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Abstract— Recently, several efficient modular and hierar- consistency(LCC) as a condition for maximal permissive
chical approaches for the control of discrete event systems control in monolithic two-level hierarchies as in [1], [2B],

(DES) have been proposed. Although these methods are very 5nq show that LCC is less conservative than OCC. Then,

suitable for dealing with the state space explosion problentheir tend f K t dul trol d i
common limitation is that either maximal permissiveness isiot we extend our iramework to modular control and muiti-

addressed or unnecessarily restrictive conditions are ragred in  |evel hierarchies, and prove that the additional requirgme
order to ensure maximally permissive control. In this paperwe  of mutual controllability (see [8]) is sufficient for maximal
develop a unified framework for the investigation of maximal  permissiveness of the methods in [3], [4], [5], [6], [7].
permissiveness of modylar contrc_)l in multi-level hierarchies. We The remainder of the paper is organized as follows. Sec-
identify a set of conditions that is met by several approache tion Il ides basic definiti f th . ht
and prove its sufficiency for maximally permissive control. lon Ii provi e$ asic e_ ini 'ohs or ihe _SuPerV'Sory (_:0 ro
theory. In Section IIl, we investigate maximal permissiess
. INTRODUCTION for monolithic hierarchical control, and in Section IV we

: laborate our main result on maximal permissiveness for
In recent years, a variety of approaches that reduce te P

computational effort of the supervisor synthesis for diter m\c/)((ejr:“;r chg,:irgrl] |\r; multi-level hierarchies. Conclusiorre a
event systems (DES) by employing modular and hierarchicl '
control techniques has been developed. As a common feature, [l. PRELIMINARIES

thrg'zrar:;?r?(tjﬁaltne[ﬂ;it[)izt]s, [ti]écgﬁ]s,e[?\}ér[m,r<£7]elrjtsi1t2?§(tal;r?(l) We recall basics from supervisory control theory [9], [10].
proj Property For a finite alphabeL, the set of all finite strings ovex

determine abstracted system models that enable efficient N : . .
. is denoted:*. We write sy so € 3* for the concatenation of
computations on smaller state spaces. Furthermore, exc : . . .
. 0 stringssy, so € X%, ands; < s whens; is aprefixof s,
for [1], they are designed for systems that are composed 0f . : . .
I.e. if there exists a stringy € >* with s = s1s5. The empty
modular components.

. . string is denoted € ¥*, i.e.se = es = s for all s € ¥*. A
The important result of the above approaches is that t gnguageoverz is a subsef C *. The prefix closureof
supervisors determined for both the modular system compq- is defined byl :— {s; € 2—*| Es.e M st 51 < s} A
nents and the abstracted system models can be implemeqaer(]jguageM is prefix. closedif M — 7F R
in a modular fashion, hence avoiding the enumeration of the The natural projectionp; : =* — E'* i — 1.2 for the
overall system state space. Moreover, it is guaranteedhbat not necessarily disjoint)lu.niorE _ é U ’is, defined
modular supervisors are nonblocking and comply with ths eratively: (1) letpi(c) = ¢ (2) for s le o 20 = 3 let
specified system behavior, i.e., if such modular supersisor_(sg> .:'p_(s)g it ZU G'E- 'Ol‘p-(sa) — p_(;) other\;vise
have been found, it is guaranteed that the closed-looprayst Zhe se't-vallued inverse q}i is dzenotedp.*lz- Sx _, o '
fulfills the specification and does not block. On the down,siderhe synchronous producn/Z[1||M2 C o é)f tWo zlanguagés
maximal permissiveness not ensured by most of the aboveMl C 5 is My || My — p_l(M ) ﬂz_ﬂ_l(M )Cx
approaches. There might exist a less restrictive monolithi™ = "t autolmatf)ris altuplelG _ (2X 225 % ), with
nonblocking supervisor meeting the given specification. |ﬂ1e finite set ofstates X" the finite al,ph7at,)et070é§/ne,nt52'
particular, it can happen that no modular supervisors Ciﬂe partialtransition funétioné : X x ¥ — X; the initial,
be found although there exists a monolithic solution. A ﬁrsstateg: € X and the set ofnérked statesy ' C X. We
result towards maximally permissive modular and hierarchi 0 ’ m o= 4

: . write 6(z, 0)! if 0 is defined at(z, ). In order to extend
cal control has been obtained in [4], whesatput control ; . . .
: . . ; . . to a partial function onX x X*, recursively letj(x, €) := x
consistency{OCC) is required. As will be shown in Section and 6(x, so) = 6(5(x, s), ), whenever both’ — d(x, s)
[1I-C, OCC can be replaced by a less restrictive condition. ) . AR A

: o andé(z’,0)!. L(G) := {s € ¥* : §(x0, s)!} and L, (G) :=
In this paper, we propose a unified framework for th% c (L(G)) : 553:0)78) é Xun} are( tﬁec)lgsed and r(na)rked

e e e OOt a0 e cnguegegencried b e i ot especivey
P y ' A formal definition of the synchronous compositiéh ||G2
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stechnik, ~ Universitat Erlangen-Nuimberg, Germany,that L, (G1]|G2) = L (G1)||Lm(G2).
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set of all control patterns is denot&dC 2*. A supervisor
is a mapS: L(G) — T, whereS(s) represents the set of
enabled events after the occurrence of stenghe language
L(S/G) generated byG under supervisiort is iteratively
defined by (1)e € L(S/G) and (2) so € L(S/G) iff
s € L(S/G),0 € S(s) and s € L(G). Thus, L(S/G)
represents the behavior of tleosed-loop system

A languageM is said to be controllable w.r.tL(G) if
MY, N L(G) € M. The set of all languages that are
controllable w.r.t.L(G) is denotedC(L(G)). Furthermore,
the setC(L(G)) is closed under arbitrary union. In particular,
for every specificationlanguageFE there uniquely exists a
supremal controllable sublanguagé E w.r.t. L(G), which
is formally defined as: ;) (E) := U{M € C(L(G))| M C
E}. To take into accounf and the marking ofG in the
closed-loop behavior, we employnaarking supervisoas in
[10] s.t. L (S/G) := kr(q)(ENLn(G)). Then, the closed-
loop system isnonblocking i.e., L, (S/G) = L(S/G). A
supervisorS that leads to a closed-loop behavigl ) (EN
L, (G)) is said to bemaximally permissive

A widely used property in the context of hierarchical
supervisory control is thebserver property

Definition 1 ([1]): Let M’ C M C ¥* be languages and
let po : ¥* — X be the natural projection faty C 3. po
is an M'-observer (w.r.tM1) iff for all s € M andt €

po(s)t € po(M') = Ju € ¥ s.t.su € M'Apo(su) = po(s)t.

IIl. M ONOLITHIC HIERARCHICAL CONTROL
A. Control Architecture

In this section, we elaborate how maximally permissivés P (Limax)

control can be achieved in the architecture in Fig. 1. Defin
tion 2 gives a detailed description of this architecture.

Definition 2 (Monolithic Architecture):The following en-
tities and conditions are required.

(i) low level the plant is modeled by an automat@nwith
the alphabek. The uncontrollable events aFg,. C %,
and there is a low-level supervissr: ¥* — T
high level the high-level alphabet i&" C X with the
uncontrollable high-level eventsl! := $b N0 ¥, . and
the natural projectiop™ : ¥* — (xh)*, The high-
level plantG™ is determined byL(G™) := p"(L(G))
and L, (G") := p" (L., (G)), and there is a high-level
supervisorShi ; (3hi)* — hi .= {4|2hi C « C F$hi},
supervisor computationfor the specificationk™ C

(ii)

(iii)

(ZM)*, the high-level supervisor is computed such thaf

Lin(S™/GM) = k(o) (Lm (G™)||[K™). The low-level
supervisor fulfills L,,,(S/G) = Lu(S™/G™)||Ln(G),
i.e., S is efficiently implemented based &f', 2, ¥,
nonblocking contralwe require that the low-level con-
trol is nonblocking, i.e.L.,(S/G) = L(S/G).
abstraction conditionthe natural projectiop®™ is an
L(G)-observer forL(G) according to Definition 1.

In this section, we assume that a hierarchical architectu
with the above features is given. Note that several appesac

such as [1] and [2] indeed comply with Definition 2, where

(iv)
(v)

1Here, the natural projection has to be used as the causateepaap.

("

(v) is common to all approaches, and different conditions
provide nonblocking control in (iv).

Shi

Fig. 1. Monolithic hierarchical control architecture

Having described the control architecture, we now discuss
sufficient conditions for maximally permissive hierardlic
control. With K := L,,(G)||K™ as the specification for the
low-level plant, it is desired thak,,(S/G) = k) (K) =:
L. We first state a result that is the basis of our in-
vestigation. Lemma 1 reduces the verification of maximal
permissiveness to a controllability test.

Lemma 1:Assume the control architecture in Definition
2 (i)-(iv). Then, it holds thatS is maximally permissive if
P (Lmax) is controllable w.r.t.L(GM), i.e.,

P 880 L(GY) € P = Ln(3/G) = L

Proof: As L(S/G) is controllable w.r.t.L(G), the fact
that S is nonblocking establishes thét, (S/G) is control-
lable w.r.t. L(G). Together withL,,(S/G) C L (G)|| K",
this implies thatl,(S/G) C Lmax-

To show the reverse inclusion, we observe
that  p"(Limax)|| L (G) C L (SM/G")||Lin(G)
is controllable w.rt. L(G"). Since
iLmax (phi)il(phi(Lmax» and Lmax g Lm(G>r
aso Lumax S (0") 7 (0" (Lmax)) N Lin(G)
P (Lina) || L (G) € Lin(S™ /G| | Ly (G).

B. Output Control Consistency

In hierarchical supervisory controfutput control con-
sistency(OCC) is used as a condition to ensure maximal
permissiveness. It has been first stated for geneaakal
reporter mapsin [11], and then formulated for natural
projections in [4].

Definition 3 (OCC [4]): Let M = M C ¥* be a prefix-
closed language, and lgt,. C ¥ and ¥ C ¥ be the
set of uncontrollable and high-level events, respectiviehe
natural projectionp® : ¥* — (XM)* is output control
onsistent (occ) fo/ if for every s € M of the form

-

s=o0y- -0 0Ors=5sogoy---0%, k>1,

whereog, o, € SM ando; € E—-XPfori=1,...,k—1, we
have the property that, € X, = (Vi=1,...,k)o; € Zye.
This means that, whenevet, is an uncontrollable high-
level event, its immediately preceding low-level eventsstmu
all be uncontrollable, such that its nearest controllalkné
ir%a high-level event.
In this section, we show that adding OCC to the architec-
re in Definition 2 results in maximally permissive control
Theorem 1:Assume the control architecture in Definition
2. If pht is occ for L(G), then S is maximally permissive.



G

Proof: Appealing to Lemma 1, it has to be shown that

" (Lmax) is controllable w.r.t.L(G™).

Assume that™ € L(GM)Nphi(Lyax), and leto,, € 201
s.t. shio,. € L(GM). It has to be shown thathis,. €
P (Lpax). As st € phi(Lyay) = pM(Limax), there is
as € Lpmax St phi(s) = s". Then,s € L(G), and
because of Definition 2 (v), there existsuac (X — xhi)*
s.t. suoy. € L(G). Writing s = s'ou’ with o € XN,
u' € (X — ¥M)*, and considering Definition 3, it is readily

observed that/'u € (S, — 31 )*. Hence,suoy. € Lax o i
and consequentlyioye € p" (L) = PP (Limax - - To show that OCC |hmpl|es LCC, I}e_p be oiz_c, and
ssume thats € Lg,(s™) for somes™ € L(G™) s.t

Theorem 1 states that if any approach that complies Wiﬁ‘Li i ,
the architecture in Definition 2 (such as [1], [2]) is extedde 3 ue € L(G h.) for someoye € By It holds that either
with the requirement for OCC, then maximally permissive’® € (hZ — XM)" stosuoye € L(G) or there is au €
control is achieved. This is of particular interest, as¢hare (= — 2 )" S:L. suouc € L(G). In the first case, LCC holds

e ) oy .
polynomial time algorithms that refine a natural projectior?y definition. }Ei)ttlerwge, sincg” Is occ, it must hold }tlihat
phi in order to fulfill OCC [11], [10]. U € (Zue — y)". Noting thats™, oye, ands € Len(s™)
were chosen arbitrarilyy™ is Icc. ]
C. Local Control Consistency The above result demonstrates that LCC indeed provides

OCC requires that any local string between a high-levél less conservative condition than OCC in order to ensure
event and an uncontrollable high-level event has to contaff@ximally permissive control. For a comparison of LCC and
only uncontrollable low-level events. In this section, wtax ~OCC, consider the automatahin Fig. 2 with the high-level
this assumption tdocal control consistenc{LCC), while ~alphabetst = {a, 3} and the controllable events, =
still guaranteeing maximal permissiveness in the framewor @ d; €, h} (represented by ticks on arrows in the figure).
of Definition 2. Observing that all strings ith,(G™) with the uncontrollable

Definition 4 (LCC): Let G be a finite automaton, ar@hi ~ Successor event reach the stat@, the only state that is
its hierarchical abstraction with the corresponding higrel ~ réached by corresponding entry strings fifG;) is 2. As
alphabets™ and natural projectiop™ : £ — (Shi)*, We ¢ = ab € (Sue — Xii)* andd(2,abp) exists, it follows that
denotep® locally control consistenicc) for a strings €  the natural projectiop™ : $* — (S)* is lcc for Len (s™)
L(G) if for all oue € £M s.t. phi(s)one € L(G™), it holds  for all s" € L(G"). Note thatp™ is not occ as for example
that eitherfiu € (X — SM)* s.t. suoye € L(G) or there is a % = ehd & (Sue — Xi¢)* but (2, u'3) exists. _

U € (Sye — EM)* st suowe € L(G). Furthermore, we call Add|t|on§IIy, _|t has to b(_a noted that the construcnor! of a
ph lcc for a languagél! C L(G) if phi s Icc for all s € M. natural prOJectl_orp]“1 that is anL(G)-observer and fglfllls

In words, a natural projection is locally control consigtentCC for Len(s™) can be formulated as@parsest relational
for a strings € L(G), if for each uncontrollable high-level Partition problem(CRPP) as in [12], [13]. This is a relevant
evento, that is feasible after the corresponding high-levefesult, since recent studies show that computing natural
string, there is either no continuation or an uncontroiablProjectionsp™ that are sufficient for nonblocking control

Fig. 2.

Comparison of OCC and LCC

continuation ofs that terminates witlr,.. Hence, ifoy,. is
possible aftew, then it cannot be prevented.

in [1], [2] can also be stated as CRPP [13], [14]. Hence,
it is possible to determine the natural projectiphi with

Based on Definition 4, we can replace OCC in Theorerfne coarsest equivalence kernel that guarantees nonbtpcki

1 by LCC for a certain set of strings.

Theorem 2 (LCC):Assume the control architecture in

Definition 2. Lets" € L(G™), and defineL.,(s") := {s €
L(G)|ph(s) = sMA As' < s s.t.phi(s’) = s} as the set of
shortest possible low-level strings that are projected’fo
If for all s" e L(GM), p" is Icc for Le,(s™), then S is
maximally permissive. Furthermore, OCC implies LCC.

Proof: Again, it has to be shown that"(L,..) is
controllable w.r.t.L(G™). Let s € pt(L,,ax), and assume
that oy € Sye St sMoy. € L(GM). It has to be proved
that s"oy. € p"(Liax). As s" € p(Liay), there must
be ans € Len(s™) N Liyax. Now it suffices to show that
there is a continuation € (X — X)* s.t. suoye € Linax.
As p"lis an L(G)-observer and Icc foE., (s™), there is an
uncontrollable continuation € (3, — XM)* s.t. suoy. €
L(G). Then, the fact thaf.,,.x is controllable w.r.t.L(G)
implies thatsuoy. € Lyax.

control and maximal permissiveness in polynomial time.

IV. HIERARCHICAL AND MODULAR CONTROL

A. Control Architecture

In this section, we consider the hierarchical and modular
architecture depicted in Fig. 3. The major difference with
respect to the architecture in Section IlI-A is that now the
plant is no longer represented by a single automaton but
composed of a set of automata.

Definition 5 (Modular Architecture):The following enti-
ties and conditions are required.

(i) low level the plant is modeled by: automataG,,
i = 1,...,n with the respective alphabéi;. The
overall plant isG := ||, G, over¥ := |J!_, ;. The
uncontrollable events are given &s .. C ¥; such that

Yue := Ui~ Ziue, and there is a low-level supervisor
S ¥ —T.
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Fig. 3. Hierarchical and modular control architecture

(i) high level With the set of shared events:n
Ui j=1.i2;,(Zi N %), the high-level alphabet fulfills
¥ C ¥M C 3. For each component, we ha¥g! :=
LNyt andsP =S NY, ., i = 1,...,n. Fur-
thermore, the natural projectigifec : ¥ — (Xh)* is

defined. The high-level plar® for each component is

determined byL(G}) := pie¢(L(G;)) and L, (G}) :=
pde(Lm(G;)). The overall high-level plant evaluates
to GM := ||, G™ with the uncontrollable high-level
eventsYhi = Yh 0¥, and there is a high-level
supervisorShi ; ($hi)* — hi .= {|xhi C » C $hi},

supervisor computationfor the specificationk™ C

(iii)

(x:h)*, first the high-level supervisor is computed such

that L, (S™/GM) = ki (guiy (L (GM)[|K™). Then, the
low-level supervisor is implemented ds,(S/G) =

L (S"/G")|| L (G).

nonblocking contralwe require that the low-level con-
trol is nonblocking, i.e. L, (S/G) = L(S/G).
abstraction conditionwe require that the natural projec-
tion pdec is an L(G;)-observer forL(G;), i = 1,.

(iv)
(v)

Again, it is sufficient to ensure nonblocking control by
assumption. Therefore, it is possible to achieve a unifie

treatment of maximal permissiveness for all approachds th
comply with these requirements such as [2], [6], [7].

B. Maximal Permissiveness for Modular Control

In the modular case, a slightly more restrictive conditio
that is still less conservative than OCC is required to ensu
maximally permissive control, i.e., With' := L,,(G)N K",
Lin(S/G) = kpr(c)(K).

Theorem 3 (LCC Modular)Assume the control architec-
ture described in Definition 5. Far= 1,...,n, let sh €
L(GY), and defineLiqci(sM) = {s € L( i) |pdec(s ) =
sl as the set of strings ifh(G;) that are projected tel.

If for all i =1,...,n and for allsl € L(GY), pdec is Icc
for Ligc,i(s hiy) then S is maximally permissive.

Proof: It can be verified that all conditions in Definition
2 hold. In particular, with [4]p" : ©* — (SM)* is anL(G)-
observer.
in Theorem 3 imply thap® is Icc for L, (s™) for all s €
L(G"), i.e., the conditions in Theorem 2 are fuffilled.

Let st € L(GM) and oy € Ty st stioye € L(GM).
Then, there exists @€ L, (s"). Fori = 1,...,n, we define
the natural projectiong; : ¥* — X¥ andph : (¥h)* —

Hence, it is sufficient to show that the COhdItIOﬂS

(Shh*, With shi := phi(shh), it holds for alli = 1,...,n that
i := pi(s) € Lioc,i(s™). Furthermore, for ali s.t. o €
¥, stioy. € L(GM). As pdec is an L(G;)-observer and Icc
for Lige,i(s hiyfor all i such thato,. € ;, there exists a
w; € (Biue—EM,0)" St.siuioue € L(G;). For all remaining
i, letu; = e. Definingu := u; . un, u € ||7q {u;} implies
that suoy. € L(G) = || ( ,andu € (Bye — Xhi)*,
Sinces", o, ands € Len( hl) were arbitrary, this proves
that p" is lcc for L., (sM) for all s™ € L(GM). ]

At this point, it has to be noted that the construction of a
natural prOJectlorpdec that is anL(G;)-observer and fulfills
LCC for Loc.i(si) can also be formulated as a CRPP. Hence,
similar to Sect|on l1I-C,pdec can be computed such that it
both supports nonblocking controller synthesis and makima
permissiveness for the approaches in [2], [6], [7].

C. Maximal Permissiveness with Local Control

In this section, we choose the same setup as in Fig. 3
with the modification that now each modular componént
represents a local control systef3/H;. In the following
definition, we state the extensions to Definition 5.

Definition 6 (Modular Architecture):

(i) low level the plant is represented by automataH;,
i = 1,...,n with the respective alphabét;, and the
overall plant isH := ||7_, H; overX := {J;_, ;. There
are local supervisor§; : £ — T'; := {7|3;uc C v C
¥;}. Furthermore, it holds tha¥; := S;/H;.
high level identical to Definition 5.
supervisor computatiareach local supervisor is deter-
mined asLw(S;/H;) = kr(m,)(Lm(H;)||K;). Then,
the low-level supervisor is implemented As (S/H) =
Lun(S" /G| L (St /H)|| || Lin (S / H)-
(iv) nonblocking contral L., (S/H) = L(S/H).

(v) abstraction conditionidentical to Definition 5.

d Definition 6 describes a situation of high practical inteéres
Iéi‘ addition to the high-level specificatioR™ that usually
states the desired cooperative behavior of several system
components, local specificatiorts; for individual compo-
nents are given. Using local control by the supervissys

(if)
(iii)

'?.VOIdS the composition of the overall low-level plant. In

Flg 3, the described change amounts to replacihgby
S;/H;. Note that in the case with local specifications, we
have K := L, (H)||K"||K1]|---||K,, and the maximally
permissive control is given bymax = k) (K).

Different from the situation in Theorem 3, we now have
to account for the possibility that the local control by the
supervisorsS;, i = 1,...,n is more restrictive than a
maximally permissive supervisor. In this work, we employ
mutual controllabilitythat was found in [8] as a structural
condition that ensures maximal permissiveness of the local
control. We first define the alphabeXy ;, := 3; N X, for
.k =1,...,n andi # k, and the corresponding natural
prO]eCtIOHszk - Xr,

Definition 7 (Mutual Controllablllty [8]): The automata
H, and H;, are mutually controllable if

L(Hp)(Zi ke N Eiue) N (Pr,i) " (pik(L(H;)))
L(H;) (36 N Zkue) O (i)~ (pri(L(Hr)))

L(Hyg),

-
C L(H;).



Extending the conditions in Theorem 3 with mutual conwith local control, and for each step in the hierarchical

trollability is sufficient for maximally permissive contro
considering that local control is applied.

Theorem 4 (LCC Modular)Assume the control architec-

ture in Definition 6. If for alli = 1,...,n and for all
sh e L(GY), pec is Icc for Lioi(s™), and all local
componentsH;, Hy, i,k = 1,...,n, i # k, are mutually

controllable, thenS is maximally permissive.

The proof of Theorem 4 relies on the following lemmas.

Lemma 2 (Lemma A.8 in [3])Let H := |[7_, H;, let H;,

Hy,i,k=1,...,n,1i# k, be mutually controllable, and let

si € L(H;) ando € ¥} s.t.s;0 € L(H;). Then, for all
s € L(H) s.t.p;(s) = s;, it holds thatso € L(H).
Lemma 3:Let H;, H, i,k = 1,...,n, i # k, be mu-

tually controllable. ThennL(H)( m(H)[| K] [|K) C
Lin(G) = |[lo1fnay) (L (Hy) [ K5).
Proof: Let s € rr(m)(Lm(H)||K1]|---||Ky). Then,

s€Ln(H), si :=pi(s) e K;fori=1,...,n, and Au €
¥r.st.sue L(H) andsu ¢ Lm(H)||K1|| || K

Now assume that ¢ L,,(G). Then, for somek, s, ¢
HL(Hk)(Lm(Hk)HKk) i.e., thereis ay, € Ek ue S.t.spug ¢
K} but spur € L(Hy). Let up, = 0101 UpmOmUmi1,
where v; € (Chome — Eﬁluc)*,j = 1,...,m+1 and
0j € ¥p., j =1,...,m. Because of mutual controllability,
repeated application of Lemma 2 vyields;, € L(H)
but sur, ¢ ||, K; since syu, ¢ K. This violates the
assumptions € k) (Lm(H)|[K1]|---||Ky), and hence,
s € L (G). [ |

Lemma 4 (Exercise 3.7.13 in [10] et H be an au-
tomaton overX, and K, Ko C X* be specifications. Then

k) (L (H)|| K[| K2) =
by e (D (H)|| K1) [ K2).

RL(H)

construction in [4], [5]. Note that maximal permissiveness
is also investigated in [4]. However, in that paper, OCC is
required for the modular components, and it is assumed that
the modular components do not share events. Observing that
both our LCC condition is less conservative than OCC, and
the absence of shared events implies mutual controligbilit
our result is more general.

D. Modular Multi-Level Hierarchy

In this section we show that the conditions in Theorem 4
are also sufficient for multi-level hierarchical architeets.
To this end, we present a generic three-level hierarchy as
in Fig. 4, and elaborate an inductive argument that can be
carried over to multi-level hierarchies.

Definition 8 (Multi-Level Architecture)The  following
entities and conditions are required.

(i) first level the plant is represented by groups of

automataH/,, i = 1,...,n, k = 1,...,n; with the
respective aIphabeE Hence, the plant for each
group isH} := |[}L, H}, overE = UL, %}, and
the overall plant isH := ||~ Hlk over ¥ :=
Uiy Ui, 214 The uncontrollable events are given
aszrlk uc C Zlk such thatzuc = Uz 1 U z k uc”

There are Iocal supervisorsy , : (%} ,)* — F ik =
{12k €Y C 2, ) and low-level supervrsor§1 :
(Zh* =T} = {7|EZ w Sy C oL Furthermore it
holds thatle = Slk/H1 andG' := i 15y G g

(i) second level With the set of shared even'tsZ1 of
all plants on the first level, the second-level alphabet
fulfils XL C %2 C . There aren components
H? = ||”7 (HYy overy? =L, ¥2,, whereX?, =

With Lemma 3 and Lemma 4, Theorem 4 can be proved. Zlk N x2. The uncontrollable events arg?, =

Proof:  kp(a)(Lm(H)||K1]|---||K,) can be com-
puted from L, (G) by evaluating k) (Lm(G)), i.e.,
Erm) Lm(H)|[KLl] - [[Kn) = k) (Lm(G)). To see
this, first assume that € xp gy (L (H)||[K1]]---[|Ky).
Then, because of Lemma 3, we have thate L., (G).
From this and the fact thatl.(G) C L(H) it fol-
lows that s € k) (Lu(G)). To show the other
inclusion let s € kp)(Ln(G)). Since Ly (G) C

(L (H)||K1]|- - ]|Ky) and every string that is controllable

w.r.t. L(G) is also controllable w.r.tL(H), we obtains €
Kr(ay(Lm (H)|| K1 - - - || K;). With Lemma 4, we can write

k) (K) = k() (L (H)| [ K[ K ] - [ Kn) =
“mm(Lm( Ty R (L (DK [ K]
5y = (k16 (Ln(G)) [ ).

HL(c) (Lm

2N Yye, i =1,...,n. With p} e (El ) — (Z?k)*,
the high-level pIantH2 for each component is deter-
mined byL(Hﬁk) = ptk( (Gi,) and Ly, (H?),) ==
pzk(L (G1,)). There is a superviso? : (X%)* —

= {7|EuC Cy C¥?},andfori=1,...,n, thereis
a supervrsorSf D (X9 = TF = {y[x} e C v C X2}
We defineG? := SE/HZ2 and G2 :— ||

(i) third levet With the set ofshared eventE% of all plants

on the second level, it holds thalZ C 2 C ¥2. For
each second-level component, we hayke:= ¥? N 33
andy? . =¥ ﬂE?uC, i=1,...,n. Furthermore, the
natural projectiorp? : (X2)* — (¥2)* is defined. The
high-level plantH? for each component is determined
by L(H) = p?(L(G?)) and Ly (H?) = p?(Ln(G2)).
The overall high-level plant evaluates ¥ := ||, H?

Now first Lemma 4, and then Theorem 3 are applied to obtain ~ With the uncontrollable high-level evenks;_ := ¥° N

Yue, and there is a third-level superviss? : (X3)* —

R @@y e (L (G) [ M) = 3 .= {|53. C v C ¥3). We defineG? := §3/H?,
kL) (Lm(G)||[KM) = Lin(S™/GM)|| Lin(G) = (iv) supervisor computation  each first-level
Lin(S™/G")||Lea (S1/H1)|| -+ || L (S / Hy). supervisor is determined as.(S},/H},) =
™ KL(Hil’k)(Lm(Hi{k)||K},k) for specifications
The assumptions in this section are suitable for a two- K}k - (El{k)*, i = 1,...,n, k = 1,...,n,.

level hierarchy according to the approach in [3] extended The second-level supervisors are computed as



S%/G2

| e |G111,1|' ' .|G’}L,nn| |G%,1| " '|Grlz,nn
() (b)

Fig. 4. Hierarchical and modular multi-level architecture

1 1
|G1,1|' ' '|G1,n1

Ln(G}) = Lw(SP/H?) = fpgme)(Lm(HZ|KT))
for specificationsk? C (¥?)*, i = 1,...,n, and
implemented asL,,(S}/G}) Lin(G?)||Lim(G})
in the first level. Likewise, we havel,,(G?)

V. CONCLUSIONS

In this paper, a unified framework for studying maximal
permissiveness in modular and hierarchical supervisony co
trol has been proposed. It has been designed to incorporate
hierarchical control approaches that employ natural groje
tions with the observer property for system abstractiorhsuc
as [1], [2], [3], [4], [5], [6], [7]. In this framework, we firts
introduced local control consistency as a less consegvativ
condition for maximally permissive monolithic hierarchic
control. This result was then extended to modular and
multi-level hierarchical control, where mutual contrdlility
was found as an additional condition to ensure maximal
permissiveness for the methods in [2], [3], [4], [5], [6]].[7

In our investigations, it turned out that the computation
of a natural projection that exhibits local control conesisty

Lin(S3/H?) = kipmsy (L (H?)||K3) for K3 € (33)*
and L,,(S%/G?) Lin(G?)||Lwm(G?) in the
second level (see Fig. 4). The overall supervis
iS La(S/H) = Lin(G*)|| Lin(G?)] | Lun (G*).
nonblocking contralwe require that the low-level con-
trol is nonblocking, i.e.L.,(S/H) = L(S/H).
abstraction conditionwe require that all natural pro-
jectionsp? andp;,, i = 1,...,n, k = 1,...,n; are
L(G?)-observers forl,(G7) and L(G} ,)-observers for
L(G} ), respectively.

Applying the conditions in Theorem 4 to each hierarchical,
abstraction in the 3-level hierarchy according to Defimitio
8, we can state the main result of this paper.

Theorem 5 (Multi-Level Architecture)Assume the con-
trol architecture in Definition 8. We require that for all
i=1,...,n,k=1,... n it holds thatfor alls"" € L(G®),
p? is lcc for L, (s"), and for alls" € L(G}), p}, is lcc

loc,i

for Lj,.;(s"). Furthermore let}, and H;, be mutually

(iv)

v)

(1]

(3]

(4]

controllable for alli,j = 1,...,n and k¥ = 1,...,n;, P
I =1,...,n; such thati # j or k # I, and H?, H; be
mutually controllable for alk,j = 1,...,n, i # j. ThenS [6]
is maximally permissive.

Proof: Let K? = L,(H?|K3|K?| --||K2
and K' = Ln(HY|[|K?|K{,||-[|K;,, . Appeal- [

ing to Theorem 4, we know that (i).,(S5?/G?)
kr2)(K?) = Ln(G?)||Lm(G?) (situation in Fig. 4
(@) and (i) Kz (KY) = kpe (K2 Ln(G) =
Lin(S2/G2)||Ln(GY) (situation in Fig. 4 (b)). Com- (0]
bining (i) and (i), we arrive at mL(Hl)(Kl) =
Lun(G?)]| Lin(G?)]| L (GY). m [0

With this argument, it is straightforward to transfer the,
result to a hierarchy with an arbitrary number of levels as
long as the conditions in Definition 8 are met for each
three consecutive levels. To our knowledge, Theorem 5 %2]
the most general result concerning maximal permissiveness
in hierarchical and modular control architectures. It can bl13]
applied to the approaches in [2], [4], [5], [7] as long as the
additional requirements of LCC and mutual controllability[14]
are met. In this regard, note that a projection that complies
with LCC can be computed algorithmically, and mutuahs]
controllability trivially holds for the methods in [4], [5hs
system components do not share events.

(8]

can be formulated as a coarsest relational partition pnoble

O§imilar to the computation of natural projections that sapp
nonblocking control in the above approaches. Algorithrms fo
the computation of natural projections that are both siétab
for nonblocking control and fulfill local control consistn
have been developed and first applied in [15].
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