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Abstract

The papet extends previous work, where we develop a control theorthi@nonblocking hierarchical
control of decentralized discrete event systems (DES)s& hesults are based on two technical conditions
for the hierarchical abstraction: it has to be rfiprked string acceptingnd (ii) locally nonblocking

In this paper, we investigate the systematic constructfahehierarchical abstraction. Starting from
an initial natural projection which need not fulfill (i) and)( we provide an algorithm to compute
the hierarchical abstraction with the coarsest equiva@ekernel finer than that of the initial natural
projection, and such that (i) and (ii) hold. Our approacteess the work in [11], where the authors

compute observers for the hierarchical control of DES.

. INTRODUCTION

Recent approaches for the control of large-scale discngatesystems employ hierarchical control
architectures for reducing the computational complexityswpervisor synthesis [2], [4], [5], [7], [8],
[10], [12]. In hierarchical architectures, controller #yasis is based on a plant abstraction (high-level
model), which is supposed to be less complex than the otigileat model (low-level model). The

main question is how to derive the plant abstraction and dkelével supervisor implementation of a

IThis technical report is an extended version of [9].
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high-level controller such that the closed-loop systemhia low level is nonblocking and satisfies the
expected behavior in the high level.

All of the above approaches assume that the high-level gasen is given. [2] use a two-level control
hierarchy such that hierarchical consistent and nonbtmckontrol are guaranteed by construction. In [4],
[5], [7], [10], it is required that certain sufficient conidibs for nonblocking and hierarchically consistent
control hold. However, little is known about how to choose thigh-level observations systematically
such that these conditions are fulfilled.

A first result in this direction is elaborated in [11] as anemdion to the theory of observers in [12]. An
observer with the coarsest possible equivalence kernelghfmer than that of an initiatausal reporter
mapis computed. Nevertheless, the choice of the initial reggamap is not obvious.

In this paper, we consider the hierarchical and decené@larchitecture presented in [8], where the
overall system is modeled by the synchronous product ofrdeadezed subsystems. A natural projection,
where theshared eventsf the decentralized subsystems must be contained in theléngl alphabet,
is used for hierarchical abstraction. For nonblocking aigdanchically consistent control, it is required
that this natural projection is (Ipcally nonblockingand (ii) marked string acceptingrhe problem to be
solved is to find a natural projection such that the sharedteware contained in the high-level alphabet
and (i) and (i) are fulfilled. Similar to the observer alghrm in [11], we develop a procedure to determine
such a natural projection with the coarsest possible etprica kernel starting from the natural projection
on the shared events.

The outline of the paper is as follows. Basic notations anfthifiens of supervisory control theory
are recalled in Section Il. Section Il discusses the festwof the hierarchical and decentralized control
approach in [8] and formalizes the problem statement. Quordhm is developed and illustrated with an
example in Section IV. Section V elaborates how the algoritan be applied to build an architecture

for nonblocking hierarchical and decentralized superyismntrol.

[I. PRELIMINARIES

We recall basics from supervisory control theory [1], [13].

For a finite alphabek, the set of all finite strings oveX is denoted>*. We write s;s, € 2* for the
concatenation of two strings;, s, € 2*. We write s; < s whens; is a prefix of s, i.e. if there exists a
strings, € Z* with s=§;5,. The empty string is denotexdk %, i.e.ss =es=sfor all s *. A language
over X is a subseM C Z*. The prefix closureof M is defined byM := {s; € Z*|Is€ M st. 5, < s}. A
languageM is prefix closedf M = M.
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The natural projection p: 2" — %, i = 1,2, for the (not necessarily disjoint) unich=2; U, is
defined iteratively: (1) lepi(e) :=¢; (2) forse 2", 0 € Z, let pi(s0) := pi(S)o if 0 € %, or pi(so) := pi(S)
otherwise. The set-valued inverse mfis denotecpi*1 : 5 — 2%, Thesynchronous product MM, C =*
of two languagesvl; C =7 is My||[Mz = p;*(M1) N p,*(Mz) C .

A finite automatoris a tupleG = (X, X, 8, %0, Xm), With the finite set ofstates X the finite alphabet
of eventsz; the partialtransition functiond: X x < — X; the initial state x € X; and the set omarked
states X% C X. We write (x,0)! if & is defined at(x,0). In order to extend to a partial function on
X x Z*, recursively letd(x,€) := x and d(x,s0) := &(d(x,s),0), whenever both' = d(x,s) and d(x,0)!.
L(G) :=={s€X":8(x0,9)!} andLm(G) :={se L(G) : d(xo,S) € Xn} are theclosedandmarked language
generated by the finite automat@) respectively. For any stringe L(G), Z(s) := {o|so € L(G)} is the
set of eligible events aftes. A formal definition of the synchronous composition of twot@uataG;
and G, can be taken from e.g. [1]. Note thb,(G1||G2) = Lin(G1)||Lm(G2).

In a supervisory control context, we write=3>.UZ%,, Z.NZ, = 0, to distinguishcontrollable(Z.) and
uncontrollable(Z,c) events. Acontrol patternis a sety, 2, C yC %, and the set of all control patterns is
denoted™ C 2%. A supervisolis a mapS: L(G) — I', whereS(s) represents the set of enabled events after
the occurrence of string; i.e. a supervisor can disable controllable events onle Emguagd (S/G)
generated byG under supervisiors is iteratively defined by (1 € L(S/G) and (2)so € L(S/G) iff
seL(S/G),0 € S(s) andso € L(G). Thus,L(S/G) represents the behavior of tldosed-loop system
To take into account the marking @, let L(S/G) := L(S/G)NLm(G). The closed-loop system is
nonblockingif Ly,(S/G) = L(S/G), i.e. if each string inL(S/G) is the prefix of a marked string in
Lm(S/G).

A languageM is said to be controllable w.rL(G) if there exists a supervis@such thaiv = L(S/G).
The set of all languages that are controllable w.i(G) is denoted®(L(G)). Furthermore, the séi(L(G))
is closed under arbitrary union. In particular, for evepecificationlanguagek there uniquely exists a
supremal controllable sublanguage E w.r.t. L(G), which is formally defined ag,)(E) := U{K €
C(L(G))| K C E}. A supervisorS that leads to a closed-loop behaviqrg (E) is said to bemaximally
permissive

A languagek is Ly(G)-closedif ENLy(G) = E and the set ot,(G)-closed languages is denoted
JL.(c)- For specification€ € J (), the plantL(G) is nonblocking under maximally permissive super-

vision.
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I1l. HIERARCHICAL CONTROL APPROACH

In [8], a hierarchical approach for the control of decelted DES as illustrated in Figure 1 is

developed.
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Fig. 1. Hierarchical architecture
Decentralized DES| ,G; are represented by finite automa®, i = 1,...,n with the respective

alphabets¥;. The overall system with the alphabBt=|J. ,%; is defined asG := ||"_,G;. High-level
abstractionsG" of the low-level subsystem&; are computed by evaluating the natural projections
plec: 3¢ — (ZM)* of the low-level language& (G;) and Ly(Gi) such thatL(GI") = p®S(L(G;)) and
Ln(G™) = pe(Ln(G;)). We require

a. the high-level alphabeX" are chosen such thaj'j‘#i(zi NZj) C N C 5, i.e. 2" contains all events

shared with other components.

The overall high-level modeB" is defined such that(G") := p"(L(G)) and L(G™) = p"(Lm(G))
with the natural projectiop™ : * — ({J, £M"). Using assumption a., it can be shown [10] ti&it =
||["_,GM. This means that instead of deriving the high-level m@l&from the overall low-level modes, a
parallel composition of the decentralized high-level ms@$' can be evaluated. The tuglgl, G, ||",G™)

is denoted alecentralized projected DES nonblocking high-level supervis@ for G" and a high-level
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specificationE" C L,(G") is implemented by decentralized low-level supervis§?s The decentralized
supervisors exist if
b. the high-level languagds G") are mutually controllable (see [6]).
The hierarchical and decentralized control architectuwr@antees nonblocking and hierarchically con-
sistent control if
c. the decentralized low-level — high-level tuplgs;, GM) are locally nonblocking and marked string
accepting as stated in Definition 3.1 and 3.2.

The approach is computationally efficient as both the atistraand the supervisor implementation do
not require the computation of the overall system and it cashown that the high-level models always
have less states than the low-level models [8].

From the perspective of each individual subsystBmnonblocking control is based on two different
types of conditions. Verifying mutual controllability ohé high-level languages(G") (condition b.)
involves the other subsystems. Different from this, thallyononblocking and the marked string accepting
condition (c.) exclusively depend on the behavior of eactiqaar tuple (G;,Gl"), denotedprojected
system(PS), and the choice of the high-level alphabet (conditign a

The latterstructural conditions, which only depend on the system structure of geaojected system,
are investigated. For notational convenience, we rep{&eS") by (H,H") with the alphabet& and
s and the natural projectiop™ : =* — (Z")*,

A PS (H,H" is locally nonblocking if for all low-level strings L(H) and for all high-level events
o € 2", which are feasible after the corresponding high-levehgtp(s), a local path starting frons
exists, such that can occur.

Definition 3.1 (Locally Nonblocking Condition)-et
(H,H") be a PS. The string" € L(H") is locally nonblocking if for allsc L(H) with p"(s) = s" and
Vo e ZN(s), Jue (£—3")* s.t.suo € L(H). (H,HM) is locally nonblocking ifs" is locally nonblocking
for all s" e L(H").

For formulating the marked string accepting condition, sie¢ of exit stringsis needed. For a given
PS (H,H") and a high-level string” € L(H"), the set of exit string&., ¢ is the set of corresponding
low-level strings which have a high-level successor eveet,Le,gi :={s€ L(H)|p"(s) = s"A (3o €
shistsocL(H))}Czm

Marked string acceptance guarantees that if the high-Bxsabem passes a marked string, the low-level

system also has to pass a marked string.
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Definition 3.2 (Marked String Acceptance)et (H,H") be a PS. The string" € L,(H™) is marked

string acceptingif for all S€ Leyxgn
35 < swith p"(s) =" ands € Liy(H). (1)

(H,H" is marked string accepting &' is marked string accepting for &' € L,(H™).

According to condition a., the choice of the high-level @phtsz!" is restricted bW, .(ZiNZj) C
s C 5. To keep the high-level modéd small, a natural candidate B" = U;4(ZiNZ;). However,
choosing thisg!", the locally nonblocking and the marked string acceptingdition need not be fulfilled.
An intuitive solution to this problem is presented in theldaling example.

Example 3.1:The PS(H,H") for H in Figure 2 and" := {a,B,y,8,¢, W} is marked string accepting
but not locally nonblocking. Aftes” = , the high-level event& andp are feasible. Yets= ayh cannot

be extended withu € (= —=")* such thats€ € L(H) which violates Definition 3.1.

Fig. 2. Automaton with relabeling

A solution to the problem is obtained if the low-level traiwis from state 3 and 7 to state 6 are
relabeledk (as indicated in Figure 2) and the new high-level alphabiet =" U{k} is used® The PCS
(H,H") fulfills condition c.

Thus, the question arises if there is a systematic way taméte 3" such that condition c. holds by

adding high-level observations. The next section proviaesalgorithm for computing the minimal

2Note thats" € L(HM) — Lyy(HM) = (p)=2() A Lm(H) = 0.

Srelabeling inH just changes the observation sent to the high level.
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meeting condition c. The corresponding natural projecisonalled anmsa-observer

IV. COMPUTATION OF MSA-OBSERVERS

We first present basic results from set theory which are usgutdve the existence of msa-observers.

A. Basic Notation

We denotef (M) the set of all equivalence relations on the ietForp e £(M), [m], is the equivalence
class containingn< M. The set of equivalence classesiois written asM/p:= {[m|,/me M} and the
canonical projection ¢g M — M/l maps an elememh e M to its equivalence clags,. Let f :M — N
be a function. The equivalence relation kas the kernel off and is defined as follows: fan,m € M,
m=m mod kerf iff f(m)= f(m).

Given two equivalence relationg andp on M, n <, i.e. n refinesy, if m=m modn = m=n
modu for all m;m’ € M. With the partial ordex, we denotev andA as the join and the meet operation
of the lattice&(M).

Let M andN be sets and : M — 2\ be a function. Also assumiec &(N). The equivalence relation
dof onM is defined for allm,m € M:*

m=m mod¢o f @Cpq,(f(m)) :Cp¢(f(”{))7

Now let f : M — 2M. ¢ € £(M) is called aquasi-congruenctor (M, ) if ¢ < ¢o f. The quasi-congruences
for f form a complete upper semilattice of the lattieéM) [13]. Furthermore, ifun € E(M) s.t.u<n,
the equivalence relation/p e £(M /) is defined s.t. fom,m € M

m, = [m], modn/p< m=m modn. (2)

B. Existence

In this section, the problem discussed in Section Ill is faliynstated and solved for the RS, H).
The set of transitions of the automatéh is denotedTy = {(x,0,X) € X x Z x X|X' = d(x,0)}. A
relabeling fromH to H is a functionr : Ty — Ty with r((x,0,X)) = (x,6,X), wherec € = and6 € 5.

We recall the following result on the prefix-closure funatiore :3* — 2> with pre(s) = {s} for s z*
[11]. The kernel kep™ of the natural projectiorp" for L(H) is a quasi-congruence fgt.(H),pre), i.e.
if 5,8 €L(H), thenp"(s) = p"(s) = p"(pre(s)) = p"(pre(s)). Also, for any quasi-congruenge on

4The natural extension of ghto sets is used.
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(L(H),pre), there is a relabeling: Ty — T,; with the natural projectiop™: 5* — (£")* for L(H) such
that kerph = .

Based on the above notions, the problem in Section Il is &ized.

Problem 1: Let H be an automaton ang™ be the natural projection. Find (i) the coarsest quasi-
congruenceu on (L(H),pre) that is finer than kep™, and (i) a relabeling : Ty — Ty and a natural
projection p" : £* — M with kerp" = and such tha{H,H") fulfills condition 3., i.e. it is locally
nonblocking and marked string accepting.

Regarding Definition 3.1 and 3.2, the following two postdetslanguages are needed to find a quasi-
congruence as stated in Problem 1.

Definition 4.1 (Postsets)Let H and p" be as above and I& C L(H). Thelocal postsebf s€ L(H)
is posy(s) := {ue (T —="*Z(Z - =")*|suec M}. The marked string accepting postset s< L(H) is

defined as
0 if (1) holds
poﬂsa(s) = VSex € Lexphi(s) S.t. s < s
pos,(s) else

The local postset contains all extensionsafith at most one event ia". The marked string accepting
postset distinguishes strings which violate Definition. $8g;°* maps these strings to the local postset
of s. Strings which agree with Definition.3 are mapped to the empty set.

The marked string accepting (msa)-observsrintroduced for formulating Lemma 4.1.

Definition 4.2 (M-MSA-Observer)The natural projectiop™ : =* — (Z")* with =" C 5 is anM-msa-
observer for the automatdh with M C L(H) if ker p" is a quasi-congruence fok.(H), pre), (L(H),pos,)
and (L(H),pos*d.

The relevance of thl-msa-observer is elaborated in the next Lemma. If the p¥ajs aL(H)—msa-
observer for the languadg(H), then the corresponding RS!,H") is locally nonblocking and marked
string accepting.

Lemma 4.1 (MSA and LNB):et H, p" andH" be defined as above. The natural projectbhis a
L(H)-msa-observer foH if and only if (H,H") is locally nonblocking and marked string accepting.

Proof: ” = ": It holds that kep" is a quasi-congruence for Res and pog‘(ﬁ‘).
Let " € L(HM) andse L(H), s.t. s" = p"i(s) and assume € 3" (s"). As s" € p"(L(H)), there is
as el(H) st.soecL(H) and p"(s) = s". As kerp" is a quasi-congruence for pgs,, we have
that p(s) = p"(s) = p"(pog w)(S)) = P"(POS ) (s)). With & € p"(pog 4)(3)), it follows thato e
p"(pos 4)(s)). But then there is @ e (X —2")* s.t.suo € L(H). Asse L(H) was arbitrary,(H,H") is



TECHNICAL REPORT, CHAIR OF AUTOMATIC CONTROL, UNIVERSITY ® ERLANGEN-NUREMBERG, 2006 9

locally nonblocking.

Let s € Lm(H") ands€ Lewi s.t. there is n& < swith p"(s) =" ands' € Lim(H). Then po§ (s) =
PO (4)(S) # 0. However, ass" € Ly(H™), there issy € Lin(H) s.t. p"(sy) = ". As s€ L, there
is 0 € Z"(s"). Then there iss, > sy S.t. S, € Lexsn Since (H,HM) is locally nonblocking (see above),
which means that ppg;)(sm) = 0. Thenp"(s) = p"(sm) and p" (pog53) () # P (POgi (Sm)). As this
contradicts the assumption thalt is a quasi-congruence for @*ﬁ;) suchs does not exist. With Definition
3.2, (H,H") is marked string accepting.

" <" We assume thatH,H") is locally nonblocking and marked string accepting.
Lets,s € L(H) s.t. p"(s) = p"(s)) and assume that € pog ) (s). There are two cases. li"(u) =,
then,u' = € € pog () and p"(su’) = p"(su). If p"(u) = o, theno € =" (p"(s)). As (H,H") is locally
nonblocking, there isf € (£ —5")* s.t. Su'c € L(H) which means/c € POS (1 (S)-
As this holds for anyu € pog (s), P"(p0os 44)(s)) = P"(Pog ) (S)). Thus p" is a quasi-congruence
for pog (.-

Lets,s € L(H) s.t. p"(s) = p"(s) := s". Again there are two cases. In the first case, ) =
0. Then for all sex € Lexsni S.t. Sex > S, Equation (1) holds. If there is no such,, then the locally
nonblocking condition implies thaf"(s") = 0 and thus there is also Mg, € Lexgi S.t. Sh, > S Which
means that p(ﬁﬁ) (s) = 0. In case there iss as defined above, the locally nonblocking condition states
that there is &, € Lexsi S.t. S > S. As (H,H) is marked string accepting, Equation (1) holds for all
suchs,,. Consequently p%‘;'a)(s’) = 0. In the second case qq:;%(s) = 0. Because of the above proof
poég‘(?j‘) (s)#0. (If poﬁ‘(ﬁ) (s) =0, then also pc{% (s) = 0) According to Definition 4.1, it is the case
that pog"(ﬁi) (S) = pog )(s) and pog‘(ﬁ‘)(s’) = PO§ (14)(S). AS POg 1(S) = POg 4)(S) was shown above,
also P (pog'sa (<)) = P (pog3 ().

In both casep" (pog33) () = p"(pogs} () and consequentlp™ is a quasi-congruence for (f&$).
Together,p™ is anL(H)-msa-observer foH. |

Considering Lemma 4.1 and Problem 1, we want to determinedhesest quasi-congruence which is

finer than the kernel kea! of an initial natural projectiorp!l.

Thea = sup{me &(L(H))m< (kerpA
(Tto pre) A (1o pog 1)) A (Tto PO }-
The supremal element; ., exists as the quasi-congruences form a complete upperatoesilof the
lattice E(L(H)).

Theorem 4.1: =T, in Equation (3) is the quasi-congruence which solves Protle(i).

()
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C. Algorithmic Computation

Having shown the existence of the solution to Problem 1Hg,dorresponding msa-observer in Problem
1 (ii) is determined in this section. The algorithm followsetiterative procedure in [11].

Let p be an equivalence relation on the state Xeof H with the quotient sel := X/u and the
associated canonical projection cX — Y. The initial state and the marked states in the quotient are
Yo = €p,(Xo) and Yy, = cp,(Xn), respectively. Also leE" C £ and =" ¢ 5 be an additional label. The

induced transition function : Y x (Z"u {Z"}) — 2¥ on the quotient is defined as

{cp,(3(x,0))[x € cpt(y)} if oz
v(:0) =14 {en,(B(x.y))lye (Z-2"),
xecp,t(y)} —{y} if g=2"
We call Hy s = (Y, Z" U {Z"}, v, yo,Ym) the quotient automatomf H for " and .
In order to determine the msa-observer and similar to thesptssin Definition 4.1, thesuccessor
event transition functiomnd thenonmarked transition functioare used.
Definition 4.3: Let H and " C 5 be as above. Lex = 8(xo,S) for s€ L(H). The successor event

transition functionA, : X — 2X is defined foro € " as
Ag(X) == {d(X,u)|u € pOg y(s) N(Z— ") o(z -2} (4)

The nonmarked transition functial,, : X — 2% is

U As(x) if posiii(s) # 0
Anm(X) 1= { oezn (5)

0 else

With (4) and (5), the coarsest quasi-congruepgefor H and="" can be evaluated as

bo=supfpe EX)HS A (Hodd)}. 6)

oezhiu{nm}

An efficient algorithm for computingy is given in [3]. Based opy, Theorem 4.2 establishes the relation
between the quotiertt,,, sn and aL(H)-msa-observer.

Theorem 4.2:Let H and p" be given as above and Ig be the quasi-congruence in Equation (6.
is anL(H)-msa-observer ifH,,, s+ is deterministic and contains r@-transitions. In this case,, s is
a minimal state recognizer g (L,(H)) and can be computed in polynomial time.

In order to prove Theorem 4.2, we introduce tierode equivalences, for a languagd. C ~* [13].
Lets,s € L. Then

s=s mod= iff VueZ" :sueL < Suel. (7)
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For an automatord, we define the equivalence relatipg € E(L(H)) by s=s modpx < 8(Xo,S) =
d(Xo,8). Then, it holds that if the projectiop™ is an msa-observer, the Nerode equivalence on the
projected language™(Lm(H)) is coarser thamy, i.e., [Zphi(Ln(H)) op"] partitions the state space .

Lemma 4.2:Let H, ux be defined as above, and gt be an msa-observer. It holds that

bx < [ZpiLa) oP"]. (8)

Lemma 4.2 is shown in Appendix A. Based on this result, we @fie equivalence relatiqyi () =
[=pi(Lan) ©P"]/bH € E(L(H)/px), where states iiX are equivalent if they exhibit the same future marked
behavior under the projectiop™. This statement is further formalized in the following posjiion.
Here, the function, is extended to strings as follows. Farc X, andto € (Z")*, A.(x) = {x} and
Deo(X) = U{Bs (X)X € At (X)}-

Proposition 4.1:Let H, Wy, 1)) be defined as above, let' be an msa-observer, amdk’ € X. Then
X=X modgi, n) iff

1) Vte (M) —{e} : A(X) N X # 0= K(X) N Xy # 0
2) Dnm(X) # 0 < Apm(X) # 0.
Furthermore Py, ) = M-
The proof of Proposition 4.1 is provided in Appendix A. Nowh€elorem 4.2 can be shown.

"

Proof: ™ =": p" is an msa-observer. It has to be shown tHgt s is deterministic and contains
no og-transitions.

We first prove thatH,, s is deterministic. Assume the contrary and denote the settearsd the
transition function ofH,, s» asY andv, respectively. Then, there agy,y €Y, 0 st {9,9) C
v(y,0), and there exisk,X,%,X € X with {x,x'} C cp,}(y), X cp,}(¥), X € cp,(¥) and3(x,0) = X,
o(X',0) =X according to the QA construction. Lets' € Z* s.t. (X, S) = X andd(Xo,S) = X. Then, X# X
modpy implies thatx# X' mod iy, i), i-€., W..o.g., there is € (Z")* s.t. p"(so)t € p"(Lm(H)) but
pl(so)t & p"(Lm(H)). But then, p"(s)at € p"(Lm(H)), while p"(s)ot ¢ p"(Lm(H)) contradicts that
X=X modgiL, H))-

We now show that,,, sn does not havep-transitions. Assume the contrary. Then, thereyajec Y
s.t.yev(y,Z") andx, X e X, 0 € 2-I" s.t.xe cpl(y), Xe cp,(Y), andX=5(x,0) according to the QA
construction. Again, since # X modpy, alsox # X modpyi, ). Then, w.l.o.g., there is € (Zhiy*
s.t. pl(s)t € p(Lm(H)) but p"(so)t & p"(Lm(H)). Sincep"(so)t = p"(s)t, this leads to contradiction.

" <" Hy, sn is deterministic and contains nmy-transitions. It has to be shown thelt' is an msa-

observer.
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We first prove thatp" is anL(H)-observer. Les € L(H) and p"(s)t € p"(L(H)) for t € (Z")*. Let
X = 8(Xo,S) andy :=cp,,(x). Then, there are two cases. Ufy,t)!, then A(x) # 0. Hence, there is
uc Z* s.t.suc L(H) and p"(su) = p"(s)t. If v(y,t) does not exist, there must lye+£ y s.t. v(y,t)! and
X € cpl(y) with 8(xo, ') =X andp"(s)) = p"(s). But this is only possible if,,, s» is nondeterministic
or containsog-transitions, which leads to contradiction.
We finally show that™ fulfills (1) in Definition 3.2. Lett € p"(Ly,(H)) andso € (pM)~1(t)="'NL(H).
It has to be shown that there $< s with p"'(s’) = p"(s) ands € Ly (H). We write x := §(xo,s) and
y = cpy, (X). Sincet € p"(Lm(H)), there issE Lm(H) s.t. p"(§) =t. Let X:= 3(xo,$) andy:= cp, (X).
ThenAnm(X) = 0. If §=1y, it must hold thatA,n(X) = 0 sincepy is a quasi-congruence fdx,,. Then,
there exists < s with p"(s) = p"(s) ands € L(H) with the definition ofAym. If §#y, we have that
p"(s) = p"($) buty = cpy, (8(X0,9)) # ¥ = cpy, (3(%0,9)). Then,H,, sn is nondeterministic or contains
Op-transitions, which leads to contradiction. [ |
The remaining question is how to proceedjf, s» is nondeterministic or hasg-transitions. Algorithm
1 solves this problem by relabeling transitionsHnusing H,, sni.
Algorithm 1 (MSA-Observer)tnput: H, =",
1. computeyy according to Equation (6).
2. computeH,,, sni.
3. if Hy, sn is deterministic and has namp-transitions
« H=H, Sh=35N
. terminate
else
« (H,5") =relabel,, (H,H,, s, =")
« H=H, sh=35N
e go to Step 1.
Output: H,3M.
The relabeling function reIath(H,HuH,zm,Zhi) is implemented by the subsequent algorithm.
Algorithm 2 (relabeling): Input: H, Hy, s, =M.
1.r: TH“H

— Ty . relabelsH,, sn to H over M with the following restrictions:
HI»1H~Zh' M,

shi Py, 20
« 1((y,0,¥)) = (y,6,y) ando # & = 6 ¢ (ZU{="}), i.e. always relabel with new labels.
. if (y,6,¥)=r(y,0,y¥)and(zy,Z) =r(zy,Z) with o £y, thend # Y, i.e. transitions with different

original event labels have different new labels.
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2. 1:Ty — T relabelsH to H according tor“Assume(x,0,X) € Ty.
. if e " andr((cp,,(x),0,cp,, (X)) = (cp,,(x),6,cp,, (X)) with 0 # &

= r((x,0,X)) = (x,6,X).

. if o 2" andr((cp,, (x),=" cp,, (X)) = (cp,,(X),6,cp,, (X))
= r((x,0,X)) = (X,6,X).

Output: H, M.

The application of Algorithm 1 results in the main theoremiti$ section.

Theorem 4.3:Algorithm 1 with H and=" terminates in at mogK| steps. If the algorithm stops with
the automatorH and the alphabef", then it holds for the kernel of the natural projectipf for L(H)
that kemp" = 1. o

This means that given an automatdnand a high-level alphabé™, the observer algorithm returns a
natural projectiorp™ for the relabeled automatdt such thatH,H") is locally nonblocking and marked
string accepting. Before extending this result to decém&d DES in Section V, we illustrate Algorithm
1 in Example 4.1.

Example 4.1:Let H be as in Figure 3 with the high-level alphal¥t = {a,B}. We follow the proce-
dure in Algorithm 1. The quasi-congruenggin (6) evaluates tpy = {{0,1,2},{3,6,7},{4,5},{8}} (for
example compar@,m(3) = Anm(6) = Anm(7) = 0 and Aym(4) = Anm(5) = {8}). The quotient automaton
H,, s is shown in Figure 3. It has a nondeterministic evenin state (0,1,2) and twao-transitions.
Thus, the corresponding transitions must be relabled jns» and inH according to Algorithm 2. As
an example, we choos((0,1,2),a,(3,6,7))) = ((0,1,2),,(3,6,7)) and thusr ((1,a,3)) = (1,y,3).
The resulting PSH,HM) with the high-level alphabeX = {a,B,$,&,y} is equal to the P$H,H") in
Example 3.1. Thus, after one more iteration, the obsengerihm terminiates with the solutiof, £")

in Example 3.1.

V. CONSISTENT RELABELING OFDECENTRALIZED DES

The algorithms in Section IV-C provide a method to computelalreling and a locally nonblocking and
marked string accepting natural projection for a single RSH"). As the control architecture introduced
in Section Il involves decentralized projected systeff}8 ,G;, || ,G"), the effect of relabeling one

automator, on the overall synchronous behavior has to be investigatethis end, consider a transition
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Fig. 3. lllustration of the msa-observer algorithm

Ok = (X1,0,%2) € T, which is relabled to(x;,T,%z) in Tg,, i.e. rk((X1,T,X2)) = Gk If 0 is not contained
in any of the other alphabets, that ds¢ Z; for all i # k, there is no effect on the other subsystems
as o occurs asynchronously. In case tlmt Z; for somei # k, a relabeling ofo in Tg, changes the
synchronous behavior of the decentralized subsystems. aiWebgpass this problem by adding a new
transition containing the eventfor any transition containing in the subsystem;, i # k. The following
definitions formalize this idea.

The functionR¢ denotes the map from the relabled events to their originahtsv

Definition 5.1: Let G¢ be an automaton with the relabled automan The mapRy : S — 3y is

defined as
o if Jogk= (X1,T, %) € Tg, St
R(1) = r(a) = (X1,0,%2) #Qq,
T else

Re: 3 — Z; is the extension oR, to strings withRe(g) = £ and R(8T) = Re(§)R(1) for e 5 and
TE€ 5.

Definition 5.2 (Consistent relabeling)et (||",G;,||",G") be a decentralized projected DES and let
G be a relabeling o5, with R, according to Definition 5.1 and the high-level alphaﬁEt5 The tuple
(Gi,2M), i #k is a consistent relabeling ¢6G;,=") w.r.t. (G, &) if (i) 2 =3MuU {1t € IP|R(1) € Z;}

5The corresponding natural projectionpé®®: & — (£M)*,
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and (ii) for allt € b andVvg; € Tg, such thatg = (x1,Re(T),X%2), it holds that(x;,T,x2) € Ts.. The DPS
(I,Gi, ||, G is a consistent relabeling ¢fi_,Gi, ||"_,GM) w.r.t. (Gy, 2l) if each tuple(G;, M), i #k
is a consistent relabeling ¢6G;, =) w.r.t. (G, ).

It is readily observed, that for ail=1,...,n, it is true thatR (L(G;)) = L(G)). Yet, it has to be shown
that the synchronous behavior of the decentralized systemest changed by the consistent relabeling.
Lemma 5.1 provides this result.

Lemma 5.1 (Consistent relabelinglet (||"_,G;,||"_,G") be a consistent relabeling ¢f"_,G;, ||"_,G")

W.r.t. (Gk,ZE') and define the natural projectiops: =* — % and j; : &* — 5. Then

R(L(G)) =Re(II1L(G) = [IL1L(G) = L(G), (9)
R(L(GM)) = Ru([IL4L(GM) = IIL4L(G!) = L(H™), (10)

and the same equivalence holds for the respective markgdadges.
Proof: It has to be shown that (R(||"_;L(G))) C ||"_,L(Gi) and Ry (||’ L(GM)) C ||"_,L(GM) and
(i) Re(lI75L(G)) 2 I,L(Gr) andR([[7,L(GM)) 2 [I2,L(GH).
(i) First we show thaR«(pi(§)) = pi(R«($)) by induction. Lets= €. ThenR(fi(€)) = € = pi(R«(€)).
Now assume thaR(pi(9)) = pi(R«(8)) holds fors'e L(G) and lett € £ s.t. st € L(G). There are three

different cases.

L1ez%ng, ie R(1) =1 ThenR(fi(81) = RU(BI(9T) = Re(Hi(9)T = pi(Re(8)T = pi(R(ST) =
pi (Re(81)).-

2.1€5-5, i.e.R(1) =0€e 3. ThenR(fi(51)) = Re(fi(8)1) = Re(fi(8)) 0 = pi(Re(8))o = pi(Re(§)o) =

pi (Re(8T)).

3.1¢ % UL, e R(T) =T ¢ Zi. ThenR(Bi(81) = Ru(Bi(9) = pi(Ru(9)) = pi(R(HT) = pi(Re(S1)).
Now we assume that € Re(||"_,L(G))). Then there is & ¢ ||",L(G;) s.t. R(§) = s and consequently

Vi, i =1,...,n it holds thatpi(§) € L(G)). As Ru(fi($) = pi(R«(9)), it follows that pi(s) = Re(fi($)) €
R(L(G) Vi. Thus,s€ [[4R(L(G) = [[L4L(G).

(i) The reverse direction is also proven by induction. Itdsothate € ||?,L(G;) ande € Re(||P_,L(Gy)).
Assumes e ||',L(G;) ands € R¢(||",L(G})) and leto € £ with so € ||",L(G;). We note that there is
sc || ,L(G) s.t. R(§) =s. It has to be shown that thereisz £ s.t. R((T) = 0 andst € ||'_,L(G), i.e
pi(51) € L(G) for all i = 1,...,n. There are two cases.

1.0 ¢ 5 U%y or Re(o) = 0. In both cases no relabeling of the everis performed. Agi(s)o € L(G;) for
alli s.t.o e %;, alsop;(%0) € L(G;) because of Definition 5.2. But thew(5t) € L(G)) for alli=1,...,n

if T=0 is chosen.
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2.0 €3 and there ist € 2y s.t. R(T) =0 # 1. As for alli s.t.¢ € %, pi(s)o € L(G;), Definition 5.2
implies thatp;(st) € L(G;). Thus,pi(&t) € L(G)) for alli=1,...,n.

Re(L(G")) = L(G") and the proof for the marked languages follow with an analsgargument. m

A further beneficial property of the consistent relabeliagtated in Lemma 5.2. Besides the language
equivalence, also the locally nonblocking and marked gtdocepting condition are preserved.

Lemma 5.2:Let (||'_,G;,||"_,GM") be a consistent relabeling ¢fi"_,Gi, || ,G") w.r.t. (Gy, ). If the
projected systeniG;, G") is marked string accepting and locally nonblocking, them ghojected system
(Gi,éih‘) is also marked string accepting and locally nonblocking.

Proof: Assume thas™ € L(G"") andt e £M'(§"). Thens" := R(§") € L(G") and because of the
choice of 2!, Re(1) € . Now suppose tha € L(G;) s.t. g¥e%($) = §". Then alscs:=R(§) € L(G;) and
plec(s) = M. As (G;,G) is locally nonblocking, it follows that there is @e (Z; — ZM")* s.t. SUR(T) €
L(Gi). Because of Definition 5.25ut € L(G;). As this holds for arbitrans™ e L(G") ands'e L(G)),
(Gi,GM"Y is locally nonblocking.

Now let §" € Lip(G") and S€ [ 1. ThenR(§") € Li(Gl) and s:=R($) € L or e because
of Definition 5.2. As(G;,G") is marked string accepting, there issa< s with p#e¢(s) = R¢(§") and
S € Lm(G;). Because of Lemma 5.1, there isa L, (G;) s.t. R(§) = §. With Definition, 5.28"< § and
pdec§) = &". Hence,(G;,G") is marked string accepting. n

Using Lemma 5.1 and Lemma 5.2, we develop an iterative ritaalgorithm. As stated in Theorem
5.1, it results in a decentralized projected DES which isafle for hierarchical and decentralized control
according to [8].

Algorithm 3 (Decentralized relabeling):

Input: (|[L,Gi, [, G")
1. Initialize k= 0.
2. k:=k+1,

computel (Gy)-msa-observepf" for (G, Gl) from (G, Gl') using Algorithm 1,

determineR; as in Definition 5.1.

3. compute(||",G;, ||, GM) as consistent relabeling 6, G, || ,G") w.r.t. (Gy,2) according to

Definition 5.2.

4. if k=n
« terminate

else
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o (4G 1aGM) = (s G 1 G-

« Qo to step 2.
output: ([[f;Gi. |1, 6", {Ry,....Ra}.

Theorem 5.1:Let (||"_,G;,||"_,G") be a decentralized projected DES and (It ,G;, ||"_,G") be the
output of Algorithm 3 applied td||"_,G;, ||"_,G"). Then all projected systeni&;, GI') are marked string
accepting and locally nonblocking. AdditionaliR o --- o Ry(L(G)) = L(G) and Ry o -+ o Ry(L(GM)) =
L(GN).

Proof: The proof of Theorem 5.1 follows by successive applicatibhemma 5.1 and Lemma 5.2.
[

Theorem 5.1 suggests the following hierarchical contrsigie for decentralized DE§! ;G;. Starting
from the natural projectiop®©on the set of shared everas := Uj..(ZiNZ;), Algorithm 3 can be applied
to the decentralized projected DES ,G;, ||"_,G"). As all PSs(G;,GM") of the resulting decentralized
projected DES(||{‘:1(§i,||i":lGP‘) are locally nonblocking and marked string accepting, theraichical
and decentralized approach in [8] can be applied. The fatigvexample illustrates the procedure.

Example 5.1:Let ||2,G; be the decentralized DES with; andG; as in Figure 4. The initial natural
projection on the shared events §¢°: 3 — (£;N3,)*, where 21 N3, = {a,B}. It results in the
decentralized projected systefi?_,Gi, ||2,G"). We apply Algorithm 3 to(||>,G;,||>,GM"). Observing
that (G;,G!'") is locally nonblocking and marked string accepting (step @o relabeling has to be
performed fork =1 in step 3. Thus, the next iteration fe= 2 again starts with the original decentralized
projected systen(||?,G;,||%,GM"). As G, equalsH in Example 4.1, the msa-observgl*“computed in
step 2. of the algorithm, is the same@%ifi Example 3.1. Because of this reason, the relabled autsmat
G, in Figure 4 equal$l in Example 3.1. In step 3G; has to be relabled according to Definition 5.2. It
holds thatsh = 30U {y}, asR,(W) = a € =i, As the transition1,a,2) is in Tg,, the transition(1, , 2)
has to be added tds, to comply with Definition 5.2 (see Figure 4). The algorithmnténates in step
4. with (||2,Gi,||2,G"). Note that both(G1,G) and (G,,GY') are locally nonblocking and marked
string accepting. It can also be verified that the synchrermhavior of the decentralized systems is not

changed by the relabeling procedure.

V1. CONCLUSIONS

A hierarchical and decentralized control architectureclirieduces the computational complexity of

DES controller synthesis for large-scale composed systessselaborated in [8]. Nonblocking and hier-
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Fig. 4. Application of Algorithm 3 td|2_; G;

archically consistent control can be guaranteed if therahprojection used for hierarchical sbstraction is
(i) locally nonblockingand (ii) marked string acceptintpr each subsystem. In this paper we investigated
the problem of automatically determining a natural pragetisuch that (i) and (ii) are fulfilled. To this
end, we first provided an algorithm which computes the napngection with the coarsest equivalence
kernel that is finer than that of an initial natural projentimr an individual subsystem. In our case, the
initial natural projection is given by the natural projection theshared eventsf the composed system.
Using this fact and applying the above method for all sulesystof a given composed system, we
developed an algorithm which computes the coarsest hldcalcabstraction complying with the method

for large-scale composed systems in [8].
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APPENDIXA

PROOF OFPROPOSITION4.1AND LEMMA 4.2

We first elaborate properties of msa-observers.

Lemma A.1:Let p": >* — (=")* be an msa-observer for the langudge =*, ands< L. Then the
following holds.

1) if p"(s) € p"(L), then eithedu € (Z —=")* s.t.suc L or 3§< s s.t. p"'(§) = p"i(s) andse L.
2) if t € (Z")* — {e} and p"(s)t € p"(L), thenJu € =* s.t. suc L and p"(su) = p"(s)t.

Proof: Let s€ L. To show 1), we assume that'(s) € p"(L). Then, eithedu € (= —=")* s.t.suec L
or there is no such. In the latter case, it must hold that there are (X —>")*, i’ € * ando € 3" s.t.
sliol € L, sincese L. Considering thap" is an msa-observer, there must$se §i s.t. p"'(8) = p"(s0)
andsc L. But then, alssX s and p"(8) = p"(s).

To show 2), let € (Z")* — {e} andp"(s)t € p"(L). Sincep" is anL-observer, there ane<s*, g € ="
s.t. sio € L and p"(slio) = p"(s)t. Then, either3d € (= — 3")* s.t. sliolf € L or there is no suchr.”
In the first casey = (ol complies with 2). In the second case, there musut@(Z—Zh‘)*, e
andd € =" s.t. sioG60 € L. But then,s¢ L for all siio < § < slio(, which contradicts thap™ is an
msa-observer. [

Now, Lemma 4.2 can be proved.

Proof: It has to be shown thag=s modpy = p"(s) =pi, ) P"(S), i.e., vt € (ZM)* it must
hold thatp"(s)t € p"(Lm(H)) < p"(S)t € p"(Lm(H)). Assume thak:= 8(Xo,s) = 8(Xo,§) andt € (Z")*
s.t. p(s)t € p"(Lm(H)). As p" is an msa-observer, Lemma A.1 implies that there is eitheiz* s.t.
su€ Lm(H) and pM(su) = p"(s)t or §<'s, G € (Z—3")* s.t. s= & andS€ Ly(H). In the first case,
3(x,u)!, and hencesu € Ln(H) and p"(su) = p"(s)t € p"(Lm(H)). In the second case, because of
Lemma A.1, there must bg £ s andd € (X —2")* s.t. s =& ands € L(H). Then, alsop"(s) =
p"(§) € p"(Lm(H)), which concludes the proof. |

In order to prove Proposition 4.1, we establish three lemmas

Lemma A.2:Let pe &(X) be a quasi-congruence ¢, {As,0 € 2" UAm), andx, X € X. Then
x=X modu implies that

1) Vte (M) —{e} : A (X) N X # 0= Dy (X) N Xy £ 0
2) Apm(X) # 0 <= DAnm(X) # 0.
Proof: To show 1), assume that (ZM)* s.t. A (X) N Xy # 0. Assumex’e L (X) N Xy We first show

that there isx"c Ay(X) s.t. X=X modu by induction. Lett = 03 --- Gy, wherea; =€ andao; € =" for
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i =2,...,m Then, there are; € (Z—Z")*, i=1,...,m s.t. X= 8(X,01U; - --OUm). We denotex; :=
d(x,01Up---0j) fori=1,....m.

As the induction base, we observe that=x € A;(X1), X] := X € A¢(X]) andx; = x; modp. Now,
assume that for somes {1,... . m—1}, X € Ag,..q,(X1), X] € Ag,..q,(X7) @andx; =% modp. Then, X1 €
Ag.,(%). As pis a quasi-congruence fdkg,,,, there must bex. , € Ag, ,(X) S.t. X1 =X, modp.
HenceXi;1 € Ag,..0.,, (X1), X1 € Doy0r.,(X7), @ndxi, 1 =X, modp. But then, induction on the length
of t shows that there ig, € A (X) S.t.Xn=X;,, modp. In addition,X’e A¢(X) N Xy implies thatAym(X) = 0.
As pis a quasi-congruence fd,y,, alsoAnm(X,,) = 0. Respecting the definition dk,,, combined with
the fact thatH is nonblocking, there must be € (X —=")* s.t. X := (X, U) € Xm. Sincex" € Ay (X),
we arrive atx" e A (X') N Xm, i.e., A (X) N Xy # 0.

For 2), assume that,nm(x) # 0. Thus, there ix & Ayy(X). Sincep is a quasi-congruence féy,,, there
must bex" e Ayn(X) s.t. X=X modp. Hence Aym(X) # 0. [

Lemma A.3:Let p" be an msa-observer. Thamyi, ) is a quasi-congruence f¢K, {As,0 € ="} U
Dnm).

Proof: Let x,X' € X s.t. X=X modupyi(,Hy), ands,s € L(H) s.t. x=8(Xo,s) andx’ = d(xo, ).

First assume that € " s.t. X € Ag(x). Then, there aras, G € (£ —=")* s.t. X = §(x,ucd) and
p"(suwol) = p(s)o. It has to be shown thalk' € Ag(X) s.t. X=X modpyi, ). Assume that € (=")*
s.t. ph(s)ot € p(Lm(H)). Since p"(s) =piq,ny P"(S) according to the definition ofiyiq, ), and
pli(s)ot € p(Lm(H)), alsop™(s)at € p"(Lm(H)). Sincep™ is an msa-observer, it follows from Lemma
A.1 that there are/,{ € (X —Z")*, o € =* s.t. SUoU' [ € Ly(H) and pM(Su'odi) = p"(s)ot. Then,
swil = sdol’ mod =g, ) op™. Hence, withx™:=§(X,u'cl’), we have thak =X modpyi, n))-
As o € =" was arbitrary, this implies thaty ) is a quasi-congruence f¢X, {Aq|o € Z"}).

Now assume that € A,m(X). Then,Xe Ay(x) for someo € 3", and as shown above, therexiss \;(X')
s.t. X=X modygi, ). It remains to show that' € Anm(X). Sincex’e Anm(X), there arex€ X, u,v e
(Z—3M)*, G e 2N s.t.x= (X, u), d(Xuwd)! and U< uv=- 8(X, (i) ¢ Xm. Sincep™ is an msa-observer, this
implies thatp"(s) ¢ p"(Lm(H)). Noting thatp"(s) =g, ) P"(S), alsop"(s) & p"(Lm(H)). Hence,
there arex"c X, U,V € (T —3")*, & € " s.t. X = §(X,U), (XuVE)! andd < UV = §(X, ) & Xm.
Then,Ag(X) C Aym(X), i.e.,X € Aym(X). [

Lemma A.4:Assume that 1) and 2) in Lemma A.2 are fulfilled fox’ € X, andp" is an msa-observer.
Thenx=x" modpyi(L,H))-

Proof: Lets,s € L(H) s.t.x=8(Xg,8), X = 8(Xo,5), and assume that"(s)t € p"(Ly,(H)). We have
to show thatp™(s)t € p"(Lm(H)).
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If t=e¢, we have thatp"(s) € p"(Lm(H)). Since p" is an msa-observer, either theresis: 3 with
§€ Lm(H) and p"(8) = p"(s) or there iss™> s with §€ L(H) and p"($) = p"(s). Considering that
this holds for anys s.t. 8(xo,S) = X, it can be concluded thak,n(x) = 0 according to the definition
of Anm. Then, with 2),Anm(X) = 0, which implies that there is n& € X, uve (2 —3")*, o’ € M sit.
x=9(X,u) andd(X,uvo’)! andu’ <uv= U & Lm(H). If po(S)0’ & po(L(H)) for all o € Z, the fact that
H is assumed to be nonblocking implies that there ig @ (= —=")* s.t. SV € Ly;. Otherwise, there is
o' € 3" s.t. po(S)0’ € po(L(H)). Hence, either there i £ s with § € Ly(H) and p"(§) = p"(s) or
§ > ¢ with p"(§) = p"(s) ands € Ly (H). It follows that p"(s)t = p"(s) € p"(Lm(H)).

If t +# ¢, there isue Z* s.t. suc Ly(H) and p"(su) = p"(s)t, since p" is an msa-observer (see
Lemma A.1). Hencel:(X) N Xy # 0. With 1), we have that\ (X') N Xy # 0. Thus, there iaf € Z* s.t.
SU € Ln(H) and p"(su’) = p"(s)t € p"(Lm(H)). Thatis,s=s mod =L, ) op", and hencex=x
MO g (L)) - .

We now prove Proposition 4.1.

Proof: " ="" Assume thatx= X" modyi( ). SinCelyiL, +) iS @ quasi-congruence according
to Lemma A.3, Lemma A.2 ensures that 1) and 2) hold.

"<«="11f 1) and 2) hold,x=x" modgyi,+) follows from Lemma A.4.

To show thatyi(,) = M, let i € E(X) be a quasi-congruence foX, {Aq,0 € "} UA,) andx = X
mody for x,X € X. Then, Lemma A.2 suggests that 1) and 2) hold. Hence, Lemmamplies that

X=X modpgi(, ), 1-€., ¥ < i Hence,ugi, 1)) is the coarsest quasi-congruence for

(X, {Ag,0 € 2"} UAm)
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