
On Maximal Permissiveness of Hierarchical and Modular Supervisory
Control Approaches for Discrete Event Systems

Klaus Schmidt, Christian Breindl

Abstract— Recently, several efficient modular and hierar-
chical approaches for the control of discrete event systems
(DES) have been proposed. Although these methods are very
suitable for dealing with the state space explosion problem, their
common limitation is that either maximal permissiveness isnot
addressed or unnecessarily restrictive conditions are required in
order to ensure maximally permissive control. In this paperwe
develop a unified framework for the investigation of maximal
permissiveness of modular control in multi-level hierarchies. We
identify a set of conditions that is met by several approaches,
and prove its sufficiency for maximally permissive control.

I. I NTRODUCTION

In recent years, a variety of approaches that reduce the
computational effort of the supervisor synthesis for discrete
event systems (DES) by employing modular and hierarchical
control techniques has been developed. As a common feature,
the methods in [1], [2], [3], [4], [5], [6], [7] use thenatural
projection that exhibits theobserver propertyin order to
determine abstracted system models that enable efficient
computations on smaller state spaces. Furthermore, except
for [1], they are designed for systems that are composed of
modular components.

The important result of the above approaches is that the
supervisors determined for both the modular system compo-
nents and the abstracted system models can be implemented
in a modular fashion, hence avoiding the enumeration of the
overall system state space. Moreover, it is guaranteed thatthe
modular supervisors are nonblocking and comply with the
specified system behavior, i.e., if such modular supervisors
have been found, it is guaranteed that the closed-loop system
fulfills the specification and does not block. On the downside,
maximal permissivenessis not ensured by most of the above
approaches. There might exist a less restrictive monolithic
nonblocking supervisor meeting the given specification. In
particular, it can happen that no modular supervisors can
be found although there exists a monolithic solution. A first
result towards maximally permissive modular and hierarchi-
cal control has been obtained in [4], whereoutput control
consistency(OCC) is required. As will be shown in Section
III-C, OCC can be replaced by a less restrictive condition.

In this paper, we propose a unified framework for the
investigation of maximal permissiveness in modular and hier-
archical supervisory control. We first introducelocal control

K. Schmidt is with the Lehrstuhl für Regelung-
stechnik, Universität Erlangen-Nürnberg, Germany,
klaus.schmidt@rt.eei.uni-erlangen.de

C. Breindl is with the Institute for Systems Theory
and Automatic Control, University of Stuttgart, Germany
breindl@ist.uni-stuttgart.de

consistency(LCC) as a condition for maximal permissive
control in monolithic two-level hierarchies as in [1], [2],[3],
and show that LCC is less conservative than OCC. Then,
we extend our framework to modular control and multi-
level hierarchies, and prove that the additional requirement
of mutual controllability(see [8]) is sufficient for maximal
permissiveness of the methods in [3], [4], [5], [6], [7].

The remainder of the paper is organized as follows. Sec-
tion II provides basic definitions of the supervisory control
theory. In Section III, we investigate maximal permissiveness
for monolithic hierarchical control, and in Section IV we
elaborate our main result on maximal permissiveness for
modular control in multi-level hierarchies. Conclusions are
given in Section V.

II. PRELIMINARIES

We recall basics from supervisory control theory [9], [10].
For a finite alphabetΣ, the set of all finite strings overΣ

is denotedΣ∗. We writes1s2 ∈ Σ∗ for the concatenation of
two stringss1, s2 ∈ Σ∗, ands1 ≤ s whens1 is aprefixof s,
i.e. if there exists a strings2 ∈ Σ∗ with s = s1s2. The empty
string is denotedǫ ∈ Σ∗, i.e. sǫ = ǫs = s for all s ∈ Σ∗. A
languageoverΣ is a subsetM ⊆ Σ∗. The prefix closureof
M is defined byM := {s1 ∈ Σ∗| ∃s ∈ M s.t. s1 ≤ s}. A
languageM is prefix closedif M = M .

The natural projectionpi : Σ∗ → Σ∗
i , i = 1, 2, for the

(not necessarily disjoint) unionΣ = Σ1 ∪ Σ2 is defined
iteratively: (1) let pi(ǫ) := ǫ; (2) for s ∈ Σ∗, σ ∈ Σ, let
pi(sσ) := pi(s)σ if σ ∈ Σi, or pi(sσ) := pi(s) otherwise.
The set-valued inverse ofpi is denotedp−1

i : Σ∗
i → 2Σ∗

.
The synchronous productM1||M2 ⊆ Σ∗ of two languages
Mi ⊆ Σ∗

i is M1||M2 = p−1
1 (M1) ∩ p−1

2 (M2) ⊆ Σ∗.
A finite automatonis a tupleG = (X, Σ, δ, x0, Xm), with

the finite set ofstatesX ; the finite alphabet ofeventsΣ;
the partialtransition functionδ : X × Σ → X ; the initial
statex0 ∈ X ; and the set ofmarked statesXm ⊆ X . We
write δ(x, σ)! if δ is defined at(x, σ). In order to extendδ
to a partial function onX ×Σ∗, recursively letδ(x, ǫ) := x
and δ(x, sσ) := δ(δ(x, s), σ), whenever bothx′ = δ(x, s)
andδ(x′, σ)!. L(G) := {s ∈ Σ∗ : δ(x0, s)!} andLm(G) :=
{s ∈ L(G) : δ(x0, s) ∈ Xm} are theclosedand marked
languagegenerated by the finite automatonG, respectively.
A formal definition of the synchronous compositionG1||G2

of two automataG1 andG2 can be taken from e.g. [9]. Note
that Lm(G1||G2) = Lm(G1)||Lm(G2).

In a supervisory control context, we writeΣ = Σc∪̇Σuc

to distinguish controllable (Σc) and uncontrollable (Σuc)
events. Acontrol patternis a setγ, Σuc ⊆ γ ⊆ Σ, and the

set of all control patterns is denotedΓ ⊆ 2Σ. A supervisor
is a mapS : L(G) → Γ, whereS(s) represents the set of
enabled events after the occurrence of strings. The language
L(S/G) generated byG under supervisionS is iteratively
defined by (1)ǫ ∈ L(S/G) and (2) sσ ∈ L(S/G) iff
s ∈ L(S/G), σ ∈ S(s) and sσ ∈ L(G). Thus, L(S/G)
represents the behavior of theclosed-loop system.

A languageM is said to be controllable w.r.t.L(G) if
MΣuc ∩ L(G) ⊆ M . The set of all languages that are
controllable w.r.t.L(G) is denotedC(L(G)). Furthermore,
the setC(L(G)) is closed under arbitrary union. In particular,
for every specificationlanguageE there uniquely exists a
supremal controllable sublanguageof E w.r.t. L(G), which
is formally defined asκL(G)(E) := ∪{M ∈ C(L(G))| M ⊆
E}. To take into accountE and the marking ofG in the
closed-loop behavior, we employ amarking supervisoras in
[10] s.t.Lm(S/G) := κL(G)(E∩Lm(G)). Then, the closed-
loop system isnonblocking, i.e., Lm(S/G) = L(S/G). A
supervisorS that leads to a closed-loop behaviorκL(G)(E ∩
Lm(G)) is said to bemaximally permissive.

A widely used property in the context of hierarchical
supervisory control is theobserver property.

Definition 1 ([1]): Let M ′ ⊆ M ⊆ Σ∗ be languages and
let p0 : Σ∗ → Σ∗

0 be the natural projection forΣ0 ⊆ Σ. p0

is anM ′-observer (w.r.t.M) iff for all s ∈ M and t ∈ Σ∗
0

p0(s)t ∈ p0(M
′) ⇒ ∃u ∈ Σ∗ s.t.su ∈ M ′∧p0(su) = p0(s)t.

III. M ONOLITHIC HIERARCHICAL CONTROL

A. Control Architecture

In this section, we elaborate how maximally permissive
control can be achieved in the architecture in Fig. 1. Defini-
tion 2 gives a detailed description of this architecture.

Definition 2 (Monolithic Architecture):The following en-
tities and conditions are required.
(i) low level: the plant is modeled by an automatonG with

the alphabetΣ. The uncontrollable events areΣuc ⊆ Σ,
and there is a low-level supervisorS : Σ∗ → Γ.

(ii) high level: the high-level alphabet isΣhi ⊆ Σ with the
uncontrollable high-level eventsΣhi

uc := Σhi ∩ Σuc and
the natural projectionphi : Σ∗ → (Σhi)∗. The high-
level plantGhi is determined byL(Ghi) := phi(L(G))
andLm(Ghi) := phi(Lm(G)), and there is a high-level
supervisorShi : (Σhi)∗ → Γhi := {γ|Σhi

uc ⊆ γ ⊆ Σhi}.
(iii) supervisor computation: for the specificationKhi ⊆

(Σhi)∗, the high-level supervisor is computed such that
Lm(Shi/Ghi) = κL(Ghi)(Lm(Ghi)||Khi). The low-level
supervisor fulfillsLm(S/G) = Lm(Shi/Ghi)||Lm(G),
i.e., S is efficiently implemented based onShi, Σ, Σhi.

(iv) nonblocking control: we require that the low-level con-
trol is nonblocking, i.e.,Lm(S/G) = L(S/G).

(v) abstraction condition: the natural projectionphi is an
L(G)-observer forL(G) according to Definition 1.

In this section, we assume that a hierarchical architecture
with the above features is given. Note that several approaches
such as [1]1 and [2] indeed comply with Definition 2, where

1Here, the natural projection has to be used as the causal reporter map.

(v) is common to all approaches, and different conditions
provide nonblocking control in (iv).

Σ − Σhi

∪ G

Ghi

phi

Shi

S

Fig. 1. Monolithic hierarchical control architecture

Having described the control architecture, we now discuss
sufficient conditions for maximally permissive hierarchical
control. WithK := Lm(G)||Khi as the specification for the
low-level plant, it is desired thatLm(S/G) = κL(G)(K) =:
Lmax. We first state a result that is the basis of our in-
vestigation. Lemma 1 reduces the verification of maximal
permissiveness to a controllability test.

Lemma 1:Assume the control architecture in Definition
2 (i)-(iv). Then, it holds thatS is maximally permissive if
phi(Lmax) is controllable w.r.t.L(Ghi), i.e.,

phi(Lmax)Σ
hi
uc ∩ L(Ghi) ⊆ phi(Lmax) ⇒ Lm(S/G) = Lmax

Proof: As L(S/G) is controllable w.r.t.L(G), the fact
that S is nonblocking establishes thatLm(S/G) is control-
lable w.r.t.L(G). Together withLm(S/G) ⊆ Lm(G)||Khi,
this implies thatLm(S/G) ⊆ Lmax.

To show the reverse inclusion, we observe
that phi(Lmax)||Lm(G) ⊆ Lm(Shi/Ghi)||Lm(G)
as phi(Lmax) is controllable w.r.t. L(Ghi). Since
Lmax ⊆ (phi)−1(phi(Lmax)) and Lmax ⊆ Lm(G),
also Lmax ⊆ (phi)−1(phi(Lmax)) ∩ Lm(G) =
phi(Lmax)||Lm(G) ⊆ Lm(Shi/Ghi)||Lm(G).

B. Output Control Consistency

In hierarchical supervisory control,output control con-
sistency(OCC) is used as a condition to ensure maximal
permissiveness. It has been first stated for generalcausal
reporter maps in [11], and then formulated for natural
projections in [4].

Definition 3 (OCC [4]): Let M = M ⊆ Σ∗ be a prefix-
closed language, and letΣuc ⊆ Σ and Σhi ⊆ Σ be the
set of uncontrollable and high-level events, respectively. The
natural projectionphi : Σ∗ → (Σhi)∗ is output control
consistent (occ) forM if for every s ∈ M of the form

s = σ1 · · ·σk or s = s′σ0σ1 · · ·σk, k ≥ 1,

whereσ0, σk ∈ Σhi andσi ∈ Σ−Σhi for i = 1, . . . , k−1, we
have the property thatσk ∈ Σuc ⇒ (∀i = 1, . . . , k)σi ∈ Σuc.

This means that, wheneverσk is an uncontrollable high-
level event, its immediately preceding low-level events must
all be uncontrollable, such that its nearest controllable event
is a high-level event.

In this section, we show that adding OCC to the architec-
ture in Definition 2 results in maximally permissive control.

Theorem 1:Assume the control architecture in Definition
2. If phi is occ forL(G), thenS is maximally permissive.

Proof: Appealing to Lemma 1, it has to be shown that
phi(Lmax) is controllable w.r.t.L(Ghi).

Assume thatshi ∈ L(Ghi)∩phi(Lmax), and letσuc ∈ Σhi
uc

s.t. shiσuc ∈ L(Ghi). It has to be shown thatshiσuc ∈
phi(Lmax). As shi ∈ phi(Lmax) = phi(Lmax), there is
a s ∈ Lmax s.t. phi(s) = shi. Then, s ∈ L(G), and
because of Definition 2 (v), there exists au ∈ (Σ − Σhi)∗

s.t. suσuc ∈ L(G). Writing s = s′σu′ with σ ∈ Σhi,
u′ ∈ (Σ − Σhi)∗, and considering Definition 3, it is readily
observed thatu′u ∈ (Σuc − Σhi

uc)
∗. Hence,suσuc ∈ Lmax

and consequentlyshiσuc ∈ phi(Lmax) = phi(Lmax).
Theorem 1 states that if any approach that complies with

the architecture in Definition 2 (such as [1], [2]) is extended
with the requirement for OCC, then maximally permissive
control is achieved. This is of particular interest, as there are
polynomial time algorithms that refine a natural projection
phi in order to fulfill OCC [11], [10].

C. Local Control Consistency

OCC requires that any local string between a high-level
event and an uncontrollable high-level event has to contain
only uncontrollable low-level events. In this section, we relax
this assumption tolocal control consistency(LCC), while
still guaranteeing maximal permissiveness in the framework
of Definition 2.

Definition 4 (LCC): Let G be a finite automaton, andGhi

its hierarchical abstraction with the corresponding high-level
alphabetΣhi and natural projectionphi : Σ∗ → (Σhi)∗. We
denotephi locally control consistent(lcc) for a strings ∈
L(G) if for all σuc ∈ Σhi

uc s.t. phi(s)σuc ∈ L(Ghi), it holds
that either∄u ∈ (Σ − Σhi)∗ s.t. suσuc ∈ L(G) or there is a
u ∈ (Σuc − Σhi

uc)
∗ s.t. suσuc ∈ L(G). Furthermore, we call

phi lcc for a languageM ⊆ L(G) if phi is lcc for all s ∈ M .
In words, a natural projection is locally control consistent

for a strings ∈ L(G), if for each uncontrollable high-level
eventσuc that is feasible after the corresponding high-level
string, there is either no continuation or an uncontrollable
continuation ofs that terminates withσuc. Hence, ifσuc is
possible afters, then it cannot be prevented.

Based on Definition 4, we can replace OCC in Theorem
1 by LCC for a certain set of strings.

Theorem 2 (LCC):Assume the control architecture in
Definition 2. Letshi ∈ L(Ghi), and defineLen(s

hi) := {s ∈
L(G)|phi(s) = shi∧ 6 ∃s′ < s s.t. phi(s′) = shi} as the set of
shortest possible low-level strings that are projected toshi.
If for all shi ∈ L(Ghi), phi is lcc for Len(s

hi), then S is
maximally permissive. Furthermore, OCC implies LCC.

Proof: Again, it has to be shown thatphi(Lmax) is
controllable w.r.t.L(Ghi). Let shi ∈ phi(Lmax), and assume
that σuc ∈ Σuc s.t. shiσuc ∈ L(Ghi). It has to be proved
that shiσuc ∈ phi(Lmax). As shi ∈ phi(Lmax), there must
be ans ∈ Len(s

hi) ∩ Lmax. Now it suffices to show that
there is a continuationu ∈ (Σ − Σhi)∗ s.t. suσuc ∈ Lmax.
As phi is anL(G)-observer and lcc forLen(s

hi), there is an
uncontrollable continuationu ∈ (Σuc − Σhi)∗ s.t. suσuc ∈
L(G). Then, the fact thatLmax is controllable w.r.t.L(G)
implies thatsuσuc ∈ Lmax.

G Ghi

α

α

β

β
a b

c
de

f

g
h

11

2

2 3 4

5 6 7

Fig. 2. Comparison of OCC and LCC

To show that OCC implies LCC, letphi be occ, and
assume thats ∈ Len(s

hi) for some shi ∈ L(Ghi) s.t.
shiσuc ∈ L(Ghi) for someσuc ∈ Σuc. It holds that either
∄u ∈ (Σ − Σhi)∗ s.t. suσuc ∈ L(G) or there is au ∈
(Σ − Σhi)∗ s.t. suσuc ∈ L(G). In the first case, LCC holds
by definition. Otherwise, sincephi is occ, it must hold that
u ∈ (Σuc − Σhi

uc)
∗. Noting thatshi, σuc, and s ∈ Len(s

hi)
were chosen arbitrarily,phi is lcc.

The above result demonstrates that LCC indeed provides
a less conservative condition than OCC in order to ensure
maximally permissive control. For a comparison of LCC and
OCC, consider the automatonG in Fig. 2 with the high-level
alphabetΣhi = {α, β} and the controllable eventsΣc =
{α, d, e, h} (represented by ticks on arrows in the figure).
Observing that all strings inL(Ghi) with the uncontrollable
successor eventβ reach the state2, the only state that is
reached by corresponding entry strings inL(G) is 2. As
u = ab ∈ (Σuc − Σhi

uc)
∗ andδ(2, abβ) exists, it follows that

the natural projectionphi : Σ∗ → (Σhi)∗ is lcc for Len(s
hi)

for all shi ∈ L(Ghi). Note thatphi is not occ as for example
u′ = ehd 6∈ (Σuc − Σhi

uc)
∗ but δ(2, u′β) exists.

Additionally, it has to be noted that the construction of a
natural projectionphi that is anL(G)-observer and fulfills
LCC for Len(s

hi) can be formulated as acoarsest relational
partition problem(CRPP) as in [12], [13]. This is a relevant
result, since recent studies show that computing natural
projectionsphi that are sufficient for nonblocking control
in [1], [2] can also be stated as CRPP [13], [14]. Hence,
it is possible to determine the natural projectionphi with
the coarsest equivalence kernel that guarantees nonblocking
control and maximal permissiveness in polynomial time.

IV. H IERARCHICAL AND MODULAR CONTROL

A. Control Architecture

In this section, we consider the hierarchical and modular
architecture depicted in Fig. 3. The major difference with
respect to the architecture in Section III-A is that now the
plant is no longer represented by a single automaton but
composed of a set of automata.

Definition 5 (Modular Architecture):The following enti-
ties and conditions are required.

(i) low level: the plant is modeled byn automataGi,
i = 1, . . . , n with the respective alphabetΣi. The
overall plant isG := ||ni=1Gi over Σ :=

⋃n

i=1 Σi. The
uncontrollable events are given asΣi,uc ⊆ Σi such that
Σuc :=

⋃n

i=1 Σi,uc, and there is a low-level supervisor
S : Σ∗ → Γ.

Σ − Σhi

∪

G

GhiShi

G1 Gn

Σ1 Σn∩∩

pdec
1 pdec

n

||

S

Fig. 3. Hierarchical and modular control architecture

(ii) high level: With the set of shared eventsΣ∩ :=⋃n

i,j=1,i6=j(Σi ∩ Σj), the high-level alphabet fulfills
Σ∩ ⊆ Σhi ⊆ Σ. For each component, we haveΣhi

i :=
Σi ∩ Σhi and Σhi

i,uc := Σhi
i ∩ Σi,uc, i = 1, . . . , n. Fur-

thermore, the natural projectionpdec
i : Σ∗

i → (Σhi
i)∗ is

defined. The high-level plantGhi
i for each component is

determined byL(Ghi
i) := pdec

i (L(Gi)) andLm(Ghi
i) :=

pdec
i (Lm(Gi)). The overall high-level plant evaluates

to Ghi := ||ni=1G
hi
i with the uncontrollable high-level

eventsΣhi
uc := Σhi ∩ Σuc, and there is a high-level

supervisorShi : (Σhi)∗ → Γhi := {γ|Σhi
uc ⊆ γ ⊆ Σhi}.

(iii) supervisor computation: for the specificationKhi ⊆
(Σhi)∗, first the high-level supervisor is computed such
thatLm(Shi/Ghi) = κL(Ghi)(Lm(Ghi)||Khi). Then, the
low-level supervisor is implemented asLm(S/G) =
Lm(Shi/Ghi)||Lm(G).

(iv) nonblocking control: we require that the low-level con-
trol is nonblocking, i.e.,Lm(S/G) = L(S/G).

(v) abstraction condition: we require that the natural projec-
tion pdec

i is anL(Gi)-observer forL(Gi), i = 1, . . . , n.
Again, it is sufficient to ensure nonblocking control by

assumption. Therefore, it is possible to achieve a unified
treatment of maximal permissiveness for all approaches that
comply with these requirements such as [2], [6], [7].

B. Maximal Permissiveness for Modular Control

In the modular case, a slightly more restrictive condition
that is still less conservative than OCC is required to ensure
maximally permissive control, i.e., withK := Lm(G)∩Khi,
Lm(S/G) = κL(G)(K).

Theorem 3 (LCC Modular):Assume the control architec-
ture described in Definition 5. Fori = 1, . . . , n, let shi

i ∈
L(Ghi

i), and defineLloc,i(s
hi
i) := {s ∈ L(Gi)|p

dec
i (s) =

shi
i } as the set of strings inL(Gi) that are projected toshi

i .
If for all i = 1, . . . , n and for all shi

i ∈ L(Ghi
i), pdec

i is lcc
for Lloc,i(s

hi
i), thenS is maximally permissive.

Proof: It can be verified that all conditions in Definition
2 hold. In particular, with [4],phi : Σ∗ → (Σhi)∗ is anL(G)-
observer. Hence, it is sufficient to show that the conditions
in Theorem 3 imply thatphi is lcc for Len(s

hi) for all shi ∈
L(Ghi), i.e., the conditions in Theorem 2 are fulfilled.

Let shi ∈ L(Ghi) and σuc ∈ Σuc s.t. shiσuc ∈ L(Ghi).
Then, there exists as ∈ Len(s

hi). Fori = 1, . . . , n, we define
the natural projectionspi : Σ∗ → Σ∗

i and phi
i : (Σhi)∗ →

(Σhi
i)∗. With shi

i := phi
i (shi), it holds for alli = 1, . . . , n that

si := pi(s) ∈ Lloc,i(s
hi
i). Furthermore, for alli s.t. σuc ∈

Σi, shi
i σuc ∈ L(Ghi

i). As pdec
i is anL(Gi)-observer and lcc

for Lloc,i(s
hi), for all i such thatσuc ∈ Σi, there exists a

ui ∈ (Σi,uc−Σhi
i,uc)

∗ s.t.siuiσuc ∈ L(Gi). For all remaining
i, let ui = ǫ. Definingu := u1 . . . un, u ∈ ||ni=1{ui} implies
that suσuc ∈ L(G) = ||ni=1L(Gi), andu ∈ (Σuc − Σhi

uc)
∗.

Sinceshi, σuc and s ∈ Len(s
hi) were arbitrary, this proves

that phi is lcc for Len(s
hi) for all shi ∈ L(Ghi).

At this point, it has to be noted that the construction of a
natural projectionpdec

i that is anL(Gi)-observer and fulfills
LCC for Lloc,i(s

hi
i) can also be formulated as a CRPP. Hence,

similar to Section III-C,pdec
i can be computed such that it

both supports nonblocking controller synthesis and maximal
permissiveness for the approaches in [2], [6], [7].

C. Maximal Permissiveness with Local Control

In this section, we choose the same setup as in Fig. 3
with the modification that now each modular componentGi

represents a local control systemSi/Hi. In the following
definition, we state the extensions to Definition 5.

Definition 6 (Modular Architecture):
(i) low level: the plant is represented byn automataHi,

i = 1, . . . , n with the respective alphabetΣi, and the
overall plant isH := ||ni=1Hi overΣ :=

⋃n

i=1 Σi. There
are local supervisorsSi : Σ∗

i → Γi := {γ|Σi,uc ⊆ γ ⊆
Σi}. Furthermore, it holds thatGi := Si/Hi.

(ii) high level: identical to Definition 5.
(iii) supervisor computation: each local supervisor is deter-

mined asLm(Si/Hi) = κL(Hi)(Lm(Hi)||Ki). Then,
the low-level supervisor is implemented asLm(S/H) =
Lm(Shi/Ghi)||Lm(S1/H1)|| · · · ||Lm(Sn/Hn).

(iv) nonblocking control: Lm(S/H) = L(S/H).
(v) abstraction condition: identical to Definition 5.

Definition 6 describes a situation of high practical interest.
In addition to the high-level specificationKhi that usually
states the desired cooperative behavior of several system
components, local specificationsKi for individual compo-
nents are given. Using local control by the supervisorsSi

avoids the composition of the overall low-level plant. In
Fig. 3, the described change amounts to replacingGi by
Si/Hi. Note that in the case with local specifications, we
haveK := Lm(H)||Khi||K1|| · · · ||Kn, and the maximally
permissive control is given byLmax := κL(H)(K).

Different from the situation in Theorem 3, we now have
to account for the possibility that the local control by the
supervisorsSi, i = 1, . . . , n is more restrictive than a
maximally permissive supervisor. In this work, we employ
mutual controllability that was found in [8] as a structural
condition that ensures maximal permissiveness of the local
control. We first define the alphabetsΣi,k := Σi ∩ Σk for
i, k = 1, . . . , n and i 6= k, and the corresponding natural
projectionspi,k : Σ∗

i → Σ∗
i,k.

Definition 7 (Mutual Controllability [8]): The automata
Hi andHk are mutually controllable if

L(Hk)(Σi,k ∩ Σi,uc) ∩ (pk,i)
−1(pi,k(L(Hi))) ⊆ L(Hk),

L(Hi)(Σi,k ∩ Σk,uc) ∩ (pi,k)−1(pk,i(L(Hk))) ⊆ L(Hi).

Extending the conditions in Theorem 3 with mutual con-
trollability is sufficient for maximally permissive control
considering that local control is applied.

Theorem 4 (LCC Modular):Assume the control architec-
ture in Definition 6. If for all i = 1, . . . , n and for all
shi ∈ L(Ghi

i), pdec
i is lcc for Lloc,i(s

hi), and all local
componentsHi, Hk, i, k = 1, . . . , n, i 6= k, are mutually
controllable, thenS is maximally permissive.

The proof of Theorem 4 relies on the following lemmas.
Lemma 2 (Lemma A.8 in [3]):Let H := ||nj=1Hj , let Hi,

Hk, i, k = 1, . . . , n, i 6= k, be mutually controllable, and let
si ∈ L(Hi) and σ ∈ Σhi

i,uc s.t. siσ ∈ L(Hi). Then, for all
s ∈ L(H) s.t. pi(s) = si, it holds thatsσ ∈ L(H).

Lemma 3:Let Hi, Hk, i, k = 1, . . . , n, i 6= k, be mu-
tually controllable. Then,κL(H)(Lm(H)||K1|| · · · ||Kn) ⊆
Lm(G) = ||ni=1κL(Hi)(Lm(Hi)||Ki).

Proof: Let s ∈ κL(H)(Lm(H)||K1|| · · · ||Kn). Then,
s ∈ Lm(H), si := pi(s) ∈ Ki for i = 1, . . . , n, and 6 ∃u ∈
Σ∗

uc s.t. su ∈ L(H) andsu 6∈ Lm(H)||K1|| · · · ||Kn.
Now assume thats 6∈ Lm(G). Then, for somek, sk 6∈

κL(Hk)(Lm(Hk)||Kk), i.e., there is auk ∈ Σ∗
k,uc s.t.skuk 6∈

Kk but skuk ∈ L(Hk). Let uk = v1σ1 · · · vmσmvm+1,
where vj ∈ (Σk,uc − Σhi

k,uc)
∗, j = 1, . . . , m + 1 and

σj ∈ Σhi
k,uc, j = 1, . . . , m. Because of mutual controllability,

repeated application of Lemma 2 yieldssuk ∈ L(H)
but suk 6∈ ||ni=1Ki since skuk 6∈ Kk. This violates the
assumptions ∈ κL(H)(Lm(H)||K1|| · · · ||Kn), and hence,
s ∈ Lm(G).

Lemma 4 (Exercise 3.7.13 in [10]):Let H be an au-
tomaton overΣ, andK1, K2 ⊆ Σ∗ be specifications. Then

κL(H)(Lm(H)||K1||K2) =
κ

κL(H)(Lm(H)||K1)
(κL(H)(Lm(H)||K1)||K2).

With Lemma 3 and Lemma 4, Theorem 4 can be proved.
Proof: κL(H)(Lm(H)||K1|| · · · ||Kn) can be com-

puted from Lm(G) by evaluating κL(G)(Lm(G)), i.e.,
κL(H)(Lm(H)||K1|| · · · ||Kn) = κL(G)(Lm(G)). To see
this, first assume thats ∈ κL(H)(Lm(H)||K1|| · · · ||Kn).
Then, because of Lemma 3, we have thats ∈ Lm(G).
From this and the fact thatL(G) ⊆ L(H) it fol-
lows that s ∈ κL(G)(Lm(G)). To show the other
inclusion let s ∈ κL(G)(Lm(G)). Since Lm(G) ⊆
(Lm(H)||K1|| · · · ||Kn) and every string that is controllable
w.r.t. L(G) is also controllable w.r.t.L(H), we obtains ∈
κL(H)(Lm(H)||K1|| · · · ||Kn). With Lemma 4, we can write

κL(H)(K) = κL(H)(Lm(H)||Khi||K1|| · · · ||Kn) =
κ

κL(H)(Lm(H)||K1||···||Kn)(κL(H)(Lm(H)||K1|| · · · ||Kn)||

||Khi) = κ
κL(G)(Lm(G))

(κL(G)(Lm(G))||Khi).

Now first Lemma 4, and then Theorem 3 are applied to obtain

κ
κL(G)(Lm(G))(κL(G)(Lm(G))||Khi) =

κL(G)(Lm(G)||Khi) = Lm(Shi/Ghi)||Lm(G) =
Lm(Shi/Ghi)||Lm(S1/H1)|| · · · ||Lm(Sn/Hn).

The assumptions in this section are suitable for a two-
level hierarchy according to the approach in [3] extended

with local control, and for each step in the hierarchical
construction in [4], [5]. Note that maximal permissiveness
is also investigated in [4]. However, in that paper, OCC is
required for the modular components, and it is assumed that
the modular components do not share events. Observing that
both our LCC condition is less conservative than OCC, and
the absence of shared events implies mutual controllability,
our result is more general.

D. Modular Multi-Level Hierarchy

In this section we show that the conditions in Theorem 4
are also sufficient for multi-level hierarchical architectures.
To this end, we present a generic three-level hierarchy as
in Fig. 4, and elaborate an inductive argument that can be
carried over to multi-level hierarchies.

Definition 8 (Multi-Level Architecture):The following
entities and conditions are required.

(i) first level: the plant is represented byn groups of
automataH1

i,k, i = 1, . . . , n, k = 1, . . . , ni with the
respective alphabetΣ1

i,k. Hence, the plant for each
group isH1

i := ||ni

k=1H
1
i,k over Σ1

i :=
⋃ni

k=1 Σ1
i,k, and

the overall plant isH := ||ni=1||
ni

k=1H
1
i,k over Σ :=⋃n

i=1

⋃ni

k=1 Σ1
i,k. The uncontrollable events are given

asΣ1
i,k,uc ⊆ Σ1

i,k such thatΣuc :=
⋃n

i=1

⋃ni

k=1 Σ1
i,k,uc.

There are local supervisorsS1
i,k : (Σ1

i,k)∗ → Γ1
i,k :=

{γ|Σ1
i,k,uc ⊆ γ ⊆ Σ1

i,k} and low-level supervisorsS1
i :

(Σ1
i)

∗ → Γ1
i := {γ|Σ1

i,uc ⊆ γ ⊆ Σ1
i }. Furthermore, it

holds thatG1
i,k := S1

i,k/H1
i,k andG1 := ||ni=1||

ni

k=1G
1
i,k.

(ii) second level: With the set of shared eventsΣ1
∩ of

all plants on the first level, the second-level alphabet
fulfills Σ1

∩ ⊆ Σ2 ⊆ Σ. There aren components
H2

i = ||ni

k=1H
2
i,k over Σ2

i :=
⋃ni

k=1 Σ2
i,k, whereΣ2

i,k :=
Σ1

i,k ∩ Σ2. The uncontrollable events areΣ2
i,uc :=

Σ2
i ∩ Σuc, i = 1, . . . , n. With p1

i,k : (Σ1
i,k)∗ → (Σ2

i,k)∗,
the high-level plantH2

i,k for each component is deter-
mined byL(H2

i,k) := p1
i,k(L(G1

i,k)) and Lm(H2
i,k) :=

p1
i,k(Lm(G1

i,k)). There is a supervisorS2 : (Σ2)∗ →
Γ2 := {γ|Σ2

uc ⊆ γ ⊆ Σ2}, and fori = 1, . . . , n, there is
a supervisorS2

i : (Σ2
i)

∗ → Γ2
i := {γ|Σ2

i,uc ⊆ γ ⊆ Σ2
i }.

We defineG2
i := S2

i /H2
i andG2 := ||ni=1G

2
i .

(iii) third level: With the set ofshared eventsΣ2
∩ of all plants

on the second level, it holds thatΣ2
∩ ⊆ Σ3 ⊆ Σ2. For

each second-level component, we haveΣ3
i := Σ2

i ∩ Σ3

andΣ3
i,uc := Σ3

i ∩Σ2
i,uc, i = 1, . . . , n. Furthermore, the

natural projectionp2
i : (Σ2

i)
∗ → (Σ3

i)
∗ is defined. The

high-level plantH3
i for each component is determined

by L(H3
i) := p3

i (L(G2
i)) andLm(H3

i) := p3
i (Lm(G2

i)).
The overall high-level plant evaluates toH3 := ||ni=1H

3
i

with the uncontrollable high-level eventsΣ3
uc := Σ3 ∩

Σuc, and there is a third-level supervisorS3 : (Σ3)∗ →
Γ3 := {γ|Σ3

uc ⊆ γ ⊆ Σ3}. We defineG3 := S3/H3.
(iv) supervisor computation: each first-level

supervisor is determined asLm(S1
i,k/H1

i,k) =
κL(H1

i,k
)(Lm(H1

i,k)||K1
i,k) for specifications

K1
i,k ⊆ (Σ1

i,k)∗, i = 1, . . . , n, k = 1, . . . , ni.
The second-level supervisors are computed as

G3

G2
1 G2

n

G1
1,1G1

1,1 G1
1,n1 G1

n,1
G1

n,nn
G1

n,nn

S2/G2

S2/G2

(a) (b)

Fig. 4. Hierarchical and modular multi-level architecture

Lm(G2
i) = Lm(S2

i /H2
i) = κL(H2

i
)(Lm(H2

i ||K
2
i))

for specificationsK2
i ⊆ (Σ2

i)
∗, i = 1, . . . , n, and

implemented asLm(S1
i /G1

i) = Lm(G2
i)||Lm(G1

i)
in the first level. Likewise, we haveLm(G3) =
Lm(S3/H3) = κL(H3)(Lm(H3)||K3) for K3 ∈ (Σ3)∗

and Lm(S2/G2) = Lm(G3)||Lm(G2) in the
second level (see Fig. 4). The overall supervisor
is Lm(S/H) = Lm(G3)||Lm(G2)||Lm(G1).

(iv) nonblocking control: we require that the low-level con-
trol is nonblocking, i.e.,Lm(S/H) = L(S/H).

(v) abstraction condition: we require that all natural pro-
jectionsp2

i and p1
i,k, i = 1, . . . , n, k = 1, . . . , ni are

L(G2
i)-observers forL(G2

i) andL(G1
i,k)-observers for

L(G1
i,k), respectively.

Applying the conditions in Theorem 4 to each hierarchical
abstraction in the 3-level hierarchy according to Definition
8, we can state the main result of this paper.

Theorem 5 (Multi-Level Architecture):Assume the con-
trol architecture in Definition 8. We require that for all
i = 1, . . . , n, k = 1, . . . , ni, it holds that for allshi ∈ L(G3),
p2

i is lcc for L2
loc,i(s

hi), and for allshi ∈ L(G2
i), p1

i,k is lcc
for L1

loc,i,k(s
hi). Furthermore letH1

i,k andH1
j,l be mutually

controllable for all i, j = 1, . . . , n and k = 1, . . . , ni,
l = 1, . . . , nj such thati 6= j or k 6= l, and H2

i , H2
j be

mutually controllable for alli, j = 1, . . . , n, i 6= j. ThenS
is maximally permissive.

Proof: Let K2 := Lm(H2)||K3||K2
1 || · · · ||K

2
n

and K1 := Lm(H1)||K2||K1
1,1|| · · · ||K

1
n,nn

. Appeal-
ing to Theorem 4, we know that (i)Lm(S2/G2) =
κL(H2)(K

2) = Lm(G3)||Lm(G2) (situation in Fig. 4
(a)) and (ii) κL(H1)(K

1) = κL(H2)(K
2)||Lm(G1) =

Lm(S2/G2)||Lm(G1) (situation in Fig. 4 (b)). Com-
bining (i) and (ii), we arrive at κL(H1)(K

1) =
Lm(G3)||Lm(G2)||Lm(G1).

With this argument, it is straightforward to transfer the
result to a hierarchy with an arbitrary number of levels as
long as the conditions in Definition 8 are met for each
three consecutive levels. To our knowledge, Theorem 5 is
the most general result concerning maximal permissiveness
in hierarchical and modular control architectures. It can be
applied to the approaches in [2], [4], [5], [7] as long as the
additional requirements of LCC and mutual controllability
are met. In this regard, note that a projection that complies
with LCC can be computed algorithmically, and mutual
controllability trivially holds for the methods in [4], [5]as
system components do not share events.

V. CONCLUSIONS

In this paper, a unified framework for studying maximal
permissiveness in modular and hierarchical supervisory con-
trol has been proposed. It has been designed to incorporate
hierarchical control approaches that employ natural projec-
tions with the observer property for system abstraction such
as [1], [2], [3], [4], [5], [6], [7]. In this framework, we first
introduced local control consistency as a less conservative
condition for maximally permissive monolithic hierarchical
control. This result was then extended to modular and
multi-level hierarchical control, where mutual controllability
was found as an additional condition to ensure maximal
permissiveness for the methods in [2], [3], [4], [5], [6], [7].

In our investigations, it turned out that the computation
of a natural projection that exhibits local control consistency
can be formulated as a coarsest relational partition problem
similar to the computation of natural projections that support
nonblocking control in the above approaches. Algorithms for
the computation of natural projections that are both suitable
for nonblocking control and fulfill local control consistency
have been developed and first applied in [15].

REFERENCES

[1] K. C. Wong and W. M. Wonham, “Hierarchical control of discrete-
event systems,”Discrete Event Dynamic Systems: Theory and Appli-
cations, 1996.

[2] K. Schmidt, S. Perk, and T. Moor, “Nonblocking hierarchical control
of decentralized systems,”IFAC World Congress, Prague, 2005.

[3] K. Schmidt. (2005) Hierarchical control of decentralized
discrete event systems: Theory and application. Phd-
thesis, Lehrstuhl für Regelungstechnik, Universität Erlangen-
Nürnberg. [Online]. Available: http://www.rt.e-technik.uni-
erlangen.de/FGdes/dissertation2005schmidt.pdf

[4] L. Feng and W. M. Wonham, “Computationally efficient supervisor
design: Abstraction and modularity,”Workshop on Discrete Event
Systems, 2006.

[5] R. Hill and D. Tilbury, “Modular supervisory control of discrete-event
systems with abstraction and incremental hierarchical construction,”
Workshop on Discrete Event Systems, 2006.

[6] K. Schmidt, H. Marchand, and B. Gaudin, “Modular and decentralized
supervisory control of concurrent discrete event systems using reduced
system models,”Workshop on Discrete Event Systems (WODES), Ann
Arbor, USA, 2006.

[7] K. Schmidt, M. de Queiroz, and J. Cury, “Hierarchical anddecentral-
ized multitasking control of discrete event systems,”Conference on
Decision and Control, 2007.

[8] S.-H. Lee and K. C. Wong, “Structural decentralised control of
concurrent DES,”European Journal of Control, vol. 35, pp. 1125–
1134, October 2002.

[9] C. G. Cassandras and S. Lafortune, “Introduction to discrete event
systems,”Kluwer, 1999.

[10] W. M. Wonham, “Notes on control of discrete event systems,” De-
partment of Electrical Engineering, University of Toronto, 2004.

[11] H. Zhong and W. M. Wonham, “On the consistency of hierarchical su-
pervision in discrete-event systems,”IEEE Transactions on Automatic
Control, vol. 35, pp. 1125–1134, October 1990.

[12] J.-C. Fernandez, “An implementation of an efficient algorithm for
bisimulation equivalence,”Science of Computer Programming, vol. 13,
pp. 219–236, 1990.

[13] K. C. Wong and W. M. Wonham, “On the computation of observers
in discrete-event systems,”Discrete Event Dynamic Systems, vol. 14,
no. 1, pp. 55–107, 2004.

[14] K. Schmidt and T. Moor, “Computation of marked string accepting
observers for discrete event systems,”Workshop on Discrete Event
Systems (WODES), Ann Arbor, USA, 2006.

[15] T. Moor, K. Schmidt, and S. Perk, “libFAUDES – an open source
C++ library for discrete event systems,”Workshop on Discrete Event
Systems, 2008.

