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Abstract: This paper introduces proximity based automata (PBA) to perform
reachability analysis for discrete-time, continuous-state systems. The notion of
proximity of states in the continuous valued state space is used to evaluate
the response of the system efficiently. A PBA is constructed using ellipsoidal
techniques and tools for solving optimization problems constrained by linear
matrix inequalities. Several empirical studies demonstrate how trade-offs between
conservativeness and computational complexity can be exploited by varying
parameters in the procedure for constructing the PBA.
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1. INTRODUCTION

There has been much interest in recent years in
developing methods for formally verifying hybrid
systems (Alur et al., 1996; Dang and Maler, 1998;
Silva et al., 2002). Typically, the goal is to verify
that a hybrid system satisfies some safety property
for an entire range of initial conditions and system
parameters. The most computationally expensive
aspect of verifying hybrid systems is the compu-
tation of the set of reachable states for a system
due to variations in operating conditions charac-
terized by system parameters, initial conditions
and ranges of inputs (controls and disturbances).
Many different types of reachability have been
studied (Chutinan and Krogh, 2003; Dang and
Maler, 1998; Henzinger et al., 1997; Jönsson, 2002;
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Mitchell et al., to appear), but these techniques
only provide methods for estimating the set of
reachable states in the continuous-valued state
space and there is no systematic way of explor-
ing multiple paths in the reachable space due to
inputs.

This work extends the concept of systematic sim-
ulation introduced in Kapinski et al. (2003) by
representing the set of reachable states of the
infinite state system with a finite state machine,
called a proximity based automaton (PBA). The
definition of a PBA is based on the notion that
trajectories from regions that are near each other
in the state space will evolve in a similar manner.
We use ellipsoidal methods to perform reachabil-
ity analysis for dynamic systems with bounded
inputs (Kurzhanski and Vályi, 1997). These meth-
ods provide an efficient way of approximating
reachable sets using semidefinite programming
techniques (Boyd et al., 1994). The notion of
proximity is exploited by merging PBA states
that fulfill specified nearness conditions. The PBA
can also be used to perform refinement of the



reachable set approximation and the construction
easily extends to hybrid systems. Further, we im-
prove on systematic simulation by introducing a
computationally efficient grid based method for
testing proximity of states in the PBA.

Some researchers have investigated reachability of
hybrid systems with discrete-valued inputs (Cury
et al., 1998; Raisch and O’Young, 1998; Moor
et al., 2004). We consider systems where the con-
tinuous set of available control inputs is covered
by a finite collection of sets. The information con-
tained in the PBA is used to perform refinement
of the representation if necessary. We exploit the
trade-off between conservativeness and computa-
tional complexity by varying parameters of the
reachability analysis.

2. THE REACHABILITY PROBLEM

A discrete-time dynamic system (DDS) consists
of a state space X ⊆ R

n, a set of initial states
X0 ⊆ X, an input set U ⊆ R

m, which covers
control inputs as well as disturbance inputs, and
an update equation f : R

n × R
m → R

n. In this
paper, we assume the dynamics of the DDS are
linear; that is, there are matrices A and B such
that f(x, u) = Ax + Bu.

Definition 2.1. A sequence (x0, u0, x1, u1, . . .) is a
run of a DDS H if x0 ∈ X0 and for all k ≥ 0,
xk+1 = f(xk, uk) and uk ∈ U . RH denotes the set
of all runs of H, and RH(k) denotes the set of all
runs of H of length less than or equal to k.

Definition 2.2. Given a DDS H, a proximity
based automaton (PBA) for H is a tuple,
P = (Q,Σ, E,Q0, λ, ρX , ρU ), where

• Q - a finite set of states;
• Σ - a finite set of symbols;
• E ⊆ Q × Q - a set of transitions;
• Q0 ⊆ Q - a set of initial states;
• λ : E → 2Σ - a labelling function that assigns

a set of input symbols to each transition;
• ρX : Q → CRn - a function that assigns a

region in R
n to each state in P . CRn denotes

the set of compact, connected subsets of R
n;

• ρU : Σ → CRm - a function that assigns a
region in R

m to each symbol in Σ,

and ∀(q, q′) = e ∈ E, σ ∈ λ(e), u ∈ ρU (σ) and x ∈
ρX(q),∃x′ ∈ ρX(q′) such that f(x, u) = x′.

Remark 2.1. Note that Definition 2.2 can easily
be extended to piecewise-linear discrete time sys-
tems with a finite set of discrete modes I and a
partition X = {Xi}i∈I of the continuous state
space R

n, where for each mode the dynamics are
fi(x, u) = Aix+Biu. Then the function ρX : Q →
CRn × I assigns a region in R

n and a mode in I
to each state in Q.

Definition 2.3. The language of the PBA P , de-
noted LP , is the set of all input sequences π =
u0u1 · · ·uk such that:

∃ω = q0q1 · · · qk+1 3 ∀0 ≤ i ≤ k, σ ∈ λ(qi, qi+1)
with ui ∈ ρu(σ).

The language of a PBA P will be a subset of U∗.
Also, we define Uk as the set of all input sequences
of length less than or equal to k.

Definition 2.4. Let P be a PBA as in Definition
2.2 and let H be a DDS. P is said to be a
conservative estimate of the reachset RH(k) if
RH(k) ⊆

⋃

q∈Q ρX(q).

Lemma 2.1. If the language of the PBA P con-
tains Uk, then the PBA is a conservative estimate
of the reachset for up until time k.

Proofs appear in Kapinski (2004).

Definition 2.5. An invariant PBA is one whose
language is U∗.

Example 2.1. To illustrate the concept of a PBA,
consider the servo system shown in Figure 1,
which has first-order plant dynamics and a first-
order reference signal filter, where u is an input
reference signal, x1 is the position, x2 is the
filtered version of u, and e = x2 − x1 is the error.
The system matrices for the sampled version of
the system, with g = 10, τ = 0.1, and a sample
period of 0.1, are

A =

[

0.368 0.368
0.000 0.368

]

B =

[

0.264
0.632

]

.

The set of initial conditions is given by a circle,
centered at zero, with ‖x‖2 ≤ 1

10 .
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Fig. 1. A simple servo system.

Suppose we wish to verify that the servo system
error does not exceed 1, that is, we want to
guarantee |x1 − x2| ≤ 1, for any input sequence
uk ∈ [0.0, 1.0]. Figure 2 shows the regions associ-
ated with an invariant PBA for System 2.1, with
Σ = {1, 2, 3}, ρU (1) = [0 1

3 ], ρU (2) = [13
2
3 ], and

ρU (3) = [23 1]. Other techniques can be used to
analyze example 2.1, but the purpose of the ex-
ample is to illustrate our computational method.

This example shows the general safety problems
we want to address with the PBA in this paper.
Given a region, Fail ⊂ R

n, a DDS H is k-step safe
with respect to Fail if RH(k) ∩ Fail = ∅ and safe
wrt. Fail if RH ∩ Fail = ∅.
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Fig. 2. The set of regions for the PBA of System
2.1. Each region is labelled with the corre-
sponding state of the PBA.

3. REACHABILITY ANALYSIS USING PBA’S

The PBA reachability procedure (PRP), shown
in Figure 3, constructs a PBA for a DDS. The
procedure propagates regions forward using the
reachability operator Next. If the reachability es-
timate resulting from Next satisfies a nearness cri-
terion for a region that is already associated with
the PBA, the procedure merges the two regions;
if the reachability estimate does not satisfy the
nearness criterion for any region associated with
P , a new state is created and associated with the
new region. The result is that at each iteration
the PBA represents all of the possible behaviors of
the underlying system until time k. The procedure
terminates if either there are no more states to
explore or after K iterations, where K represents
the termination time step.

The procedure requires a dynamical system de-
scription, a set of initial regions S, which includes
the set of initial conditions X0, a set of input
symbols Σ, and a function ρU : Σ → CRm .

The PRP uses three functions: Jointest, Join,
and Next. Jointest(N,P ) is a function that deter-
mines when two regions will be merged. It returns
a state within PBA P that has a region associated
with it that satisfies some nearness criterion to
region N if such a state in P exists, otherwise
it returns the empty set. In our experiments, we
partition the space and merge regions when their
center points are in the same element of the par-
tition.

Join(N,N ′) is a function that returns a region
containing N and N ′. Our implementation uses
ellipsoidal representations; Join(N,N ′) is an LMI
that solves for the minimum volume ellipsoid that
contains ellipsoids N and N ′ (Boyd et al., 1994).

/* Create PBA P temp */

For each N ∈ S

Insert qN into Qtemp

ρ
temp

X
(qN ) := N

Q
temp

0
:= Qtemp

Q
temp

W
:= Qtemp

Loop K times

Copy machine P temp to P

QW := ∅

For each q ∈ Q
temp

W

For each σ ∈ Σ

/* Compute new region */

N ′ := Next(ρtemp

X
(q), σ)

q̂ := Jointest(N ′, P )

If q̂ 6= ∅

/* New region should join with

existing region */

If N ′ * ρX(q̂)

Ñ := Join(N ′, ρX(q̂))

ρX(q̂) := Ñ

Insert q̂ into QW

Insert (q, q̂) into E

λ(q, q̂) := λ(q, q̂) ∪ {σ}

Else

/* Create new state which is

associated with new region */

Insert qN′ into Q

Insert qN′ into QW

ρX(qN′ ) := N ′

Insert (q, qN′ ) into E

λ(q, qN′ ) := σ

Fig. 3. PBA Reachability Procedure

Next(N,σ) returns a region N ′, which contains
the set of states that are reachable from region N

in one time increment given some input in ρU (σ),
i.e. f(N, ρU (σ)) ⊆ N ′. We compute the minimum
volume ellipsoid containing f(N, ρU (σ)) using the
ellipsoidal technique developed by Kurzhanski
and Vályi (1997).

The PRP is initiated with a set of regions S. The
set of initial conditions X0 should be included
in S, but additional regions may be added. It
is often possible to add regions to S so that
greater connectivity in the PBA array results
from the PRP. We call this process seeding the
reachset. This is beneficial because it can help
reduce the amount of computation time spent
on the PRP, and in some cases, it results in
the PRP terminating with the final PBA being
invariant. We have found that ellipsoids that are
invariants given one input or given one mode are
good seeding regions. (For a survey of methods
for computing invariant regions, see Blanchini
(1999).)

Lemma 3.1. For a DDS H and a given region
Fail ⊂ R

n, if X0 ⊆ Inv for some Inv ⊂ R
n,

f(Inv, U) ⊆ Inv, and Inv ∩ Fail = ∅, then H is
safe with respect to Fail.



If a region Inv, as described in lemma 3.1, can be
identified, then the DDS is safe, and no further
analysis needs to be performed.

The PRP generates a PBA whose language is
guaranteed to contain UK . Due to the merging of
regions during the PRP procedure, which creates
cycles in the finite state representation of the sys-
tem, the PBA will possibly contain other strings,
some of which are of infinite length.
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Fig. 4. Example of the reachset estimate for two
different merging conditions. The 3D example
is projected into the first two dimensions. The
dashed lines correspond to a coarser merging
condition grid and the solid lines correspond
to a finer merging condition grid.

Proposition 3.1. If the PRP terminates with QK
W =

∅, then the PBA created is an invariant PBA.

In the case where Jointest(N,P ) is always empty,
merging is never performed, and the complexity of
the PRP is O(n3|Σ|K), where the n3 term is due to
the linear algebra computations necessary for the
propagation of ellipsoids (Kurzhanski and Vályi,
1997; Golub and Loan, 1996). If Jointest(N,P )
always returns a region in P for N to merge with,
the complexity of the PRP is O(n6.5|Σ|K), where
the n6.5 term is due to the LMIs used to compute
bounding ellipsoids (Vandenberghe et al., 1998).
The main challenge in using the PRP method is to
choose the Jointest function such that a sufficient
amount of merging occurs so as not to incur the
exponential complexity, but not so much merging
occurs so as to cause the approximation to become
overly conservative.

4. EXPERIMENTS

In using the PRP, choosing an appropriate Join-
test function is essential for achieving a proper
balance between computation time and conserva-
tiveness. For our PRP we use an implementation
of Jointest based on a partition of the state space.

Each ellipsoid in the PBA is associated with the
partition element containing the center point of
the ellipsoid. Two ellipsoids are merged if their
center points lie in the same partition element. It
is expected that computation time will decrease
as the merging condition is made more liberal,
but conservativeness will increase. In our case, the
merging condition being more liberal corresponds
to the size of the partition elements being larger.

We would like to trade off conservativeness and
computation time depending on the problem. Fig-
ure 4 illustrates this for an example that has
three state variables and three inputs. (Details
of this example are available from the authors.)
The diagonal line in the figure indicates the failure
region. The union of the solid ellipsoids represent
the reachset estimate when the PRP is used with a
grid size of 0.2. The union of the dashed ellipsoids
represents the reachset found with a grid size of
0.4. In both cases, the PRP was performed for
K = 4. Figure 4 shows that the reachset estimate
using the grid size of 0.4 is too conservative, and
the reachset estimate using the grid size of 0.2 is
sufficient for the 4-step verification problem.

Several experiments were performed to determine
the effect of merging condition, system stability,
and state space dimension on computation time
and conservativeness using the PRP. Our pro-
cedure was implemented in MATLAB, and all
experiments were performed on an 800 MHz, Pen-
tium III machine with 120MB of RAM running
Windows ME.

The first experiment investigates how the com-
putation time changes for different grid sizes and
spectral radii of the system A matrix. We used
randomly generated A matrices with spectral radii
of 0.2, 0.4, 0.6, 0.8, 0.9, and 0.95 and used grid
sizes between 0.1 and 1 with a granularity of 0.1.
Figure 5 shows results for this experiment.

It can be seen that the computation time de-
creases as grid size increases and as spectral radius
decreases. Note that, as the figures show par-
ticular examples, the computational effort is not
monotone with respect to the joining condition,
but that the general trend is what we expect,
that is, that the computation time decreases as
the merging condition becomes more liberal.

In the next experiment, system dynamics with
spectral radii of 0.4 and system dimensions vary-
ing from 2 to 5 were randomly created. Figure 5
shows that the computation time for performing
the PRP decreases as the grid size increases. Also,
the increase in computation time in going from
the 2D system to the 5D system is less than one
order-of-magnitude.

The last experiment compares the computation
time per time step for the case where no merg-



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
1

10
2

10
3

grid size

co
m

pu
ta

tio
n 

tim
e 

[s
]

0.2
0.4
0.6
0.8
0.9
0.95

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
1

10
2

10
3

grid size

co
m

pu
ta

tio
n 

tim
e 

[s
]

2D
3D
4D
5D

(b)

1 2 3 4 5 6 7 8 9 10

10
−1

10
0

10
1

10
2

time step

co
m

pu
ta

tio
n 

tim
e 

[s
]

no merging
grid size 0.3
grid size 0.6
grid size 0.9

(c)

Fig. 5. Computation times for randomly generated
examples with (a) various spectral radii (b)
various dimensions as a function of the merg-
ing condition (c) various merging conditions
and number of iterations of the PRP.

ing takes place with the case with merging for
different grid sizes for a two-dimensional system
with a spectral radius of 0.4. Figure 5 suggests
an exponential growth of the computation time if
we do not merge any ellipsoids and it also shows
that the computation time per time step remains
at a nearly constant level until the exploration
terminates in 9 and 10 time steps for grid size 0.6
and 0.3, 0.9, respectively.

5. REFINEMENT

Section 4 showed that the PRP could achieve less
conservative approximations of the reachable set
if the merging condition was conservative enough.
Refining the PBA accomplishes the same task
without repeating the entire reachability process.
The refinement procedure consists of taking re-
gions that are the result of a merging operation
and lead to the failing region and unmerging them,
that is, taking regions that result from a merg-
ing operation and breaking them into the two
regions that were merged. In this way, the PBA
that results from the PRP can be refined so that
the conservativeness introduced by the merging
operation is reduced.

Consider again example 2.1. Suppose that we
wish to show that |x1 − x2| ≤ .424 for all input
sequences. The reachset was first seeded with
three regions, and the PRP was performed with
a merging condition grid size of 1. The ellipsoids
in Figure 6 (a) illustrate the result of the first
two steps of the reachability procedure. Note that
the regions associated with the PBA intersect
the failing region. Since this intersection may be
due to the conservativeness introduced from the
merging operation, a refinement procedure was
performed on the PBA.

Figure 6 (b) shows the final result of the refine-
ment procedure. Note that the failing ellipsoid
from the previous figure is removed and replaced
with the one step reachable sets from the failing
region, the initial condition set, and the seeding
regions. This final collection of regions satisfies the
safety condition.

6. CONCLUSIONS

This paper presents a method for constructing
a finite-state structure, the proximity based au-
tomaton (PBA), to guide reachability analysis for
discrete-time continuous systems. The PBA is a
discrete state, input driven representation of the
system dynamics. Empirical studies confirm the
efficiency that can be achieved with the PBA
and illustrate the tradeoffs to be made between
conservativeness and computation time.

We are currently developing other applications of
the PBA, including the use of the PBA represen-
tation to perform safe input sequence synthesis
(Schmidt et al., 2004). The PBA can also be
extended to hybrid systems. This makes it possi-
ble to compute reachability for nonlinear systems
by approximating them with a piecewise affine
switched mode system. The approximation error,
based on the Lipschitz constant, can then be
compensated for by adding a disturbance to the
system dynamics, similar to the method proposed
by Asarin et al. (2003). Then the PRP can be
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Fig. 6. Result of (a) the PRP with a liberal
merging condition and (b) the final step in
the refinement procedure for the servo system
example. Note that the reachset no longer
intersects Fail.

applied to the system to compute a conservative
approximation of the reachable set.
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