
MODELING AND ANALYZING
FINITE STATE AUTOMATA IN THE FINITE FIELD F2

J. Reger and K. Schmidt, University of Erlangen-Nuremberg, Germany
Corresponding Author: J. Reger
Institute of Automatic Control

Department of Electrical, Electronic and Communication Engineering
Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg

Cauerstraße 7, 91058 Erlangen, Germany
Phone: +49 9131-8527134, Fax: +49 9131-8528715

email: reger@ieee.org

Abstract. A method for determining multilinear state space models for general finite state automata is presented.
The obtained model resides onF2, the finite field of characteristic 2 with the operations addition and multiplica-
tion, both carried out modulo 2. It is functionally complete in the sense that it is capable of describing all finite
state automata, including non-deterministic and partially defined automata. For those cases in which the model
overF2 is linear, means for a complete analysis of the cyclic behavior of these automata are recalled. With respect
to these linear models, the cyclic structure of the state space is shown to be determined only by the periods of the
elementary divisor polynomials of the system dynamics. An example illustrates the analysis procedure.

Keywords. Finite State Automata, Linear Modular Systems, Finite Fields, Feedback Shift Registers

1 Introduction

The investigation of the cyclic transition behavior is considered a major task within the analysis of finite state
automata. Reminiscent of eigenvalues in linear continuous systems, linear state space models usingarithmetical
polynomials have been established for deterministic finite state automata in order to ascertain the cyclic structure
of the state space by setting the eigenvalues of the closed loop system dynamics [3]. The main drawback of this
approach is the lack of sufficient and efficient criteria for pointing out the existence of particular cyclic subspaces.
Even for linear systems this approach provides just necessary criteria such that for a fixed set of eigenvalues
some cyclic structures may be derived that only occur virtually. Another drawback is that the multiplicity of
eigenvalues has no significance within this framework, and thus has not been investigated. Getting away with
the latter problems a new method employingWalsh functions was introduced [7], so as to determine the cyclic
structure of the state space, completely leaving aside the eigenvalues of the system dynamics and referring to the
state equation only. The crucial disadvantage remains: the complexity problem, since solving for certain cyclic
states is NP-complete in these settings. This originates from the fact that solving a linear diophantine system
of equations forboolean solutions only (e.g. cyclic states) is on the class of NP-complete problems. There is
no polynomial time algorithm that constructs boolean vectors out of a linear combination of integral or rational
vectors. Hence, typical problems in practice, which usually comprise an enormous number of states, have to
be considered intractable within these approaches. A further drawback is the missing implementation of input
variables in theWalsh function framework. Thus theWalsh function method does not provide any feedback design.
An other shortcoming is its lacking describability of non-determinism, a characteristic property of automata.
However, forarithmetical polynomials some promising steps for adapting the method to non-determinism have
been made [2].
In contrast to the latter, the model to be developed in this paper allows of an efficient analysis of the cyclic behavior
for deterministic and non-deterministic automata and is capable of overcoming the afore mentioned obstacles
using an algebraic state space description that is formulated strictly in (modulo 2-) operations on the set of boolean
numbers, that is the setting resides on the finite fieldF2. Finite field models have already been under consideration
in the control community [4]. However, neither were they utilized for determining the cyclic structure of automata
nor were any analogies drawn to linear continuous time systems. On the other hand concerning linear systems
much of the theory was already developed as early as the sixties — for instance the design of linear feedback
shift registers [5] — but has not been adapted for control purposes yet. In this contribution, based on the system
invariants of a linear system, in particular the elementary divisor polynomials of the system dynamics, the finite
field framework is shown to enable the statement of sufficient criteria for determining all cycles of a deterministic
automaton (in multiplicity and length). As a consequence, the feedback design problem specifying the cyclic

structure of a controlled linear automaton becomes feasible. In the general, multilinear case this can be done
using Gröbner-bases. Specially for linear systems of equations this kind of modeling admits of solving for cyclic
states in polynomial complexity, for example by employing the Gauß-algorithm.
The outline of the paper is as follows: Section 2 introduces some necessary algebraic terminology, e. g. finite
fields, polynomials over finite fields, invariants. By relating boolean algebra to finite fields two methods for
obtaining the multilinear automaton model are presented in Section 3. The analysis of linear systems overF 2,
linear modular systems, is dealt with in Section 4. An example illustrates the analysis method. Finally Section 5
gives some hints of how to use and extend the setting.

2 Algebraic Preliminaries

In engineering sciences discrete mathematics and the algebraic fundamentals of finite field theory usually are of
minor importance. On this account, some indispendsable algebraic concepts are to be prearranged, which form
the base of the automaton model of Section 3. Some remarks spot the differences between finite and infinite fields.
For a comprehensive but thorough introduction to finite fields refer to [8].

2.1 Finite Fields

From [8] we recall some basic definitions.

Definition 2.1 (Groups) A group is a set G together with a binary operation ∗ such that

1. For all a,b ∈ G , a∗ b ∈ G .

2. The operation ∗ is associative, i. e. a∗ (b∗ c) = (a∗ b)∗ c for any a,b,c ∈ G .

3. There exists an identity element e such that for all a ∈ G , a∗ e = e∗ a = a.

4. There exists an inverse element a−1 ∈ G for each a ∈ G such that a∗ a−1 = a−1∗ a = e.

Moreover, a group is commutative (or abelian) if for all a,b ∈ G , a∗b = b∗a. A group is called finite if the set G
contains finitely many elements.

Definition 2.2 (Field) A set F with the operations addition and multiplication, + and · , is a field if

1. F is a commutative group with respect to addition.

2. F\{0} is a commutative group with respect to multiplication.

3. F is distributive with respect to addition and multiplication, that is
a · (b+ c) = a ·b+ a · c and (b+ c) ·a = b ·a+ c ·a for all a,b,c ∈ F.

A field F with q elements, denoted by Fq, is called finite if it contains finitely many elements.

In subsequent sections of the paper a special type of field is utilized that is based on the division remainder
operationmodulo.

Definition 2.3 (Galois-Field) The set of integral numbers {0,1, . . . ,q− 1}, where q is a prime number, with
operations addition and multiplication modulo q, is a finite field called Galois-Field F q.

Remark. The primality ofq is decisive for the existence of a multiplicative inverse element in general. Otherwise
zero divisors occur, as for instance 2·3 modulo 6= 0, hence there is no fieldF 6.

Beginning with Section 3 we will concentrate on Galois-FieldsF2 only. Consequently addition and multiplication
implicitly will be understood modulo 2 and subtraction coincides with addition.

Theorem 2.1 (Fermat’s Little Theorem) Let q ∈ Z be prime. Then for all integers λ, which are not divisible by
q, q divides λq−1−1.

Corrolary 2.1 Every λ ∈ Fq satisfies λq = λ.

Hence, a polynomialp ∈ Fq[λ] over a finite fieldFq, whereFq[λ] denotes the ring of polynomials with coefficients
in Fq, can be identical to zero for arbitraryλ ∈ Fq, sincep may contain zero-polynomialsλ q − λ. In contrast to
finite fields, a polynomialp ∈ R[λ] over the infinite field of real numbersR is identical to zero if and only if all
coefficients are zero.

2.2 Polynomials over Finite Fields

2.2.1 Factorization of Polynomials

By Gauß’ well-known fundamental theorem of algebra all polynomials over the field of real numbersR can be
factorized (reduced) in quadratical factors inR[λ]. As the real numbers refer to an infinite field this need not be
the case for finite fieldsFq, which will be shown in the following.

Definition 2.4 (Monic Polynomial) A polynomial p(λ) = ∑d
i=0 ai λi and degree d is called monic if ad = 1.

Definition 2.5 (Irreducible Polynomial) A non-constant polynomial p ∈ F[λ] is called irreducible over F if
whenever p(λ) = g(λ)h(λ) in F[λ] then either g(λ) or h(λ) is a constant.

Theorem 2.2 (Unique Factorization Theorem) Any polynomial p ∈ F[λ] can be written in the form

p = a p1
e1 · · · pk

ek , (1)

where a ∈ F, p1, . . . , pk are distinct monic irreducible polynomials in F[λ], and e1, . . . ,ek are positive integers.
Moreover, this factorization is unique apart from the order of the factors.

Remark. For the fieldF = R all polynomialspi in Theorem 2.2 are of at most second degree. This does not hold
for a finite field, for example:p(λ) = λ 5 +λ2 +λ +1= (λ3 +λ +1)(λ +1)2, p ∈ F2[λ], becauseλ3 +λ +1 and
λ +1 are irreducible overF2. However,λ3 +λ +1= (λ2 +λ +2)(λ +2) in F3[λ], that is reducibility depends on
the field.

2.2.2 Period of Polynomials

Unlike polynomials over real numbers, polynomials over finite fields show a periodicity property.

Definition 2.6 (Period of a Polynomial) Let p ∈ Fq[λ] be a non-zero polynomial. If p(0) �= 0, then the least
positive integer τ for which p(λ) divides λτ − 1 is called the period of the polynomial p. If p(0) = 0, then
p(λ) = λhg(λ), where h ∈ N and g ∈ Fq[λ] with g(0) �= 0, and τ is defined as the period of g.

Theorem 2.3 (Period of a Multiple Polynomial) Let p ∈ Fq[λ] be irreducible over Fq with p(0) �= 0 and period
τ. Let f ∈ Fq[λ] be f = pk with k ∈ N. Let l be the least l ∈ Z such that ql ≥ k. Then the multiple polynomial p
has the period qlτ.

Remark. Nilpotent polynomialsp ∈ Fq[λ] with p = λk for somek ∈ N are not periodic by definition. Hence,
polynomials over finite fields are either periodic or nilpotent.

In practice, periods of polynomials do not have to be calculated. They can be found in tabulars like in [8], or are
internally tabulated in computer algebra software like Maple or Mathematica.

2.3 Invariants of Linear Systems over the finite field Fq

2.3.1 Similarity of Matrices

The major properties of a matrix reside in its structural invariants. These are preserved under so-called similarity
transforms. Some definitions prepare the introduction of the smith normal form of a matrix.

Definition 2.7 (Similarity of a Matrix) Matrices A1, A2 ∈ F n×n are similar if for some invertible matrix T ∈
F n×n

A1 = T−1A2T . (2)

Definition 2.8 (Rational Matrix) A matrix R(λ), the elements of which are fractions of polynomials over a field
F[λ] is called a rational matrix. If the denominator polynomial of each element of R(λ) is equal to one, the matrix
is a polynomial matrix.

Definition 2.9 (Unimodular Matrix) If the determinant of a polynomial matrix is a scalar in the underlying field
F, the matrix is called unimodular.

Theorem 2.4 (Smith Form of a Matrix) For any A ∈ F n×n
q there exist unimodular matrices U(λ) and V(λ) such

that
U(λ)(λI−A)V(λ) = S(λ) (3)

with

S(λ) =




c1(λ) 0 · · · 0

0 c2(λ)
...

...
. . . 0

0 · · · 0 cn(λ)


 , (4)

where the monic polynomials ci+1|ci, i = 1, . . . ,n−1. The polynomial matrix S(λ) is called the smith (normal)
form of A.

MatricesA1 andA2 are similar if and only if they have the same smith form. Since the polynomialsc i(λ) are
preserved under similarity transforms this gives rise to a further definition.

2.3.2 Invariant Polynomials

Definition 2.10 (Similarity Invariants) The monic polynomials c i(λ), i = 1, . . . ,n referring to the smith form
S(λ) of a matrix A are the similarity invariants of A.

Note that the uppermost polynomialc1(λ) is the minimal polynomial of the dynamicsA. The product of all
similarity invariants is its characteristic polynomial det(λI−A).

Definition 2.11 (Elementary Divisor Polynomials) The unique irreducible factor polynomials p j(λ) of each
ci(λ), i = 1, . . . ,n referring to the smith form S(λ) of A are called elementary divisor polynomials of A.

Remark. We did not mention the jordan normal form of a matrix. The reason is that the jordan normal form is
accompanied by the notion of an extension fieldF qk ,k = 1,2, . . . of Fq. In case of a finite field, the calculation of
roots in the associated extension fieldFqk is much more cumbersome than it is in the field extension associated to
the real numbers, which isC, the field of complex numbers.

3 Multilinear Automaton Model over the Finite Field F2

In this section we develop an algebraic model for a non-deterministic finite state automaton with multiple inputs.
It takes the form

f (x[k+1],x[k],u[k]) = 0, x ∈ {0,1}n, u ∈ {0,1}p , (5)

where f marks an implicit scalar transition function over the finite fieldF 2, which relates then statesx[k] and
the p inputsu[k] in an instantk with the possibly multiple successor statesx[k+1] in instantk+1. The transition
function is multilinear in the elements ofx[k+1], x[k] andu[k] except for a constant.

3.1 The Relation of Boolean Algebra and the Finite Field F2

Some boolean algebra is required for calculating the automaton model over finite fields. Therefore the necessary
basics of boolean algebra are recalled for convenience; a concise introductory is given by [1].

Definition 3.1 (Boolean Operations) Given the set B = {0,1}. Then the operations AND ” ∧ ” , OR ” ∨ ” , XOR
” ⊕ ” and NOT ”¯” are defined on B as follows:

x1 x2 x1∧ x2

0 0 0
0 1 0
1 0 0
1 1 1

x1 x2 x1∨ x2

0 0 0
0 1 1
1 0 1
1 1 1

x1 x2 x1⊕ x2

0 0 0
0 1 1
1 0 1
1 1 0

x x̄

0 1
1 0

Boolean operations form boolean functions, which usually are expressed in normal forms. Those admit an easier
decomposition into subfunctions.

Definition 3.2 (Disjunctive Normal Form) Let f be a boolean function of indeterminates x 1, . . . ,xn ∈B = {0,1}
and c be a vector ∈ B

n. Then the disjunctive normal form of f is

f (x1, . . . ,xn) =
_

c∈Bn

f (c)∧
n̂

i=1

(xi ⊕ ci) . (6)

Example: The disjunctive normal form off (x1,x2) = x1⊕ x2 is

f (x1,x2) =
(

f (0,0)∧ (x1⊕0)∧ (x2⊕0)
)
∨

(
f (0,1)∧ (x1⊕0)∧ (x2⊕1)

)
∨

(
f (1,0)∧ (x1⊕1)∧ (x2⊕0)

)
∨(

f (1,1)∧ (x1⊕1)∧ (x2⊕1)
)

=
(
(x1∧ (x2⊕1)

)
∨

(
(x1⊕1)∧ x2

)
= (x1∧ x̄2)∨ (x̄1∧ x2) . (7)

Instead of introducing all boolean operations from Definition 3.1 it is sufficient to confine oneself to the operations
⊕ and∧. This can be done by using DeMorgan’s Law and observing ¯x = 1⊕ x, hence by

x1∨ x2 = x̄1∧ x̄2 = 1⊕ ((1⊕ x1)∧ (1⊕ x2)) = x1⊕ x2⊕ x1x2, x1,x2 ∈ B .

Thus, if the operations XOR and AND on the setB = {0,1} are identified with addition modulo 2 and multiplica-
tion modulo 2 on the fieldF2 then the following important theorem can be stated.

Theorem 3.1 (Isomorphism of F2 and B) The set B = {0,1} with the operations + := ⊕ and · := ∧ is a finite
field. The finite field B is isomorphic to the Galois-Field F2.

Since any boolean functionf can be manipulated so as to obtain a polynomial in⊕ and∧ only, the calculation of
the finite field representation off overF2 amounts to simply interchange⊕ by + and∧ by ·, respectively (from
now on all additions and multiplications taken modulo 2). Then forx 1,x2 ∈ {0,1} the following applies:

x1∧ x2 ⇐⇒ x1x2 (8)

x1∨ x2 ⇐⇒ x1 + x2+ x1x2 (9)

x1⊕ x2 ⇐⇒ x1 + x2 (10)

x̄ ⇐⇒ 1+ x (11)

These equivalences are of major significance in the next sections.

3.2 Deriving the Algebraic Model by Use of the Disjunctive Normal Form

In the following, a single input example is to introduce the main steps for obtaining the transition function for a
non-deterministic automaton over the finite fieldF2. The underlying algorithm can be generalized easily and is
left out for clearness.
Consider the automaton depicted in Figure 1. The nodes are coded by binary vectors, which represent values for
the statesxT = (x1,x2). Arcs connect the states and indicate possible transitions between the states. Marked arcs
denote that the transition is possible only if a certain condition on the input variablesu is satisfied (hereu = 1). If
no marking is specified on an arc a transition is possible for any choice of inputs. In general, leaving arcs do not
determine unique successor states, i. e. the automaton is non-deterministic.
We will omit the symbolk in the denotation ofxi[k] andu[k] and abbreviatexi[k+1] by x′i and represent the logical
interconnection of statesx1,x2, input u and successor statesx′1,x

′
2 by a state table (right hand side of Figure 1).

Regarding each row in the state table, a function value off c = 1 signifies that a transition is possible,fc = 0
indicates that not.
Therefore, in view of Definition 3.2 and with (7) the disjunctive normal form of the functionf with respect to the
state table of Figure 1 reads

f (x ′
1x ′

2,x1,x2,u) = ūx̄ ′
2x̄ ′

1x̄2x̄1 ∨ ūx̄ ′
2x̄ ′

1x2x̄1 ∨ ūx̄ ′
2x ′

1x̄2x̄1 ∨ ūx̄ ′
2x ′

1x̄2x1 ∨ ūx ′
2x̄ ′

1x̄2x̄1 ∨
ūx ′

2x ′
1x̄2x1 ∨ ūx ′

2x ′
1x2x1 ∨ ux̄ ′

2x̄ ′
1x̄2x̄1 ∨ ux̄ ′

2x̄ ′
1x2x̄1 ∨ ux̄ ′

2x ′
1x̄2x1 ∨

ux ′
2x̄ ′

1x̄2x̄1 ∨ ux ′
2x ′

1x̄2x̄1 ∨ ux ′
2x ′

1x̄2x1 ∨ ux ′
2x ′

1x2x1 = 1,

⇔ f (x ′
1x ′

2,x1,x2,u) = x̄ ′
2x̄ ′

1x̄2x̄1 ∨ x̄ ′
2x̄ ′

1x2x̄1 ∨ ūx̄ ′
2x ′

1x̄2x̄1 ∨ x̄ ′
2x ′

1x̄2x1 ∨ x ′
2x̄ ′

1x̄2x̄1 ∨
x ′

2x ′
1x̄2x1 ∨ x ′

2x ′
1x2x1 ∨ ux ′

2x ′
1x̄2x̄1 = 1,

(12)

(13)

where we used the abbreviationa∧b = ab.

0
0

1
0

0
1

1
1

u = 0 u = 1

Figure 1: Graph of an example automaton (above) and
its state table (right hand side). The column markedf c

signifies whether a transition from(x1,x2)T to (x′1,x
′
2)

T

under inputu is possible and vice versa.

u x ′2 x ′1 x ′2 x ′1 fc

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 1
0 0 0 1 1 0
0 0 1 0 0 1
0 0 1 0 1 1
0 0 1 1 0 0
0 0 1 1 1 0
0 1 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 0
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 0 0
0 1 1 1 1 1
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 1 0 1
1 0 0 1 1 0
1 0 1 0 0 0
1 0 1 0 1 1
1 0 1 1 0 0
1 0 1 1 1 0
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 0 1 1 0
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 0
1 1 1 1 1 1

Observe that by DeMorgan’s law

a1∨a2∨ . . .∨ak = 1 ⇐⇒ (1⊕a1)∧ (1⊕a2)∧ . . .∧ (1⊕ak) = 0 (14)

all disjunctions∨ can be eliminated. The remaining negations in (13) vanish by setting ¯a = a⊕1. As a result we
get a function consisting of the operations∧ and⊕ only. Thus, via (8) and (10) we finally obtain the representation
of the transition function in the finite fieldF2

f (x ′
1x ′

2,x1,x2,u) =
(
1+(1+ x ′

2)(1+ x ′
1)(1+ x2)(1+ x1)

)(
1+(1+ x ′

2)(1+ x ′
1)x2(1+ x1)

)
. . .(

1+ x ′
2x ′

1x2x1
)(

1+ ux ′
2x ′

1(1+ x2)(1+ x1)
)

= 0,

⇐⇒ f (x ′
1x ′

2,x1,x2,u) = x1 + x1x ′
1 + x2x ′

1 + x2x ′
2 + x1x2x ′

2 + x ′
1x ′

2 + x1x ′
1x ′

2 + x1x2x ′
1x ′

2+
x ′

1u+ x1x ′
1u+ x2x ′

1u+ x1x2x ′
1u = 0.

(15)

(16)

3.3 Simplifications Using Reed-Muller Generator Matrices

The regular tabulation of the state table in Figure 1 — binary counting, row by row — allows a much more efficient
calculation technique of the transition functionf . So-called Reed-Muller codes, well-known from linear coding
theory, exploit this property; for further details see [6].
Consider the recursively defined Reed-Muller generator matrices

Gn
def=

(
Gn−1 0
Gn−1 Gn−1

)
, G0

def= 1 . (17)

Then referring to [6] we have the simple matrix–vector product overF 2

c2n+p = G2n+p fc , (18)

in which c2n+p is the (22n+p,1)-vector of coefficients associated to a particular tabulation of monomials in a
(22n+p,1)-vectorϕϕϕ2n+p. In general,ϕϕϕ2n+p contains all monomials of then statesxi, of the p inputsui and of
the next statesx′i. The vectorfc is the(22n+p,1)-vector with respect to the rightmost column in the state table of
Figure 1. Using equation (18) the demanded transition function then reads

f (x ′
1,x

′
2, . . . ,x

′
n,x1,x2, . . . ,xn,u1,u2, . . . ,up) = cT

2n+pϕϕϕ
T
2n+p +1= 0 . (19)

It remains to explain how to tabulate the monomials inϕϕϕ2n+p. We fall back on the example of Figure 1 withn = 2
states undp = 1 inputs. In this case we have

G5 =




1 0

1 1 0

1 0 1 0

1 1 1 1 0

1 0 0 0 1 0

1 1 0 0 1 1 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 0

1 0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 0 1 1 0

1 0 1 0 0 0 0 0 1 0 1 0

1 1 1 1 0 0 0 0 1 1 1 1 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1




, ϕϕϕ5 =




1

x1
x2
x1x2
x ′1
x1x ′1
x2x ′1
x1x2x ′1
x ′2
x1x ′2
x2x ′2
x1x2x ′2
x ′1x ′2
x1x ′1x ′2
x2x ′1x ′2
x1x2x ′1x ′2
u

x1u

x2u

x1x2u

x ′1u

x1x ′1u

x2x ′1u

x1x2x ′1u

x ′2u

x1x ′2u

x2x ′2u

x1x2x ′2u

x ′1x ′2u

x1x ′1x ′2u

x2x ′1x ′2u

x1x2x ′1x ′2u




(20)

with the Reed-Muller generator matrixG5 and the vector of monomialsϕϕϕ5. The tabulation regarding the elements
of ϕϕϕ5 is obviously recursive: if we start the inspection from the top then every new variable is set left to a copy of
the former part of the vector, and so on. Substitution of (20) in (18) and (19) easily verifies the result from (16).

3.4 Enhancements and Generalizations

Abstracting from the latter example under discussion, in general we obtain a multilinear transition function

f (x[k+1],x[k],u[k]) = 0= ∑
S1∈2N

∑
S2∈2N

∑
S3∈2P

δS1,S2,S3

(
∏
j∈S1

x j[k+1]
)(

∏
l∈S2

xl[k]
)(

∏
m∈S3

um[k]
)
, (21)

where the setsN = {1,2, . . . ,n}, P = {1,2, . . . , p} are index sets, 2N denotes the (possibly empty) power set of
N andδS1,S2,S3 are constants∈ {0,1}.

3.4.1 Additional States

Further states and inputs may be added by concatenating the state table on the left with the respective columns
of the new states and inputs. Using the associated, bigger Reed-Muller generator matrices the calculation of the
monomial coefficients still amounts to the same procedure. Note that only the coefficients referring to the new
variables need to be calculated, the coefficients of the former representation are left unchanged; a chief advantage
of the Reed-Muller generator matrix technique.

3.4.2 Partially Defined Transition Functions

In this context, a partially defined transition function is a function that is defined on a proper subspaceX ⊂ F
n
2 .

As a consequence, only a few rows may be defined in the entire state table. To this account a check function
r(x1, . . . ,xn) = 0 can be introduced in the same manor asf c. The value of the check functionr is equal 0 if the
state is defined and 1 elsewhere. After all, the check functionr and the transition functionf can be combined in
one single equation.

3.4.3 Determinism

In case of deterministic automata the state tables can be reshaped as illustrated in Figure 2. Thus, by employing
the methods of Section 3.2 and 3.3 a state equation for each state variablex i, i = 1, . . . ,n can be determined in

explicit form, which results in

x[k+1] = f(x[k],u[k]), x ∈ {0,1}n, u ∈ {0,1}p (22)

and reminds of a discrete time system in the continuous world.

up · · · u2 u1 x ′n · · · x ′2 x ′1 x ′n · · · x ′2 x ′1
0 · · · 0 0 0 · · · 0 0 fn,1 · · · f2,1 f1,1
0 · · · 0 0 0 · · · 0 1 fn,2 · · · f2,2 f1,2
0 · · · 0 0 0 · · · 1 0 fn,3 · · · f2,3 f1,3... · · ·

...
...

... · · ·
...

...
... · · ·

...
...

1 · · · 1 1 1 · · · 1 1 fn,2n+p · · · f2,2n+p f1,2n+p

Figure 2: Typical shape of a state table regarding a deterministic automaton

4 Linear Modular Systems over F2

By means of an autonomous deterministic linear system

x[k+1] = Ax[k], x ∈ {0,1}n , (23)

a so-calledlinear modular system (LMS) with matrixA ∈ F
n×n
2 , called dynamics, the modeling power of the finite

field framework shall be examined. With regard to these systems the analysis for cyclic (periodic) states is carried
out, briefly recalling some results from [5, 9]. The properties of finite fields and polynomials over finite fields,
which have been presented in Section 2, will provide the necessary key concepts for solving the analysis problem.

4.1 Cycle Sum of a Linear Modular System

The state space of an LMS typically decomposes in aperiodic and periodic subspaces. It is clear that in the
autonomous case any information must be included in the structural invariants of the dynamicsA. Thus, there we
may search for information about periodic states. Periodic states are constituted by the following definition.

Definition 4.1 (Period of States) The period of a state x[k] ∈ F n
q is the least τ ∈ N such that x[k+τ] = x[k].

Generally, state spaces decompose in more than one periodic subspace. Let the number of different-length cycles
beN. All occurring subspace periodicities can be written in a more convenient form by applying

Definition 4.2 (Cycle Sum) The cycle sum Σ is the formal sum of cycle terms

Σ = ν1[τ1]�ν2[τ2]� . . .�νN [τN] , (24)

where νi is the number of cycles of length τ i and � satisfies the relation νi[τ]� ν j[τ] = (νi + ν j)[τ] on the cycle
terms.

Definition 4.3 (Product of Cycle Terms) The product

ν1[τ1]ν2[τ2] = ν1ν2gcd(τ1,τ2)[lcm(τ1,τ2)] (25)

is called cycle term product. The expressions gcd(τ1,τ2) and lcm(τ1,τ2) are greatest common divisor and least
common multiple of τ1, τ2 respectively.

Theorem 4.1 (Superposition) The cycle sum Σ superposing e cycle sums Σi can be calculated distributively by
the product

Σ = Σ1Σ2 · · ·Σe . (26)

For brevity the main theorem is recalled from [5, 9].

Theorem 4.2 (Cycle Sum of an Autonomous LMS) Let S(λ) be the smith normal form of the dynamics of an
autonomous LMS, P the set of factorized elementary divisor polynomials p i = (pi,irr)ei , where pi,irr is an irre-
ducible basis polynomial with pi,irr(0) �= 0. Then each pi ∈ P contributes the cycle sum

Σi = 1[1]� 2di −1

τ(i)
1

[τ(i)
1]� 22di −2di

τ(i)
2

[τ(i)
2]� . . .� 2eidi −2(ei−1)di

τ(i)
ei

[τ(i)
ei] , (27)

where di marks the degree of pi,irr and τ(i)
j denotes the period1 of (pi,irr)) j . For the entire LMS the cycle sum Σ

follows by superposition of all |P | cycle sums Σi.

Remark. From Theorem 4.2 we can conlude that nilpotent elementary divisor polynomials are not related to
periodic subspaces.

Thus, the whole cycle sum of a linear modular system overF 2 can be calculated along the following algorithm:

1. Calculate the smith normal formS(λ) of A by left and right transforms onλI + A using appropriate uni-
modular polynomial matrices.

2. Determine the elementary divisor polynomialsp i of A by factorizing the system invariants inS(λ).

3. Assign the periodsτ(i)
j to each polynomialp j

i,irr , j = 1, . . . ,ei with pi = (pi,irr)ei and pi,irr(0) �= 0, that is

polynomialspi(λ) = λk,k ∈ N need not be considered (see Remark).

4. Compute the cycle sumΣi with regard to each elementary divisor polynomialp i.

5. The cycle sumΣ of the entire automaton then follows by superposing all cycle setsΣ i.

4.2 Example

Consider the following linear modular system

A =




1 0 0 1 1
1 1 0 0 1
0 0 1 0 1
0 0 0 0 1
1 0 0 0 1


 S(λ) = U(λ)(λI+ A)V(λ)−−−−−−−−−−−−−−−−−−→ S(λ) =




(λ2 +λ +1)(λ +1)2 0 0 0 0
0 λ +1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 ,

whereA is the dynamics andS(λ) is the smith normal form ofA. Then the only similarity invariants�= 1 of matrix
A are

c1(λ) = (λ2 +λ +1)(λ +1)2, c2(λ) = λ +1 .

Hence,A has the elementary divisor polynomials

p1(λ) = λ2 +λ +1, p2(λ) = (λ +1)2, p3(λ) = λ +1 ,

the base polynomial degrees of which ared1 = 2, d2 = 1 andd3 = 1, respectively. In view of Definition 2.6 and
Theorem 2.3 we calculate the associated periods:

p1,irr(λ) = p1(λ)|λ3 +1 =⇒ τ(1)
1 =3

p2,irr(λ) = λ +1 =⇒ τ(2)
1 =1(

p2,irr(λ)
)2 = (λ +1)2 = λ2 +1 =⇒ τ(2)

2 =2

p3,irr(λ) = λ +1 =⇒ τ(3)
1 =1

Theorem 4.2 yields
Σ1 = 1[1]�1[3], Σ2 = 2[1]�1[2], Σ3 = 2[1]

1Beginning from here we are justified to have introduced the same symbolτ for the period of a state although firstlyτ was introduced for
the period of polynomials in Definition 2.6.

and by superposition according to Theorem 4.1 using (24) and (25) we get

Σ = Σ1Σ2Σ3 = (1[1]�1[3])(2[1]�1[2])(2[1])= (2[1]�1[2]�2[3]�1[6])(2[1])= 4[1]�2[2]�4[3]�2[6] .

Therefore, the considered linear automaton described by the dynamicsA comprises 4 cycles of length 1, 2 cycles
of length 2, 4 cycles of length 3 and 2 cycles of length 6.

5 Conclusion

Beginning from a state table or coding scheme associated to a non-deterministic automaton an algebraic state space
description has been developed. To this end, it was taken advantage of the logical interconnection between the
automaton states, successor states and inputs. The first method invokes the calculation of the disjunctive normal
form, elimination of negations and using the law of DeMorgan. Then a numerically improved, efficient procedure
involving Reed-Muller generator matrices was presented. The result of both methods is a multilinear implicit
transition function over the finite fieldF2. For the subclass of linear modular systems a method for analyzing
the automaton’s cycle sum was recalled. The method offers necessary and sufficient criteria for determining
all automaton cycles in length and number. This is achieved using the invariant polynomials of the dynamics
of the linear modular system. Further work will deal with setting the cyclic behavior by static state feedback.
Nevertheless, almost all practically important cases are multilinear. These systems require more sophisticated,
namely exact non-linear design methods. The notion of Gr¨obner-bases is considered to close this gap.

Acknowledgments

Research partially supported by Studienstiftung des deutschen Volkes and by Deutsche Forschungsgemeinschaft
(DFG) under Grant No. RO 2262/3-1.

References

[1] D. Bochmann and C. Posthoff, Bin¨are Dynamische Systeme, Oldenbourg, Munich, 1981.

[2] D. Franke, Modelling Nondeterministic Discrete-Event Behaviour by Descriptor Systems, in: Proc. 3rd
MATHMOD, Vienna, 2000.

[3] D. Franke, Sequentielle Systeme, Bin¨are und Fuzzy Automatisierung mit arithmetischen Polynomen, Vieweg,
Braunschweig, 1994.

[4] R. Germundsson, Symbolic Systems — Theory, Computation and Applications, Link¨oping, 1995.

[5] A. Gill, Graphs of Affine Transformations, with Applications to Sequential Circuits, in: Proc. 7th IEEE
International Symposium on Switching and Automata Theory, Berkeley (1966) 127–135.

[6] D. Hankerson et al., Coding Theory and Cryptography — The Essentials, Marcel Dekker Inc., New York,
2000.

[7] U. Konigorski, Modeling of Linear Systems and Finite Deterministic Automata by means of Walsh Functions,
in: Proc. 3rd MATHMOD, Vienna, 2000.

[8] R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Application, Cambridge Univ. Press, New
York, 1994.

[9] J. Reger, Cycle Analysis for Deterministic Finite State Automata, in: Proc. 15th IFAC World Congress,
Barcelona, 2002.

