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Abstract— Recently, several approaches for the study of fuzzy ~ In this paper, the case where a given specification behavior
discrete event systems (FDES) in a supervisory control coext  cannot be implemented by supervisory control is studied.
have been proposed. Although controllability of fuzzy langiages First, fuzzy canonical recognizewre introduced as an ap-

and their implementation by a supervisor could be verified by . . .
algorithmic procedures, the problem of supervisor syntheis propriate representation of fuzzy languages. Based on this

was only solved for the case of FDES with crisp states but representation, we develop algorithms for both computing
fuzzy state transitions. In this paper, we present algorittns  the supremal controllable subbehavior and the infimal con-

to compute the supremal controllable fuzzy sublanguage and trollable superbehavior of a given specification in the gahe
the infimal controllable prefix-closed fuzzy superlanguagef a modeling framework for FDES in [8]. The algorithms are

given fuzzy language for the general case of FDES with fuzzy .
states, fuzzy state transitions and fuzzy event controllabty proved to be correct, and an example FDES illustrates the

properties, and formally prove their correctness. computational procedures.
Supervisory control for FDES has already been studied
. INTRODUCTION in the literature [8], [9]. However, for the general modeglin
Discrete event systems are discrete in both time and stgtemework in [8], only the existence of the supremal control
space. Also changes in the system state occur asynchrgnousble subbehavior and the infimal controllable superbehav-
and driven by events rather than by a clock. Examples fasr is proved without supplying an algorithmic procedure.
discrete event systems are manufacturing systems, neworklthough such algorithms are provided in [9], that paper
digital circuits, communication protocols, etc. [1]. considers the case of only fuzzy state transitions which is
In most of the published research on DES, where deteless general than our modeling framework.
ministic or nondeterministic automata are used, itis aglim  The paper is organized as follows. After providing basic
that their states and state transitions are crisp, thabisinR  notation in Section I, the algorithms for computing the
certainty arises either in the states or in the state tiansit sypremal controllable subbehavior and the infimal control-
There are, however, situations in which being in a state @sble superbehavior are presented in Section IlI-B and Sec-
moving to another state via state transitions is not celtatn tjon 111-C, respectively. A brief discussion and conclusio
determined by gossibility degree are given in Section IV.
A typical example given in [2] considers modeling a per-
son’s health status, that can simultaneously assume dfiffer
states, e.g., “poor”, “fair”, “excellent”. To this end, pkility
degrees are employed to describe the possibility of being i Fuzzy Sets
each respective state and to transition between the states.
Further examples for such modeling requirements are for Eachfuzzy set4 is defined in terms of aniversal setX
example mobile robots in unstructured environments [3Ry amembership functioassigning to each elementof X
intelligent vehicle control [4], and wastewater treatmjt  a value A(z) in the interval [0, 1]. The support of a fuzzy
To cope with this situation, crisp DES were extended téet.A is a crisp set defined asipp(A) = {z : A(z) > 0}.
fuzzy DES (FDES) by incorporating the fuzzy set theory inVe denote byF(X) the set of all fuzzy subsets of. For
a DES framework in [2] based on existing literaturefomzy any A, B € F(X), we say that4 is contained in3 (or B
finite automata[6], [7]. The application of the supervisory contains.A), denoted byA C B, if A(z) < B(z) for all
control theory to FDES was established in [8], [9]. In theses € X. We say thatd = B if and only if A C B and
works, it is desired to restrict the behavior of a given FD&S tB C A. A fuzzy set is said to be empty, denoted Oy if
a desired subbehavior by employing a supervisory controlléts membership function is identically zero dn.
In [9], the case of FDES with only fuzzy state transitions Let.A,B € F(X). The unionAUB of A andB is defined
is considered, while [8] assumes fuzzy states, fuzzy staby the membership functiofd U B)(z) = A(z) Vv B(x) for
transitions, and fuzzy event controllability properti@th all z € X; the intersection of4 and3, denoted bydN B, is
approaches develop basic controllability results [8], [}- given by the membership functidginB)(z) = A(z)AB(x)
servability results [10], [11] and extensions to deceigesl for all z € X, whereVv and A stand for the maximum and
control [12], [10] including algorithmic support. minimum operators respectively [13].

Il. PRELIMINARIES



B. Formalism for Fuzzy Discrete Event Systems This proqedure can be .repetitively appl?ed until no T“?‘mat
) o ] are obtained. A graphical representation of the finite max-
The following definitions and theo_rems provide a formalyin automatorG of the system derived in this way is shown
framework for the study of fuzzy discrete event systemsy rig 1, where each fuzzy state is labeled with the respecti
adopting the formalism in [8], [11], [12]. vector of possibility degrees and the initial fuzzy state is
Let the crisp state set of a DES consist of the stat§§gicated by an incoming arrow. Example possibility degree
P1,D2;5 -+ e Then eacHuzzy staten the setting of FDES ¢, fuzzy strings computed using Equation (1) are
can be written as a vectqiy, as, . . ., a,], wherea; € [0, 1].
This way, each fuzzy state can be considered as a possibilif; (¢)=max{0.7,0.3}=0.7, L5(01)=0.6, Lg(c102)=0.5.
distribution or alternatively as a fuzzy set determining th
degrees; by which the system participates in each crisp state G
ps, provided it is in the current fuzzy state. Similarlyfuzzy
events is characterized by a matr{x;;],, . in which every
elementa;; € [0,1] indicates the possibility of a transition @
in the FDES from the current stajg to the new state;
when the event occurs.

A fuzzy finite automaton(FFA) is 5-tuple G = Fig. 1. Graphical representation of the FFA in Example 1.
(Q,%,9,q0,Qm), whereQ is a set of fuzzy state§; consists C. Control of Fuzzy DES
of fuzzy eventsy, is the initial fuzzy stater),, stands for | sypervisory control, a fundamental issue is how to

the set of marking fuzzy states;: @ x ¥ — @ is the staté gesign a controller (or supervisor) whose task is to enable
transition relation, which is defined by(¢,o) = ¢ © 0. and disable controllable events such that the resultingede
Note that® denotes the max-min operation in the SeNSgyop system obeys some pre-specified operating rules [1]. In
that for ¢ = [ay,a,...,a,] € Q ando = [a;j],,,,, € 5. the setting of FDESs, each fuzzy event ¥ is associated
q© o = [max;_; min{a;, a1}, -, max;_; min{q, ain }] with a degree of controllability: the uncontrollable $ef.
The fuzzy languagegenerated and marked by are s 3 fuzzy subsets o such thatt, (o) expresses to which
denoted by’ and L., respectively. With the sét” of all  gegree an event can occur without being disabled. Hence,
strings of fuzzy events ovex, they are defined as functionse_g_,zuc(a) = 0 means that can be fully disabled while
from %7 to [0, 1] as follows: For any = o103 ... 0% € 5%, it is not possible at all to disable if Su.(c) = 1.
La(s) =maxgy© o1 0o @...0 0 O st Q) A supervisorS for a FDESG is defined as a function
=t . S : ©* — F(¥), where for eachs € X* and each
Lam(s) = P o ©o10n0...000¢, (2) 5 ¢ ¥ $(s)(o) represents the possibility of fuzzy event
=t o being enabled after the occurrence of a strindHence,
where s is the transpose of; = [0...1...0] and 1is iy {S(s)(0), La(so)} can be interpreted as the degree to
in the ith place. which the stringso can occur. Similar to the admissibility
La(s) represents the degree of the stringe * being  condition defined for crisp supervisors [1F is usually
physically possible, or alternatively the degree by whiuis t required to satisfy that for anyc ¥* ando € ©
string belongs toLqs. La,m(s) stands for the possibility
of the same string being marked (recognized) by the fuzzy min {Eue(0), La(so)} < S(s)(0). 4
automatory. Lets € X" and anyo € X. Then the following  Thjs condition is called théuzzy admissibility conditionf
relation follows from Equation (1) [8]. the supervisoss for a FDESG [8]. It states that a supervisor
Lam(so) < La(so) < La(s). (3) cannot restrict the possibility of an event occurrencafter

It should be mentioned that the set of fuzzy state® strings € ¥* more than specified by the uncontrollability

{5(qo, 8)|s € £*} in any max-min automaton s finite [8][14] 9€9ré€Xuc(a) of o. .
while it can be unbounded for, e.g., max-product automata. | "€ fuzzy controlled system bfy, denoted bys/G, is also

Example 1:Let a FDES have an initial fuzzy stagg = & FPES, and the languages; ¢ andLs, ¢, generated and

0.7,0.3] € Q and two eventsr; o5 € ¥ with: marked byS/G, are defined as follows: For anyc ¥* and
’ eacho € ¥
S Lg.g 0(.)5 } andos = L005 8-; ] Lsiale) = Lale)
Starting from the initial state, the respective subsequentﬁS/G(SU) = min{Lg/c(s), La(s0),5(s)(0)}  (5)

fuzzy states of the FFA are iteratively computed by perform- Ls/Gm = Ls/cNLem
ing the max-min operation between the current state and anyFor any string € X* and any fuzzy languagé C F(%*),

of the fuzzy events. For example, the prefix-closurepr(¢) andpr(£) are defined as
0.6 0.5 pr(t) = {seX¥*|FIreX*stsr=t}
g ®op =107 0.3 @[ ] =106 0.5 |,
0o =| ] 02 0 [ ] pr(£)(s) = suppeepryy £

10010 = g0 ® 01O [ 005 83 } ~[05 04] SOpr(ﬁ_)(s) denotes the poss_ibility of string be_Ionging to
‘ : the prefix-closure of.. The main task of supervisory control



is to find a supervisolS that restricts the plant behavior classes of the Nerode equivalence relation3sn mod L.
modeled by a FFAZ in order to comply with a specification Furthermore, thenitial state z, is the equivalence class
behavior K C F(¥*), where K C Ls. By means of that contains the empty string The possibility function
the formulation of the above concepts, the controllability . : X — [0,1] relates each state € X, to its
theorem concerning fuzzy DESs is stated below. possibility degree, and thigansition functionis defined as
Theorem 1 (Controllability [8]): Let a FDES be modeled follows. For eachz € X, let s € ¥* s.t. s belongs to
by FFA G = (Q, X, 0, qo). Suppose the fuzzy uncontrollablethe equivalence class correspondingztdin particular this
subsety, € F(X), and the fuzzy legal subséf € 7(X*) means that’(s) = xc(z)). Also, for eachs € %, let z, be
with K C L and K(e) = Lg(e) are given. Then there the state corresponding to the equivalence classrofThen
exists a supervisof : ¥* — F(X) that satisfies the fuzzy for eachz ando, the transition function iz (z, o) := z,.
admissibility condition andCg,¢ = pr(K) if and only if for Note that the FCR should not be confused with the FFA
any s € ¥* and anyo € X as defined in Section 1I-B. While the FFA is particularly
min {pr(K)(s), Zuc(0), La(so)} < pr(K)(so).  (6) useful for modeling purposes, the FCR rather represents the
Here, (6) is called théuzzy controllability conditiorof &= fuzZy language without any additional modeling informatio
with respect tof¢ and ... This condition indicates that However, it is possible to algorithmically construct a #nit _
the minimum degree of each string that can be achieved Staté FCR that generates the same fuzzy language as a given
in the closed loop must be allowed by the specification. FFA based on state minimization techniques as in [16]. Fig.

Appealing to (6), we define the set of all controllable fuzzy? (&) depicts the FCR for the FF& in Example 1. Here,
sublanguages and superlanguage&ofi.r.t. £ andX,. as each state is labeled with the associated possibility @éegre

K (Lg,Yuw) and K (Lg, Xue), respectively.
K'(La,%ue) = {K' C K|K' is controllable W.r.t.Lg, Ty} Cc
K'(La,%ue) = {K' D K|K' is controllable W.r.t.Lg, Ly}

The main task of this paper is the computation of controf’ !
lable fuzzy sublanguages and superlanguages of a given sp¢
ification K that is not controllable w.r.tCs andX,,.. A first
result in this direction was provided in [8]. It states thiae t
supremal controllable fuzzy sublanguag€ (L¢, X,..) and
the infimal prefix-closed fuzzy superlanguafié (Lq, Sue)
exist. Furthermore, ifK is prefix-closed, i.e. X = pr(K),
then alsoK ' (Lg, Xue) = pr(K(La, Sue))-

Proposition 1: Let G, K and,. be as above. Then

KT(L:G’ EuC) = UK’GICT(Cg,EuC) K,
Kl(ﬁGaEuc) = ﬂK'ezci(cG,z:uc)Kl
In the following section, we provide algorithms for the
computation ofK' (L, X,.) and K (Lg, Lu.). For conve-
nience, we will writeKT and K! wheneverLs andX,,. are Fig. 2. Fuzzy Canonical Recognizers: @); (b) Cc; (©) ||
clear from the context.

An important result of the classical supervisory control
Il. COMPUTATION OF CONTROLLABLE SUBLANGUAGES  theory [17] states that the computation of the supremal
AND SUPERLANGUAGES controllable sublanguage of a given specification w.r.t. a
In this section, we introductuzzy canonical recognizers plant language can be evaluated on the product state space
as an alternative representation of fuzzy languages thef their respective canonical recognizers. Analogously, w
is suitable for algorithmic computations by extending thelefine aproduct compositiofior FCRs, that will support the
Nerode equivalence relatiofl 5] to fuzzy languages. computation of the supremal controllable fuzzy sublanguag
Definition 2 (Product Composition)Let C., Cx be two
FCRs for the fuzzy languagex, K over the com-
Definition 1 (Nerode Equivalencelet £ C F(X*) be a pon alphabetX. The product compositionCy x =

fuzzy language oveE. The Nerode equivalence relation on(y: x S z is defined as foll
_ ) ; ; X0, L[| K> X is defined as follows
Y*w.rt. £ (or mod L) is defined as follows. Foy, s' € ¥*, ( 11> D2 6> To,cl| k> Xel|K )

A. Nerode Equivalence for Fuzzy Languages

o, i} . Xejx =X x Xk, @o.g) 1 = (20,2, %0,K)
s=s mod L& VueX: L{su)=L(su).

Based on Definition 1, thduzzy canonical recognizer
(FCR) for a fuzzy languagg€ can be defined as a five-tuple .
Cr = (2, Xz, vz, oz, xc). Here, ¥ is the alphabet and Xeyr((@e, 7)) = min{xe, xx}
the set ofstates X, corresponds to the set of equivalence or)x((ze, 2K),0) i= (Oc(2e,0), 0K (2K, 0))

and for(zz,rx) € Xz )k ando € ¥ :



Example 2:Fig. 2 (c) shows the product compositionXK1 = Xgx, 0, = Ok, Ty g, = To,L||K and for

Crx of the FCRs in Fig. 2 (a) and (b). eachz € X with s € X s.t.0(z) ¢, 8) = 2,
B. Supremal Controllable Fuzzy Sublanguage K(s) if Vo € X: K(so) >
min{K (s), L(s0), Buc(0)} |

In this section, a computational procedure to find th&x, (¥) =
supremal controllable fuzzy sublanguage for a given plant
G with the fuzzy languagel := Lo € F(¥*) and the 9)
prefix-closed specification languadé C F(*) with K = Where in this casel (s) = xz)x (6(zo,2)x,5)), K(s0) =
pr(K) is derived. Note that in this caser(K') = KT  Xc|x(0(zo gk, 50)), andL(so) = x(6(zo,z, 50)).
as stated in Section II-C. To this end, we investigate how Considering the computational procedure, it has to be
the specificationk’ has to be modified in order to obtain Noted that by the second statement in (9), new controltgbili

K if a controllability violation occurs according to (6), i.e Violations can be introduced. Hence, we propose to apply
for a strings € ¥* and an event € %, we have that the above procedure iteratively until there are no more

K(so) < min{K (s), L(s0), (o)} controllability violations (see Fig. 3). As in each step of
Lemma 1:Let s € £* ando € ¥. If K(so) < K(s) and the alg.o.rlthm, Lemma 1 and Def|.n|t|on 3 are yalld, it can
K(so) < L(so) and K (s0) < Sue(o), then it holds that be verl_fled that KT g_ K C K with the resulting fuzzy
recognizerCy. Denoting the number of states 6f. x
K'(s) < K(so) (7) as N and the number of different possibility degrees that
Proof: Lemma 1 is proved by contradiction. Assumeare defined to describ@ as P, C; can be computed with
that KT (s) > K (so). We know that because of controllabil- complexity O(N? - P).
ity of KT w.r.t. £ andpr(K') = KT, KT = Lg, for some
supervisorS. Then,

KT(SO') = Es/G(SO')

mirzl{K(sa)} otherwise
S

[* Computation ofC': Initialization*/
= min{Ls/c(s), (S ),S(s)(0)} | i=1,Ck, =Cpx
> min{K(s), L(50), Zuc(0)} ComputeC from C.according to Equation (9)
> K(so) ! oY .
[* Computation ofC': Iteration */
by assumption of the above lemma. But this contradicts thewhile Ck, #Ck, .
fact that KT is a sublanguage ok. ] i=it1
That is, if neither the plant language nor a supervisor can
enforce the possibility degrd€ (so) after the stringso, then _
already the desired possibility degree after the stengan | €nd while
maximally assume the valug (so). Ck =Ck,
Based on the observation in Lemma 1, we define Jaretyrm Cp
languagel; C F(X*) that fulfills the condition in Equation
(7) and at the same timg, C K. Fig. 3. Algorithm for the Computation of'.
Definition 3: Let s € ¥*. Then

ComputeC, from C'. according to Equation (9

Example 3:In the control context, we assume that the

K(s) if Vo € ¥: K(so) > controllability degrees of; ando, are given as,.(o1) =

Ki(s) := min{ K (s), L(s0), Zuc(o)} 0.2 and Byc(0z2) = 0.6. C as determined fronC) x in
min{K(sa)} otherwise Fig. 2 is depicted in Fig. 4. Note that in the state that is

(8) shaded in gray, the original value &f(01) = 0.6 had to be

From Lemma 1 and Definition 3 it follows immediately decreased t@((al) = 0.4 due to the controllability violation
that KT C K. In addition to this result, it can be verified that & (0102) = 0.4 < min{K (1), L(0102), Zuc(02)} = 0.5.
a fuzzy recognizer of<; can be determined usingc | x = o @
Cr||Ck. In particular, it holds that all strings that lead to K P o9 /&\ o1 Iop)
the same state if';||Ck also have the same valug, (s). @ . . nY-

Lemma 2:Let s,s’ € * s.t. Oc ik (To,2) K> 8) =
5[;“]((3507[;”[(, SI). ThenKl(s) = Kl(sl)

Proof: Let 5,8’ € X* st g x(2oc)k,5) =

Sr 1k (To,z)x,8"). Then K(s) = K(s') and for allo €
Y, K(so) = K(s'o), L(so) = L(s'0), and X,c(0) is
unique. According to Definition 3 this implies thaf, (s) =
f(l( . [ | Having determined the fuzzy recognizgy. for the fuzzy

This means that for each statein X, x, all stringss languagel’, we now define a supervisor that implements the
that lead tox have the same possibility degree accordingossibility degreeK( ) after each stringg € ¥* whenever
to K. As a consequence, a fuzzy recognizeg —of K, a control action is needed and the possibility degtee
can be determined on the state spaceCef|x by setting otherwise.

Fig. 4. Fuzzy Canonical Recognizéty,



Definition 4: Let K be defined as above. Then, the superfrom both the classical supervisory control theory withspri

visor S : £* — F(X) for eachs € ¥* ando € X is states and events and the less general modeling framework
. PR . with fuzzy state transitions in [9], the recognizgy. result-
S(s)(o) :== { {((80) gtk{ég\iﬁg; K(s) (10) ing from the supervisor computation does not necessarily
recognizeK ! but it rather holds thakT C K.

Note thatK C K together with Definition 4 imply that Example 4:For our example control problem, the re-

for each strings € X* and evento € X, it holds that g ireq supervisor actions are illustrated by the bold asrow
K'1(so) < S(s)(o). Observing thatk” was computed from in Fig. 4, ie, S(e)(o1) = 0.4, S(otow)(o1) = 0.3,

K by decreasing the possibility degrees. of certain strirtgs, 5(0202(0202)*)(01) = 0.3, and S(cto202)(01) = 0.3. For
must also hold thak C K. Together, this suggests that if 5 o maining strings and events, it holds thatS(s)(c) =

S is fuzzy admissible and if the closed loop fuzzy Ianguag? It can also be verified that in this cas®y, — K.

Ls)c is a subset ofi, then L5, = K. The following /

theorem provides the desired result. C. Infimal Controllable Fuzzy Superlanguage
Theorem 2:Let the supervisob' be given as in Definition  |n this section, we establish an algorithm for the compu-
4.5 is fuzzy admissible and.s, C K iff K(e) = L(€).  tation of the infimal prefix-closed controllable fuzzy super
Proof: "=": Assume thatK (e) < L(e). languageK'! given a plantG with the fuzzy language :=

: . Lo € F(X*) and the specification languagé C F(X*
= K(e) < KA(E) = £(e) . with K i p)r(K). In order to prepare the desired( re>sult,
= Jdo € ¥: K(0) < min{K(e), L(0), Zuc(0)} we first derive a property of! that relates the possibility
gegree of a string to the possibility degrees of its prefixes.

Lemma 3:Assume thati'!(s) is known for a strings €
*. Then it holds for eaclsr € X that

because of Definition 3 and the termiqation criterion of th
algorithm in Fig. 3. ThenS(e)(c) = K(o) according to

Definition 4.
= S(e)(0) = K(0) < min{L(0), Lue(0)} K!(s0)=max{K (s0), min{K*(s), L(s0), Suc(a)}} (11)
But this violates the admissibility of. Proof: As K' is controllable w.r.t.£ and X, we

"< It is given that K(¢) = L(¢). We have to show know that there is an admissible supervisrsuch that
that S(s)(¢) > min{L(s0), Suc(o)} for all s € ©* and Lsc =K' .Er.nploying this supervisor, we prove Lemma
o € $. This is true forS(s)(o) = 1 in Equation (10). Hence, 3 by contradiction.

we only consider the casé(s)(o) = K(so). But then, .Firstl assume that K'(so) > max{K(s0),
S(s)(0) > min{L(s0), Suc(0)} is implied by Definition Min{K (s),L(s0),Buc(g)}}.  Now let S be  a
3. To show thatCs,; C K, we use induction. It holds SUP€rvisor such thatS(s)(o) = S(s')(¢’) for all

that Ls/g(e) = K(e) = L(e). Now let s € Z* and o/ € ¥ and s'0' € X' — {so} and 5(s)(0) =

N i 1
o € ¥ and assume thalsc(s) < K(s). We want to max{K(so), min{K (s), L(50), Zuc(0) }} Then

. . admissibility of S already holds for alls’ € ¥* — {s}.
show thatLs/g(so) < K(so). There are o cases: () To show admissibility ofS for s, the events has to be

K(so) < K(s), (i) K(so) 2 K(s). X considered. It can be observed théts)(c) > K(so)
Case (l): Definition 4 |mp||eS thaf(s)(a) = K(SO’). and S’(S)(U) > min{Kl(s),ﬁ(SU),Zuc(a)}. As KL(S) >
= Ls/c(s0) = min{Ls/c(s), S(s)(0), Lssa(s)} Kl(s0) andNKl(sa) > min{Kl(s),E(sa),lec(g)} , this
< 8(s)(0) = K (s0) means thatS(s)(o) > min{L(so),Xu.(c)} which obeys
- the admissibility condition in Equation (4). Hence, it held
Case (ii): Ls/c(s0) < Lgja(s) < K(s) < K(so). m thatK C L5, C Ls/c = K and hencek! is not the
With the result in Theorem 2, it can finally be concludednfimal prefix-closed fuzzy superlanguage.
that the superviso§ implements the supremal controllable Now assume that Kl'(so) <  max{K(so),

sublanguagéy . min{ Kt (s), L(s0), Luc(0)}}-
Corollary 1: If the supervisorS is admissible, then the 1 . !

K K Euc
supremal controllable fuzzy sublanguagé exists and is = K3 (s0) < min{ K (s), £(50), Zuc(0)}
gven by K = Lg/c. _ asK'!(so) < K(so) is not possible.

Proof: As S is admissibleLg,; is fuzzy controllable
w.r.t. £. Furthermore, a€g/q C K according to Theorem = Lg/g(s0) < min{K*(s), L(50), Luc ()}

2, alsoLg/c € K. Hence,Lg/q C K. On the other hand, . )
because of Definition 4K (so) < S(s)(o) for all s ¢ ¥  Because of Equation (5)Ls/g(so) = min{Ls/(s),
ando € . As K'(s) < L(s) for all s € X*, this implies L(s0),S(s)(0)} with L/ (s) = K(s).

that KT C Lg,. Together it must hold thak'" = Lg/. B .

This mean/s that the computational procedure c/:arried out = S(5)(0) < min{L(50), Zue(o)}-
on the state space of the FGR; | x yields a superviso6  According to (4) this violates the admissibility of. ]
that implements the supremal controllable fuzzy sublaggua The result in Lemma 3 is now employed to construct a
in conjunction with the given planéz. However, different fuzzy recognizeCy. = (X, X1, Vg1, 2o k1, X1 ) for the



/* Computation ofC'k ., : Initialization */
Togr = (To.c,70xk,L(€), Xg1 =
XKl (CU(),Ki) = L(e)
/* set of states to be processed */
Xwaiting = {To, K1 }
/* Computation ofC' ., : Iteration */
while Xwaiting 7& @
take an arbitrary elemenit= (z., xx,d) from
Xwaiting
forall o € &

{on,Ki },

r = max{xk (Vi (zx,0)),
min{x g (%), x(v(zc,0)), Zuc(0)}} (%)
3= we(xe,0), vk (TK,0),7)
if /& Xg1
XKL = XKL U {:ﬁl}
Xwaiting = Xwaiting U {i'l}
Xk (2) =7
end if
Vi1 (&, 0) = &
end for all
end while
return( Cx 1)

Fig. 5. Algorithm for the Computation of’ -

fuzzy languagek’! from the two FCRsSC; and C'x. Note

that the valuek' (¢) = K (e) = L(e) is given by definition.

Fig. 6.

Fuzzy Canonical Recognizét;, |

The algorithm in Fig. 5 iteratively evaluates (11) in line [

(*). Here, xx (vk (zx, o)) corresponds td<(so), xx1 (&)

corresponds toK'!(s), and x(vc(zz,0)) corresponds to

algorithm starting fromy i (2 i) = K'(e) = K(¢). ™

Example 5:Fig. 6 depicts the FCR', for the FFAG
in Example 1 and the fuzzy specification langudgeén Fig.
2. Here, the value oK (c102) = 0.4 had to be increased to
Kl(o102) = 0.5 in the state shaded in gray.

IV. CONCLUSIONS

A framework for the supervisory control of Fuzzy Discrete
Event Systems (FDES) with fuzzy states, fuzzy state tran-
sitions, and fuzzy event controllability properties hate
established in [8]. In this paper, the methodology has been
extended with algorithmic procedures for the computation
of the supremal controllable fuzzy sublanguaged the
infimal controllable prefix-closed superlanguagéa given
specification. To this enduzzy canonical recognizefsave
been introduced as an appropriate representation of fuzzy
languages, and the presented algorithms have been formu-
lated based on this representation. Future work includes
the computation of observable sublanguages in the case of
limited event observability as studied in [11].
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