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Abstract

The paper1 extends previous work, where we develop a control theory forthe nonblocking hierarchical

control of decentralized discrete event systems (DES). These results are based on two technical conditions

for the hierarchical abstraction: it has to be (i)marked string acceptingand (ii) locally nonblocking.

In this paper, we investigate the systematic construction of the hierarchical abstraction. Starting from

an initial natural projection which need not fulfill (i) and (ii), we provide an algorithm to compute

the hierarchical abstraction with the coarsest equivalence kernel finer than that of the initial natural

projection, and such that (i) and (ii) hold. Our approach extends the work in [11], where the authors

compute observers for the hierarchical control of DES.

I. INTRODUCTION

Recent approaches for the control of large-scale discrete event systems employ hierarchical control

architectures for reducing the computational complexity of supervisor synthesis [2], [4], [5], [7], [8],

[10], [12]. In hierarchical architectures, controller synthesis is based on a plant abstraction (high-level

model), which is supposed to be less complex than the original plant model (low-level model). The

main question is how to derive the plant abstraction and the low-level supervisor implementation of a

1This technical report is an extended version of [9].
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high-level controller such that the closed-loop system in the low level is nonblocking and satisfies the

expected behavior in the high level.

All of the above approaches assume that the high-level observation is given. [2] use a two-level control

hierarchy such that hierarchical consistent and nonblocking control are guaranteed by construction. In [4],

[5], [7], [10], it is required that certain sufficient conditions for nonblocking and hierarchically consistent

control hold. However, little is known about how to choose the high-level observations systematically

such that these conditions are fulfilled.

A first result in this direction is elaborated in [11] as an extension to the theory of observers in [12]. An

observer with the coarsest possible equivalence kernel that is finer than that of an initialcausal reporter

map is computed. Nevertheless, the choice of the initial reporter map is not obvious.

In this paper, we consider the hierarchical and decentralized architecture presented in [8], where the

overall system is modeled by the synchronous product of decentralized subsystems. A natural projection,

where theshared eventsof the decentralized subsystems must be contained in the high-level alphabet,

is used for hierarchical abstraction. For nonblocking and hierarchically consistent control, it is required

that this natural projection is (i)locally nonblockingand (ii) marked string accepting. The problem to be

solved is to find a natural projection such that the shared events are contained in the high-level alphabet

and (i) and (ii) are fulfilled. Similar to the observer algorithm in [11], we develop a procedure to determine

such a natural projection with the coarsest possible equivalence kernel starting from the natural projection

on the shared events.

The outline of the paper is as follows. Basic notations and definitions of supervisory control theory

are recalled in Section II. Section III discusses the features of the hierarchical and decentralized control

approach in [8] and formalizes the problem statement. Our algorithm is developed and illustrated with an

example in Section IV. Section V elaborates how the algorithm can be applied to build an architecture

for nonblocking hierarchical and decentralized supervisory control.

II. PRELIMINARIES

We recall basics from supervisory control theory [1], [13].

For a finite alphabetΣ, the set of all finite strings overΣ is denotedΣ∗. We write s1s2 ∈ Σ∗ for the

concatenation of two stringss1, s2 ∈ Σ∗. We write s1 ≤ s when s1 is a prefix of s, i.e. if there exists a

strings2 ∈ Σ∗ with s= s1s2. The empty string is denotedε ∈ Σ∗, i.e. sε = εs= s for all s∈ Σ∗. A language

over Σ is a subsetM ⊆ Σ∗. The prefix closureof M is defined byM := {s1 ∈ Σ∗|∃s∈ M s.t. s1 ≤ s}. A

languageM is prefix closedif M = M.
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The natural projection pi : Σ∗ → Σ∗
i , i = 1,2, for the (not necessarily disjoint) unionΣ = Σ1∪Σ2 is

defined iteratively: (1) letpi(ε) := ε; (2) for s∈ Σ∗, σ∈ Σ, let pi(sσ) := pi(s)σ if σ∈ Σi , or pi(sσ) := pi(s)

otherwise. The set-valued inverse ofpi is denotedp−1
i : Σ∗

i → 2Σ∗
. Thesynchronous product M1||M2 ⊆ Σ∗

of two languagesMi ⊆ Σ∗
i is M1||M2 = p−1

1 (M1)∩ p−1
2 (M2) ⊆ Σ∗.

A finite automatonis a tupleG = (X,Σ,δ,x0,Xm), with the finite set ofstates X; the finite alphabet

of eventsΣ; the partialtransition functionδ : X×Σ → X; the initial state x0 ∈ X; and the set ofmarked

states Xm ⊆ X. We write δ(x,σ)! if δ is defined at(x,σ). In order to extendδ to a partial function on

X×Σ∗, recursively letδ(x,ε) := x and δ(x,sσ) := δ(δ(x,s),σ), whenever bothx′ = δ(x,s) and δ(x′,σ)!.

L(G) := {s∈ Σ∗ : δ(x0,s)!} andLm(G) := {s∈ L(G) : δ(x0,s) ∈ Xm} are theclosedandmarked language

generated by the finite automatonG, respectively. For any strings∈ L(G), Σ(s) := {σ|sσ ∈ L(G)} is the

set of eligible events afters. A formal definition of the synchronous composition of two automataG1

andG2 can be taken from e.g. [1]. Note thatLm(G1||G2) = Lm(G1)||Lm(G2).

In a supervisory control context, we writeΣ = Σc∪Σu, Σc∩Σu = /0, to distinguishcontrollable(Σc) and

uncontrollable(Σuc) events. Acontrol patternis a setγ, Σuc⊆ γ ⊆ Σ, and the set of all control patterns is

denotedΓ⊆ 2Σ. A supervisoris a mapS: L(G)→ Γ, whereS(s) represents the set of enabled events after

the occurrence of strings; i.e. a supervisor can disable controllable events only. The languageL(S/G)

generated byG under supervisionS is iteratively defined by (1)ε ∈ L(S/G) and (2) sσ ∈ L(S/G) iff

s∈ L(S/G),σ ∈ S(s) and sσ ∈ L(G). Thus,L(S/G) represents the behavior of theclosed-loop system.

To take into account the marking ofG, let Lm(S/G) := L(S/G)∩ Lm(G). The closed-loop system is

nonblockingif Lm(S/G) = L(S/G), i.e. if each string inL(S/G) is the prefix of a marked string in

Lm(S/G).

A languageM is said to be controllable w.r.t.L(G) if there exists a supervisorSsuch thatM = L(S/G).

The set of all languages that are controllable w.r.t.L(G) is denotedC(L(G)). Furthermore, the setC(L(G))

is closed under arbitrary union. In particular, for everyspecificationlanguageE there uniquely exists a

supremal controllable sublanguageof E w.r.t. L(G), which is formally defined asκL(G)(E) := ∪{K ∈

C(L(G))| K ⊆ E}. A supervisorS that leads to a closed-loop behaviorκL(G)(E) is said to bemaximally

permissive.

A languageE is Lm(G)-closed if E∩Lm(G) = E and the set ofLm(G)-closed languages is denoted

FLm(G). For specificationsE ∈ FLm(G), the plantL(G) is nonblocking under maximally permissive super-

vision.
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III. H IERARCHICAL CONTROL APPROACH

In [8], a hierarchical approach for the control of decentralized DES as illustrated in Figure 1 is

developed.
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Fig. 1. Hierarchical architecture

Decentralized DES||ni=1Gi are represented by finite automataGi , i = 1, . . . ,n with the respective

alphabetsΣi . The overall system with the alphabetΣ :=
⋃n

i=1 Σi is defined asG := ||ni=1Gi . High-level

abstractionsGhi
i of the low-level subsystemsGi are computed by evaluating the natural projections

pdec
i : Σ∗

i → (Σhi
i )∗ of the low-level languagesL(Gi) and Lm(Gi) such thatL(Ghi

i ) = pdec
i (L(Gi)) and

Lm(Ghi
i ) = pdec

i (Lm(Gi)). We require

a. the high-level alphabetsΣhi
i are chosen such that

⋃n
j 6=i(Σi ∩Σ j)⊆ Σhi

i ⊆ Σi , i.e. Σhi
i contains all events

shared with other components.

The overall high-level modelGhi is defined such thatL(Ghi) := phi(L(G)) andLm(Ghi) = phi(Lm(G))

with the natural projectionphi : Σ∗ → (
⋃n

i=1 Σhi
i ). Using assumption a., it can be shown [10] thatGhi =

||ni=1G
hi
i . This means that instead of deriving the high-level modelGhi from the overall low-level modelG, a

parallel composition of the decentralized high-level models Ghi
i can be evaluated. The tuple(||ni=1Gi , ||

n
i=1G

hi
i )

is denoted adecentralized projected DES. A nonblocking high-level supervisorShi for Ghi and a high-level
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specificationEhi ⊆ Lm(Ghi) is implemented by decentralized low-level supervisorsSlo
i . The decentralized

supervisors exist if

b. the high-level languagesL(Ghi
i ) are mutually controllable (see [6]).

The hierarchical and decentralized control architecture guarantees nonblocking and hierarchically con-

sistent control if

c. the decentralized low-level – high-level tuples(Gi ,Ghi
i ) are locally nonblocking and marked string

accepting as stated in Definition 3.1 and 3.2.

The approach is computationally efficient as both the abstraction and the supervisor implementation do

not require the computation of the overall system and it can be shown that the high-level models always

have less states than the low-level models [8].

From the perspective of each individual subsystemGi , nonblocking control is based on two different

types of conditions. Verifying mutual controllability of the high-level languagesL(Ghi
i ) (condition b.)

involves the other subsystems. Different from this, the locally nonblocking and the marked string accepting

condition (c.) exclusively depend on the behavior of each particular tuple (Gi ,Ghi
i ), denotedprojected

system(PS), and the choice of the high-level alphabet (condition a.).

The latterstructuralconditions, which only depend on the system structure of each projected system,

are investigated. For notational convenience, we replace(Gi,Ghi
i ) by (H,Hhi) with the alphabetsΣ and

Σhi and the natural projectionphi : Σ∗ → (Σhi)∗.

A PS (H,Hhi) is locally nonblocking if for all low-level stringss∈ L(H) and for all high-level events

σ ∈ Σhi, which are feasible after the corresponding high-level string phi(s), a local path starting froms

exists, such thatσ can occur.

Definition 3.1 (Locally Nonblocking Condition):Let

(H,Hhi) be a PS. The stringshi ∈ L(Hhi) is locally nonblocking if for alls∈ L(H) with phi(s) = shi and

∀σ∈ Σhi(shi), ∃u∈ (Σ−Σhi)∗ s.t.suσ∈ L(H). (H,Hhi) is locally nonblocking ifshi is locally nonblocking

for all shi ∈ L(Hhi).

For formulating the marked string accepting condition, theset of exit stringsis needed. For a given

PS (H,Hhi) and a high-level stringshi ∈ L(Hhi), the set of exit stringsLex,shi is the set of corresponding

low-level strings which have a high-level successor event,i.e. Lex,shi := {s∈ L(H)|phi(s) = shi ∧ (∃σ ∈

Σhi s.t. sσ ∈ L(H))} ⊆ Σ∗.

Marked string acceptance guarantees that if the high-levelsystem passes a marked string, the low-level

system also has to pass a marked string.
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Definition 3.2 (Marked String Acceptance):Let (H,Hhi) be a PS. The stringshi ∈ Lm(Hhi) is marked

string accepting2 if for all s∈ Lex,shi

∃s′ ≤ s with phi(s′) = shi ands′ ∈ Lm(H). (1)

(H,Hhi) is marked string accepting ifshi is marked string accepting for allshi ∈ Lm(Hhi).

According to condition a., the choice of the high-level alphabetsΣhi
i is restricted by

⋃

j 6=i(Σi ∩Σ j) ⊆

Σhi
i ⊆ Σi . To keep the high-level modelHhi

i small, a natural candidate isΣhi
i =

⋃

j 6=i(Σi ∩Σ j). However,

choosing thisΣhi
i , the locally nonblocking and the marked string accepting condition need not be fulfilled.

An intuitive solution to this problem is presented in the following example.

Example 3.1:The PS(H,Hhi) for H in Figure 2 andΣhi := {α,β,γ,δ,ϕ,ψ} is marked string accepting

but not locally nonblocking. Aftershi = ψ, the high-level eventsξ andβ are feasible. Yet,s= aψh cannot

be extended withu∈ (Σ−Σhi)∗ such thatsuξ ∈ L(H) which violates Definition 3.1.

Y X

k00

0

11

1

22

2

33

3

4

4 5

67

8

a

b
c

d

g

h → κ

i → κ

j

k

αα

α

β

β

β

β

β
β

ξξ

ξ

ϕϕ

ϕ

ψψ

ψ
H → Ĥ

Fig. 2. Automaton with relabeling

A solution to the problem is obtained if the low-level transitions from state 3 and 7 to state 6 are

relabeledκ (as indicated in Figure 2) and the new high-level alphabetΣ̂hi = Σhi∪{κ} is used.3 The PCS

(Ĥ,Ĥhi) fulfills condition c.

Thus, the question arises if there is a systematic way to determine Σ̂hi such that condition c. holds by

adding high-level observations. The next section providesan algorithm for computing the minimal̂Σhi

2Note thatshi ∈ L(Hhi)−Lm(Hhi) ⇒ (phi)−1(shi)∩Lm(H) = /0.

3relabeling inH just changes the observation sent to the high level.
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meeting condition c. The corresponding natural projectionis called anmsa-observer.

IV. COMPUTATION OF MSA-OBSERVERS

We first present basic results from set theory which are used to prove the existence of msa-observers.

A. Basic Notation

We denoteE(M) the set of all equivalence relations on the setM. Forµ∈ E(M), [m]µ is the equivalence

class containingm∈ M. The set of equivalence classes ofµ is written asM/µ := {[m]µ|m∈ M} and the

canonical projection cpµ : M →M/µ maps an elementm∈ M to its equivalence class[m]µ. Let f : M → N

be a function. The equivalence relation kerf is the kernel off and is defined as follows: form,m′ ∈ M,

m≡ m′ mod kerf iff f (m) = f (m′).

Given two equivalence relationsη and µ on M, η ≤ µ, i.e. η refinesµ, if m≡ m′ modη ⇒ m≡ m′

modµ for all m,m′ ∈ M. With the partial order≤, we denote∨ and∧ as the join and the meet operation

of the latticeE(M).

Let M andN be sets andf : M → 2N be a function. Also assumeϕ ∈ E(N). The equivalence relation

ϕ◦ f on M is defined for allm,m′ ∈ M:4

m≡ m′ modϕ◦ f ⇔ cpϕ( f (m)) = cpϕ( f (m′)),

Now let f : M → 2M. ϕ∈E(M) is called aquasi-congruencefor (M, f ) if ϕ≤ϕ◦ f . The quasi-congruences

for f form a complete upper semilattice of the latticeE(M) [13]. Furthermore, ifµ,η ∈ E(M) s.t. µ≤ η,

the equivalence relationη/µ∈ E(M/µ) is defined s.t. form,m′ ∈ M

[m]µ ≡ [m′]µ modη/µ⇔ m= m′ modη. (2)

B. Existence

In this section, the problem discussed in Section III is formally stated and solved for the PS(H,Hhi).

The set of transitions of the automatonH is denotedTH := {(x,σ,x′) ∈ X × Σ× X|x′ = δ(x,σ)}. A

relabeling fromH to Ĥ is a functionr : TH → TĤ with r((x,σ,x′)) = (x, σ̂,x′), whereσ ∈ Σ and σ̂ ∈ Σ̂.

We recall the following result on the prefix-closure function pre :Σ∗ → 2Σ∗
with pre(s) = {s} for s∈ Σ∗

[11]. The kernel kerphi of the natural projectionphi for L(H) is a quasi-congruence for(L(H),pre), i.e.

if s,s′ ∈ L(H), then phi(s) = phi(s′) ⇒ phi(pre(s)) = phi(pre(s′)). Also, for any quasi-congruenceµ on

4The natural extension of cpϕ to sets is used.
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(L(H),pre), there is a relabelingr : TH → TĤ with the natural projection ˆphi : Σ̂∗ → (Σ̂hi)∗ for L(Ĥ) such

that kerp̂hi = µ.

Based on the above notions, the problem in Section III is formalized.

Problem 1: Let H be an automaton andphi be the natural projection. Find (i) the coarsest quasi-

congruenceµ on (L(H),pre) that is finer than kerphi, and (ii) a relabelingr : TH → TĤ and a natural

projection p̂hi : Σ̂∗ → Σ̂hi with kerp̂hi = µ and such that(Ĥ,Ĥhi) fulfills condition 3., i.e. it is locally

nonblocking and marked string accepting.

Regarding Definition 3.1 and 3.2, the following two postsetsfor languages are needed to find a quasi-

congruence as stated in Problem 1.

Definition 4.1 (Postsets):Let H and phi be as above and letM ⊆ L(H). The local postsetof s∈ L(H)

is posM(s) := {u ∈ (Σ−Σhi)∗Σ(Σ−Σhi)∗|su∈ M}. The marked string accepting postsetof s∈ L(H) is

defined as

posmsa
M (s) :=



















/0 if (1) holds

∀sex ∈ Lex,phi(s) s.t. s≤ sex

posM(s) else

The local postset contains all extensions ofs with at most one event inΣhi. The marked string accepting

postset distinguishes strings which violate Definition 3.2. posmsa
M maps these strings to the local postset

of s. Strings which agree with Definition 3.2 are mapped to the empty set.

The marked string accepting (msa)-observeris introduced for formulating Lemma 4.1.

Definition 4.2 (M-MSA-Observer):The natural projectionphi : Σ∗ → (Σhi)∗ with Σhi ⊆ Σ is anM-msa-

observer for the automatonH with M ⊆ L(H) if ker phi is a quasi-congruence for(L(H),pre), (L(H),posM)

and (L(H),posmsa
M ).

The relevance of theM-msa-observer is elaborated in the next Lemma. If the mapphi is aL(H)−msa-

observer for the languageL(H), then the corresponding PS(H,Hhi) is locally nonblocking and marked

string accepting.

Lemma 4.1 (MSA and LNB):Let H, phi andHhi be defined as above. The natural projectionphi is a

L(H)-msa-observer forH if and only if (H,Hhi) is locally nonblocking and marked string accepting.

Proof: ” ⇒ ”: It holds that kerphi is a quasi-congruence for posL(H) and posmsa
L(H).

Let shi ∈ L(Hhi) and s∈ L(H), s.t. shi = phi(s) and assumeσ ∈ Σhi(shi). As shi ∈ phi(L(H)), there is

a s′ ∈ L(H) s.t. s′σ ∈ L(H) and phi(s′) = shi. As kerphi is a quasi-congruence for posL(H), we have

that phi(s′) = phi(s) ⇒ phi(posL(H)(s
′)) = phi(posL(H)(s)). With σ ∈ phi(posL(H)(s

′)), it follows that σ ∈

phi(posL(H)(s)). But then there is au∈ (Σ−Σhi)∗ s.t. suσ ∈ L(H). As s∈ L(H) was arbitrary,(H,Hhi) is
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locally nonblocking.

Let shi ∈ Lm(Hhi) ands∈ Lex,shi s.t. there is nos′ ≤ s with phi(s′) = shi ands′ ∈ Lm(H). Then posmsa
L(H)(s) =

posL(H)(s) 6= /0. However, asshi ∈ Lm(Hhi), there issm ∈ Lm(H) s.t. phi(sm) = shi. As s∈ Lex,shi, there

is σ ∈ Σhi(shi). Then there iss′m ≥ sm s.t. s′m ∈ Lex,shi since(H,Hhi) is locally nonblocking (see above),

which means that posL(H)(sm) = /0. Then phi(s) = phi(sm) and phi(posmsa
L(H)(s)) 6= phi(posmsa

L(H)(sm)). As this

contradicts the assumption thatphi is a quasi-congruence for posmsa
L(H) suchs does not exist. With Definition

3.2, (H,Hhi) is marked string accepting.

” ⇐ ”: We assume that(H,Hhi) is locally nonblocking and marked string accepting.

Let s,s′ ∈ L(H) s.t. phi(s) = phi(s′) and assume thatu∈ posL(H)(s). There are two cases. Ifphi(u) = ε,

then,u′ = ε∈ posL(H)(s
′) andphi(s′u′) = phi(su). If phi(u) = σ, thenσ ∈ Σhi(phi(s)). As (H,Hhi) is locally

nonblocking, there isu′ ∈ (Σ−Σhi)∗ s.t. s′u′σ ∈ L(H) which meansu′σ ∈ posL(H)(s
′).

As this holds for anyu∈ posL(H)(s), phi(posL(H)(s
′)) = phi(posL(H)(s)). Thus phi is a quasi-congruence

for posL(H).

Let s,s′ ∈ L(H) s.t. phi(s) = phi(s′) := shi. Again there are two cases. In the first case, posmsa
L(H)(s) =

/0. Then for all sex ∈ Lex,shi s.t. sex ≥ s, Equation (1) holds. If there is no suchsex, then the locally

nonblocking condition implies thatΣhi(shi) = /0 and thus there is also nos′ex ∈ Lex,shi s.t. s′ex ≥ s′ which

means that posmsa
L(H)(s

′) = /0. In case there issex as defined above, the locally nonblocking condition states

that there is as′ex ∈ Lex,shi s.t. s′ex ≥ s′. As (H,Hhi) is marked string accepting, Equation (1) holds for all

suchs′ex. Consequently posmsa
L(H)(s

′) = /0. In the second case posmsa
L(H)(s) 6= /0. Because of the above proof

posmsa
L(H)(s

′) 6= /0. (If posmsa
L(H)(s

′) = /0, then also posmsa
L(H)(s) = /0) According to Definition 4.1, it is the case

that posmsa
L(H)(s) = posL(H)(s) and posmsa

L(H)(s
′) = posL(H)(s

′). As posL(H)(s
′) = posL(H)(s) was shown above,

also phi(posmsa
L(H)(s

′)) = phi(posmsa
L(H)(s)).

In both casesphi(posmsa
L(H)(s

′)) = phi(posmsa
L(H)(s)) and consequentlyphi is a quasi-congruence for posmsa

L(H).

Together,phi is anL(H)-msa-observer forH.

Considering Lemma 4.1 and Problem 1, we want to determine thecoarsest quasi-congruence which is

finer than the kernel kerphi
in of an initial natural projectionphi

in.

π∗
msa := sup{π ∈ E(L(H))|π ≤ (kerphi

in)∧

(π◦pre)∧ (π◦posL(H))∧ (π◦posmsa
L(H)}.

(3)

The supremal elementπ∗
msa exists as the quasi-congruences form a complete upper semilattice of the

lattice E(L(H)).

Theorem 4.1: µ= π∗
msa in Equation (3) is the quasi-congruence which solves Problem 1 (i).
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C. Algorithmic Computation

Having shown the existence of the solution to Problem 1 (i), the corresponding msa-observer in Problem

1 (ii) is determined in this section. The algorithm follows the iterative procedure in [11].

Let µ be an equivalence relation on the state setX of H with the quotient setY := X/µ and the

associated canonical projection cpµ : X →Y. The initial state and the marked states in the quotient are

y0 = cpµ(x0) andYm = cpµ(Xm), respectively. Also letΣhi ⊆ Σ and Σhi 6∈ Σ be an additional label. The

induced transition functionν : Y× (Σhi ∪{Σhi}) → 2Y on the quotient is defined as

ν(y,σ) :=



















{cpµ(δ(x,σ))|x∈ cp−1
µ (y)} if σ ∈ Σhi

{cpµ(δ(x,γ))|γ ∈ (Σ−Σhi),

x∈ cp−1
µ (y)}−{y} if σ = Σhi

We call Hµ,Σhi := (Y,Σhi ∪{Σhi},ν,y0,Ym) the quotient automatonof H for Σhi andµ.

In order to determine the msa-observer and similar to the postsets in Definition 4.1, thesuccessor

event transition functionand thenonmarked transition functionare used.

Definition 4.3: Let H and Σhi ⊆ Σ be as above. Letx = δ(x0,s) for s∈ L(H). The successor event

transition function∆σ : X → 2X is defined forσ ∈ Σhi as

∆σ(x) := {δ(x,u)|u∈ posL(H)(s)∩ (Σ−Σhi)∗σ(Σ−Σhi)∗}. (4)

The nonmarked transition function∆nm : X → 2X is

∆nm(x) :=











⋃

σ∈Σhi

∆σ(x) if posmsa
L(H)(s) 6= /0

/0 else
(5)

With (4) and (5), the coarsest quasi-congruenceµH for H andΣhi can be evaluated as

µH := sup{µ∈ E(X)|µ≤
∧

σ∈Σhi∪{nm}

(µ◦∆σ)}. (6)

An efficient algorithm for computingµH is given in [3]. Based onµH , Theorem 4.2 establishes the relation

between the quotientHµH ,Σhi and aL(H)-msa-observer.

Theorem 4.2:Let H and phi be given as above and letµH be the quasi-congruence in Equation (6).phi

is anL(H)-msa-observer iffHµH ,Σhi is deterministic and contains noσ0-transitions. In this case,HµH ,Σhi is

a minimal state recognizer ofphi(Lm(H)) and can be computed in polynomial time.

In order to prove Theorem 4.2, we introduce theNerode equivalence≡L for a languageL ⊆ Σ∗ [13].

Let s,s′ ∈ L. Then

s≡ s′ mod ≡L iff ∀u∈ Σ∗ : su∈ L ⇔ s′u∈ L. (7)
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For an automatonH, we define the equivalence relationµX ∈ E(L(H)) by s≡ s′ modµX ⇔ δ(x0,s) =

δ(x0,s′). Then, it holds that if the projectionphi is an msa-observer, the Nerode equivalence on the

projected languagephi(Lm(H)) is coarser thanµX, i.e., [≡phi(Lm(H)) ◦phi] partitions the state space ofH.

Lemma 4.2:Let H, µX be defined as above, and letphi be an msa-observer. It holds that

µX ≤ [≡phi(Lm(H)) ◦phi]. (8)

Lemma 4.2 is shown in Appendix A. Based on this result, we define the equivalence relationµphi(Lm(H)) :=

[≡phi(Lm(H)) ◦phi]/µH ∈E(L(H)/µX), where states inX are equivalent if they exhibit the same future marked

behavior under the projectionphi. This statement is further formalized in the following proposition.

Here, the function∆σ is extended to strings as follows. Forx ∈ X, and tσ ∈ (Σhi)∗, ∆ε(x) = {x} and

∆tσ(x) =
⋃

{∆σ(x′)|x′ ∈ ∆t(x)}.

Proposition 4.1:Let H, µphi(Lm(H)) be defined as above, letphi be an msa-observer, andx,x′ ∈ X. Then

x≡ x′ modµphi(Lm(H)) iff

1) ∀t ∈ (Σhi)∗−{ε} : ∆t(x)∩Xm 6= /0 ⇔ ∆t(x′)∩Xm 6= /0

2) ∆nm(x) 6= /0 ⇔ ∆nm(x′) 6= /0.

Furthermore,µphi(Lm(H)) = µH .

The proof of Proposition 4.1 is provided in Appendix A. Now, Theorem 4.2 can be shown.

Proof: "‘⇒"’: phi is an msa-observer. It has to be shown thatHµH ,Σhi is deterministic and contains

no σ0-transitions.

We first prove thatHµH ,Σhi is deterministic. Assume the contrary and denote the state set and the

transition function ofHµH ,Σhi asY and ν, respectively. Then, there arey, ŷ, ŷ′ ∈Y, σ ∈ Σhi s.t. {ŷ, ŷ′} ⊆

ν(y,σ), and there existx,x′, x̂, x̂′ ∈ X with {x,x′} ⊆ cp−1
µH

(y), x̂∈ cp−1
µH

(ŷ), x̂′ ∈ cp−1
µH

(ŷ′) and δ(x,σ) = x̂,

δ(x′,σ) = x̂′ according to the QA construction. Lets,s′ ∈ Σ∗ s.t.δ(x0,s) = x andδ(x0,s′) = x′. Then,x̂ 6≡ x̂′

modµH implies that ˆx 6≡ x̂′ modµphi(Lm(H)), i.e., w.l.o.g., there ist ∈ (Σhi)∗ s.t. phi(sσ)t ∈ phi(Lm(H)) but

phi(s′σ)t 6∈ phi(Lm(H)). But then, phi(s)σt ∈ phi(Lm(H)), while phi(s′)σt 6∈ phi(Lm(H)) contradicts that

x≡ x′ modµphi(Lm(H)).

We now show thatHµH ,Σhi does not haveσ0-transitions. Assume the contrary. Then, there arey, ŷ∈Y

s.t. ŷ∈ ν(y,Σhi) andx, x̂∈X, σ∈ Σ−Σhi s.t.x∈ cp−1
µH

(y), x̂∈ cp−1
µH

(ŷ), andx̂= δ(x,σ) according to the QA

construction. Again, sincex 6≡ x̂ modµH , also x 6≡ x̂ modµphi(Lm(H)). Then, w.l.o.g., there ist ∈ (Σhi)∗

s.t. phi(s)t ∈ phi(Lm(H)) but phi(sσ)t 6∈ phi(Lm(H)). Sincephi(sσ)t = phi(s)t, this leads to contradiction.

"‘⇐"’: HµH ,Σhi is deterministic and contains noσ0-transitions. It has to be shown thatphi is an msa-

observer.
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We first prove thatphi is an L(H)-observer. Lets∈ L(H) and phi(s)t ∈ phi(L(H)) for t ∈ (Σhi)∗. Let

x = δ(x0,s) and y := cpµH (x). Then, there are two cases. Ifν(y,t)!, then ∆t(x) 6= /0. Hence, there is

u∈ Σ∗ s.t. su∈ L(H) and phi(su) = phi(s)t. If ν(y,t) does not exist, there must bey′ 6= y s.t. ν(y′,t)! and

x′ ∈ cp−1
µH

(y′) with δ(x0,s′) = x′ and phi(s′) = phi(s). But this is only possible ifHµH ,Σhi is nondeterministic

or containsσ0-transitions, which leads to contradiction.

We finally show thatphi fulfills (1) in Definition 3.2. Lett ∈ phi(Lm(H)) andsσ ∈ (phi)−1(t)Σhi∩L(H).

It has to be shown that there iss′ ≤ s with phi(s′) = phi(s) and s′ ∈ Lm(H). We write x := δ(x0,s) and

y := cpµH (x). Sincet ∈ phi(Lm(H)), there is ˆs∈ Lm(H) s.t. phi(ŝ) = t. Let x̂ := δ(x0, ŝ) and ŷ := cpµH(x̂).

Then ∆nm(x̂) = /0. If ŷ = y, it must hold that∆nm(x) = /0 sinceµH is a quasi-congruence for∆nm. Then,

there existss′ ≤ s with phi(s′) = phi(s) ands′ ∈ Lm(H) with the definition of∆nm. If ŷ 6= y, we have that

phi(s) = phi(ŝ) but y = cpµH (δ(x0,s)) 6= ŷ = cpµH(δ(x0, ŝ)). Then,HµH ,Σhi is nondeterministic or contains

σ0-transitions, which leads to contradiction.

The remaining question is how to proceed ifHµH ,Σhi is nondeterministic or hasσ0-transitions. Algorithm

1 solves this problem by relabeling transitions inH usingHµH ,Σhi.

Algorithm 1 (MSA-Observer):Input: H, Σhi.

1. computeµH according to Equation (6).

2. computeHµH ,Σhi.

3. if HµH ,Σhi is deterministic and has noσ0-transitions

• Ĥ = H, Σ̂hi = Σhi

• terminate

else

• (Ĥ, Σ̂hi) = relabelµH (H,HµH ,Σhi,Σhi)

• H = Ĥ, Σhi = Σ̂hi

• go to Step 1.

Output: Ĥ, Σ̂hi.

The relabeling function relabelµH (H,HµH ,Σhi,Σhi) is implemented by the subsequent algorithm.

Algorithm 2 (relabeling):Input: H, HµH ,Σhi, Σhi.

1. r̄ : THµH ,Σhi → TĤµH ,Σ̂hi
relabelsHµH ,Σhi to ĤµH ,Σ̂hi over Σ̂hi with the following restrictions:

• r̄((y,σ,y′)) = (y, σ̂,y′) andσ 6= σ̂ ⇒ σ̂ 6∈ (Σ∪{Σhi}), i.e. always relabel with new labels.

• if (y, σ̂,y′) = r(y,σ,y′) and(z, γ̂,z′) = r(z,γ,z′) with σ 6= γ, thenσ̂ 6= γ̂, i.e. transitions with different

original event labels have different new labels.
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2. r : TH → TĤ relabelsH to Ĥ according to ¯r. Assume(x,σ,x′) ∈ TH .

• if σ ∈ Σhi and ¯r((cpµH
(x),σ,cpµH

(x′))) = (cpµH
(x), σ̂,cpµH

(x′)) with σ 6= σ̂

⇒ r((x,σ,x′)) = (x, σ̂,x′).

• if σ 6∈ Σhi and ¯r((cpµH
(x),Σhi,cpµH

(x′))) = (cpµH
(x), σ̂,cpµH

(x′))

⇒ r((x,σ,x′)) = (x, σ̂,x′).

Output: Ĥ, Σ̂hi.

The application of Algorithm 1 results in the main theorem ofthis section.

Theorem 4.3:Algorithm 1 with H andΣhi terminates in at most|X| steps. If the algorithm stops with

the automatonĤ and the alphabet̂Σhi, then it holds for the kernel of the natural projectionphi for L(Ĥ)

that kerp̂hi = π∗
msa.

This means that given an automatonH and a high-level alphabetΣhi, the observer algorithm returns a

natural projection ˆphi for the relabeled automaton̂H such that(Ĥ,Ĥhi) is locally nonblocking and marked

string accepting. Before extending this result to decentralized DES in Section V, we illustrate Algorithm

1 in Example 4.1.

Example 4.1:Let H be as in Figure 3 with the high-level alphabetΣhi = {α,β}. We follow the proce-

dure in Algorithm 1. The quasi-congruenceµH in (6) evaluates toµH = {{0,1,2},{3,6,7},{4,5},{8}} (for

example compare∆nm(3) = ∆nm(6) = ∆nm(7) = /0 and∆nm(4) = ∆nm(5) = {8}). The quotient automaton

HµH ,Σhi is shown in Figure 3. It has a nondeterministic eventα in state (0,1,2) and twoσ0-transitions.

Thus, the corresponding transitions must be relabled inHµH ,Σhi and in H according to Algorithm 2. As

an example, we choose ¯r
(

((0,1,2),α,(3,6,7))
)

= ((0,1,2),ψ,(3,6,7)) and thusr
(

(1,α,3)
)

= (1,ψ,3).

The resulting PS(Ĥ,Ĥhi) with the high-level alphabet̂Σ = {α,β,ϕ,ξ,ψ} is equal to the PS(H,Hhi) in

Example 3.1. Thus, after one more iteration, the observer algorithm terminiates with the solution(Ĥ, Σ̂hi)

in Example 3.1.

V. CONSISTENT RELABELING OFDECENTRALIZED DES

The algorithms in Section IV-C provide a method to compute a relabeling and a locally nonblocking and

marked string accepting natural projection for a single PS(H,Hhi). As the control architecture introduced

in Section III involves decentralized projected systems(||ni=1Gi , ||
n
i=1G

hi
i ), the effect of relabeling one

automatonGk on the overall synchronous behavior has to be investigated.To this end, consider a transition
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Fig. 3. Illustration of the msa-observer algorithm

qk = (x1,σ,x2) ∈ TGk which is relabled to(x1,τ,x2) in TĜk
, i.e. rk((x1,τ,x2)) = qk. If σ is not contained

in any of the other alphabets, that isσ 6∈ Σi for all i 6= k, there is no effect on the other subsystems

as σ occurs asynchronously. In case thatσ ∈ Σi for some i 6= k, a relabeling ofσ in TGk changes the

synchronous behavior of the decentralized subsystems. We can bypass this problem by adding a new

transition containing the eventτ for any transition containingσ in the subsystemsGi , i 6= k. The following

definitions formalize this idea.

The functionRk denotes the map from the relabled events to their original events.

Definition 5.1: Let Gk be an automaton with the relabled automatonĜk. The mapRk : Σ̂k → Σk is

defined as

Rk(τ) =



















σ if ∃qk = (x1,τ,x2) ∈ TĜk
s.t.

rk(q) = (x1,σ,x2) 6= q,

τ else.

Rk : Σ̂∗
k → Σ∗

k is the extension ofRk to strings withRk(ε) = ε and Rk(ŝτ) = Rk(ŝ)Rk(τ) for ŝ∈ Σ̂∗
k and

τ ∈ Σ̂k.

Definition 5.2 (Consistent relabeling):Let (||ni=1Gi , ||
n
i=1Ghi

i ) be a decentralized projected DES and let

Ĝk be a relabeling ofGk with Rk according to Definition 5.1 and the high-level alphabetΣ̂hi
k .5 The tuple

(Ĝi, Σ̂hi
i ), i 6= k is a consistent relabeling of(Gi ,Σhi

i ) w.r.t. (Ĝk, Σ̂hi
k ) if (i) Σ̂hi

i = Σhi
i ∪{τ ∈ Σ̂hi

k |Rk(τ) ∈ Σi}

5The corresponding natural projection is ˆpdec
i : Σ̂∗

i → (Σ̂hi
i )∗.
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and (ii) for all τ ∈ Σ̂k and∀qi ∈ TGi such thatqi = (x1,Rk(τ),x2), it holds that(x1,τ,x2) ∈ TĜi
. The DPS

(||ni=1Ĝi, ||
n
i=1Ĝhi

i ) is a consistent relabeling of(||ni=1Gi , ||
n
i=1Ghi

i ) w.r.t. (Ĝk, Σ̂hi
k ) if each tuple(Ĝi, Σ̂hi

i ), i 6= k

is a consistent relabeling of(Gi,Σhi
i ) w.r.t. (Ĝk, Σ̂hi

k ).

It is readily observed, that for alli = 1, . . . ,n, it is true thatRk(L(Ĝi)) = L(Gi). Yet, it has to be shown

that the synchronous behavior of the decentralized systemsis not changed by the consistent relabeling.

Lemma 5.1 provides this result.

Lemma 5.1 (Consistent relabeling):Let (||ni=1Ĝi , ||
n
i=1Ĝhi

i ) be a consistent relabeling of(||ni=1Gi , ||
n
i=1G

hi
i )

w.r.t. (Ĝk, Σ̂hi
k ) and define the natural projectionspi : Σ∗ → Σ∗

i and p̂i : Σ̂∗ → Σ̂∗
i . Then

Rk(L(Ĝ)) = Rk(||
n
i=1L(Ĝi)) = ||ni=1L(Gi) = L(G), (9)

Rk(L(Ĝhi)) = Rk(||
n
i=1L(Ĝhi

i )) = ||ni=1L(Ghi
i ) = L(Hhi), (10)

and the same equivalence holds for the respective marked languages.

Proof: It has to be shown that (i)Rk(||
n
i=1L(Ĝi)) ⊆ ||ni=1L(Gi) andRk(||

n
i=1L(Ĝhi

i )) ⊆ ||ni=1L(Ghi
i ) and

(ii) Rk(||
n
i=1L(Ĝi)) ⊇ ||ni=1L(Gi) andRk(||

n
i=1L(Ĝhi

i )) ⊇ ||ni=1L(Ghi
i ).

(i) First we show thatRk(p̂i(ŝ)) = pi(Rk(ŝ)) by induction. Let ˆs= ε. ThenRk(p̂i(ε)) = ε = pi(Rk(ε)).

Now assume thatRk(p̂i(ŝ)) = pi(Rk(ŝ)) holds for ŝ∈ L(Ĝ) and letτ ∈ Σ̂ s.t. ŝτ ∈ L(Ĝ). There are three

different cases.

1. τ ∈ Σi ∩ Σ̂i , i.e. Rk(τ) = τ. Then Rk(p̂i(ŝτ)) = Rk(p̂i(ŝ)τ) = Rk(p̂i(ŝ))τ = pi(Rk(ŝ))τ = pi(Rk(ŝ)τ) =

pi(Rk(ŝτ)).

2. τ∈ Σ̂i −Σi , i.e.Rk(τ) = σ∈ Σi . ThenRk(p̂i(ŝτ)) = Rk(p̂i(ŝ)τ) = Rk(p̂i(ŝ))σ = pi(Rk(ŝ))σ = pi(Rk(ŝ)σ) =

pi(Rk(ŝτ)).

3. τ 6∈ Σi ∪ Σ̂i, i.e. Rk(τ) = τ′ 6∈ Σi . ThenRk(p̂i(ŝτ)) = Rk(p̂i(ŝ)) = pi(Rk(ŝ)) = pi(Rk(ŝ)τ′) = pi(Rk(ŝτ)).

Now we assume thats∈ Rk(||
n
i=1L(Ĝi)). Then there is a ˆs∈ ||ni=1L(Ĝi) s.t. Rk(ŝ) = s and consequently

∀i, i = 1, . . . ,n it holds that ˆpi(ŝ) ∈ L(Ĝi). As Rk(p̂i(ŝ)) = pi(Rk(ŝ)), it follows that pi(s) = Rk(p̂i(ŝ)) ∈

Rk(L(Ĝi)) ∀i. Thus,s∈ ||ni=1Rk(L(Ĝi)) = ||ni=1L(Gi).

(ii) The reverse direction is also proven by induction. It holds thatε ∈ ||ni=1L(Gi) andε∈Rk(||
n
i=1L(Ĝi)).

Assumes∈ ||ni=1L(Gi) and s∈ Rk(||
n
i=1L(Ĝi)) and letσ ∈ Σ with sσ ∈ ||ni=1L(Gi). We note that there is

ŝ∈ ||ni=1L(Ĝi) s.t. Rk(ŝ) = s. It has to be shown that there isτ ∈ Σ̂ s.t. Rk(τ) = σ and ŝτ ∈ ||ni=1L(Ĝi), i.e.

p̂i(ŝτ) ∈ L(Ĝi) for all i = 1, . . . ,n. There are two cases.

1. σ 6∈ Σk∪ Σ̂k or Rk(σ) = σ. In both cases no relabeling of the eventσ is performed. Aspi(s)σ∈ L(Gi) for

all i s.t. σ ∈ Σi , also p̂i(ŝσ) ∈ L(Ĝi) because of Definition 5.2. But then ˆpi(ŝτ) ∈ L(Ĝi) for all i = 1, . . . ,n

if τ = σ is chosen.
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2. σ ∈ Σk and there isτ ∈ Σ̂k s.t. Rk(τ) = σ 6= τ. As for all i s.t. σ ∈ Σi , pi(s)σ ∈ L(Gi), Definition 5.2

implies that ˆpi(ŝτ) ∈ L(Ĝi). Thus, p̂i(ŝτ) ∈ L(Ĝi) for all i = 1, . . . ,n.

Rk(L(Ĝhi)) = L(Ghi) and the proof for the marked languages follow with an analogous argument.

A further beneficial property of the consistent relabeling is stated in Lemma 5.2. Besides the language

equivalence, also the locally nonblocking and marked string accepting condition are preserved.

Lemma 5.2:Let (||ni=1Ĝi , ||
n
i=1Ĝ

hi
i ) be a consistent relabeling of(||ni=1Gi , ||

n
i=1Ghi

i ) w.r.t. (Ĝk, Σ̂hi
k ). If the

projected system(Gi,Ghi
i ) is marked string accepting and locally nonblocking, then the projected system

(Ĝi,Ĝhi
i ) is also marked string accepting and locally nonblocking.

Proof: Assume that ˆshi ∈ L(Ĝhi
i ) and τ ∈ Σ̂hi

i (ŝhi). Then shi := Rk(ŝhi) ∈ L(Ghi
i ) and because of the

choice ofΣ̂hi
i , Rk(τ) ∈ Σhi

i . Now suppose that ˆs∈ L(Ĝi) s.t. p̂dec
i (ŝ) = ŝhi. Then alsos := R(ŝ) ∈ L(Gi) and

pdec
i (s) = shi. As (Gi ,Ghi

i ) is locally nonblocking, it follows that there is au∈ (Σi −Σhi
i )∗ s.t. suRk(τ) ∈

L(Gi). Because of Definition 5.2, ˆsuτ ∈ L(Ĝi). As this holds for arbitrary ˆshi ∈ L(Ĝhi
i ) and ŝ∈ L(Ĝi),

(Ĝi,Ĝhi
i ) is locally nonblocking.

Now let ŝhi ∈ Lm(Ĝhi
i ) and ŝ∈ L̂i,ex,ŝhi. Then Rk(ŝhi) ∈ Lm(Ghi

i ) and s := Rk(ŝ) ∈ Li,ex,Rk(ŝhi) because

of Definition 5.2. As(Gi,Ghi
i ) is marked string accepting, there is as′ ≤ s with pdec

i (s′) = Rk(ŝhi) and

s′ ∈ Lm(Gi). Because of Lemma 5.1, there is a ˆs′ ∈ Lm(Ĝi) s.t. Rk(ŝ′) = s′. With Definition, 5.2 ˆs′ ≤ ŝ and

p̂dec
i (ŝ′) = ŝhi. Hence,(Ĝi ,Ĝhi

i ) is marked string accepting.

Using Lemma 5.1 and Lemma 5.2, we develop an iterative relabeling algorithm. As stated in Theorem

5.1, it results in a decentralized projected DES which is suitable for hierarchical and decentralized control

according to [8].

Algorithm 3 (Decentralized relabeling):

Input: (||ni=1Gi , ||
n
i=1Ghi

i )

1. Initialize k = 0.

2. k := k+1,

computeL(Gk)-msa-observer ˆphi
k for (Ĝk,Ĝhi

k ) from (Gk,Ghi
k ) using Algorithm 1,

determineRk as in Definition 5.1.

3. compute(||ni=1Ĝi, ||
n
i=1Ĝhi

i ) as consistent relabeling of(||ni=1Gi , ||
n
i=1G

hi
i ) w.r.t. (Ĝk, Σ̂hi

k ) according to

Definition 5.2.

4. if k = n

• terminate

else
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• (||ni=1Gi , ||
n
i=1Ghi

i ) := (||ni=1Ĝi , ||
n
i=1Ĝ

hi
i ).

• go to step 2.

Output: (||ni=1Ĝi , ||
n
i=1Ĝhi

i ), {R1, . . . ,Rn}.

Theorem 5.1:Let (||ni=1Gi , ||
n
i=1Ghi

i ) be a decentralized projected DES and let(||ni=1Ĝi , ||
n
i=1Ĝhi

i ) be the

output of Algorithm 3 applied to(||ni=1Gi, ||
n
i=1Ghi

i ). Then all projected systems(Ĝi ,Ĝhi
i ) are marked string

accepting and locally nonblocking. Additionally,R1 ◦ · · · ◦Rn(L(Ĝ)) = L(G) and R1 ◦ · · · ◦Rn(L(Ĝhi)) =

L(Ghi).

Proof: The proof of Theorem 5.1 follows by successive application of Lemma 5.1 and Lemma 5.2.

Theorem 5.1 suggests the following hierarchical control design for decentralized DES||ni=1Gi. Starting

from the natural projectionpdec
i on the set of shared eventsΣhi

i :=
⋃

j 6=i(Σi∩Σ j), Algorithm 3 can be applied

to the decentralized projected DES(||ni=1Gi , ||
n
i=1G

hi
i ). As all PSs(Ĝi,Ĝhi

i ) of the resulting decentralized

projected DES(||ni=1Ĝi , ||
n
i=1Ĝhi

i ) are locally nonblocking and marked string accepting, the hierarchical

and decentralized approach in [8] can be applied. The following example illustrates the procedure.

Example 5.1:Let ||2i=1Gi be the decentralized DES withG1 andG2 as in Figure 4. The initial natural

projection on the shared events ispdec
i : Σ∗

i → (Σ1 ∩ Σ2)
∗, where Σ1 ∩ Σ2 = {α,β}. It results in the

decentralized projected system(||2i=1Gi , ||
2
i=1G

hi
i ). We apply Algorithm 3 to(||2i=1Gi , ||

2
i=1Ghi

i ). Observing

that (G1,Ghi
1 ) is locally nonblocking and marked string accepting (step 2.), no relabeling has to be

performed fork= 1 in step 3. Thus, the next iteration fork= 2 again starts with the original decentralized

projected system(||2i=1Gi , ||
2
i=1G

hi
i ). As G2 equalsH in Example 4.1, the msa-observer ˆpdec

2 computed in

step 2. of the algorithm, is the same as ˆphi in Example 3.1. Because of this reason, the relabled automaton

Ĝ2 in Figure 4 equalŝH in Example 3.1. In step 3.,G1 has to be relabled according to Definition 5.2. It

holds thatΣ̂hi
1 = Σhi

1 ∪{ψ}, asR2(ψ) = α ∈ Σhi
1 . As the transition(1,α,2) is in TG1, the transition(1,ψ,2)

has to be added toTĜ1
to comply with Definition 5.2 (see Figure 4). The algorithm terminates in step

4. with (||2i=1Ĝi , ||
2
i=1Ĝhi

i ). Note that both(Ĝ1,Ĝhi
1 ) and (Ĝ2,Ĝhi

2 ) are locally nonblocking and marked

string accepting. It can also be verified that the synchronous behavior of the decentralized systems is not

changed by the relabeling procedure.

VI. CONCLUSIONS

A hierarchical and decentralized control architecture which reduces the computational complexity of

DES controller synthesis for large-scale composed systemswas elaborated in [8]. Nonblocking and hier-
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Fig. 4. Application of Algorithm 3 to||2i=1Gi

archically consistent control can be guaranteed if the natural projection used for hierarchical sbstraction is

(i) locally nonblockingand (ii) marked string acceptingfor each subsystem. In this paper we investigated

the problem of automatically determining a natural projection such that (i) and (ii) are fulfilled. To this

end, we first provided an algorithm which computes the natural projection with the coarsest equivalence

kernel that is finer than that of an initial natural projection for an individual subsystem. In our case, the

initial natural projection is given by the natural projection on theshared eventsof the composed system.

Using this fact and applying the above method for all subsystems of a given composed system, we

developed an algorithm which computes the coarsest hierarchical abstraction complying with the method

for large-scale composed systems in [8].
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APPENDIX A

PROOF OFPROPOSITION4.1 AND LEMMA 4.2

We first elaborate properties of msa-observers.

Lemma A.1:Let phi : Σ∗ → (Σhi)∗ be an msa-observer for the languageL ⊆ Σ∗, ands∈ L. Then the

following holds.

1) if phi(s) ∈ phi(L), then either∃u∈ (Σ−Σhi)∗ s.t. su∈ L or ∃s̃≤ s s.t. phi(s̃) = phi(s) and s̃∈ L.

2) if t ∈ (Σhi)∗−{ε} and phi(s)t ∈ phi(L), then∃u∈ Σ∗ s.t. su∈ L and phi(su) = phi(s)t.

Proof: Let s∈ L. To show 1), we assume thatphi(s)∈ phi(L). Then, either∃u∈ (Σ−Σhi)∗ s.t.su∈ L

or there is no suchu. In the latter case, it must hold that there are ˜u∈ (Σ−Σhi)∗, ũ′ ∈ Σ∗ andσ ∈ Σhi s.t.

sũσũ′ ∈ L, sinces∈ L. Considering thatphi is an msa-observer, there must be ˜s≤ sũ s.t. phi(s̃) = phi(sũ)

and s̃∈ L. But then, also ˜s≤ s and phi(s̃) = phi(s).

To show 2), lett ∈ (Σhi)∗−{ε} andphi(s)t ∈ phi(L). Sincephi is anL-observer, there are ˜u∈ Σ∗, σ∈ Σhi

s.t. sũσ ∈ L and phi(sũσ) = phi(s)t. Then, either∃ũ′ ∈ (Σ−Σhi)∗ s.t. sũσũ′ ∈ L or there is no such ˜u′.

In the first case,u = ũσũ′ complies with 2). In the second case, there must be ˆu ∈ (Σ−Σhi)∗, û′ ∈ Σ∗

and σ̂ ∈ Σhi s.t. sũσûσ̂û′ ∈ L. But then, ˜s 6∈ L for all sũσ ≤ s̃≤ sũσû, which contradicts thatphi is an

msa-observer.

Now, Lemma 4.2 can be proved.

Proof: It has to be shown thats≡ s′ modµH ⇒ phi(s) ≡phi(Lm(H)) phi(s′), i.e., ∀t ∈ (Σhi)∗ it must

hold thatphi(s)t ∈ phi(Lm(H))⇔ phi(s′)t ∈ phi(Lm(H)). Assume thatx := δ(x0,s) = δ(x0,s′) andt ∈ (Σhi)∗

s.t. phi(s)t ∈ phi(Lm(H)). As phi is an msa-observer, Lemma A.1 implies that there is eitheru∈ Σ∗ s.t.

su∈ Lm(H) and phi(su) = phi(s)t or s̃≤ s, ũ ∈ (Σ−Σhi)∗ s.t. s = s̃ũ and s̃∈ Lm(H). In the first case,

δ(x,u)!, and hence,s′u ∈ Lm(H) and phi(s′u) = phi(s′)t ∈ phi(Lm(H)). In the second case, because of

Lemma A.1, there must be ˜s′ ≤ s′ and ũ′ ∈ (Σ−Σhi)∗ s.t. s′ = s̃′ũ′ and s̃′ ∈ Lm(H). Then, alsophi(s′) =

phi(s̃′) ∈ phi(Lm(H)), which concludes the proof.

In order to prove Proposition 4.1, we establish three lemmas.

Lemma A.2:Let µ ∈ E(X) be a quasi-congruence for(X,{∆σ,σ ∈ Σhi} ∪∆nm), and x,x′ ∈ X. Then

x≡ x′ modµ implies that

1) ∀t ∈ (Σhi)∗−{ε} : ∆t(x)∩Xm 6= /0 ⇔ ∆t(x′)∩Xm 6= /0

2) ∆nm(x) 6= /0 ⇔ ∆nm(x′) 6= /0.

Proof: To show 1), assume thatt ∈ (Σhi)∗ s.t. ∆t(x)∩Xm 6= /0. Assume ˆx∈ ∆t(x)∩Xm. We first show

that there is ˆx′ ∈ ∆t(x′) s.t. x̂≡ x̂′ modµ by induction. Lett = σ1 · · ·σm, whereσ1 = ε andσi ∈ Σhi for
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i = 2, . . . ,m. Then, there areui ∈ (Σ−Σhi)∗, i = 1, . . . ,m s.t. x̂ = δ(x,σ1u1 · · ·σmum). We denotexi :=

δ(x,σ1u1 · · ·σi) for i = 1, . . . ,m.

As the induction base, we observe thatx1 = x ∈ ∆ε(x1), x′1 := x′ ∈ ∆ε(x′1) and x1 ≡ x′1 modµ. Now,

assume that for somei ∈ {1, . . . ,m−1}, xi ∈ ∆σ1···σi (x1), x′1 ∈ ∆σ1···σi (x
′
1) andxi ≡ x′i modµ. Then,xi+1 ∈

∆σi+1(xi). As µ is a quasi-congruence for∆σi+1, there must bex′i+1 ∈ ∆σi+1(x
′
i) s.t. xi+1 ≡ x′i+1 modµ.

Hence,xi+1 ∈ ∆σ1···σi+1(x1), x′i+1 ∈ ∆σ1···σi+1(x
′
1), andxi+1 ≡ x′i+1 modµ. But then, induction on the length

of t shows that there isx′m∈ ∆t(x′) s.t.xm≡ x′m modµ. In addition,x̂∈∆t(x)∩Xm implies that∆nm(x̂) = /0.

As µ is a quasi-congruence for∆nm, also∆nm(x′m) = /0. Respecting the definition of∆nm combined with

the fact thatH is nonblocking, there must beu′ ∈ (Σ−Σhi)∗ s.t. x̂′ := δ(x′m,u′) ∈ Xm. Since ˆx′ ∈ ∆t(x′),

we arrive at ˆx′ ∈ ∆t(x′)∩Xm, i.e., ∆t(x′)∩Xm 6= /0.

For 2), assume that∆nm(x) 6= /0. Thus, there is ˆx∈ ∆nm(x). Sinceµ is a quasi-congruence for∆nm, there

must be ˆx′ ∈ ∆nm(x′) s.t. x̂≡ x̂′ modµ. Hence,∆nm(x′) 6= /0.

Lemma A.3:Let phi be an msa-observer. Then,µphi(Lm(H)) is a quasi-congruence for(X,{∆σ,σ ∈ Σhi}∪

∆nm).

Proof: Let x,x′ ∈ X s.t. x≡ x′ modµphi(Lm(H)), ands,s′ ∈ L(H) s.t. x = δ(x0,s) andx′ = δ(x0,s′).

First assume thatσ ∈ Σhi s.t. x̂ ∈ ∆σ(x). Then, there areu, û ∈ (Σ − Σhi)∗ s.t. x̂ = δ(x,uσû) and

phi(suσû) = phi(s)σ. It has to be shown that∃x̂′ ∈ ∆σ(x′) s.t. x̂≡ x̂′ modµphi(Lm(H)). Assume thatt ∈ (Σhi)∗

s.t. phi(s)σt ∈ phi(Lm(H)). Since phi(s) ≡phi(Lm(H)) phi(s′) according to the definition ofµphi(Lm(H)), and

phi(s)σt ∈ phi(Lm(H)), alsophi(s′)σt ∈ phi(Lm(H)). Sincephi is an msa-observer, it follows from Lemma

A.1 that there areu′, û′ ∈ (Σ−Σhi)∗, ũ′ ∈ Σ∗ s.t. s′u′σû′ũ′ ∈ Lm(H) and phi(s′u′σû′ũ′) = phi(s′)σt. Then,

suσû≡ su′σû′ mod ≡phi(Lm(H)) ◦phi. Hence, with ˆx′ := δ(x′,u′σû′), we have that ˆx≡ x̂′ modµphi(Lm(H)).

As σ ∈ Σhi was arbitrary, this implies thatµphi(Lm(H)) is a quasi-congruence for(X,{∆σ|σ ∈ Σhi}).

Now assume that ˆx∈ ∆nm(x). Then,x̂∈ ∆σ(x) for someσ∈ Σhi, and as shown above, there is ˆx′ ∈ ∆σ(x′)

s.t. x̂≡ x̂′ modµphi(Lm(H)). It remains to show that ˆx′ ∈ ∆nm(x′). Since ˆx∈ ∆nm(x), there are ˜x∈ X, u,v∈

(Σ−Σhi)∗, σ̃ ∈ Σhi s.t. x= δ(x̃,u), δ(x̃uvσ̃)! and ũ≤ uv⇒ δ(x̃, ũ) 6∈ Xm. Sincephi is an msa-observer, this

implies thatphi(s) 6∈ phi(Lm(H)). Noting thatphi(s) ≡phi(Lm(H)) phi(s′), also phi(s′) 6∈ phi(Lm(H)). Hence,

there are ˜x′ ∈ X, u′,v′ ∈ (Σ−Σhi)∗, σ̃′ ∈ Σhi s.t. x′ = δ(x̃′,u′), δ(x̃′u′v′σ̃′)! and ũ′ ≤ u′v′ ⇒ δ(x̃′, ũ′) 6∈ Xm.

Then,∆σ(x′) ⊆ ∆nm(x′), i.e., x̂′ ∈ ∆nm(x′).

Lemma A.4:Assume that 1) and 2) in Lemma A.2 are fulfilled forx,x′ ∈X, andphi is an msa-observer.

Thenx≡ x′ modµphi(Lm(H)).

Proof: Let s,s′ ∈ L(H) s.t.x= δ(x0,s), x′ = δ(x0,s′), and assume thatphi(s)t ∈ phi(Lm(H)). We have

to show thatphi(s′)t ∈ phi(Lm(H)).
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If t = ε, we have thatphi(s) ∈ phi(Lm(H)). Since phi is an msa-observer, either there is ˜s≤ s with

s̃∈ Lm(H) and phi(s̃) = phi(s) or there is ˆs≥ s with ŝ∈ Lm(H) and phi(ŝ) = phi(s). Considering that

this holds for anys s.t. δ(x0,s) = x, it can be concluded that∆nm(x) = /0 according to the definition

of ∆nm. Then, with 2),∆nm(x′) = /0, which implies that there is no ˜x′ ∈ X, uv∈ (Σ−Σhi)∗, σ′ ∈ Σhi s.t.

x= δ(x̃′,u) andδ(x̃′,uvσ′)! andu′ ≤ uv⇒ u′ 6∈ Lm(H). If p0(s′)σ′ 6∈ p0(L(H)) for all σ ∈ Σ0, the fact that

H is assumed to be nonblocking implies that there is av′ ∈ (Σ−Σhi)∗ s.t. s′v′ ∈ LH. Otherwise, there is

σ′ ∈ Σhi s.t. p0(s′)σ′ ∈ p0(L(H)). Hence, either there is ˜s′ ≤ s′ with s̃′ ∈ Lm(H) and phi(s̃′) = phi(s′) or

ŝ′ ≥ s′ with phi(ŝ′) = phi(s′) and ŝ′ ∈ Lm(H). It follows that phi(s′)t = phi(s′) ∈ phi(Lm(H)).

If t 6= ε, there isu ∈ Σ∗ s.t. su∈ Lm(H) and phi(su) = phi(s)t, since phi is an msa-observer (see

Lemma A.1). Hence,∆t(x)∩Xm 6= /0. With 1), we have that∆t(x′)∩Xm 6= /0. Thus, there isu′ ∈ Σ∗ s.t.

s′u′ ∈ Lm(H) and phi(s′u′) = phi(s′)t ∈ phi(Lm(H)). That is,s≡ s′ mod ≡phi(Lm(H)) ◦phi, and hencex≡ x′

modµphi(Lm(H)).

We now prove Proposition 4.1.

Proof: "‘⇒"’: Assume thatx≡ x′ modµphi(Lm(H)). Sinceµphi(Lm(H)) is a quasi-congruence according

to Lemma A.3, Lemma A.2 ensures that 1) and 2) hold.

"‘⇐"’: If 1) and 2) hold,x≡ x′ modµphi(Lm(H)) follows from Lemma A.4.

To show thatµphi(LH) = µH , let µ′ ∈ E(X) be a quasi-congruence for(X,{∆σ,σ ∈ Σhi}∪∆nm) andx≡ x′

modµ′ for x,x′ ∈ X. Then, Lemma A.2 suggests that 1) and 2) hold. Hence, Lemma A.4 implies that

x≡ x′ modµphi(Lm(H)), i.e., µ′ ≤ µphi. Hence,µphi(Lm(H)) is the coarsest quasi-congruence for

(X,{∆σ,σ ∈ Σhi}∪∆nm)

.
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