
Modular and Decentralized Supervisory Control of Concurrent Discrete
Event Systems Using Reduced System Models

Klaus Schmidt Hervé Marchand Benoit Gaudin

Universität Erlangen-Nürnberg
Lehrstuhl für Regelungstechnik

Cauerstraße 7 - 91058 Erlangen, Germany

IRISA-INRIA Rennes
Campus univ de Rennes 1

35042 Rennes, France

FOKUS Fraunhofer
Kaiserin Augusta Allee 31

10589 Berlin, Germany
klaus.schmidt@rt.eei.uni-erlangen.de herve.marchand@irisa.fr bga@fokus.fraunhofer.de

Abstract— This work investigates the supervisor synthesis
for concurrent systems based on reduced system models with
the intention of complexity reduction. It is assumed that the
expected behavior (specification) is given on a subset of the
system alphabet, and the system behavior is reduced to this
alphabet. Supervisors are computed for each reduced subsystem
employing the modular approach in [5] and the decentralized
approach in [8]. Depending on the chosen architecture, we
provide sufficient conditions for the consistent implementation
of the reduced supervisors for the original system.

Keywords–Concurrent discrete event systems, hierar-
chical control, modular and decentralized architecture.

I. I NTRODUCTION

The main issue in supervisor synthesis for discrete event
systems (DES) is the state-space explosion for large-scale
systems. Addressing this problem, recent approaches study
hierarchical, decentralizedand modular methods to reduce
the complexity of supervisor synthesis algorithms.

In hierarchical architectures [17], [3], [7], [14], [9], [13],
controller synthesis is based on a plant abstraction (high-
level model), which is supposed to be less complex than the
original plant model (low-level model).

The structure of concurrent systems (systems modeled
by several components) is exploited for decentralized and
modular control. In most of the decentralized architectures
[15], [10], [1], [11], [6], [8], the methodology is characterized
by the fact that the specification (i.e. the expected behavior)
can be decomposed according to the structure of the plant.
In that case, local modular supervisors operating each con-
current system component individually are implemented, and
necessary and sufficient conditions under which the behavior
of the controlled plant corresponds to the supremal one are
given. In contrast, the authors of [4], [5] consider a modular
architecture. The specification does not need to be separable
(but locally consistentand prefix-closed, which is not the
case for most of the previously mentionned works). Modular
supervisors can be computed based on the specification
and abstractions of the subsystems so that they solve the
supervisory control problem without having to build the
whole system.

In this paper, we elaborate two approaches for concurrent
systems that both avoid the computation of the overall system

and are based on a reduced system model. We assume
that the specification is given on a subset of the system
alphabet and the behavior of the concurrent systems is
reduced to this alphabet. Supervisors are synthesized for the
reduced system models using the modular approach in [5]
and the decentralized approach in [8]. We provide sufficient
conditions for the consistent implementation of the reduced
supervisors for the original system.

The outline of the paper is as follows. After providing
basic definitions in supervisory control in Section II, we
present the setting of the paper in Section III. Section IV and
V discuss modular and structural decentralized control for
reduced system models, respectively. Conclusions are given
in Section VI.

II. PRELIMINARIES

We recall basics from supervisory control theory [18], [2].
For a finite alphabetΣ, the set of all finite strings overΣ

is denotedΣ∗. We write s1s2 ∈ Σ∗ for the concatenation of
two stringss1, s2 ∈ Σ∗. We write s1 ≤ s when s1 is a prefix
of s, i.e. if there exists a strings2 ∈ Σ∗ with s= s1s2. The
empty string is denotedε ∈ Σ∗, i.e. sε = εs= s for all s∈ Σ∗.
A languageover Σ is a subsetH ⊆ Σ∗. The prefix closure
of H is defined byH := {s1 ∈ Σ∗|∃s∈ H s.t. s1 ≤ s}. A
languageH is prefix closedif H = H. Let H,F ⊆ Σ∗, then
H is nonblocking w.r.t.F if H = H ∩F [8].

The natural projection pi : Σ∗ → Σ∗
i , i = 1,2, for the (not

necessarily disjoint) unionΣ = Σ1∪Σ2 is defined iteratively:
(i) let pi(ε) := ε; (ii) for s∈ Σ∗, σ ∈ Σ, let pi(sσ) := pi(s)σ if
σ ∈ Σi , or pi(sσ) := pi(s) otherwise. The set-valued inverse
of pi is denotedp−1

i : Σ∗
i → 2Σ∗

, p−1
i (t) := {s∈ Σ∗| pi(s) =

t}. The synchronous product H1||H2 ⊆ Σ∗ of two languages
Hi ⊆ Σ∗

i is H1||H2 = p−1
1 (H1)∩ p−1

2 (H2) ⊆ Σ∗.
A finite automatonis a tupleG = (X,Σ,δ,x0,Xm), with

the finite set ofstates X; the finite alphabet ofeventsΣ; the
partial transition functionδ : X × Σ → X; the initial state
x0 ∈ X; and the set ofmarked states Xm ⊆ X. We write
δ(x,σ)! if δ is defined at(x,σ). In order to extendδ to
a partial function onX × Σ∗, recursively let δ(x,ε) := x
and δ(x,sσ) := δ(δ(x,s),σ), whenever bothx′ = δ(x,s) and
δ(x′,σ)!. L(G) := {s ∈ Σ∗ : δ(x0,s)!} and Lm(G) := {s ∈
L(G) : δ(x0,s) ∈ Xm} are theclosedand marked language

generated by the finite automatonG, respectively.G is
nonblockingif Lm(G) = L(G), i.e. if each string inL(G) is
the prefix of a marked string inLm(G). A formal definition
of the synchronous composition of two automataG1 andG2

is given in e.g. [2]. Note thatL(G1||G2) = L(G1)||L(G2) and
Lm(G1||G2) = Lm(G1)||Lm(G2).

In a supervisory control context, we writeΣ = Σc∪Σuc,
Σc∩Σuc = /0, to distinguishcontrollable (Σc) anduncontrol-
lable (Σuc) events. Acontrol patternis a setγ, Σuc ⊆ γ ⊆ Σ,
and the set of all control patterns is denotedΓ ⊆ 2Σ. A
supervisor is a mapS: L(G) → Γ, where S(s) represents
the set of enabled events after the occurrence of strings;
i.e. a supervisor can disable controllable events only. The
languageL(S/G) generated byG under supervisionS is
iteratively defined by (i)ε ∈ L(S/G) and (ii) sσ ∈ L(S/G) iff
s∈ L(S/G),σ∈S(s) andsσ∈ L(G). Thus,L(S/G) represents
the behavior of theclosed-loop system. To take into account
the marking ofG, let Lm(S/G) := L(S/G)∩Lm(G).

A languageH is said to be controllable w.r.t.L(G) andΣuc

if there exists a supervisorS such thatH = L(S/G). The set
of all languages that are controllable w.r.t.L(G) is denoted
C (L(G)) and can be characterized byC (L(G)) = {H ⊆
L(G)| ∃S s.t.H = L(S/G)}. Furthermore, the setC (L(G)) is
closed under arbitrary union. Hence, for everyspecification
languageE there uniquely exists asupremal controllable
sublanguageof E w.r.t. L(G) and Σuc, which is formally
defined asκL(G)(E,Σuc) :=

S

{K ∈ C (L(G))| K ⊆ E}. A su-
pervisorS that leads to a closed-loop behaviorκL(G)(E,Σuc)
is said to bemaximally permissive. A maximally permissive
supervisorS can be implemented as an automatonS that
generatesκL(G)(E,Σuc) such thatL(S/G) = L(S)||L(G). The
latter can be computed fromG and a generator ofE. The
notion of controllability is extended by the notion ofpartial
controllability [4]. Let M ⊆ L(G) be a prefix-closed language
and letΣ′

uc⊆ Σuc. The languageM′ ⊆ M is partially control-
lable w.r.t. M, L(G), Σuc and Σ′

uc, if (i) M′ is controllable
w.r.t Σ′

uc and L(G) and (ii) M′ is controllable w.r.t.Σuc and
M. The unique supremal partially controllable sublanguage
w.r.t. M, L(G), Σuc and Σ′

uc is defined asM↑pc = M↑pc :=
κM

(

κL(G)(M,Σ′
uc),Σuc

)

.
A languageE is Lm(G)-closed if E ∩ Lm(G) = E and

the set ofLm(G)-closed languages is denotedFLm(G). The
closed-loop systemS/G is nonblocking under maximally
permissive supervision for specificationsE ∈ FLm(G).

III. SETTING

As a system model, we considerconcurrentDES repre-
sented by finite automata(G̃i)1≤i≤n over the correspond-
ing alphabetsΣ̃i = Σ̃i,uc∪̇Σ̃i,c. Here, Σ̃i,uc and Σ̃i,c denote
the uncontrollable and the controllable events, respectively.
We assume that all subsystems are directly or indirectly
connected to all other subsystems via events from the set
Σi,s := ∪k6=i(Σ̃i ∩ Σ̃k) of shared events. The global set of
shared events is thus given byΣs = ∪iΣi,s.

The overall system model is̃G := ‖iG̃i over the alphabet
Σ̃ := ∪iΣ̃i . Moreover, we assume that the components that
share an event agree on the control status of this event, i.e.

∀i,k, Σ̃i,uc∩ Σ̃k,c = /0. Under this hypothesis, we have that
Σ̃uc = ∪iΣ̃i,uc and Σ̃c = ∪iΣ̃i,c.

The main objective of this paper is to study control
architectures which reduce the computational complexity of
supervisor synthesis for a given specificationK̃ ⊆ Σ̃∗ by
avoiding the computation of̃G. To this end, we are interested
in the case where the complexity of the specificationK̃ is
lower than that of the plant̃G. In the literature, there are
different approaches tackling this problem.

An approach for the modular control of concurrent sys-
tems is proposed in [4], [5]. Modular supervisors are com-
puted using abstractions of the decentralized subsystems and
corresponding local specifications. The supremal partially
controllable sublanguages of the local specifications solve
the supervisory control problem if the specificatioñK is
locally consistentand prefix-closed, and the languages of
the subsystems aremutually controllable.

The method in [8] suggests structural decentralized con-
trol. It requires the specificatioñK to be separable, i.e.
K̃ = ‖i p̃i(K̃), where p̃i : Σ̃∗ → Σ̃∗

i is the natural projection.
If the languages of the subsystems aremutually controllable
and shared event marking,1 then using nonblocking local
controllers for the specifications ˜pi(K̃) is equivalent to the
nonblocking overall supervisor.

This approach is supplemented with hierarchical control in
[14]. Monolithic control is applied to a reduced (hierarchical)
system model which is derived by projecting the behavior of
the original model to the set of shared eventsΣs. However,
this approach requires the computation of an overall reduced
system model which is not always feasible.

G̃1

G̃n

G1

Gn

pdec
1 pdec

n

S̃1

S̃n

Modular
or

Decentralized
Supervisor

Fig. 1. Modular/Decentralized Architecture

Motivated by these considerations, we elaborate two meth-
ods that employ reduced concurrent system models, but avoid
computing an overall reduced system model. To this end,
we investigate the case where the specificationK ⊆ (Σ)∗

for the supervisory control problem is given on a reduced

1Definitions of these notions are given in Section IV and V.

alphabetΣ ⊂ Σ̃ with Σs ⊆ Σ.2 Hence, the reduction is based
on projecting out events that occur in only one subsystem.
With the reduced decentralized alphabetsΣi := Σ∩ Σ̃i and
the decentralized natural projectionspdec

i : Σ̃∗
i → Σ∗

i , the
decentralized reduced system models are(Gi)1≤i≤n, where
L(Gi) = pdec

i (L(G̃i)) andLm(Gi) = pdec
i (Lm(G̃i)).

In the following sections, we utilize the approaches in
[5] and [8] to design supervisors for the reduced system
models. Based on these supervisors, we provide conditions
for the decentralized supervisor implementationS̃i for the
original systems. The first approach results in an estimation
of the supremal controllable sublanguage of a prefix-closed
non-separable specification. The second method provides an
estimation of the supremal controllable and nonblocking
sublanguage of a not necessarily prefix-closed but separable
specification. Figure 1 illustrates the control scheme.

IV. M ODULAR CONTROL

According to [5], modular supervisorsS−1
i : Σ∗ → Γi

with the set of control patternsΓi := {γ ⊆ Σ|Σi,uc ⊆ γ} are
computed for the abstractionsG−1

i of the reduced system
models and the local specificationsK−1

i := K ∩ L(G−1
i),

whereL(G−1
i) = p−1

i (L(Gi)) ⊆ Σ∗, with the natural projec-
tion pi : Σ∗ → Σ∗

i . The main result of [5] is based on the
following definitions.

Definition 4.1: Gi andGk are mutually controllable if
1) L(Gi)(Σk,uc∩Σi)∩ pik

i ((pik
k)−1(L(Gk))) ⊆ L(Gi)

2) L(Gk)(Σi,uc∩Σk)∩ pik
k ((pik

i)−1(L(Gi))) ⊆ L(Gk)

wherepik
i : (Σi ∪Σk)

∗ → Σ∗
i andpik

k : (Σi ∪Σk)
∗ → Σ∗

k.
Mutual controllability ensures that after any execution of

the system, the occurrence of a shared uncontrollable event
is either allowed by every subsystem which shares it, or it
is not allowed by any subsystem.

Definition 4.2 (Local consistency):A specificationK = K
is said to be locally consistent w.r.t.Σuc and(L(Gi))1≤i≤n, if
for any i we have:∀s∈ K−1

i and∀u∈ Σ∗
uc such thatsu∈ K−1

i
and∀v∈ Σ∗

i,uc it holds thatspi(u)v∈ K−1
i ⇒ suv∈ K−1

i .
Based on the above definitions, it holds that the computation
of modular supervisors implementing the supremal partially
controllable sublanguages ofK−1

i is equivalent to the mono-
lithic supervisor for the specificationK.

Theorem 4.1 (Supervisor Computation [5]):Let
(Gi)1≤i≤n be mutually controllable3 and assume that
∀i,k, Σ̃i,uc ∩ Σ̃k,c = /0. If the specificationK = K ⊆ Σ∗ is
locally consistent w.r.t.Σuc and(L(Gi))1≤i≤n, then

\

i
(K−1

i)↑pc = κL(G)(K ∩L(G),Σuc).

Using the concept of modularity [4], the overall supervisor
S−1 : Σ∗ → Γ with Γ := {γ ⊆ Σ|Σuc ⊆ γ} and L(S−1/G) =
T

i(K
−1
i)↑pc can now be implemented as the intersection of

the control actions of the modular supervisorsS−1
i with

L(S−1
i /G−1

i) = (K−1
i)↑pc (see Figure 2).

2This assumption is no restriction. IfΣs−Σ 6= /0, K′ = K||(Σs −Σ)∗ ⊆
(Σs∪Σ)∗ fulfills the requirement.

3It can be shown that the condition of global mutual controllability
required in [5] is equivalent to mutual controllability.

However, the supervisorsS−1
i are computed based on

the reduced system model. In what follows, we provide an
implementation of these supervisors for the original systems.
For this purpose,pi(L(S−1

i /G−1
i)) is used as an approx-

imation of the modular closed-loop behaviorL(S−1/G) =
‖iL(S−1

i /G−1
i) projected on the reduced subalphabetsΣi . As

shown in the next lemma,pi(L(S−1
i /G−1

i)) is controllable
w.r.t. L(Gi) andΣi,uc. Thus it can be enforced by a supervisor
for Gi .

G1

Gn

S−1
n

S−1
1

S−1(s)∩Σn

S−1(s)∩Σ1

∩

s

S−1(s)

Fig. 2. Modular architecture

Lemma 4.1:With the preceding notations,
pi(L(S−1

i /G−1
i)) is controllable w.r.tL(Gi) andΣi,uc.

Proof: Let us consider

sσ ∈ pi(L(S−1
i /G−1

i))Σi,uc∩L(Gi)

ands′ ∈ L(S−1
i /G−1

i) such thatpi(s′) = s. Sincesσ ∈ L(Gi)
and σ ∈ Σi , it is also true thatpi(s′σ) ∈ L(Gi). This entails
that s′σ ∈ L(G−1

i) and

s′σ ∈ L(S−1
i /G−1

i)Σi,uc∩L(G−1
i).

But L(S−1
i /G−1

i) is controllable w.r.tΣi,uc andL(G−1
i) since

it is partially controllable. Therefore,s′σ ∈ L(S−1
i /G−1

i) and
pi(s′σ) = sσ ∈ pi(L(S−1

i /G−1
i)), which concludes the proof.

Now as∀i, pi(L(S−1
i /G−1

i)) ⊆ L(Gi) is controllable w.r.t.
L(Gi) andΣi,uc, there existn supervisors(Si)1≤i≤n such that

L(Si/Gi) = pi(L(S−1
i /G−1

i)).

Based on the results in [12], an admissible supervisor for the
original system is given with theconsistent implementations
S̃i : Σ̃∗

i → Γ̃i (see [12]) of the decentralized reduced super-
visors Si . It is defined fors∈ L(G̃i) as S̃i(s) := Si(pi(s))∪
(Σ̃i −Σi). Note the equalitypdec

i (L(S̃i/G̃i)) = L(Si/Gi).
Combining the steps described above, the main result of

this section can be stated.

Theorem 4.2:Recalling thatΣs ⊆ Σ and with the notation
from above, the supervisor implementation

L(S̃/G̃) =
(

‖iL(S−1
i /G−1

i)
)

||
(

‖iL(S̃i/G̃i)
)

leads to consistent control of the original system, i.e.

p(L(S̃/G̃)) = L(S−1/G),

L(S̃/G̃) ⊆ p−1(K),

wherep : Σ̃∗ → Σ∗.
The following Lemma aids the proof of Theorem 4.2.

Lemma 4.2 ([14]):Let (Li)1≤i≤n be languages over the
respective alphabetsΣi . Assume that Σ0 ⊆ ∪iΣi and
∪i6=k(Σi ∩ Σk)⊆Σ0 with the natural projectionsp0 : (∪iΣi)

∗ →
Σ∗

0 and p′i : Σ∗
i → (Σi ∩Σ0)

∗ for i = 1, . . . ,n. Then

p0(‖iLi) = ‖i p
′
i(Li).

Proof of Theorem 4.2:
Now Theorem 4.2 can be proven. Because of Lemma 4.2,

p(L(S̃/G̃)) = p(
(

L(S−1/G)
)

||
(

‖iL(S̃i/G̃i)
)

)

=
(

L(S−1/G)
)

||p
(

‖iL(S̃i/G̃i)
)

=
(

‖iL(S−1
i /G−1

i)
)

||
(

‖i pdec
i (L(S̃i/G̃i))

)

.

This can be written as
(

‖iL(S−1
i /G−1

i)
)

||
(

‖iL(Si/Gi)
)

with
pdec

i (L(S̃i/G̃i)) = L(Si/Gi).
Now according to Lemma 4.1, the previous equation can

be rearranged as

p(L(S̃/G̃)) =
(

‖i(L(S−1
i /G−1

i)
)

||
(

‖i(L(S−1
i /G−1

i)
)

= ‖i(L(S−1
i /G−1

i).

Moreover, the supervisor computation implies that
‖iL(S−1

i /G−1
i) ⊆ K. This means thatL(S̃/G̃) ⊆ p−1(K).

The reduced modular architecture is shown in Figure 3.
The control actions of the decentralized supervisors for the
original systems evaluate tõSi(si) = pi(S

−1
i (s))∪ (Σ̃i −Σi).

G̃1

G̃n

G1

Gn

pdec
1 pdec

n

S̃1

S̃n

S−1
n

S−1
1

s1

sn

∩

∩

∩

s

S−1(s)

S̃1(s1)

S̃n(sn)

p1pn

Fig. 3. Reduced modular architecture

So far, our method allows to perform local computations
instead of building a single finite automaton for solving
the supervisory control problem. However, only the case
of prefix-closed specifications was considered. Based on a
decentralized architecture, we now give sufficient conditions
under which a nonblocking solution can be computed when-
ever the reduced specification is separable.

V. STRUCTURAL DECENTRALIZED CONTROL

Consider a concurrent system given by a set of
nonblocking decentralized systems(G̃i)1≤i≤n (i.e.,
∀i, Lm(G̃i) = L(G̃i)). It follows that the reduced system
models Gi are also nonblocking. We assume that the

specificationK ⊆ Σ∗ over the subalphabetΣ is separable, i.e.
K = ‖i pi(K), wherepi : Σ∗ → Σ∗

i and each local specification
Ki := pi(K) is Lm(Gi)-closed, i.e.Ki ∈ FLm(Gi). Our aim
is to use the methodology of [8] to compute nonblocking
decentralized supervisors acting upon the subsystemsGi

and to implement these supervisors for the original system
G̃ = ‖iG̃i .

We first formally describe the approach in [8] and then
provide new results that are useful in our setting.

Definition 5.1: Let Σ′ ⊆ Σ andH ⊆ Σ∗, thenH marksΣ′

wheneverΣ∗Σ′∩H ⊆ HΣ′

Using the above definition combined with mutual control-
lability, Theorem 5.1 follows. The structural decentralized
architecture is illustrated in Figure 4.

Theorem 5.1 ([8]): Let (Gi)i≤n be nonblocking subsys-
tems andK = ‖iKi be the separable specification whereKi ∈
FLm(Gi). Suppose that fori,k ≤ n and i 6= k, Lm(Gi) marks
Σi ∩Σk andLm(Gk) marks the same set,4 andGi andGk are
mutually controllable, then

1) ‖i κL(Gi)(Ki)∩L(G) = κL(G)(K)

2) pi(κL(G)(K)) is nonblocking with respect toLm(Gi)

G1

Gn

S1

Sn

Fig. 4. Structural decentralized architecture

In addition to this result due to [8], one can prove that the
overall closed-loop behavior is actually nonblocking. To do
so, we first show that whenever the local specificationsKi

areLm(Gi)-closed then so is the global specificationK with
respect to the reduced plantG.

Lemma 5.1:Let (Gi)1≤i≤n be the set of decentralized sub-
systems andKi ∈ FLm(Gi). ThenK =‖i Ki ∈ FLm(G).

Proof: First we clearly have thatK ⊆ K. Now since∀i,
Ki ⊆ Lm(Gi), it holds that‖iKi ⊆ ‖iLm(Gi) which entails that
K ⊆ Lm(G). ThereforeK ⊆ K ∩Lm(G).

Reciprocally, considers∈ K ∩Lm(G). We thus have that
pi(s) ∈ pi(K) and pi(s) ∈ pi(Lm(G)).

• As Lm(G) = ∩ j (p−1
k (Lm(Gk)), this entails thatpi(s) ∈

pi(p−1
i (Lm(Gi))) = Lm(Gi).

• Let us now show thatpi(s) ∈ Ki . First, we have that
K = ‖iKi = ∩i p

−1
i (Ki) ⊆ ∩i p

−1
i (Ki) ⊆ p−1

i (Ki).
Also pi(s) ∈ pi(K) ⊆ pi(∩k(p−1

k (Kk))) ⊆
∩k(pi(p−1

k (Kk))), and hencepi(s) ∈ pi(p−1
i (Ki)) = Ki .

Overall, ∀i, pi(s) ∈ Ki ∩Lm(Gi) = Ki as Ki ∈ FLm(G). Thus
∀i, s∈ p−1

i (Ki) ands∈ ∩i(p−1
i (Ki)) = K.

4Note that it is equivalent to say that∀i, Lm(Gi) marksΣi,s.

We now need to show that the behavior of the closed-loop
reduced system can be actually obtained by a collection of
supervisors each of them acting upon a local decentralized
subsystemGi . This is the aim of the next lemma:

Lemma 5.2:With the preceding notations, we have that

1) ‖i κL(Gi)(Ki) = κL(G)(K)

2) ‖i κL(Gi)(Ki) = κL(G)(K)

Proof:

1) Due to Theorem 5.1, we have that

κL(G)(K) = ‖i κL(Gi)(Ki)∩L(G)

= ‖i κL(Gi)(Ki)∩ ‖i L(Gi)

= ‖i κL(Gi)(Ki)∩L(Gi)

= ‖i κL(Gi)(Ki) asκL(Gi)(Ki) ⊆ L(Gi)

2) Because of Lemma 5.1, we have

κL(G)(K) = κL(G)(K)∩Lm(G)

= ‖i κL(Gi)(Ki)∩ ‖i Lm(Gi)

= ‖i (κL(Gi)(Ki)∩Lm(Gi))

= ‖i κL(Gi)(Ki) due toLm(Gi)-closure

With the above lemmas, the existence of a nonblocking
supervisor forG can be shown.

Theorem 5.2:Under the assumptions of Theorem 5.1, the
supervisorSsuch thatL(S/G) = κL(G)(K) is nonblocking

Proof: Based on Lemma 5.2, we consider nonblocking
supervisorsSi such thatL(Si/Gi) = κL(Gi)(Ki). It holds that

κL(G)(K) = ‖iL(Si/Gi)

κL(G)(K) = ‖iL(Si/Gi)

Let us now considerS such that S = ‖iSi , where each
supervisorSi is seen as a finite automaton. We have that

S/G = S‖G= (‖iSi)‖(‖iGi) = ‖i(Si‖Gi) = ‖iSi/Gi

We thus have thatLm(S/G) = κL(G)(K) and L(S/G) =

κL(G)(K)
Now, based on Lemma 5.1, we know thatK is Lm(G)-

closed. Moreover,Lm(G)-closure is preserved under control,
which ensures us that the overall closed-loop decentralized
system‖i(Si/Gi) = (‖iSi)/G is nonblocking.

Remark 1: It is interesting to note that this result gives
sufficient conditions under which a concurrent system is
nonblocking. Indeed, based on Theorem 5.1 and 5.2, given
a concurrent systemG =‖i Gi , if Lm(Gi) marks Σs and
∀i 6= j, Gi and G j are mutually controllable, thenG is
nonblocking. This gives access to an efficient way to test
if a concurrent system is nonblocking.

Next, the implementation of the supervisors computed
with respect to the reduced system models for the original
system is discussed. We again suggest the consistent imple-
mentation, and investigate two different sets of conditions
which guarantee nonblocking and consistent control.

In the first case, the original subsystems have to mark the
reduced alphabets in addition to the conditions which are
required for nonblocking supervisor synthesis for the reduced
system model.

Theorem 5.3:Let K be a separable specification and let
Si be such thatLm(Si/Gi) = κL(Gi)(pi(K),Σi,uc). Assume that
Gi and Gk are mutually controllable fori 6= k and Lm(G̃i)
marksΣi forall i = 1, . . . ,n. If the supervisors̃Si are consistent
implementations ofSi , then the overall supervisor̃Ssuch that

L(S̃/G̃) := ‖iL(S̃i/G̃i)

is nonblocking and consistent.
First we need the following lemma.

Lemma 5.3 ([12]):The consistent implementation implies
that if si ∈ L(S̃i/G̃i) andsiui ∈ L(G̃i) for ui ∈ (Σ̃i −Σi)

∗, then
siui ∈ L(S̃i/G̃i). If additionally siuiσ ∈ L(G̃i) for σ ∈ Σi and
pdec

i (siui)σ ∈ L(Si/Gi), thensiuiσ ∈ L(S̃i/G̃i).
Based on this lemma, the proof of Theorem 5.3 is as

follows:

Proof: For showing consistency, we observe
that p(L(S̃/G̃)) = p(‖iL(S̃i/G̃i)) = ‖i pdec

i (L(S̃i/G̃i)) =
‖iL(Si/Gi) = L(S/G). Also, because ofL(S/G) ⊆ K, it
holds thatL(S̃/G̃) ⊆ p−1(K).

For proving nonblocking control, it has to be shown that
if s ∈ L(S̃/G̃), then s ∈ Lm(S̃/G̃). Now assume thats ∈
L(S̃/G̃). Then p̃i(s) ∈ L(S̃i/G̃i) for all i = 1, . . . ,n. Suppose
that there is noui ∈ (Σ̃i − Σi)

∗ s.t. p̃i(s)ui ∈ Lm(G̃i). As
G̃i is nonblocking, there must be a stringvi = v̂iσṽi ∈
(Σ̃i − Σi)

∗Σi Σ̃∗
i s.t. p̃i(s)vi ∈ Lm(G̃i). But as Lm(G̃i) marks

Σi , p̃i(s)v̂i ∈ Lm(G̃i), which contradicts the assumption.
As i was chosen arbitrarily, it is true that∀i, there is a
ui ∈ (Σ̃i − Σi)

∗ s.t. p̃i(s)ui ∈ Lm(G̃i). Hence, for example
the string su1 · · ·un ∈ ‖i p̃i(s)ui ⊆ ‖iLm(G̃i) = Lm(G̃). Now
using Lemma 5.3, we also have that ˜pi(s)ui ∈ L(S̃i/G̃i), ∀i,
wich entails thatsu1 · · ·un∈‖i p̃i(s)ui ⊆‖iL(S̃i/G̃i)= L(S̃/G̃).
Thus su1 · · ·un ∈ Lm(G̃)∩L(S̃/G̃) = Lm(S̃/G̃) and thuss∈
Lm(S̃/G̃).

The second case is based on the notion of anH−observer.

Definition 5.2 (H-observer):Let H ⊆ L = L ⊆ Σ̃∗ be lan-
guages andp : Σ̃∗ → Σ∗ be the natural projection on the
alphabetΣ ⊆ Σ̃. p is called anH−observer if∀s∈ L and
∀σ ∈ (Σ∪{ε}) :

p(s)σ ∈ p(H) ⇒∃u∈ Σ̃∗ s.t. su∈ H ∧ p(su) = p(s)σ.

In Theorem 5.4, the condition that all events inΣi must
mark Lm(Gi) is reduced to the events inΣi,s. This is com-
pensated by requiring the decentralized projectionpdec

i to be
a Lm(G̃i)-observer.5

Theorem 5.4:Let K be a separable specification and let
Si be such thatLm(Si/Gi) = κL(Gi)(pi(K),Σi,uc). Assume that
Gi and Gk are mutually controllable fori 6= k and Lm(Gi)
marksΣi,s. If pdec

i is a Lm(G̃i)-observer and the supervisors
S̃i are consistent implementations ofSi , then the overall

5If pdec
i is not a Lm(G̃i)-observer, then [16] provides an algorithm to

compute aLm(G̃i)-observer with the coarsest equivalence kernel possible.

supervisorS̃ such thatL(S̃/G̃) := ‖iL(S̃i/G̃i) is nonblocking
and consistent.
Lemma 5.4 supports the proof of Theorem 5.4.

Lemma 5.4:With the assumptions in Theorem 5.4, it
holds that ifs∈ L(S̃i/G̃i) andpdec

i (s)t ∈ Lm(Si/Gi) for t ∈Σ∗
i ,

then∃ui ∈ Σ̃∗
i s.t. sui ∈ Lm(S̃i/G̃i) and pdec

i (sui) = pdec
i (s)t.

Proof: Assume thats ∈ L(S̃i/G̃i) and pdec
i (s)t ∈

Lm(Si/Gi) for t ∈ Σ∗
i . There are two cases.

1. t = ε. As pdec
i is a Lm(G̃i)-observer, there is aui ∈ (Σ̃i −

Σi)
∗ s.t.sui ∈ Lm(G̃i). Because of Lemma 5.3,sui ∈ L(S̃i/G̃i).

Together,sui ∈ L(S̃i/G̃i)∩Lm(G̃i) = Lm(S̃i/G̃i).
2. t = σ1 · · ·σm. As pdec

i is a Lm(G̃i)-observer, there is a
ui = v0σ1v1 · · ·σmvm ∈ Σ̃∗

i s.t. sui ∈ Lm(G̃i) and pdec
i (ui) = t,

i.e. v j ∈ (Σ̃i −Σi)
∗ for all j = 0, . . . ,m. Successive application

of Lemma 5.3 impliessui ∈ L(S̃i/G̃i). Thus,sui ∈ L(S̃i/G̃i)∩
Lm(G̃i) = Lm(S̃i/G̃i).

Proof of Theorem 5.4:
Consistency follows from the proof of Theorem 5.3.

Now assume thats∈ L(S̃/G̃). Thensi := p̃i(s) ∈ L(S̃i/G̃i)
and pdec

i (si) ∈ L(Si/Gi). As Si is a nonblocking supervisor,
there is a stringt ∈ Σ∗

i s.t. pdec
i (si)t ∈ Lm(Si/Gi) and s.t. all

its predecessors are not marked, i.e.∀t ′ < t we have that
pdec

i (si)t ′ 6∈ Lm(Si/Gi). Then it holds thatt ∈ (Σi − Σi,s)
∗

(otherwise there would be a marked predecessor string as
Lm(Gi) marksΣi,s). Because of Lemma 5.4, there is aui ∈ Σ̃∗

i
s.t.sui ∈ Lm(S̃i/G̃i) andpdec

i (sui) = pdec
i (s)t. Furthermore, as

pdec
i (ui) = t ⊆ (Σi −Σi,s)

∗, it turns out thatui ∈ (pdec
i)−1(t)⊆

(Σ̃i − Σi,s)
∗. As i was arbitrary, suchui exists for all i =

1, . . . ,n. Hence, for example the stringsu1 · · ·un ∈ ‖i p̃i(s)ui ⊆

‖iLm(S̃i/G̃i) = Lm(S̃/G̃) and consequentlys∈ Lm(S̃/G̃).
The reduced structural decentralized control architecture

is depicted in Figure 5.

G̃1

G̃n

G1

Gn

pdec
1 pdec

n

S̃1

S̃n

S−1
n

S−1
1

p1pn

Fig. 5. Reduced decentralized architecture

VI. CONCLUSIONS

We have developed two methods exploiting the structure of
concurrent systems for the supervisor synthesis without com-
position of the overall plant. In our approach, the computa-
tional complexity is further reduced by using reduced system

models for supervisor computation. Our modular approach
can be applied to prefix-closed non-separable specifications
and results in modular supervisors in a conjunctive archi-
tecture. Additionaly, we elaborated a decentralized approach
which is feasible for specifications that are separable but
not necessarily prefix-closed. We provide two different sets
of conditions which guarantee nonblocking control of the
original system. It has to be noted that although maximally
permissive supervisors could be computed for the reduced
system models, the supervisors for the original system need
not be maximally permissive. In further work, we want
to investigate conditions which also guarantee maximally
permissive supervisors for the original system.

REFERENCES

[1] K. Akesson, H. Flordal, and M. Fabian. Exploiting modularity for
synthesis and verification of supervisors. InProc. of the IFAC,
barcelona, Spain, July 2002.

[2] C.G Cassandras and S. Lafortune. Introduction to discrete event
systems.Kluwer, 1999.

[3] A.E.C. da Cunha, J.E.R. Cury, and B.H. Krogh. An assume guarantee
reasoning for hierarchical coordination of discrete eventsystems.
Workshop on Discrete Event Systems, 2002.

[4] B. Gaudin and H. Marchand. Modular supervisory control of a class
of concurrent discrete event systems.Workshop on Discrete Event
Systems, 2004.

[5] J. Komenda, J. van Schuppen, B. Gaudin and H. Marchand. Mod-
ular supervisory control with general indecomposable specification
languages.Conference on Decision on Control, 2005.

[6] S. Jiang and R. Kumar. Decentralized control of discrete-event systems
with specializations to local control and concurrent systems. IEEE
Transactions on Systems, Man and Cybernetics, 30(5):653–660, 2002.

[7] R.J. Leduc. Hierarchical interface based supervisory control. PhD the-
sis, Department of Electrical and Computer Engineering, University
of Toronto, 2002.

[8] S-H. Lee and K.C. Wong. Structural decentralised control of con-
current DES. European Journal of Control, 35:1125–1134, October
2002.

[9] C. Ma. Nonblocking supervisory control of state tree structures.Ph.D.
Dissertation, Department of Electrical and Computer Engineering,
University of Toronto, 2004.

[10] M.H.de Querioz and J.E.R. Cury. Modular supervisory control of large
scale discrete event systems.Workshop on Discrete Event Systems,
2000.

[11] K. Rohloff and S. Lafortune. The control and verification of similar
agents operating in a broadcast network environment. In42nd IEEE
Conference on Decision and Control, Hawaii, USA, 2003.

[12] K. Schmidt. Hierarchical control of decentralized discrete event
systems: Theory and application.Phd-thesis, Lehrstuhl für Regelung-
stechnik, Universität Erlangen-Nürnberg, 2005.

[13] K. Schmidt, T. Moor, and S. Perk. A hierarchical architecture
for nonblocking control of discrete event systems.Mediterranean
Conference on Control and Automation, 2005.

[14] K. Schmidt, J. Reger, and T. Moor. Hierarchical controlof structural
decentralized DES.Workshop on Discrete Event Systems, 2004.

[15] Y. Willner and M. Heymann. Supervisory control of concurrent
discrete-event systems.International Journal of Control, 54(5):1143–
1169, 1991.

[16] K. Wong and W.M. Wonham. On the computation of observersin
discrete-event systems.Discrete Event Dynamic Systems, 14(1):55–
107, 2004.

[17] K.C. Wong and W.M. Wonham. Hierarchical control of discrete-event
systems.Discrete Event Dynamic Systems: Theory and Applications,
1996.

[18] W.M Wonham. Notes on control of discrete event systems.Department
of Electrical Engineering, University of Toronto, 2004.

