
Controller Synthesis for an I/O-Based Hierarchical System Architecture

Sebastian Perk, Thomas Moor, Klaus Schmidt

Abstract— In our previous work, a framework for the hierar-
chical design of discrete event systems has been introduced that
is based on a notion of inputs and outputs. I/O-plant models
describe the interaction of each subsystem with the operator (or
controller) and the environment. By alternation of subsystem
composition and controller synthesis, a hierarchy of controllers
is obtained that complements a hierarchy of environment
models. An admissibility condition was presented that implies
liveness while allowing for abstraction-based control. In this
paper, we address the according controller synthesis problem
and present an algorithmic synthesis procedure that respects
admissibility and yields a solution to this problem. We illustrate
our statements by the conceptional application example of a
transport unit.

I. INTRODUCTION

The supervisory control theory (SCT, e.g. [11]) provides
a well-established method for model based design of con-
trollers for discrete event systems (DES). However, direct
usage of the SCT for large scale systems fails due to the
computational cost, which stems from the need for an explicit
representation of an overall plant model whose complexity
grows exponentially with the number of subsystems.

Our concept avoids explicit reference to the overall plant
model in the controller synthesis procedure by employ-
ing a hierarchy of plant abstractions; see [10]. Using an
input/output-based description of DES, all subsystems are
modelled independently from their environment aiming at
reusability within various configurations. For each subsys-
tem model, local controllers are designed to enforce local
specifications that model the desired external behaviour of
the closed loop. In the design step, additional assumptions
on the external configuration can be taken into account by
well-defined constraints. Their enforcement is passed on to
the next level of superposed control.

For the next layer of the hierarchy, the interaction within
the groups of locally controlled subsystems is described
by dynamic environment models. Favourably, the I/O-based
system structure allows for abstraction-based control, and the
specifications of each subsystem can serve as an abstraction
of the latter: rather than the controlled subsystems, groups
of abstractions are composed with the environment model,
which efficiently reduces the complexity of the result. As
a benefit of our framework, the controllability and liveness
of each hierarchical layer directly result from the I/O-based
system structure. Superposed controllers designed for each
group based on the abstractions solve the control problem
provably also for the original groups of subsystems. The
alternation of subsystem composition, controller synthesis

Lehrstuhl für Regelungstechnik, Universität Erlangen-Nürnberg, D-91058
Erlangen, Germany sebastian.perk@rt.eei.uni-erlangen.de

and environment interconnection leads to a hierarchy of
controllers that complements a hierarchy of environment
models.

During the past decades a number of hierarchical concepts
has been discussed in the discrete event systems literature.
We refer to concepts like [2], [3], [14], where authors
design hierarchical system architectures in which each layer
implements supervision and measurement aggregation and
thus provides an abstract view on the layer below. There is
also a strong conceptual link to [7], [12] where the vertical
(de)-composition introduced by a hierarchical architecture is
complemented by a horizontal (de)-composition of modular
or decentralised supervision. In references such as [4], [6],
[8], discrete event models are provided with different notions
of inputs and outputs, each adequate to the considered
problem. In all references concerning supervisory control,
the preservation of fundamental properties in the closed loop
is a primary concern.

In our approach and in contrast to the references, relevant
fundamental properties like the novel notion of YP-liveness
are derived from Willems’ concept of free inputs and non-
anticipating outputs according to the behavioural systems
theory [13]. In our previous work [10], an admissibility
condition has been identified that yields controllability and
liveness for each hierarchical layer if met by all controllers
in the hierarchy. However, the algorithmic construction of a
controller featuring this admissibility condition remained as
an open issue.

This article addresses this issue and the according con-
troller synthesis problem as stated in Definition IV.6 of [10].
We present a controller synthesis algorithm that provides a
solution to this synthesis problem. Our approach is illustrated
by the conceptional example of a chain of transport units,
see Fig. 1. The paper is organised as follows. After recalling
basic notation in Section II, Section III gives a review of our
framework. In Section IV we present a controller synthesis
procedure that solves the synthesis problem stated in [10].
Section V illustrates the design of a hierarchical control
system for the transport unit example and the resulting
complexity. The results are summarised in Section VI.

Fig. 1. Chain of transport units

II. PRELIMINARIES

Let Σ be a finite alphabet. The Kleene-closure Σ∗ is the
set of finite strings over Σ; i.e., Σ∗ = {s|∃n ∈ N0, ∀ i ≤ n :
σi ∈ Σ, s = σ0σ1 · · ·σn} with the empty string ε ∈ Σ∗. If
for two strings s, r ∈ Σ∗ there exists t ∈ Σ∗ such that s = rt,
we say r is a prefix of s and write r ≤ s; r is a strict prefix
of s if r < s. A prefix of s of length n ∈ N0 is denoted sn.
The natural projection po : Σ∗ → Σ∗

o, Σo ⊆ Σ, is defined
iteratively: (1) let po(ε) := ε; (2) for s ∈ Σ∗, σ ∈ Σ, let
po(sσ) := po(s)σ if σ ∈ Σo, or po(sσ) := po(s) otherwise.
The set valued inverse of po is denoted p−1

o : Σ∗
o → 2Σ∗

.
A language over Σ is a subset L ⊆ Σ∗. The prefix-closure

of L ⊆ Σ∗ is defined by L = {r| ∃ s ∈ L : r ≤ s} ⊆ Σ∗.
A language L is prefix-closed if L = L. A language L is
complete if for all s ∈ L there exists σ ∈ Σ such that sσ ∈ L.
The synchronous composition of two languages Li ⊆ Σ∗

i ,
i ∈ {1, 2}, is defined as L1 ‖ L2 := p−1

1 (L1) ∩ p−1
2 (L2),

with the projections pi : (Σ1 ∪ Σ2)
∗ → Σ∗

i
.

The set of infinite length ω-strings over A ⊆ Σ is denoted
Aω = {s|∀ i ∈ N0 : σi ∈ A, s = σ0σ1σ2 · · · }. If for two
strings w ∈ Σω, r ∈ Σ∗, there exists v ∈ Σω such that
w = rv, we say r is a strict prefix of w and write r <

w. The strict prefix of w with length n ∈ N0 is denoted
wn. For a language L ⊆ Σ∗ the limit is defined as L∞ =
{w ∈ Σω| ∃ (ni)i∈N0

, ni+1 > ni : wni ∈ L}. The natural
projection for ω-strings carries over from finite strings. The
range, however, is the union of finite and ω-strings.

III. DES WITH INPUTS AND OUTPUTS

The first step in model based control system design is to
derive a model of the uncontrolled behaviour of the plant. In
our framework, a system consists of an alphabet that carries
the totality of all possible events and a language over that
alphabet describing all possible event sequences.

Definition III.1. A system is a tuple S = (Σ,L) with the
alphabet Σ and the prefix-closed language L ⊆ Σ∗. �

We say the system is complete if L is complete, the system
is regular if L is regular etc. As our notion of liveness is
not expressed by marked strings, we consider prefix-closed
languages only. In our formalism, the plant is represented by
a particular system called I/O plant.

A. I/O PLANT

I/O plants are a class of discrete event systems that interact
with an operator and an environment via input and output
events; see Fig. 2. The following notion of a plant-I/O port
relates to Willems’ I/O behaviours in that the input is free
and the output does not anticipate the input.

Definition III.2. The pair (U, Y) is a plant-I/O port of the
system (Σ,L) if
(i) Σ = W ∪̇U ∪̇Y , U 6= ∅ 6= Y ;

(ii) L ⊆ (W ∗(Y U)∗)∗; and
(iii) (∀s ∈ Σ∗Y, µ ∈ U) [s ∈ L ⇒ sµ ∈ L] . �

By item (i), we separate input events µ ∈ U from output
events ν ∈ Y . Remaining events, that e.g. are assigned to

operator

environment

YE

YP UP

UE

plant SPE

Fig. 2. I/O plant

another I/O port of the system, are collected in W . By item
(ii), we require alternation of output and input events, such
that a dependence between cause and effect is established.
When the system issues some measurement event ν ∈ Y on
a plant-I/O port, it will accept any control event µ ∈ U as
an immediate successor (item (iii)) respecting that the input
can be imposed freely by the systems surroundings.

The following definition of a controller-I/O port is a
complement of the plant-I/O port in the sense that it requires
the system to accept any measurement event ν ∈ Y and
to reply by some control event µ ∈ U , after an optional
negotiation with some other system via the alphabet W . A
controller-I/O port can be connected with a plant-I/O port.

Definition III.3. The pair (U, Y) is a controller-I/O port of
the system (Σ,L) if
(i) Σ = W ∪̇U ∪̇Y , U 6= ∅ 6= Y ;

(ii) L ⊆ (Y W ∗U)∗; and
(iii) (∀s ∈ Σ∗U ∪ {ε}, ν ∈ Y) [s ∈ L ⇒ sν ∈ L] . �

From the perspective of the operator, the plant models the
mechanism by which the environment can be manipulated.
Hence, the I/O plant is defined as a system equipped with two
distinguished plant-I/O ports; see Fig. 2.1 One port models
the interaction of the plant with an operator (or controller)
via events ΣP, the other port models the interaction of the
plant with the environment via the events ΣE that are not
directly observable to the operator (or controller).

Definition III.4. An I/O plant is a tuple SPE =
(UP, YP, UE, YE,LPE), where
(i) (ΣPE,LPE) is a system with ΣPE := ΣP∪̇ΣE, ΣP :=

UP∪̇YP, ΣE := UE∪̇YE; and
(ii) (UP, YP) and (UE, YE) are plant-I/O ports of

(ΣPE,LPE). �

Note that an I/O plant always possesses the language format
LPE ⊆ (YPUP + YEUE)∗. To illustrate the above definition
we introduce the following conceptional example.
Example. Consider a single transport unit (TU) as depicted
in Fig. 3 a). Its behaviour can be modelled as an I/O plant
SPE := (UP, YP, UE, YE,LPE) with LPE generated by the
corresponding automaton model depicted in Fig. 3 b). The
TU consists of a conveyor belt carrying a box that can hold
the workpiece to be transported. A spring sensor inside the

1The relationship between systems, alphabets and languages is indicated
by matching subscripts; e.g., the system SAB refers to the language LAB

over the alphabet ΣAB. ΣAB denotes the disjoint union of ΣA and ΣB, and
for inputs and outputs we use e.g. ΣA = UA∪̇YA. The natural projections
to Σ∗

AB
and to Y ∗

A
are denoted pAB and pYA, respectively.

(a) physical layout

(b) I/O plant model

Fig. 3. Conceptional example: Transport Unit

box detects the absence or presence of a workpiece (empty,
full). The initial state (state 1 in Fig. 3 b)) is defined
such that the sensor reports empty. The operator can choose
between three different commands (state 2). After the no op

(no operation) command, the TU does not move, and the
system remains in the initial state. The command del tr

(deliver to right) leads to an error state as there is currently no
workpiece present to deliver. Choosing the command take fl

(take from left) prompts the TU to move the box to its
left border (state 3). Now it depends on the environment
if a workpiece is provided from the left, which is modelled
by the event req fl (request from left) unobservable to the
operator. For a plant description that is independent from the
environment, we introduce the environment-events pack and
nack (positive/negative acknowledge) as the environment
may or may not comply with the requests of the plant. If
the environment does not provide a workpiece (nack), the
request is repeated. When a workpiece is provided from
the environment, the sensor reports full. Now (state 6), the
command take fl leads to an error behaviour (the box can
carry only one workpiece), and after no op the plant still
reports full. By the command del tr, the belt moves the box
to the right border. The event req tr models the need for the
workpiece to be withdrawn to the right by the environment.
In case of pack, the system returns to its initial state.
By (UP, YP) := ({no op, take fl, del tr}, {empty, full}),
we identify the interaction with the operator, (UE, YE) :=
({pack, nack}, {req fl, req tr}) describes the interaction
with the environment. Note that (UP, YP, UE, YE,LPE) fea-
tures all I/O-plant properties of Definition III.4. �

For faithful operation, the plant must satisfy certain safety
and liveness properties. Safety properties can be expressed
as a language inclusion. The liveness properties of the plant
depend on its external configuration; e.g., we may change
the actual environment by reconfiguration, or substitute the
operator by a controller. The variety of controller-I/O ports
that can be connected to the I/O plant to obtain the desired
liveness properties is described by constraints.

Definition III.5. A tuple (U, Y,L) is a constraint if
(i) (Σ,L) is a complete system with Σ = U ∪̇Y ;

(ii) (U, Y) is a controller-I/O port of (Σ,L) . �

We refer to the minimal constraint (U, Y,L) with L =
(Y U)∗, if actually no constraint is considered. The op-
erator and the environment constraint are denoted SP =
(UP, YP,LP) and SE = (UE, YE,LE), respectively. Regard-
ing liveness under constraints, we identify two properties
adequate for our setting.

Definition III.6. [Liveness] Let SPE =
(UP, YP, UE, YE,LPE) be an I/O plant, and let
SP = (UP, YP,LP) and SE = (UE, YE,LE) be constraints.

If LP ‖ LPE ‖ LE is complete, then SPE is said to be
complete w.r.t. the constraints SP and SE.

If (∀w ∈ (LP ‖ LPE ‖ LE)∞)[pYP(w) ∈ Y ω

P] , then SPE

is said to be YP-live w.r.t. the constraints SP and SE. �

Completeness requires the plant to persistently issue events,
i.e., prohibits deadlocks. YP-liveness requires that any infinite
sequence of events must include an infinite number of
measurement events reported to the operator, and hence, in
return, the operators influence is persistently possible.
Example. Note that SPE is neither complete nor YP-live
with respect to minimal constraints. As seen in Fig. 3 b),
completeness is violated in the error state because no further
event is possible. The avoidance of this deadlock is described
by an operator constraint SP on the correct alternation of the
commands take fl and del tr, see Fig. 4 a). Moreover, as
the I/O plant is designed independently of the environment,
the case that the environment never complies with requests
of the plant is included in the model. This livelock violates
the YP-liveness and is represented by a (req fl nack)-loop
between states 3 and 4 and a (req tr nack)-loop between
states 7 and 8 in Fig. 3 b). The environment constraint SE as
seen in Fig. 4 b) models the prohibition of the event nack,
i.e., the assumption that requests of the plant are always
accepted by the environment. The liveness properties of the
plant are preserved if a controller connected to the plant
complies with the operator constraint and if the external
configuration meets the environment constraint. �

(a) Operator constraint (b) Environment constraint

Fig. 4. Constraints for the TU

In the following section, we recall the term of an I/O
controller (enforcing a safety specification) and admissibility
conditions for a complete and YP-live closed loop.

B. I/O CONTROLLER
The task of the I/O controller is to assist the operator in

manipulating the environment according to a given specifi-
cation; see Fig. 5 a). Control events µ ∈ UC issued by the

controller SCP

plant SPE

UPYP

YC UC

YE UE

(a) Closed loop

operator
⇓ SC

m SP

⇑ SE

environment
(b) Constraints

SspecCE

YC UC

YE UE

(c) Specification

Fig. 5. I/O Controller Synthesis Problem

operator trigger more or less complex tasks to be performed
by the controller and the plant. This eventually results in an
abstract measurement event ν ∈ YC issued by the controller
to indicate the status of the current task; e.g. successful
completion or failure. Hence, the controller performs both
control and measurement aggregation and thereby provides
an abstract view SCE = (ΣCE,LCE) := (ΣCE, pCE(LCP ‖
LPE)) of the closed loop between operator and environment.
Accordingly, we propose to draft the specification as an
I/O plant model SspecCE = (ΣCE,LspecCE) of the desired
external closed loop with the environment constraint SE and
an optional operator constraint SC; see Fig. 5 c).
Example. For the TU, a specification can be designed by
the system SspecCE = (ΣC∪̇ΣE,LspecCE) with ΣC :=
UC∪̇YC = {stby, l2r}∪̇{idle} and LspecCE as seen in Fig.
6. By the measurement event idle we introduce a feedback
to the operator notifying that the TU is ready for transport of
the next workpiece. We specify that the operator can choose
between two operational modes. After the command stby

(standby), no interaction with the environment is desired.
With the command l2r (left to right) we specify that a work-
piece from left is requested from the environment (req fl)
and, in case of positive acknowledge, the workpiece shall
be provided to the right (req tr). It is the controller’s task
to enforce appropriate ΣP-sequences on the plant to achieve
the specified behaviour with respect to the environment. �

Fig. 6. Specification for the TU

Formally, we define the I/O controller as a system with a
controller-I/O port and a plant-I/O port that interact with the
plant and the operator, respectively.

Definition III.7. An I/O controller is a tuple SCP =
(UC, YC, UP, YP,LCP), where
(i) (ΣCP,LCP) is a complete system with ΣCP = ΣC∪̇ΣP,

ΣC := UC∪̇YC, ΣP := UP∪̇YP ;
(ii) (UC, YC) and (UP, YP) are a plant- and a controller-I/O

port for (ΣCP,LCP), respectively;
(iii) LCP ⊆ (YP(UP + YCUCUP))∗ . �

The language format defined in item (iii) ensures that an
operator command µC ∈ UC is actually applied to the plant
beginning with a control event µP ∈ UP. Note that controller
and plant synchronise only via the alphabet ΣP; from the
perspective of the plant, the controller conforms with the
alternation (YPUP)∗ and, in particular, the controller cannot
observe environment events. When connecting controller and
plant we obtain the full closed-loop behaviour SCPE =
(ΣCPE,LCP ‖ LPE) and the external closed-loop behaviour
SCE = (ΣCE, pCE(LCP ‖ LPE)).

The I/O structure of plant and controller itself is not
sufficiently strong to imply liveness of the closed loop. As the
controller may not comply with the operator constraint SP

identified for liveness of the plant, the closed-loop system
may run into a deadlock situation, which is considered
undesirable. More subtle is the fact that arbitrary length
strings s ∈ (ΣP ∪ ΣE)∗ may occur between each pair of
control and measurement events µ ∈ UC and ν ∈ YC, which
amounts to measurement aggregation. This implies that the
closed-loop could also evolve on an infinite length string
s ∈ (ΣP ∪ ΣE)ω . In this livelock situation the operator no
longer receives measurement events ν ∈ YC and, hence, can
not issue further control events. Our admissibility condition
addresses both issues and implies completeness and YC-
liveness for the closed-loop system; see Theorem III.9.

Definition III.8. Let SPE = (UP, YP, UE, YE,LPE) be an
I/O plant and let SC = (UC, YC,LC), SP = (UP, YP,LP)
and SE = (UE, YE,LE) be constraints. Then, an I/O con-
troller SCP = (UC, YC, UP, YP,LCP) is admissible for the
plant SPE w.r.t. the constraints SC, SP, and SE if

(i) pP(LC ‖ LCP ‖ LPE ‖ LE) ⊆ LP ;
(ii) LCP ‖ LPE is YC-live w.r.t. SC and SE .

�

The above definition provides each constraint depicted in
Fig. 5 b) with a certain role; SP has to be met by the I/O
controller in item (i), while SC and SE must be fulfilled by
the external configuration in both items (i) and (ii). For the
external closed loop we obtain the following result.

Theorem III.9. [10] Let the I/O plant SPE =
(UP, YP, UE, YE,LPE) be complete and YP-live
w.r.t. the constraints SP and SE, and let SCP =
(UC, YC, UP, YP,LCP) be admissible for SPE w.r.t. the
constraints SC, SP, and SE. Then the external closed-loop
system SCE = (ΣCE, pCE(LCP ‖ LPE)) is

(i) an I/O plant;
(ii) complete w.r.t. SC and SE;

(iii) YC-live w.r.t. SC and SE.

This means the admissibility condition implies that the
external closed loop SCE is an I/O plant that is complete
and YC-live with respect to the given constraints. Thus, in a
hierarchical control architecture, the closed loop provides a
plant model for the next layer of control and measurement
aggregation. Hence, the problem to be solved is the synthesis
of an admissible I/O controller. In the next section we
present an algorithmic design procedure that provably yields
a solution to the synthesis problem.

IV. I/O CONTROLLER SYNTHESIS

The setting depicted in Fig. 5 forms a controller synthesis
problem, with the I/O controller as the desired solution.

Definition IV.1. An I/O controller synthesis problem
is a tuple (SPE,SC,SP,SE,SspecCE) where SPE =
(UP, YP, UE, YE,LPE) is an I/O plant, SC = (UC, YC,LC),
SP = (UP, YP,LP) and SE = (UE, YE,LE) are constraints,
and SspecCE = (UC, YC, UE, YE,LspecCE) is a safety
specification.
A solution to the I/O controller synthesis problem is an I/O
controller SCP = (UC, YC, UP, YP,LCP) that is admissible
for SPE w.r.t. SC, SP, and SE and that enforces the
safety specification SspecCE on SPE w.r.t. SC and SE, i.e.,
pCE(LC ‖ LCP ‖ LPE ‖ LE) ⊆ LspecCE. �

Example. The I/O-plant model SPE of the TU as in Fig. 3 b),
the constraints SP and SE as in Fig. 4, a minimal constraint
SC and the specification SspecCE as in Fig. 6 pose an I/O
controller synthesis problem. �

A major aspect in finding a solution to the I/O controller
synthesis problem is to restrict a given language to a YC-
live sublanguage. This involves the detection of strings that
compromise YC-liveness. In the automata representation of
the considered language, such a string is indicated by a so-
called YC-less cycle of states, within which each state can be
visited arbitrarily often without the occurrence of any YC-
event. This implies that such string features two properties:
a) Nerode-equivalence to at least one of its own strict prefixes
(i.e., a cycle is closed)
b) The extension from each Nerode-equivalent prefix to the
considered string does not contain any YC-event.
A YC-live sublanguage of an arbitrary language is achieved
by allowing only finite sequences of transitions between
states within the YC-less cycle. Unfortunately, it can be
shown that, in general, the supremal YC-live sublanguage
of a given language does not exist.2 However, also the finite
iteration of YC-less cycles can be seen as a needless back
step on the path to the next YC-event. Hence, we propose to
derive a so-called YC-Acyclic sublanguage that guarantees
that a YC-less cycle of the original language is never closed.

Definition IV.2. Let L be a regular language over Σ ⊇ YC.
A string t ∈ Σ∗ is YC-Acyclic w.r.t. L, if
∀r, s ∈ Σ∗, r < t : (rs = t ∧ rs ≡L r) ⇒ pYC(s) 6= ε

where ≡L denotes the Nerode equivalence over Σ∗ w.r.t. L.
The language K ⊆ L is a YC-Acyclic sublanguage of L if
∀s ∈ K : s is YC-Acyclic w.r.t L. �

Thus, the supremal YC-Acyclic sublanguage of a language
L ⊆ Σ∗ is the set of all strings that are YC-Acyclic w.r.t. L.

Proposition IV.3. Let L be a regular language over the
alphabet Σ ⊇ YC. The language

YCAcyclic(L) := {s ∈ L | s is YC-Acyclic w.r.t.L}

2As a consequence to this new result, Proposition III.7 and Theorem IV.7
in [10] - in general - only hold for finite unions!

(i) is the supremal YC-Acyclic sublanguage of L, and
(ii) is YC-live.

Our I/O controller synthesis algorithm computes the
supremal YC-Acyclic sublanguage to yield an admissible
I/O controller; details of each step are explained below.

I/O Controller Synthesis Algorithm (I/O CSA)
Let Π := (SPE,SC,SP,SE,SspecCE) be an I/O controller
synthesis problem, where SspecCE is an I/O plant model
of the desired external closed-loop behaviour. The system
SCP = (ΣCP,LCP) is computed as follows.
(I) Restrict the behaviour of the full closed loop:

K0 := LPEc ‖ LP ‖ (YP(ε + YCUC)UP)∗ ‖ LspecCE

where LPEc is the plant under constraints LPEc :=
LC ‖ LPE ‖ LE.

(II) Compute the supremal YC-Acyclic sublanguage:

K1 := YCAcyclic(K0)

(III) Define the events Σuc := UC ∪ YP ∪ ΣE uncon-
trollable and the events Σo := ΣCP observable.
Compute a complete, controllable and normal sub-
language of K1 w.r.t. LPEc, Σuc and Σo:

K2 := (K1)
(cCN)

(IV) Compute the projection to the controller alphabet:

KCP := pCP(K2)

(V) Add error behaviour to make YP and UC free in LCP:

LCP := KCP ∪Kerr

CP

Step (I): By parallel composition, we restrict the
possible plant behaviour LPEc to the language format
(YP(ε + YCUC)UP) (required by Definition III.7 of the
I/O controller), to the constraint LP (required by the
admissibility condition (i) in Definition III.8) and to the
safety specification LspecCE.
Step (II): The supremal YC-Acyclic sublanguage of K0

is computed according to Definition IV.3. Note that any
sublanguage of YCAcyclic(L) is also a YC-Acyclic (and
thus YC-live) sublanguage of L. Hence, the restriction in
the following step does not compromise this property.
Step (III): For brevity, we omit a formal definition
of the operator (·)(cCN). Our current implementation
iteratively computes the supremal complete and controllable
sublanguage according to [5] and the supremal normal
sublanguage according to [1] until a fixpoint is reached. The
supremal complete, controllable and normal sublanguage
(·)↑(cCN) is subject of current research.
Step (IV): The unobservability of the environment alphabet
is taken into account in this step. As K2 is normal
w.r.t. LPEc and ΣCP (see Step (III)), we can conclude:
KCP ‖ LPEc = p−1

CP(pCP(K2)) ∩ LPEc = K2 = K2 ‖ LPEc

Hence, the partial observation does not affect the closed-loop
behaviour.
Step (V): To formally account for YP- and UC-events that do

not occur in the closed-loop behavior, we insert a strategic
error behavior Kerr

CP with Kerr

CP ‖ (LCP ‖ LPEc) = ∅.
As a main result, I/O CSA leads to a solution to Π.

Theorem IV.4. Let Π := (SPE,SC,SP,SE,SspecCE) be an
I/O controller synthesis problem according to Definition IV.1,
where SspecCE is an I/O plant model of the desired external
closed-loop behaviour. If the language LCP is constructed
by applying I/O CSA to Π, then:

SCP := (ΣCP,LCP) is a solution to Π.

Example. For the I/O controller synthesis problem of the TU,
our synthesis algorithm returns the controller SCP with LCP

as depicted in Fig. 7. Formally, the I/O controller accepts
all measurement events of the plant, even those that can
actually not occur; the respective transitions are denoted by
grey arrows leading to error states that represent Kerr

CP and are
never reached. It is verified that if the environment constraint
SE is fulfilled, the closed loop is complete and YC-live and
features the external behaviour specified by SspecCE. �

Similar to [9], our framework allows for abstraction based
controller synthesis; i.e., solutions obtained for a plant ab-
straction provably also solve the original problem, see [10]. If
the abstraction is of less complexity, the computational effort
for controller synthesis is reduced accordingly. We propose
the safety specification SspecCE of the preceding design step
as a plant abstraction of the external closed-loop behaviour
SCE, as it meets the abstraction condition LCE ⊆ LspecCE

required in [10] and represents those aspects of the preceding
design step that are relevant for subsequent controller design.

V. CHAIN OF TRANSPORT UNITS: COMPLEXITY

The design of a hierarchical control architecture is ex-
plained in detail in [10]. We sketch the application to the
chain of TUs. Controller design: A local controller for each
TU is designed for the specification SspecCE according to the
previous sections. Abstraction step: As proposed above, the
external closed loop (ΣCE,LCE) of each TU is replaced by
SspecCE. Subsystem composition: The abstractions of each
two neighbored TUs are composed using the I/O shuffle
composition. For each pair, the interaction of the two TUs
among themselves and with the remaining environment is
captured by a subordinate I/O environment model, which
counts 14 states. Design of superposed controllers: For
simplicity, we keep up the specification in Fig. 6 also for the
compounds of two TUs. The controller for two TUs and that
specification counts 28 states. Overall hierarchy: Subsystem

Fig. 7. Controller for the TU

TABLE I
TRANSPORT UNIT: SUM OF STATES

No. plant controller monolithic
of TUs hierarchy hierarchy plant model

1 9 9 6

2 2 · 9 + 14 = 32 2 · 9 + 28 = 46 36

4 78 120 1296

8 170 278 7776

16 354 594 approx. 2, 8 · 1012

composition and controller synthesis are alternated, until a
top-level controller for the whole chain of TUs is synthesised.

Table I shows the sum of states for a chain of up to 16 TUs:
both, the plant model hierarchy (comprising all I/O plants
and the environment hierarchy) and the controller hierarchy
feature linear complexity compared to the exponential growth
of a monolithic plant model.

VI. CONCLUSION

In this contribution, we address the controller synthesis
problem that arises in the I/O-based framework [10] for the
hierarchical design of discrete event systems. We present an
algorithmic controller design procedure that yields a solution
to the synthesis problem - the supremal solution is subject
of future work. The transport unit example presented for
the illustration of our approach verifies that the overall
complexity is limited efficiently, while safety- and liveness-
properties are preserved.

REFERENCES

[1] R. D. Brandt, V. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M.
Wonham. Formulas for calculating supremal controllable and normal
sublanguages. System and Control Letters, 15(2):111–117, 1990.

[2] P.E. Caines and Y.J. Wei. The hierarchical lattices of a finite machine.
Systems and Control Letters, 25:257–263, 1995.

[3] A.E.C. da Cunha, J.E.R. Cury, and B.H. Krogh. An assume guarantee
reasoning for hierarchical coordination of discrete event systems.
WODES, 2002.

[4] T. Jeron, H. Marchand, V. Rusu, and V. Tschaen. Ensuring the
conformance of reactive discrete-event systems using supervisory
control. Conference on Decision and Control, 2003.

[5] R. Kumar, V. Garg, and S.I. Marcus. On supervisory control of
sequential behaviors. IEEE Transactions on Automatic Control,
37:1978–1985, 1992.

[6] R. Kumar, V.K. Garg, and S.I. Marcus. Finite buffer realization of
input-output discrete-event systems. IEEE Transactions on Automatic
Control, 40(6):1042–1053, 1995.

[7] R.J. Leduc. Hierarchical interface based supervisory control. PhD the-
sis, Department of Electrical and Computer Engineering, University
of Toronto, 2002.

[8] N. Lynch and M. Tuttle. An introduction to input/output automata.
CWI-Quarterly, 2(3):219–246, 1989.

[9] T. Moor and J. Raisch. Supervisory control of hybrid systems within
a behavioural framework. Systems and Control Letters, 38:157–166,
1999.

[10] S. Perk, T. Moor, and K. Schmidt. Hierarchical discrete event systems
with inputs and outputs. WODES, 2006.

[11] P.J. Ramadge and W.M. Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77:81–98, 1989.

[12] K. Schmidt. Hierarchical control of decentralized discrete event
systems: Theory and application. PhD-thesis, Lehrstuhl für Regelung-
stechnik, Universität Erlangen-Nürnberg, 2005.

[13] J.C. Willems. Paradigms and puzzles in the theory of dynamic systems.
IEEE Transactions on Automatic Control, 36:258–294, 1991.

[14] K.C. Wong and W.M. Wonham. Hierarchical control of discrete-event
systems. Discrete Event Dynamic Systems: Theory and Applications,
6(3):241–273, 1996.

