

H 5 5I3, P3, P2
36 5 cC

1 0 0
0 1 0
0 0 1

S, C
0 1 0
0 0 1
1 0 0

S, C
0 0 1
1 0 0
0 1 0

Ss.

H 5 5I3, P46 5 cC
1 0 0
0 1 0
0 0 1

S, C
0 0 1
0 1 0
1 0 0

Ss

5I3, P3, P2
3, P1, P4, P26

5(1), (2, 3)6

5(1), (1, 2)6
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9. For an arbitrary subgroup H of the group G, define the mapping u from the set of left
cosets of H in G to the set of right cosets of H in G by u(aH) 5 Ha2 1. Prove that u is
a bijection.

10. Let H be a subgroup of the group G. Prove that the index of H in G is the number of
distinct right cosets of H in G.

11. Show that a group of order 4 either is cyclic or is isomorphic to the Klein four group
{ e, a, b, ab 5 ba}.

12. Let G be a group of finite order n. Prove that an 5 e for all a in G.

13. Find the order of each of the following elements in the multiplicative group of units Up.

a. [2] for p 5 13 b. [5] for p 5 13

c. [3] for p 5 17 d. [8] for p 5 17

14. Find all subgroups of the octic group.

15. Find all subgroups of the alternating group A4.

16. Lagrange•s Theorem states that the order of a subgroup of a finite group must divide
the order of the group. Prove or disprove its converse: If k divides the order of a finite
groupG, then there must exist a subgroup of G having order k.

17. Find all subgroups of the quaternion group.

18. Find two groups of order 6 that are not isomorphic.

19. If H andK are arbitrary subgroups of G, prove that HK 5 KH if and only if HK is a
subgroup of G.

20. Let p be prime and G the multiplicative group of units Up 5 {[ a] [ Zp [a] Z [0]}. Use
Lagrange•s Theorem in G to prove Fermat•s Little Theorem in the form [a]p 5 [a]
for any (Compare with Exercise 51 in Section 2.5.)

21. Prove that any group with prime order is cyclic.

22. Let G be a group of order pq, wherep andq are primes. Prove that any nontrivial sub-
group of G is cyclic. 

23. Let G be a group of order pq, wherep andq are distinct prime integers. If G has only
one subgroup of order p and only one subgroup of order q, prove thatG is cyclic.

24. Let G be an abelian group of order 2n, wheren is odd. Use Lagrange•s Theorem to
prove that G contains exactly one element of order 2.

25. A subgroupH of the groupSn is calledtransitive on B 5 {1, 2, c , n} if for each
pair i, j of elements ofB there exists an element such thath(i) 5 j. SupposeG
is a group that is transitive on {1, 2,c , n}, and let Hi be the subgroup ofG that
leavesi fixed:

for i 5 1, 2,c , n. Prove that o(G) 5 n?o(Hi).

Hi 5 5g [ G 0g(i) 5 i6

h [ H

a [ Z.

0
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26. (See Exercise 25.) Suppose G is a group that is transitive on {1, 2,c , n}, and let Ki

be the subgroup that leaves each of the elements 1, 2,c , i fixed:

for i 5 1, 2,c , n. Prove that G 5 Sn if and only if Hi 2 Hj for all pairs i, j such that
i 2 j andi , n 2 1.

4.5 Normal Subgroups

Among the subgroups of a group are those known as the normal subgroups.The signifi-
cance of the normal subgroups is revealed in the next section.

Definition 4.15� Normal Subgroup

Let H be a subgroup of G. Then H is a normal (or invariant ) subgroup of G if xH 5 Hx
for all 

Note that the condition xH 5 Hx is an equality of sets, and it does not require that
xh 5 hx for all h in H.

Example 1 Let

and

Forx 5 (1, 2) we have

and

We have xH 5 Hx, butxh 2 hxwhen . Similar computations show that

ThusH is a normal subgroup of G. Additionally we note that G can be expressed as

�G 5 H c (1, 2)H.

H(1, 2) 5 H(1, 3) 5 H(2, 3) 5 5(1, 2), (1, 3), (2, 3)6.

 (1, 2)H 5 (1, 3)H 5 (2, 3)H 5 5(1, 2), (1, 3), (2, 3)6

H(1) 5 H(1, 2, 3)5 H(1, 3, 2)5 5(1), (1, 2, 3), (1, 3, 2)6 5 H

(1)H 5 (1, 2, 3)H 5 (1, 3, 2)H 5 5(1), (1, 2, 3), (1, 3, 2)6 5 H

h 5 (1, 2, 3)[ H

5 5(1, 2), (1, 3), (2, 3)6.

Hx 5 5(1)(1, 2), (1, 2, 3)(1, 2), (1, 3, 2)(1, 2)6

5 5(1, 2), (2, 3), (1, 3)6

xH 5 5(1, 2)(1), (1, 2)(1, 2, 3), (1, 2)(1, 3, 2)6

G 5 S3 5 5(1), (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3)6.

H 5 A3 5 5(1), (1, 2, 3), (1, 3, 2)6 5 8(1, 2, 3)9

x [ G.

Ki 5 5g [ G 0g(k) 5 k for k 5 1, 2, c , i6
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In Example 1, we have hH 5 H 5 Hh for all These equalities hold for all sub-
groups, as stated in the following theorem.

Theorem 4.16� A Special Coset H

If H is any subgroup of a group G, thenhH 5 H 5 Hh for all 

Proof Let h be an arbitrary element in the subgroup H of the group G.
If then x 5 hy for some But and imply hy 5 x is in H,

sinceH is closed. Thus 
For any the element h2 1x is in H sinceH contains the inverse of h andH is

closed. But

and this proves that It follows that hH 5 H.
The proof of the equality Hh 5 H is similar.

The proof of the following corollary is left as an exercise.

Corollary 4.17� The Square of a Subgroup

For any subgroup H of a group G, H2 5 H, whereH2 denotes the product HH as defined
in Definition 4.8. 

Example 2 As an example of a subgroup that is notnormal, let K 5 {(1), (1, 2)} in S3.
With x 5 (1, 2, 3), we have

ThusxK 2 Kx, andK is not a normal subgroup of S3. �

The definition of a normal subgroup can be formulated in several different ways. For
instance, we can write

Other formulations can be made. One that is frequently taken as the definition is given in
Theorem 4.18.

� x2 1Hx 5 H for all x [ G.

xH 5 Hx for all x [ G � xHx2 1 5 H for all x [ G

5 5(1, 2, 3), (2, 3)6.

Kx 5 5(1, 2, 3), (1, 2)(1, 2, 3)6

5 5(1, 2, 3), (1, 3)6

xK 5 5(1, 2, 3), (1, 2, 3)(1, 2)6

H 8 hH.

h2 1x [ H � h(h2 1x) 5 x [ hH,

x [ H,
hH 8 H.

y [ Hh [ Hy [ H.x [ hH,

h [ H.

h [ H.
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Theorem 4.18� Normal Subgroups and Conjugates

Let H be a subgroup of G. Then H is a normal subgroup of G if and only if for
every and every 

Proof If H is a normal subgroup of G, then the condition follows easily, since H normal
requires

Suppose now that the condition holds. For any follows imme-
diately, and we need only show that Let h be arbitrary in H, and let 
Now x2 1 is an element in G, and the condition implies that

is in H; that is,

Thus and we have xHx2 1 5 H for all It follows that H is a normal sub-
group of G.

The concept of generators can be extended from cyclic subgroupsHaI to more compli-
cated situations where a subgroup is generated by more than one element. We only touch on
this topic here, but it is a fundamental idea in more advanced study of groups.

Definition 4.19� Set Generated by A

If A is a nonempty subset of the group G, then the set generated by A, denoted by HAI , is
the set defined by

In other words,HAI is the set of all products that can be formed with a finite number of
factors, each of which either is an element ofA or has an inverse that is an element ofA.

Theorem 4.20� Subgroup Generated by A

For any nonempty subset A of a group G, the set HAI is a subgroup of G called the subgroup
of G generated by A.

Proof There exists at least one since Then so HAI is
nonempty.

If and then

x 5 x1x2
c xn with either xi [ A or x2 1

i [ A

y [ HAI,x [ 8A9

e 5 aa2 1 [ 8A9,A 2 [ .a [ A,

HAI 5 5x [ G 0x 5 a1a2
c an with either ai [ A or a2 1

i [ A6.

x [ G.H 8 xHx2 1,

� h [ xHx2 1.

x2 1hx 5 h1 for some h1 [ H � h 5 xh1x
2 1 for some h1 [ H

(x2 1)(h)(x2 1)2 1 5 x2 1hx

x [ G.H 8 xHx2 1.
xHx2 1 8 Hx [ G,

� xhx2 1 [ H for all h [ H and all x [ G.

xHx2 1 5 H  for all x [ G � xHx2 1 8 H for all x [ G

x [ G.h [ H
xhx2 1 [ H
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and

Thus

where each factor on the right either is in A or has an inverse that is an element of A. Also,

The nonempty set HAI is closed and contains inverses, and therefore it is a subgroup of G.

In work with finite groups,the result in Exercise 41 of Section 3.3 is extremely help-
ful in finding HAI, since it implies that HAI is the smallest subset of G that contains A and is
closed under the operation. (This is true only for finite groups.) The subgroup HAI can be
constructed systematically by starting a multiplication table using the elements of A and
enlarging the table by adjoining additional elements until closure is obtained. A practical
first step in this direction is to begin the table using all the elements of A and all their dis-
tinct powers. This is illustrated in the next example.

Example 3 Let and consider the problem of finding
HAI in S4. We begin by computing the distinct powers of the elements of A:

Starting a multiplication table usinge, a, a2, a3, b, we find the following new elements
of HAI :

We then enlarge the table so as to use all eight elements

Proceeding to fill out the enlarged table, we obtain the table in Figure 4.9, which shows that
the set

is the subgroup of S4 generated by A 5 { a, b}. This group G is the octic group that was
presented in Example 11 of Section 4.1.

G 5 5e, a, a2, a3, b, g, D, u6

e, a, a2, a3, b, g, D, u.

a3b 5 (1, 4, 3, 2)(1, 4)(2, 3)5 (1, 3) 5 u .

a2b 5 (1, 3)(2, 4)(1, 4)(2, 3)5 (1, 2)(3, 4)5 D

ab 5 (1, 2, 3, 4)(1, 4)(2, 3)5 (2, 4) 5 g

b 5 (1, 4)(2, 3)  b2 5 e.

a3 5 a 2 1 5 (1, 4, 3, 2)  a4 5 e 5 (1)

a 5 (1, 2, 3, 4)  a2 5 (1, 3)(2, 4)

A 5 5(1, 2, 3, 4), (1, 4)(2, 3)6,

x2 1 5 x2 1
n

c x2 1
2 x2 1

1  with either x2 1
i [ A or xi [ A.

xy 5 x1x2
c xny1y2

c yk,

y 5 y1y2
c yk with either yj [ A or y2 1

j [ A.
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Exercises4.5
True or False 
Label each of the following statements as either true or false.

1. Let H be any subgroup of a group G anda [ G. Then aH 5 Ha impliesah 5 ha for
all h in H.

2. The trivial subgroups {e} and G are both normal subgroups of the group G.

3. The trivial subgroups {e} and G are the only normal subgroups of a nonabelian group G.

4. Let H be a subgroup of a group G. If hH 5 H 5 Hh for all h [ H, thenH is normal
in G.

5. If a group G contains a normal subgroup, then every subgroup of G must be normal.

6. Let A be a nonempty subset of a group G. Then A [ HAI.

7. Let A be a nonempty subset of a group G. ThenHAI is closed under the group opera-
tion if and only if A is closed under the same operation.

Exercises

1. Let G be the group and H the subgroup given in each of the following exercises of
Section 4.4. In each case, is H normal in G?

a. Exercise 1 b. Exercise 2 c. Exercise 3

d. Exercise 4 e. Exercise 5 f. Exercise 6

2. Show that

is a normal subgroup of the multiplicative group G of invertible matrices in M2(R).

H 5 b B
1 0
0 1

R, B
2 1 0

0 2 1
R r
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� Figure 4.9

° e a a2 a3 b g D u

e e a a2 a3 b g D u

a a a2 a3 e g D u b

a2 a2 a3 e a D u b g

a3 a3 e a a2 u b g D

b b u D g e a3 a2 a

g g b u D a e a3 a2

D D g b u a2 a e a3

u u D g b a3 a2 a e
�
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3. For any subgroup H of the group G, let H2 denote the product H2 5 HH as defined in
Definition 4.8. Prove Corollary 4.17:H2 5 H.

4. Let H be a normal cyclic subgroup of a finite group G. Prove that every subgroup K of
H is normal in G.

5. Let H be a torsion subgroup of an abelian group G. That is,H is the set of all elements
of finite order in G. Prove that H is normal in G.

6. Show that every subgroup of an abelian group is normal.

7. Consider the octic group G of Example 3.

a. Find a subgroup of G that has order 2 and is a normal subgroup of G.

b. Find a subgroup of G that has order 2 and is nota normal subgroup of G.

8. Find all normal subgroups of the octic group.

9. Find all normal subgroups of the alternating group A4.

10. Find all normal subgroups of the quaternion group.

11. Exercise 6 states that every subgroup of an abelian group is normal. Give an example
of a nonabelian group for which every subgroup is normal.

12. Find groups H andG such that and the following conditions are satisfied:

a. H is a normal subgroup of G.

b. G is a normal subgroup of A4.

c. H is not a normal subgroup of A4.

(Thus the statement •A normal subgroup of a normal subgroup is a normal subgroupŽ
is false.)

13. Find groups H andK such that the following conditions are satisfied:

a. H is a normal subgroup of K.

b. K is a normal subgroup of the octic group.

c. H is not a normal subgroup of the octic group.

14. Let H be a subgroup of G and assume that every left coset aH of H in G is equal to a
right coset Hb of H in G. Prove that H is a normal subgroup of G.

15. If { Hl }, l [ , is a collection of normal subgroups Hl of G, prove that is a
normal subgroup of G.

16. If H is a subgroup of G, andK is a normal subgroup of G, prove thatHK 5 KH.

17. With H andK as in Exercise 16, prove that HK is a subgroup of G.

18. With H andK as in Exercise 16, prove that H d K is a normal subgroup of H.

19. With H andK as in Exercise 16, prove that K is a normal subgroup of HK.

20. If H andK are both normal subgroups of G, prove that HK is a normal subgroup of G.

t l [ + Hl+

H 8 G 8 A4
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21. Prove that if H andK are normal subgroups of G such that then hk 5 kh
for all 

22. ThecenterZ(G) of a group G is defined as

Prove that Z(G) is a normal subgroup of G.

23. (See Exercise 22.) Find the center of the octic group. 

24. (See Exercise 22.) Find the center of A4.

25. SupposeH is a normal subgroup of order 2 of a group G. Prove that H is contained in
Z(G), the center of G.

26. For an arbitrary subgroup H of the group G, the normalizer of H in G is the set

a. Prove that (H) is a subgroup of G.

b. Prove that H is a normal subgroup of (H).

c. Prove that if K is a subgroup of G that contains H as a normal subgroup, then

27. Find the normalizer of the subgroup {(1), (1, 3)(2, 4)} of the octic group.

28. Find the normalizer of the subgroup {(1), (1, 4)(2, 3)} of the octic group.

29. Let H be a subgroup of G. Define the relation •congruence modulo H Ž onG by

Prove that congruence modulo H is an equivalence relation on G.

30. Describe the equivalence classes in Exercise 29.

31. Let n . 1 in the group of integers under addition, and let H 5 Prove that

32. Let H be a subgroup of G with index 2.

a. Prove that H is a normal subgroup of G.

b. Prove that g2 [ H for all g [ G.

33. Show that An has index 2 in Sn, and thereby conclude that An is always a normal sub-
group of Sn.

34. Let A be a nonempty subset of a group G. Prove that 

35. Find the subgroup of Sn that is generated by the given set.

a. {(1, 2), (1, 3)} b. {(1, 3), (1, 2, 3, 4)}

c. {(1, 2, 4), (2, 3, 4)} d. {(1, 2), (1, 3), (1, 4)}

36. Let n be a positive integer,n . 1. Prove by induction that the set of transpositions
{(1, 2), (1, 3),c , (1, n)} generates the entire group Sn.

A 8 8A9.

a ; b (modH) if and only if a ; b (modn).

8n9.

a ; b (modH) if and only if a2 1b [ H.

K # n (H).

n

n
n (H) 5 5x [ G 0xHx2 1 5 H6.

Z(G) 5 5a [ G 0ax 5 xa for all x [ G6.

k [ K.h [ H,
H d K 5 5e6,
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4.6 Quotient Groups

If H is a normal subgroup ofG, thenxH 5 Hx for all x in G, so there is no distinction between
left and right cosets ofH in G. In this case, we refer simply to the cosets ofH in G.

If H is any subgroup of G, thenhH 5 H 5 Hh for all h in H, according to Theo-
rem 4.16. Corollary 4.17 states that H2 5 H H 5 H for all subgroups H. We use this
fact in proving the next theorem.

Theorem 4.21� Group of Cosets

Let H be a normal subgroup of G. Then the cosets of H in G form a group with respect to
the product of subsets as given in Definition 4.8.

Proof Let H be a normal subgroup of G. We shall denote the set of all distinct cosets of
H in G by G>H. Multiplication in is associative, by part a of Theorem 4.9.

We need to show that the cosets of H in G are closed under the given product. Let aH
andbH be arbitrary cosets of H in G. Using the associative property freely, we have

Thus is closed and (aH)(bH) 5 abH.
The coset H 5 eH is an identity element, since (aH)(eH) 5 aeH5 aH and

(eH)(aH) 5 eaH5 aH for all aH in
The inverse of aH is a2 1H, since

and

This completes the proof. 

Definition 4.22� Quotient Group

If H is a normal subgroup of G, the group G>H that consists of the cosets of H in G is called
thequotient group or factor group of G by H.

If the group G is abelian, then so is the quotient group G>H. Let a andb be elements
of G, then

andG>H is abelian.

5 bHaH  sinceH is normal

5 baH  sinceG is abelian

aHbH 5 abH  sinceH is normal

(a2 1H)(aH) 5 a2 1aH 5 eH 5 H.

(aH)(a2 1H) 5 aa2 1H 5 eH 5 H

G>H.

G>H

5 abH sinceH2 5 H.

5 (ab)H ?H  

5 a(bH)H  sinceH is normal

 (aH)(bH) 5 a(Hb)H  

G>H

?
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Suppose the group G has finite order n and the normal subgroup H has order m. Then
by Lagrange•s Theorem, we have

or

and the order of the quotient group is .

Example 1 Let G be the octic group as given in Example 3 of Section 4.5:

It can be readily verified that H 5 { e, g, u, a2} is a normal subgroup of G. The distinct
cosets of H in G are

and

ThusG>H 5 { H, aH}, and a multiplication table for G>H is as follows.

�

There is a very important and natural relation between the quotient groups of a group
G and the epimorphisms from G to another group Gr. Our next theorem shows that every
quotient group G>H is a homomorphic image of G.

Theorem 4.23� Quotient Group Homomorphic Image

Let G be a group, and let H be a normal subgroup of G. The mapping 
defined by

is an epimorphism from G to G>H.

Proof The rule f (a) 5 aH clearly defines a mapping from G to G>H. For any a andb in G,

Thusf is a homomorphism. Every element of G>H is a coset of H in G that has the form
aH for some a in G. For any such a, we have f (a) 5 aH. Therefore,f is an epimorphism. 

5 f (ab).

sinceH is normal in G5 abH

f (a) ?f (b) 5 (aH)(bH)

f (a) 5 aH

f : G S G>H

�

aH 5 a 3H 5 b H 5 D H 5 5a, a3, b, D6.

H 5 eH 5 g H 5 u H 5 a 2H 5 5e, g, u, a 26

G 5 5e, a, a 2, a3, b, g, D, u6.

o(G>H) 5 n>m

n 5 m ?o(G>H),

o(G) 5 o(H) ?o(G>H)
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Example 2 Consider the octic group

and its normal subgroup

We saw in Example 1 that G>H 5 { H, aH}. Theorem 4.23 assures us that the mapping 
f : G S G>H defined by

is an epimorphism. The values of f are given in this case by

�

Theorem 4.23 says that every quotient G>H is a homomorphic image of G. We shall
see that, up to an isomorphism, these quotient groups give all of the homomorphic
images of G. In order to prove this, we need the following result about the kernel of a
homomorphism.

Theorem 4.24� Kernel of a Homomorphism

For any homomorphism f from the group G to the group Gr, ker f is a normal subgroup
of G.

Proof The identity e is in ker f since f (e) 5 er, so ker is always nonempty. If
a [ ker f andb [ ker f , thenf (a) 5 erandf (b) 5 er. Also, by Theorem 3.28,

so

and therefore [ ker f . Thus, by Theorem 3.10, ker f is a subgroup of G.
To show that ker f is normal, let x [ G anda [ ker f . Then

Thusxax2 1 is in ker f , and ker f is a normal subgroup by Theorem 4.18. 

5 er by part b of Theorem 3.28.

5 f (x) ?f (x2 1)

5 f (x) ?er ?f (x2 1)  sincea [ ker f

f (xax2 1) 5 f (x)f (a)f (x2 1)  since f  is a homomorphism

ab2 1

5 er,

5 er #(er)2 1

5 f (a) 3f (b)42 1

f (ab2 1) 5 f (a) f (b2 1)

3f (b)42 1,
f (b2 1) 5

f

f (a) 5 f (a3) 5 f (b) 5 f (D) 5 a H.

f (e) 5 f (g) 5 f (u) 5 f (a2) 5 H

f (a) 5 aH

H 5 5e, g, u, a26.

G 5 5e, a, a2, a3, b, g, D, u6
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The mapping f in Theorem 4.23 has H as its kernel, and this shows that every normal
subgroup of G is the kernel of a homomorphism. Combining this fact with Theorem 4.24,
we see that the normal subgroups of G and the kernels of the homomorphisms from G to
another group are the same subgroups of G.

We can now prove that every homomorphic image of G is isomorphic to a quotient
group of G.

Theorem 4.25� Homomorphic Image� Quotient Group

Let G andGr be groups with Gr a homomorphic image of G. Then Gr is isomorphic to a
quotient group of G.

Proof Let f be an epimorphism from G to Gr, and let K 5 ker f . For each aK in G>K,
define u(aK) by

.

First we need to prove that this rule defines a mapping. For any aK andbK in G>K,

Thusu is a well-defined mapping from G>K to Gr, and the� parts of the� statements
show that u is one-to-one as well.

We shall show that u is an isomorphism from G>K to Gr. Since

u is a homomorphism. To show that u is onto, let ar be arbitrary in Gr. Since f is an epi-
morphism, there exists an element a in G such that f (a) 5 ar. Then aK is in G>K, and

.

Thus every element in Gr is an image under u, and this proves that u is an isomorphism. 

Theorem 4.26� Fundamental Theorem of Homomorphisms

If f is an epimorphism from the group G to the group Gr, thenGr is isomorphic to G>ker f .

The Fundamental Theorem follows at once from the proof of Theorem 4.25.

u(aK) 5 f (a) 5 ar

5 u (aK) ?u(bK), 

5 f (a) ?f (b)

5 f (ab)

u(aK ?bK) 5 u (abK)

� u(aK) 5 u (bK).

� f (a) 5 f (b)

� 3f (b)42 1f (a) 5 er

� f (b2 1)f (a) 5 er

� f (b2 1a) 5 er

� b2 1a [ K

aK 5 bK � b2 1aK 5 K

u(aK) 5 f (a)
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In order to give nontrivial illustrations of Theorem 4.24 and 4.25, we need an example
of a homomorphism that is somewhat involved. This homomorphism is presented in the
next example.

Example 3 Consider the permutation group

and the multiplicative group

The mapping f : G S Gr defined by

can be shown by direct computation to be an epimorphism from G to Gr, but it is tedious to
verify f (xy) 5 f (x)f (y) for all 36 choices of the pair of factors x, y in S3. As an alternative
to this chore, we shall obtain another description of f . We first note that if a 5 (1, 2, 3) and
b 5 (1, 2), the elements of S3 can be written as

We then make the following observations concerning S3:

1. Any element of S3 can be written in the form aibk, with i [ {0, 1, 2} and k [ {0, 1}.

2. bai 5 a 2 ib.

3. Any x [ S3 is either of the form x 5 a i or of the form x 5 a ib.

Routine calculations will confirm that our mapping f can be described by the rule

Having made these observations, we can now verify the equation f (x)f (y) 5 f (xy) with a
reasonable amount of work. For arbitrary x andy in S3, we write either x 5 a i or x 5 a ib ,
andy 5 a mbn wherem[ {0, 1, 2} and n [ {0, 1}.

If x 5 a i, we have

and

If x 5 a ib , we have

5 324n1 1

5 f (ai 2 mbn1 1)

5 f (aia2 mbbn)

f (xy) 5 f (aibambn)

f (x)f (y) 5 f (ai)f (ambn) 5 3240324n 5 324n.

f (xy) 5 f (aiambn) 5 f (ai 1 mbn) 5 324n

f (arbk) 5 324k  for any integer r.

 (1, 2)5 a 0b  (1, 3)5 ab  (2, 3)5 a 2b.

(1) 5 a 0b0   (1, 2, 3)5 ab 0   (1, 3, 2)5 a 2b0

f (1, 2) 5 f (1, 3) 5 f (2, 3) 5 324

f (1) 5 f (1, 2, 3)5 f (1, 3, 2)5 314

Gr 5 5314, 32468 Z3.

G 5 S3 5 5(1), (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3)6
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and

Thusf (xy) 5 f (x)f (y) in all cases, and f is a homomorphism (an epimorphism, actually)
from G to Gr. �

Example 4 To illustrate Theorems 4.24 and 4.25, consider the groups G 5 S3 and
Gr 5 { 314, 324} in the previous example. We see that the kernel of the epimorphism
f : G S Gr is the normal subgroup

of G. The quotient group G>K is given by

where

.

The isomorphism u: G>K S Gr has values

�

Using the results of this section, we can systematically find all of the homomorphic
images of a group G. We now know that the homomorphic images of G are the same (in the
sense of isomorphism) as the quotient groups of G.

Example 5 Let the symmetric group on three elements. In order to find all the
homomorphic images of G, we need only find all of the normal subgroups H of G and form
all possible quotient groups G>H. As we saw in Section 4.4, a complete list of the sub-
groups of G is

Of these,H1, H5, andH6 are the only normal subgroups. The possible homomorphic images
of G, then, are

Thus any homomorphic image of S3 is isomorphic to S3, to a cyclic group of order 2, or to
a group with only the identity element. �

G>G 5 5G6.

G>H5 5 5H5, (1, 2)H56

G>H1 5 5H1, (1, 2)H1, (1, 3)H1, (2, 3)H1, (1, 2, 3)H1, (1, 3, 2)H16

H3 5 5(1), (1, 3)6 H6 5 S3.

H2 5 5(1), (1, 2)6  H5 5 5(1), (1, 2, 3), (1, 3, 2)6

H1 5 5(1)6 H4 5 5(1), (2, 3)6

G 5 S3,

u((1, 2)K) 5 f (1, 2) 5 324.

u(K) 5 f (1) 5 314

(1, 2)K 5 5(1, 2), (2, 3), (1, 3)6

G>K 5 5K, (1, 2)K6

5 5(1), (1, 2, 3), (1, 3, 2)6

K 5 ker f

5 324n1 1.

5 324 324n
f (x)f (y) 5 f (aib)f (ambn)
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Exercises4.6
True or False 
Label each of the following statements as either true or false.

1. Every normal subgroup of a group is the kernel of a homomorphism.

2. The kernel of any homomorphism from group G to group Gr is a normal subgroup
of Gr.

3. aHbH 5 abH for any subgroup H of a group G and for all a, b in G.

4. Every homomorphic image of a group G is isomorphic to a quotient group of G.

5. The homomorphic images of a group G are the same (up to an isomorphism) as the
quotient groups of G.

Exercises

In Exercises 1…6,H is a normal subgroup of the group G. Find the order of the quotient
groupG>H. Write out the distinct elements of G>H and construct a multiplication table
for G>H.

1. The octic group 

2. The octic group 

3. The quaternion group G 5 {6 1, 6 i, 6 j, 6 k}; H 5 {6 1}

4. The group of rigid motions of a regular pentagon 5
, where 5 (1, 2, 3, 4, 5), 5 (2, 5)(3, 4), 5 (1, 2)(3, 4),

5 (1, 3)(4, 5), 5 (1, 4)(2, 3), and 5 (1, 5)(2, 4). 

5. The alternating group G 5 A4; H 5 {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

6. The symmetric group G 5 S4; H 5 {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

7. Let G be the multiplicative group of units U20 consisting of all [a] in Z20 that have mul-
tiplicative inverses. Find a normal subgroup H of G that has order 2 and construct a
multiplication table for G>H.

8. SupposeG1 andG2 are groups with normal subgroups H1 andH2, respectively, and
with G1>H1 isomorphic to G2>H2. Determine the possible orders of H1 andH2 under
the following conditions.

a. o(G1) 5 24 ando(G2) 5 18

b. o(G1) 5 32 ando(G2) 5 40

9. Find all homomorphic images of the octic group.

10. Find all homomorphic images of A4.

11. Find all homomorphic images of the quaternion group.

12. Find all homomorphic images of each group G in Exercise 18 of Section 3.4.

suD
gbaD5; H 5 5e, a, a2, a3, a46

G 5 5e, a, a2, a3, a4, b, g, D, u, s 6

G 5 5e, a, a2, a3, b, g, D, u6; H 5 5e, b, D, a26

G 5 5e, a, a2, a3, b, g, D, u6; H 5 5e, a26
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13. Let G 5 S3. For each H that follows, show that the set of all left cosets of H in G does
not form a group with respect to a product defined by (aH)(bH) 5 abH.

a. H 5 {(1), (1, 2)} 

b. H 5 {(1), (1, 3)} 

c. H 5 {(1), (2, 3)} 

14. Let G 5 { I2, R, R2, R3, H, D, V, T} be the multiplicative group of matrices in Exer-
cise 30 of Section 3.1, letGr 5 {1, 2 1} under multiplication, and definef : G S Grby

a. Assume that f is an epimorphism, and find the elements of K 5 ker f .

b. Write out the distinct elements of G>K.

c. Let u: G>K S Gr be the isomorphism described in the proof of Theorem 4.25, and
write out the values of u.

15. Repeat Exercise 14 with the multiplicative group of
matrices in Exercise 16 of Section 3.3.

16. Repeat Exercise 14 with the quaternion group the
Klein four group , and defined by

17. Repeat Exercise 14 where G is the multiplicative group of units and is the cyclic
group of order 4. That is,

Define 

18. If H is a subgroup of the group G such that (aH)(bH) 5 abHfor all left cosets aH and
bH of H in G, prove thatH is normal in G.

19. Let H be a subgroup of the group G. Prove that H is normal in G if and only if
(Ha)(Hb) 5 Hab for all right cosets Ha andHb of H in G.

20. If H is a normal subgroup of the group G, prove that (aH)n 5 anH for every positive in-
teger n.

21. Let H be a normal subgroup of finite group G. If the order of the quotient group G>H
is m, prove thatgm is in H for all g in G.

22. Let H be a normal subgroup of the group G. Prove that G>H is abelian if and only if
a2 1b2 1ab [ H for all a, b [ G.

f 139425 f 1319425 a2  f 137425 f 1317425 a3.

f 131425 f 1311425 e  f 133425 f 1313425 a

f  : G S Gr by

Gr 5 8a95 5e, a, a2, a36.

G 5 5314, 334, 374, 394, 3114, 3134, 3174, 31946,

GrU20

f (j ) 5 f (2 j ) 5 b  f (k) 5 f (2 k) 5 ab.

f (1) 5 f (2 1) 5 e  f (i) 5 f (2 i) 5 a

f : G S GrGr 5 5e, a, b, ab6
G 5 51, i, j, k, 2 1, 2 i, 2 j, 2 k6,

G 5 5I2, M1, M2, M3, M4, M56,

f aB
a b
c d

Rb 5 ad 2 bc.
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23. Let G be a torsion group, as defined in Exercise 41 of Section 3.4, and H a normal sub-
group of G. Prove that the quotient group G>H is a torsion group.

24. Let G be a cyclic group. Prove that for every normal subgroup H of G, G>H is a cyclic
group.

25. Prove or disprove that if a group G has a cyclic quotient group G>H, thenG must be
cyclic.

26. Prove or disprove that if a group G has an abelian quotient group G>H, thenG must be
abelian.

27. a. Show that a cyclic group of order 8 has a cyclic group of order 4 as a homomorphic
image.

b. Show that a cyclic group of order 6 has a cyclic group of order 2 as a homomorphic
image.

28. Assume that f is an epimorphism from the group G to the group Gr.

a. Prove that the mapping is a bijection from the set of all subgroups of G
that contain ker f to the set of all subgroups of Gr.

b. Prove that if K is a normal subgroup of Gr, thenf 2 1(K) is a normal subgroup of G.

29. Supposef is an epimorphism from the group G to the group Gr. Let H be a normal
subgroup of G containing ker f , and let Hr 5 f (H).

a. Prove that Hr is a normal subgroup of Gr.

b. Prove that G>H is isomorphic to Gr>Hr.

30. Let G be a group with center Z(G) 5 C. Prove that if G>C is cyclic, then G is abelian.

31. (See Exercise 30.) Prove that if p andq are primes and G is a nonabelian group of
orderpq, then the center of G is the trivial subgroup {e}.

32. Let a be a fixed element of the group G. According to Exercise 18 of Section 3.5, the
mappingta: G S G defined by ta(x) 5 axa2 1 is an automorphism of G. Each of these
automorphismsta is called an inner automorphism of G. Prove that the set
Inn(G) 5 { ta a [ G} forms a normal subgroup of the group of all automorphisms of G.

33. (See Exercise 32.) Let G be a group with center Z(G) 5 C. Prove that Inn(G) is
isomorphic to G>C.

34. If H andK are normal subgroups of the groupG such thatG 5 HK andH d K 5 { e},
thenG is said to be theinternal direct product of H andK, and we writeG 5 H 3 K
to denote this. IfG 5 H 3 K, prove thatf : H S G>K defined byf (h) 5 hK is an
isomorphism fromH to G>K.

35. (See Exercise 34.) If G 5 H 3 K, prove that each element g [ G can be written
uniquely as g 5 hkwith h [ H andk [ K.

36. Let H be a subgroup of G and let K be a normal subgroup of G.

a. Prove that the mapping f : H S HK>K defined by f (h) 5 hK is an epimorphism
from H to HK>K.

b. Prove that kerf 5 H d K.

c. Prove that is isomorphic to HK>K.H>H d K

0

H S f (H)
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37. Let H and K be arbitrary groups and let denote the Cartesian product of H
andK:

Equality in is defined by (h, k) 5 (hr, kr) if and only if h 5 hr and k 5 kr.
Multiplication in is defined by

.

a. Prove that is a group. This group is called the external direct product of H
andK.

b. Suppose that and are the identity elements of and respectively. Show that
Hr 5 {( h, e2) 0h [ H} is a normal subgroup of that is isomorphic to Hand,
similarly, that Kr 5 {( e1, k) 0k [ K} is a normal subgroup isomorphic to K.

c. Prove that is isomorphic toK and that is isomorphic to H.

38. (See Exercise 37.) Let a andb be fixed elements of a group G, and let be the
external direct product of the additive group Z with itself. Prove that the mapping

defined by f (m, n) 5 ambn is a homomorphism if and only if ab5 ba
in G.

4.7 Direct Sums (Optional)

The overall objective of this and the next section is to present some of the basic material
on abelian groups. A tremendous amount of work has been done on the subject. One of
the concepts fundamental to abelian groups is a direct sum, to be defined in this section.
Throughout this section we write all abelian groups in additive notation.

We begin by defining the sum of a finite number of subgroups in an abelian group and
showing that this sum is a subgroup.

Definition 4.27� Sum of Subgroups

Let H1, H2, c , Hn be subgroups of the abelian group G. Thesum
of these subgroups is defined by

Theorem 4.28� Sum of Subgroups

If H1, H2, c , Hn are subgroups of the abelian group G, thenH1 1 H2 1 c 1 Hn is a
subgroup of G.

Proof The sum H1 1 H2 1 c 1 Hn is clearly nonempty. For arbitrary

x 5 h1 1 h2 1 c 1  hn

H1 1 H2 1 c 1  Hn 5 5x [ G 0x 5 h1 1 h2 1 c 1  hn with hi [ Hi6.

H1 1 H2 1 c 1  Hn

f : Z z Z S G

Z z Z

H z K>KrH z K>Hr

H z K
K,He2e1

H z K

(h1, k1)(h2, k2) 5 (h1h2, k1k2)

H z K
H z K

H z K 5 5(h, k) 0h [ H and k [ K6.

H z K
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with hi [ Hi , the inverse

is in the sum H1 1 H2 1 c 1 Hn, since2 hi [ Hi for each i. Also, if

with [ Hi, then

is in the sum of the Hi , sincehi 1 hri [ Hi for each i. Thus H1 1 H2 1 c 1 Hn is a
subgroup of G.

The contents of Definition 4.19 and Theorem 4.20 may be restated as follows, with
addition as the binary operation:

If A is a nonempty subset of the group G, then the subgroup of G generated by Ais
the set

It is left as an exercise to prove that if H1, H2, c , Hn are subgroups of an abelian group G,
thenG 5 H1 1 H2 1 c 1 Hn if and only if G is generated by 

Example 1 Let G be the group G 5 Z12 under addition, and consider the following
sums of subgroups in G.

a. If

and

then

is a subgroup. Since 33(1)1 2(11)45 32545 314in Z12 and 314generatesZ12 under
addition, we have

b. Now let

The sum K1 1 K2 is given by

5 533u 1 4v4 0u, v [ Z6.

K1 1 K2 5 5u3341 v344 0u, v [ Z6

K2 5 834495 5344, 384, 3046.

K1 5 H1 5 83349,

H1 1 H2 5 G.

5 533r 1 2s4 0r, s [ Z6

H1 1 H2 5 5r 3341 s324 0r, s [ Z6

H2 5 832495 5324, 344, 364, 384, 3104, 3046,

H1 5 833495 5334, 364, 394, 3046

h n
i5 1 Hi .

8A95 5x [ G 0x 5 a1 1 a2 1 c 1  an with ai [ A or 2 ai [ A6.

x 1 y 5 (h1 1 hr1) 1 (h2 1 hr2) 1 c 1  (hn 1 hrn)

hri

y 5 hr1 1 hr2 1 c 1  hrn

2 x 5 (2 h1) 1 (2 h2) 1 c 1  (2 hn)

240 Chapter 4 More on Groups
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