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Abstract— Recently, several efficient supervisor synthesis
approaches for distributed discrete event systems (DES) have
been established. In this paper, the implementation of such
supervisors on interacting distributed programmable logic
controllers (PLCs) on a network is considered for the hierar-
chical and decentralized control approach elaborated in our
previous work. A communication model that captures the
controller behavior relevant for communication is developed,
and a network architecture together with a scheduling policy
that ensures correct operation of the networked controllers
is proposed. In addition to the formal statements, simulation
results for an example system are presented.

I. I NTRODUCTION

In the recent years, a variety of supervisor design
methods for discrete event systems that result in inter-
acting modular and decentralizedcontrollers have been
developed [1], [2], [3], [4], [5], [6], [7], [8], [9].

In these works, controller interaction is modeled by
shared eventoccurrences that have to be synchronized
among controllers. However, the realization of this in-
teraction is not addressed. As long as the controllers
are implemented on a single device (PC, PLC, etc.), the
interaction takes place internally, e.g. via shared memory.
In contrast, if each controller is situated in a different
physical location, communication is required. This work
presents the theoretical framework of acommunication
architectureon a shared-medium such as Ethernet for the
hierarchical and decentralized control approach in [6]. In
our communication model, the system is represented as a
set ofnodesthat communicate in order to execute system
tasks(shared events). Communication messages for a task
are identified withjobsthat have to comply with real-time
requirements. Timely message transmission is ensured by
a scheduling policy that exploits the deterministic system
structure. Although our communication architecture is
not specifically designed for Ethernet, it can easily be
implemented using off-the shelf Ethernet ICs.

We show that there exists a lower bound on the network
speed such that our communication architecture works
correctly. We also present a preliminary simulation study
to investigate the average communication performance.

The paper outline is as follows. In Section II, we
present the underlying hierarchical and decentralized con-
trol approach. The communication model and the commu-
nication architecture are developed in Section III and in
Section IV, respectively. Section V provides simulation
results and we give conclusions in Section VI.

II. PRELIMINARIES

A. Basic notation

We recall the basic notations regarding DES [10].
For a finite alphabetΣ, the set of all finite strings over

Σ is denotedΣ∗. We writes1s2 ∈ Σ∗ for the concatenation
of two stringss1, s2 ∈ Σ∗, ands1 ≤ s whens1 is aprefixof
s, i.e. if s= s1s2 with s2 ∈Σ∗. The empty string is denoted
ε ∈ Σ∗, i.e. sε = εs= s for all s∈ Σ∗. A languageover Σ
is a subsetH ⊆ Σ∗. Theprefix closureof H is defined by
H := {s1 ∈ Σ∗|∃s∈ H s.t. s1 ≤ s}. Thenatural projection
pi : Σ∗ → Σ∗

i , i = 1,2, for the unionΣ = Σ1∪Σ2 is defined
iteratively: (1) let pi(ε) := ε; (2) for s∈ Σ∗, σ ∈ Σ, let
pi(sσ) := pi(s)σ if σ ∈ Σi , or pi(sσ) := pi(s) otherwise.
The set-valued inverse ofpi is denotedp−1

i : Σ∗
i → 2Σ∗

,
p−1

i (t) := {s∈ Σ∗| pi(s) = t}. Thesynchronous productof
Hi ⊆ Σ∗

i , i = 1,2 is H1||H2 = p−1
1 (H1)∩ p−1

2 (H2) ⊆ Σ∗.
A finite automatonis a tupleG = (X,Σ,δ,x0,Xm) with

the finite set ofstates X, the finite alphabet ofeventsΣ,
the partial transition functionδ : X ×Σ → X, the initial
state x0 ∈ X, and the set ofmarked states Xm ⊆ X. We
write δ(x,σ)! if δ(x,σ) is defined. In order to extendδ to
a partial function onX ×Σ∗, recursively letδ(x,ε) := x
and δ(x,sσ) := δ(δ(x,s),σ), whenever bothx′ = δ(x,s)
andδ(x′,σ)!. Also we writeδ(x,Σ′) = x′ if δ(x,σ) = x′ for
eachσ∈Σ′ ⊆Σ. L(G) := {s∈Σ∗ : δ(x0,s)!} andLm(G) :=
{s ∈ L(G) : δ(x0,s) ∈ Xm} are the closed and marked
languageof G, respectively.G is denotednonblocking
if L(G) = Lm(G). The synchronous composition of two
automataG1 and G2 is defined such thatL(G1||G2) =
L(G1)||L(G2) (see e.g. [10]).

As supervisor synthesis (see e.g. [10]) is not the focus
of this paper, we just consider the closed-loop behavior
after supervisor design and model it as an automatonR.

B. Hierarchical and Decentralized Approach

In practice, DES can be modeled as a set of finite
automata (e.g. different components of a manufacturing
system) that can be composed to an overall system model.
However, supervisor design for such acompound DESis
often computationally infeasible due to the fact that the
number of states grows exponentially with the number of
system components (state space explosion problem).

Several control approaches circumvent this problem
[1], [2], [3], [4], [5], [6], [7], [8], [9]. These methods
employmodular, decentralizedandhierarchicalsynthesis
techniques in order to reduce the computational effort for
supervisor computation and representation.
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Fig. 1. Hierarchical and decentralized architecture

In this paper, we employ the hierarchical and decen-
tralized approach developed in [6]. It results in a set
of supervisors on small state spaces in a hierarchical
relationship as depicted in the gray box of Fig. 1. The
supervisors are represented by finite automata, where
R1, . . . ,Rn (Ri = (Xi ,Σi ,δi ,x0,i ,Xm,i)) are low-level super-
visors, R is a high-level supervisor and the abstractions
R̂1, . . . ,R̂n (R̂i = (X̂i , Σ̂i , δ̂i , x̂0,i , X̂m,i)) of the respectiveRi

are used to computeR. The interaction of the supervisors
is defined such that the compound behavior is represented
by the languageL(R)||(||ni=1L(Ri)). The following proper-
ties relate the high level and the low level of the hierarchy:

• the natural projections ˆpi : Σ∗
i → Σ̂∗

i are used for
abstraction:L(R̂i) = p̂i(L(Ri)), Lm(R̂i) = p̂i(Lm(Ri)).

• it is required that the shared events are included in
the abstraction alphabets, i.e.

Sn
j=1, j 6=i(Σi ∩Σ j) ⊆ Σ̂i

for all i = 1, . . . ,n.
• L(R) ⊆ L(||ni=1R̂i),
• nonblocking control is guaranteed, i.e.

L(R)||(||ni=1L(Ri)) = Lm(R)||(||ni=1Lm(Ri)).
As elaborated in [6], the design process can be repeated
on multiple hierarchical levels as shown in Fig. 1.

From the communication point of view, the controller
synthesis provides a setR = {R1, . . . ,Rk} of m distributed
supervisors in a parent-children hierarchical relationship
that interact via their shared events. We define the maps
pR : R → R and cR : R → 2R , where pR (Ri) is the
parent andcR (Ri) is the set of children ofRi ∈ R .

Example 1 Fig. 2 shows a simple hierarchical architec-
ture with two levels of abstraction andk = 6 automata.
The shared eventϕ can only be executed if the compo-
nentsR1, R2 andR5 can participate in the respective states
3, 1 and 1. Observe thatL(R5)⊆ L(||i,Ri∈cR (R5)R̂i), where
cR (R5) = {R1,R2,R3} is the set of children ofR5. �

III. C OMMUNICATION MODEL

A. Communication via Jobs

Communication is required if the supervisors as com-
puted in Section II-B are implemented in a number of (e.g.
k) PLCs that are situated in distinct physical locations and
connected by a network, e.g. on a factory floor. In this
case, the occurrence of shared eventsΣ∩ :=

Sk
i, j=1,i6= j(Σi ∩

Σ j) has to be communicated, i.e. all supervisors that share
some event must agree on its execution.

Our communication idea is illustrated in the following
example. We denote shared eventstasksand identify the
required communication messages with so-calledjobs. In
addition to the conditions for the hierarchical controller
synthesis in [6], we require that if an eventσ ∈ Σ∩ is
possible in a state ofRi , then there is no local string such
that σ is no longer possible, i.e.∀s∈ L(Ri),σ ∈ Σ∩ with
sσ ∈ L(Ri) : ∄u∈ (Σi −Σ∩)∗ s.t. su∈ L(Ri)∧suσ 6∈ L(Ri).

Example 2 We consider the system in Fig. 2 with each
automaton in its initial state. The first task isα (shared
by R1, R3, R4, R5 andR6). We propose to propagate the
information about the execution ofα from the highest-
level component that containsα to the lower level com-
ponents using the parent-children relationship. That is,R6

first asksR4 and R5 ”is α possible?” (we identify this
questionwith a job ?αR6). R4 can directly answer ”α is
possible!” (!αR4), while R5 has to executeϕ before α.
As R5 is the highest-level component forϕ, it asksR1

and R2 ”is ϕ possible?” (?ϕR5). R2 can directly answer
”ϕ is possible!” (!ϕR2), while R1 has to wait for the
occurrence of the local stringkl (independent of the other
supervisors) and then answers ”ϕ is possible!” (!ϕR1).
This triggers thecommandjob ”executeϕ” (ϕc) from R5

to R1 andR2 and causes state changes inR5 (1→ 2, R1

(3→ 4) andR2 (1→ 2). Now,R5 has to askR1 andR3 ”is
α possible?” (?αR5) and this question-answer procedure
continues until all answers forα (!αR4 and !αR5) have
arrived at R6. This triggers the command ”executeα”
(αc) and the respective state changes inR6,R5,R1,andR3.
Now, the highest-level supervisorR6 for the tasksβ, γ and
δ starts a new question-answer-command procedure.�

We formalize the ideas presented in Example
2 by defining a communication structure CSx,σ

i =
(Cx,σ

i ,J
x,σ
i ,νx,σ

i ,cx,σ
0,i ,C

x,σ
m,i ). It captures the job combina-

tions for a transitionx′ := δ(x,σ) defined inx ∈ Xi (see
Fig. 3). If the parentpR (Ri) containsσ, communication
of Ri starts with a question ?σpR (Ri). Otherwise, we set
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?σpR (Ri) = ε. If there are children ofRi that containσ,
the question ?σRi is asked, and an answer is expected
for each child that containsσ. We denote the set of
answers !σcR (Ri), and the numbern of such children
is n = |!σcR (Ri)|. If there are no children withσ, both
?σRi = ε and !σcR (Ri) = ε. Next, the answer !σRi to the
question ?σpR (Ri) is given and the ”command” jobσc

terminates the communication forσ. The labeling of the
states is defined as in Fig. 3, i.e. the statesx1, . . . ,xn+3

correspond tox, and x′1 corresponds tox′. Furthermore,
x1, . . . ,xn+3 are marked if and only ifx is marked. Note
that the jobs ?σpR (Ri) and !σRi are shared with the parent
pR (Ri), the job ?σRi is shared with all children ofRi that
containσ, each job in !σcR (Ri) is shared with a child of
Ri , and the command jobσc is shared with all supervisors
that containσ. Thus, communication is represented by
shared jobs between distributed supervisors. For later use
in algorithmic computations, we introduce the function
cs(x,x′,?σpR (Ri),?σRi , !σcR (Ri), !σRi ,σc,Rσ

i ), that adds the
communication structure in Fig. 3 to an automatonRσ

i
between the statesx andx′.

The set of jobs of an eventσ is defined as follows.

Definition 3.1 (Set of Jobs) Let R = {R1, . . . ,Rk} be a
set of distributed supervisors andσ ∈ Σ∩ be a shared
event. Theset of jobsJ σ for σ is defined as

J σ :=
S

i,σ∈Σi

J σ
i ,

whereJ σ
i is the alphabet common to all communication

structuresCSx,σ
i . The set of jobs transmitted byRi is

Σout,i :=
S

σ∈Σi
{?σRi , !σRi}∪

S

σ∈(Σi−Σ̂i)
{σc} �

B. Logical Communication Model

The communication model for a distributed supervisor
is formulated as a composition of automata that capture
the job sequences for each of its events.

We compute the automatonRσ
i = (Xσ

i ,Σσ
i ,δσ

i ,xσ
0,i ,X

σ
m,i)

that defines the order of jobs for the eventσ and a
supervisorRi ∈ R with the following algorithm.

Algorithm 3.1 (Computation of Rσ
i ) Given: Ri , σ.

Initialize: Xσ
i = Xi ; Σσ

i = J σ
i ∪

S

τ∈Σi−{σ}{τc}; xσ
0,i = x0,i ;

Xσ
m,i = Xm,i

for each x∈ Xσ
i

replacex by x1 in Rσ
i

if δi(x,σ)!
cs(x,δi(x,σ),?σpR (Ri),?σRi , !σcR (Ri), !σRi ,σc,Rσ

i )
for each xk ∈ Xσ

i
for each τ ∈ Σi −{σ}

if x′ := δi(x,τ)! and x′k ∈ Xσ
i

setδσ
i (xk,τc) := x′k

else
δσ

i (xk,τc) = x′1 �

Algorithm 3.1 is initialized with the state set, initial
state and marked states ofRi . The first ”for”-loop imposes
the communication structure for eventσ in each state
of Ri where σ is possible. The second ”for” loop adds
a ”command” job for each event different fromσ and
remembers previously communicated jobs.

Algorithm 3.2 computes the automatonR′
i =

(X′,Σ′,δ′,x′0,X
′
m) that defines when jobs in a supervisor

Ri ∈ R can be transmitted.

Algorithm 3.2 (Computation of R′
i) Given: Ri , Σ̂i

Initialize: X′
i = Xi ; Σ′

i =
S

σ∈Σ̂i
(J σ

i − {?σpR (Ri)}) ∪
S

σ∈Σi
σc; x′0,i = x0,i ; X′

m,i = Xm,i

for each x∈ X′
i

for each σ ∈ Σi

if x′ = δi(x,σ)!
setδ′i(x,σc) := x′

if σ ∈ Σ̂i

setδ′i(x,J σ
i −{σc,?σpR (Ri)}) := x �

Algorithm 3.2 is initialized with the state set, initial
state and marked states of the supervisor automatonRi .
Each transition inRi is replaced by a transition with the
command job for the respective event inR′

i . Additionally,
the jobs inJ σ

i −{σc,?σpR (Ri)} for an eventσ ∈ Σ̂i shall
only be feasible in states where the ”command” jobσc is
feasible and are added as selfloops.

Using Algorithms 3.1 and 3.2, the communication
modelCMRi for Ri ∈ R is constructed by composing the
automataR′

i andRσ
i and R̂σ

i for shared events inRi .

Definition 3.2 (Logical Communication Model)
Let R = {R1, . . . ,Rk} be distributed supervisors and
R̂1, . . . ,R̂k−1 the corresponding abstractions. We denote
the shared events inσ ∈ Σ∩ taskswith their respective
sets of jobs J σ, according to Definition 3.1. The
communication model is defined as an automaton
CMRi = (Qi ,Ji ,νi ,q0,i,Qm,i) for eachRi , i = 1, . . . ,k with

CMRi := R′
i ||(||σ∈Σ̂i

R̂σ
i )||(||σ∈Σi−Σ̂i

Rσ
i ) �

Example 3 Fig. 4 shows the automatâRϕ
1 for R̂1, R̂α

1
for R̂1, R′

1 for R1 and the communication modelCMR1 =
R′

1||R̂
ϕ
1||R̂

α
1 ||R

k
1||R

l
1. �

In order to compare the system behavior with commu-
nication to the behavior of the distributed discrete event
supervisors, we define the overall communication alpha-
betJ :=

S

σ∈Σ∩
J σ and thereporter mapθ : J ∗ → Σ∗ such
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that θ(ε) = ε andθ(w j) = θ(w)σ if j = σc, θ(w j) = θ(w)
otherwise, wherew∈ J ∗ and j ∈ J . That is,θ determines
the events executed in a communication sequence inJ ∗

by remembering the respective ”command” jobs.
The following theorem states that the behavior with

communication is nonblocking and complies with the
behavior of the original distributed supervisors.1

Theorem 3.1 (Communication Equivalence) Let R =
{R1, . . . ,Rk} be a set of distributed supervisors according
to Section II-B and letCMR1, . . . ,CMRk be the correspond-
ing communication models in Definition 3.2. Then

||ki=1Lm(CMRi ) = ||ki=1L(CMRi )

θ(||ki=1L(CMRi )) = ||ki=1L(Ri) �

To sum up; we consider that supervisors synthesized
according to [6] are implemented in a distributed manner
and communicate via a network. Thecommunication
structure in Section III-A determines the necessary jobs
to synchronize the shared events among the distributed
supervisors. We then algorithmically compute acommuni-
cation modelfor each supervisor and thus define rules for
job communication that establish equivalence between the
behavior of the distributed supervisors and the supervisors
according to [6] in Theorem 3.1.

C. Deadlines for Communication Messages

In the previous section, thelogical system behavior is
considered by defining a logical communication model
CMRi for each nodeRi . Our communication model is
designed for distributed systems on a network where the
communication causes delay which affects the system
operation. Hence, the logical model has to be extended
with real-time requirements such that the equivalence in
Theorem 3.1 still holds in case of communication delays.

In this paper, we introduce timing restrictions for shared
events as a mapr : Σ∩ → R, where r(σ) represents the
maximal allowable time between the physical occurrence
of an eventσ ∈ Σ∩, e.g. a sensor edge, and its execution,
i.e. the command jobσc has been send.2

The execution of an eventσ ∈ Σ∩ requires the com-
munication of all the jobs inJ σ, and the actual event
can happen any time between the first and the last job of
J σ. Hence, we associate adeadline dJ := r(σ)

|J σ| with each
job J ∈ J σ, assuming that each job inJ σ has the same
deadline. In our framework, the deadline indicates that
if a job J is ready to be transmitted by its corresponding
supervisor at timet0, then it has to be sent att0+dJ latest.

Definition 3.3 (Communication Model with Deadlines)
A communication model with deadlinesis a logical
communication model according to Definition 3.2 with a
map r : Σ∩ → R∪{∞} as defined above. Also we denote
dJ := r(σ)

|J σ| the deadlineof J ∈ J σ. �

Example 4 Consider the timing functionr s.t. r(α) =
0.07, r(β) = 0.07, r(γ) = 0.03, r(δ) = 0.06 andr(ϕ) =

1Proofs are omitted in this paper due to space limitations.
2Examples for timing restrictions include actuator or sensor events in

manufacturing systems that have to be enforced or detected on time.

0.06. The corresponding deadlines aredJα = 0.01 for Jα ∈
Jα, dJβ = 0.01 forJβ ∈ Jβ, dJγ = 0.01 forJγ ∈ Jγ, dJδ = 0.01
for Jδ ∈ Jδ anddJϕ = 0.015 for Jϕ ∈ Jϕ. �

The communication model with deadlines in Definition
3.3 is constructed such that jobs ?σRi or !σRi that are
transmitted byRi , are received by all supervisors that
contain the respective job. In doing so, it has to be ensured
that whenever a supervisor needs to transmit a job, it has
access to the network before the respective deadline. This
issue is addressed in the next section.

IV. PROPOSEDCOMMUNICATION ARCHITECTURE

AND OPERATION FORDISTRIBUTED SYSTEMS

The distributed supervisors inR = {R1, . . . ,Rk} ac-
cording to Section II-B can be represented by a set of
corresponding networknodesN = {N1, . . . ,Nk} that are
situated in different physical locations (e.g. on PLCs, PCs)
and can communicate via a network.

Our communication architecture is based on shared-
medium networks, i.e. all network nodes are connected
to the same medium as can be seen in Fig. 5. When a
message is transmitted on the shared medium, all of the
nodes check the message destination address and receive
the message accordingly.

The shared medium networks are simple, inexpensive,
and they provide inherent broadcast and multicast capa-
bilities. However, if two nodes attempt to communicate
at the same time acollision occurs and the messages of
both of the nodes are destroyed. Different techniques for
granting network access to the nodes are developed to
cope with the collisions. In Ethernet networks, each node
is allowed to communicate at arbitrary time instants. In
case of collision, the nodes retransmit after a random
interval of time which makes it impossible to provide
delay guarantees for the communicated messages.

In this paper, we propose time-slotted operation and
a scheduling policy to provide collision-free communica-
tion. The time slots are of fixed sizets, and we assume
that there is a synchronization mechanism such that all
of the nodes are synchronized with these time slot. Note
that such synchronization with an accuracy up to 100ns
is for example provided by the IEEE 1588 standard
for Ethernet [11] which is already implemented in the
Intel IXP465 network processor and integrated in PLCs.
Synchronization is vital in our approach as the collision
avoidance described below relies on the fact that all
nodes know which node will transmit a message in each
time slot. This is achieved by exploiting the deterministic
structure of the supervisor automata and the hierarchical
relationship between supervisors.

a) Network Node: In our setting, a network node
Ni ∈ N consists of the following entities.

N1 an automatonCMRi according to Definition 3.2,
N2 anoutput bufferthat stores messages to be sent,

N1 Nj Nk

Fig. 5. Nodes on a shared medium



N3 an input bufferthat stores received messages,
N4 a set ofactive tasksthat contains the tasks (event

communications) currently initiated by the node,
N5 a priority queuethat storescommunication requests

in the form of a tuple(N,e,d,T), whereN is a node,
e∈ R is an eligibility time, d ∈ R is a deadline and
T is the active task that issued the request. Note that
N is required to have access to the shared medium
network befored to transmit its message. The prior-
ity queue is ordered according to the deadlines of the
communication requests. Hence, the communication
request that has the smallest deadline is granted first.

We address the fact that it takes time for the nodes to
compute e.g. state updates or output messages. We denote
this computation time theeligibility time. The eligibility
time is used to determine when a node is ready to transmit
a message in the communication operation.

b) Message: Communication between nodes re-
quires the exchange of jobs. This communication is
provided by fixed-sizemessages. At most one message
is transmitted in each time slot. We assume that the time
slot duration is selected long enough to acommodate the
longest message to be transmitted.

A messageM of a sender nodeNi ∈ N contains:

M1 a set ofjobs to be sentby Ni ,
M2 a set ofreceiver nodes,
M3 a minischedulewith a set of communication requests

(Nr ,e,d,T) for the jobs to be sent fromNi to Nr ,
M4 a set of tasks that have been terminated inNi .

c) Construction of an Output Message:The mes-
sage constructed for the output buffer of a nodeNi

depends on the current stateq∈Qi of the communication
modelCMRi of Ni . The message is computed as follows.
M1 Set of jobs:

• if a ”command job”σc ∈ Σout,i of Ni is feasible, i.e.
νi(q,σc)!, then the strings that starts withσc and
contains a maximal number of answers and questions
of CMRi , i.e. s∈ σcΣ∗

out,i with νi(q,s)! is computed.3

The set of jobs of the message contains all jobs ins.
• otherwise,s∈ Σ∗

out,i is evaluated as above, and the
set of jobs is constructed accordingly.

M2 Set of receiver nodes:

• if s 6= ε, then the nodes that share jobs in the set of
jobs constructed above are receiver nodes.

• otherwise,Ni is the only receiver node.

M3 Minischedule:

• if s 6= ε, then for each jobJ in the set of jobs,
a request(Nr ,e,d,T) with the receiver nodeNr , a
deadline d, an eligibility time e and the taskT
(shared event) corresponding toJ is generated. Note
that bothd and e are not related to the current job
J and the nodeNi , respectively, but to the receiver
node Nr . Both values can be computed from the
hierarchical node relationship. This concept is further
explained in the next example.

3It can be shown that such a string with maximal length exists in
each state ofCMRi .

• otherwise, the request(Ni ,e,d,T) is generated,
wheree, d and T are eligibility time, deadline and
task of the previous incoming request, respectively.

M4 Terminated tasks:
Let T be the set of tasks (shared events initiated by

nodeNi ) in stateq and letT ′ be the set of tasks in state
νi(q,s) (s is derived as shown above). Then the set of
terminated tasks in the message is set toT −T ′ as these
tasks are no longer active and valid.

Altogether, messages constructed by a nodeNi contain
information about the current jobs to be sent, the times
when receiving nodes have to transmit their next messages
and tasks that are valid at the moment.

d) Communication Operation: The nodes transmit
the messages prepared as defined above. The transmission
times of each node are determined by the priority queue
that exists in each node. At system startup, the nodes are
initialized as follows:

• the highest-level nodeNk constructs the output mes-
sage for its initial statex0,k and the output buffers
for the remaining nodes are empty

• all nodes put(Nk,0,1,−) in their priority queue
After initialization, in each time slot

• each node takes out the first eligible communication
request from its priority queue. As the requests
are sorted by deadline, Earliest Deadline First [12]
scheduling is applied. If there are requests with the
same deadlines, ties are resolved in the same unique
way in all of the nodes.

• the node in this communication request transmits the
message in its output buffer

• the receiver nodes put the incoming jobs in their
input buffer and compute their according state update
(evaluation of the transition function for the incom-
ing jobs) and the message in the output buffer

• all nodes receive the minischedule. New communi-
cation requests are inserted in, and communication
requests with terminated tasks are removed from the
priority queue. Note that this update ensures that all
nodes have the same priority queue by communicat-
ing only the minischedule.

Example 5 illustrates the communication operation.

Example 5 The nodeN1 in Fig. 4 in state 2 of its
communication modelCMR1 is investigated, assuming
that: the current time ist = 100msec; the time slot is
ts = 1msec; the eligibility time is 1msec; a message is sent
from nodeN5 with thereceiver nodes N1,N2, thejob to be
sent?ϕR5, theminischedule(N1,1,10,ϕ)(N2,1,10,ϕ) and
an empty set ofterminated tasks. N1 operates as follows:

• the communication requests(N1,101,110,ϕ) and
(N2,101,110,ϕ) are added to the priority queue.

• computation for the input buffer with the job ?ϕR5:
state update ofCMR1 to state 9.

• computation of the output buffer fors= ε: receiver
node: N1; set of jobs to be sent: {}, minischedule:
(N1,1,10,ϕ); set of terminated tasks: empty.

• if the local eventl occurs, then the new state of
CMR1 is 4. Output message fors =!ϕR1: receiver



TABLE I

NETWORK BEHAVIOR FOR VARYINGts AND te = 1 MSEC

slot time (msec) 0.1 0.2 0.5 1.0

completed tasks/sec 20.12 20.1 18.86 16.23
message delay (msec) 1.08 1.14 1.81 3.35
network utilization (%) 31.17 59.20 93.81 98.62

node: N5; set of jobs to be sent: !ϕR1; minischedule:
(N5,1,10,ϕ); set of terminated tasks: empty.

• suppose the first eligible communication request in
the priority queue is(N1,101,110,ϕ) at timet = 105
(it is eligible as 101< 105).N1 sends the answer to
N5 if all local tasks are completed. Otherwise it
transmits the communication request to itself.�
e) Correct Networked System Operation: Correct

system operation is achieved if all jobs that are ready to
be sent by the nodes inN meet their deadlines. It can
be shown that the communication operation as defined
above guarantees that the jobs are sent and processed in
the order specified by the communication model and that
a communication request for each job to be sent is put
into the priority queue of each node before its deadline.

Proposition 4.1 (Job order) Let J1J2 · · ·Js be a job se-
quence according to the communication operation as
defined above and assume thatJl has to be sent by
nodeNi l ∈ N between timeel and tl , l = 1, . . . ,s. Then
J1J2 · · ·Js ∈ L(CM) and there exists a communication
request forNi l betweenel andtl in the priority queue.�

Correct operation of the distributed supervisors follows
from Proposition 4.1 if the network is sufficiently fast.

Theorem 4.1 (Correct Operation) Let N be a set of
nodes on a shared medium with the communication
operation as defined above. There exists a lower bound
on the network speed such that correct communication
operation is guaranteed, i.e. all jobs are communicated in
the correct order and all job deadlines are met. �

A procedure to determine the required network speed is
addressed in future work.

V. SIMULATION STUDY

Theorem 4.1 states the conditions to guarantee the
correct operation of the networked system. In this section
we present a preliminary simulation study of the system
in Fig. 2 to observe the performance of the distributed
supervisors communicating on a network. We assume that
the low-level events occur randomly within arbitrary but
fixed time ranges in the order of 10-100 msec. Deadlines
are chosen as in Example 4 and we assume that the
eligibility time te is equal for all messages.

We simulate the distributed controller implementation
according to Section IV. for different values of the time
slot ts and the eligibility timete. We also simulate the
timed behavior of a monolithic (one PLC with cycle time
1 msec) implementation to provide a reference. The num-
ber of completed tasks/secfor the monolithic simulation
is 20.4. We summarize the results in the following tables.

All messages meet their deadlines in the experiments
presented in Table 1 and Table 2. There are messages that
miss their deadlines forts = 5msecand for te = 8msec

TABLE II

NETWORK BEHAVIOR FOR VARYINGte AND ts = 1 MSEC

eligibility time (msec) 1 2 5

completed tasks/msec 20.12 18.06 14.74
message delay (msec) 1.08 2.13 5.29
network utilization (%) 31.17 15.12 5.75

resulting in incorrect system behavior. In this preliminary
simulation study, we observe that a slower network and
a growing processing overhead slow down the networked
implementation with respect to the monolithic implemen-
tation finally leading to incorrect operation.

VI. CONCLUSIONS ANDFUTURE WORK

An efficient method for the computation of hierarchical
and decentralized supervisors for discrete event systems
has been elaborated in our previous work ([6]). In this
paper, thedistributed implementation of such supervi-
sors on ashared-medium networkhas been investigated.
Based on the deterministic hierarchical system structure,
a communication modelhas been developed that en-
sures correct system behavior if the specifieddeadlines
for communication messages are met. Additionally, a
communication architectureand scheduling policyhave
been proposed such that the communication messages
satisfy their deadlines if the network speed exceeds a
certain lower bound. This result has been illustrated by
simulations. Future work includes efficient criteria to
determine bounds on the required network speed for
correct operation and communication models for other
distributed control architectures.

REFERENCES

[1] G. Barett and S. Lafortune, “Decentralized supervisorycontrol
with communicating controllers,”IEEE Transactions on Automatic
Control, vol. 45, pp. 1620–1638, 2000.

[2] M. de Queiroz and J. Cury, “Modular supervisory control of large
scale discrete event systems,” inWorkshop on Discrete Event
Systems (WODES), 2000.

[3] J. van Schuppen, “Decentralized control with communication
between controllers,”Unsolved Problems in Mathematical Systems
and Control Theory, Princeton University Press, 2004.

[4] R. Leduc, M. Lawford, and W. Wonham, “Hierarchical interface-
based supervisory control-Part II: Parallel case,”IEEE Transac-
tions on Automatic Control, vol. 50, pp. 1336–1348, 2005.

[5] J. Komenda, J. van Schuppen, B. Gaudin, and H. Marchand, “Mod-
ular supervisory control with general indecomposable specification
languages,” inConference on Decision and Control, 2005.

[6] K. Schmidt,Hierarchical Control of Decentralized Discrete Event
Systems Theory and Application. Ph.D. Thesis, Technische
Fakultät der Universität Erlangen-Nürnberg, 2005.

[7] A. Mannani, Y. Yang, and P. Gohari, “Decentralized embedded
supervisory control of discrete-event systems,” inWorkshop on
Discrete Event Systems (WODES), 2006.

[8] R. Su and J. Thistle, “A distributed supervisor synthesis approach
based on weak bisimulation,” inWorkshop on Discrete Event
Systems (WODES), 2006.

[9] L. Feng and W. Wonham, “Computationally efficient supervisor
design: Abstraction and modularity,” inWorkshop on Discrete
Event Systems (WODES), 2006.

[10] C. Cassandras and S. Lafortune,Introduction to Discrete Event
Systems. Kluwer Academic Publishers, 1999.

[11] (2002) IEee 1588tm-2002 standard for a precision clock
synchronization protocol for networked measurement and control
systems. [Online]. Available: http://ieee1588.nist.gov

[12] D. Ferrari and D. C. Verma, “A scheme for real-time channel estab-
lishment in wide-area networks,”IEEE J. Select. Areas Commun.,
vol. 8, pp. 368–379, 1990.


